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Abstract

Idiographic modeling is rapidly gaining popularity, promising to tap into the within-person
dynamics underlying psychological phenomena. To gain theoretical understanding of these dy-
namics, we need to make inferences from time series models about the underlying system. Such
inferences are subject to two challenges: time series models will arguably always be misspeci-
fied, meaning it is unclear how to make inferences to the underlying system; and second, the
sampling frequency must be sufficient to capture the dynamics of interest. We discuss both
problems with the following approach: we specify a toy model for emotion dynamics as the
true system, generate time series data from it, and then try to recover that system with the
most popular time series analysis tools. We show that making straightforward inferences from
time series models about an underlying system is difficult. We also show that if the sampling
frequency is insufficient, the dynamics of interest cannot be recovered. However, we also show
that global characteristics of the system can be recovered reliably. We conclude by discussing
the consequences of our findings for idiographic modeling and suggest a modeling methodology
that goes beyond fitting time series models alone and puts formal theories at the center of
theory development.

1 Introduction
Idiographic modeling is rapidly gaining popularity, both in response to concerns about the validity
of inferences from cross-sectional data to within-person processes (Fisher, Medaglia, & Jeronimus,
2018; Hamaker, 2012; Molenaar, 2004), and due to the increased availability of intensive longitu-
dinal data (Miller, 2012). A central promise of idiographic models is that they allow us to tap
into the system of within-person dynamics underlying psychological phenomena (e.g., Fisher et
al., 2018; Hamaker & Wichers, 2017; Wichers, 2014). With this aim in mind, many studies have
used statistical time series models, such as the Vector Autoregressive (VAR) model, to investigate
psychological and psychiatric phenomena (e.g., Bak, Drukker, Hasmi, & van Os, 2016; Bringmann
et al., 2013; Curtiss, Fulford, Hofmann, & Gershon, 2019; Fisher, Reeves, Lawyer, Medaglia, &
Rubel, 2017; Groen et al., 2019; Hasmi et al., 2017; Klippel et al., 2017, 2018; Kroeze et al., 2016;
Lee et al., 2017; Pe et al., 2015; Snippe et al., 2017; van der Krieke et al., 2017; van Winkel et al.,
2017; Vrijen, Hartman, Van Roekel, De Jonge, & Oldehinkel, 2018; J. Wigman et al., 2015).

However, the final goal of this type of research is typically not to fit a statistical time series
model. Instead, it is to further our theoretical understanding of the within-person dynamics
underlying the phenomenon at hand, which allows us to explain, predict and control the dynamics
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(e.g., Haslbeck, Ryan, Robinaugh, Waldorp, & Borsboom, 2020). This raises the question of how to
make inferences from time series models to an underlying system of within-person dynamics. Such
inferences are subject to two fundamental challenges. First, the true system will most likely be
more complicated than the time series model at hand, which means that the latter is misspecified.
Misspecification is a problem, because it implies that it is generally unclear how to make inferences
from the parameters of time series models to characteristics of the true system. Second, if we are
to make any inferences about within-person dynamics the sampling frequency of measurements
has to match the time scale at which those dynamics operate. If it is too low, the dynamics
are not captured in the data and consequently cannot be inferred from a time series model. Of
course, misspecification and insufficient sampling frequency are problems that are pervasive in
all situations in which one’s aim is to identify an underlying system from data. This generality
makes it difficult to derive results that are true in all situations. Instead, results likely depend on
the particular class of system and the particular class of time series model at hand. While this
makes it difficult to study these inference problems, understanding them is essential to successfully
constructing theories of within-person dynamics.

The goal of this paper is to illustrate these two fundamental problems to the growing community
of applied researchers that aims to study within-person dynamics with intensive longitudinal data.
To do so, we adopt the following simulation approach: we define a simple but non-trivial within-
subjects model as the true system, and then try to recover this system with the methodology
typically employed in the psychological time series literature. The idea behind this approach is
that if we run into problems with this simple system, then these problems are unlikely to go away
when studying more complicated systems. This approach is similar to the one of Lazebnik (2002)
who studied whether the methods of biologists allow them to fix a radio, and Jonas and Kording
(2017) who studied whether the methods of neuroscientists allow them to understand a micro-
processor. These papers led to re-evaluations of the methods used to recover systems in these
disciplines, and our hope is that our paper can contribute to a similar discussion in the idiographic
modeling literature in psychology.

To study the problems of misspecification and low sampling frequency in this paper, we use a toy
model for emotion dynamics, which can switch between two emotional states (cf. van de Leemput
et al., 2014). We chose this system for two reasons: First, bistability is a frequently theorized
property of psychological phenomena (e.g., Borsboom, 2017; Cramer et al., 2016; Cramer, Waldorp,
Van Der Maas, & Borsboom, 2010; Kalisch et al., 2019; Nelson, McGorry, Wichers, Wigman, &
Hartmann, 2017; van de Leemput et al., 2014; Wichers, Schreuder, Goekoop, & Groen, 2019;
Wichers, Wigman, & Myin-Germeys, 2015); and second, although it is relatively simple, it is
complex enough to render the most common time series models misspecified. We introduce this
system in Section 2. Our general approach to investigate the problems of misspecification and
insufficient sampling frequency is to simulate time series data from our true system and attempt
to infer characteristics of the system from statistical time series models.

We tease apart the problems caused by misspecification and low sampling frequency by using
a time series with a very high sampling frequency in Section 3, which allows us to investigate the
extent to which one can make inferences from parameters of time series models (such as the VAR
model) to the characteristics of an underlying system, if the time series models are misspecified.
In Section 4, we reduce the sampling frequency to a level that is typical for studies using the
Experience Sampling Method (ESM) and discuss the consequences this has for making inferences
from time series models about the true system. We find that misspecifaction is a fundamental
barrier for making straightforward inferences from time series models to the underlying system.
We also show that if the sampling frequency is too low, the underlying system cannot be recovered
in principle. However, we also show that some aspects of the global behavior of the system can
be recovered despite misspecification and insufficient sampling frequency. In Section 5 we discuss
the consequences of our findings for idiographic modeling and suggest to adopt a more general
modeling methodology that puts formal theories at the center of theory development.

2 A Bistable Dynamical System for Emotion Dynamics
We begin by introducing the dynamical systems model which we will use as the true system
throughout the paper. We will describe the dynamics of this system, how we can generate data
from it, and finally the characteristics of this system which we would hope to infer from statistical
time series models.
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2.1 Model Specification
The system we will study in this paper is a bistable toy model of emotion dynamics. We chose a
bistable system because this class of system has received considerable attention in the psychological
literature (e.g., Borsboom, 2017; Cramer et al., 2016; Kalisch et al., 2019; Nelson et al., 2017;
van de Leemput et al., 2014; Wichers et al., 2019; Wichers, Wigman, & Myin-Germeys, 2015).
Bistable systems have two stable states, which can be interpreted as different psychological states
such as “healthy” or “unhealthy” (e.g., depressed). These types of system are often formalized
within the framework of differential equations, (e.g., Hirsch, Smale, & Devaney, 2012; Strogatz,
2015), a formalization we will adopt in the current paper. Differential equations describe dynamics
in terms of the derivative dxi

dt , that is, the rate-of-change of each variable xi with respect to
time. For an introduction to the interpretation of differential equation models in a psychological
setting, see for example Boker (2002), Boker, Montpetit, Hunter, and Bergeman (2010) or Ryan,
Kuiper, and Hamaker (2018). To produce bistable behaviour these differential equation models
must contain non-linear terms, for example in the form of (product) interaction effects between
variables (Strogatz, 2015).

Specifically, we choose a four-variable generalization of the classic Lotka-Volterra model for
competing species (e.g., Freedman, 1980), which has been used previously as the basis for a toy
model for emotion dynamics by van de Leemput et al. (2014). The variables in the system repre-
sent two emotions with positive valence (Cheerful (x1) and Content (x2)) and two emotions with
negative valence (Anxious (x3) and Sad (x4)) with a value of zero interpreted as the absence of that
emotion. The dynamics of the system are defined by the stochastic differential equations shown in
the left panel of Figure 1:

dxi
dt
“ 1.6` xi `

4
ÿ

j“1

Cijxjxi ` σ
dWi

dt
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Figure 1: Left panel: Model equations and parameters of the bistable emotion system. Right
panel: the vector field defined by the parameters in the left panel. Solid points indicate stable
fixed points and the empty point indicates an unstable fixed point. The solid lines indicate the
values at which derivative of positive emotion (orange) and negative emotion (light blue) is equal
to zero. At the points at which the two lines meet, both derivatives are equal to zero and the
system remains in this (stable) state. The green dashed lines illustrate three trajectories that the
system can take through the vector field.

This equation defines for each emotion variable how it changes (dxi) over a infinitesimal time
step (dt). In other words, the differential equations specify the local or micro-dynamics of the
system. The parameters defining the rate-of-change dxi

dt can be interpreted similarly to a standard
regression model. The constant term 1.6 ensures that the emotion variables (with high probability)
take on only positive values. The second term defines the linear main effect of an emotion xi on its
own rate-of-change, with a regression parameter of 1. The matrix C represents the dependencies
between emotions in the form of interaction effects. Emotions of the same valence reinforce each
other, with for example C12 “ 0.04 indicating that the rate-of-change of x1 (Cheerful) depends on
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the product of x1 and x2 (Content) weighted by 0.04. Emotions of different valence suppress each
other, with C13 “ ´0.2 indicating that the rate-of-change of x1 depends on the product of x1 and x3
(Anxious) weighted by ´0.2. The diagonal elements are quadratic effects, indicating that the rate-
of-change of xi depends on x2i weighted by -0.2. Finally, the term σ dWi

dt represents the stochastic
part of the model in the form of a so-called Wiener process. This is essentially a differential-equation
version of a standard Gaussian perturbation term with independent increments, representing the
short-term fluctuations in emotions caused by the environment the system interacts with. The size
of the stochastic input to the system is determined by the time-interval between realizations of the
process ∆t and σ. For example, if we were to generate data from this model with a step size of
∆t “ 1, we would have Gaussian noise with N p0, σ2q.

Why did we choose this specific model to illustrate the problems of misspecification and insuf-
ficient sampling frequency? First, it is misspecified with respect to the time-series models used by
substantive researchers, yet it is similar in form to those models. For instance, similar to the pop-
ular VAR model, it specifies dynamic relationships in terms of time-lagged relationships, though
here in differential-equation form, akin to the continuous-time version of the VAR model (cf. Ryan
& Hamaker, 2020; Voelkle & Oud, 2013). However, it is also misspecified with respect to the VAR
model as it contains additional interaction terms. We hope that the familiarity of many readers
with the VAR model will help them to understand this true system, and the similarity of the
true model to the VAR model allows us keep discussion of the effects of misspecification concise.
Second, our true model exhibits bistability, which is a property that is interesting theoretically to
many psychological researchers.

To get an idea about the qualitative dynamics of the system we first focus on the deterministic
part of the differential question, that is, the equation in Figure 1 without the stochastic term σ dWi

dt .
Since the matrix C is symmetric, we are able to collapse the system into a 2-dimensional system
consisting of only positive emotions (PE) and negative (NE) emotions. This allows us to study the
qualitative dynamics of the system using a 2-dimensional vector field, in which arrows indicate how
the system is expected to change given any combination of positive and negative emotion values at
a particular point in time (see right panel of Figure 1). Perfectly horizontal arrows in the vector
field indicate where we would expect no change in the negative emotion dimension at the next time
point dNE{dt “ 0, indicated by the blue solution line, while perfectly vertical arrows indicate no
change in the positive emotion dimension dPE{dt “ 0, designated by the orange solution line. The
locations at which these lines cross indicate fixed points (also known as resting states or equilibrium
positions) of the system. At these locations, both derivatives are equal to zero, which means that
the values of the variables in the system will not change anymore once they have reached this
location.

From Figure 1 we can see that the system exhibits three fixed points: Two are stable, located
at (PE “ 1.36, NE “ 4.89) and (PE “ 4.89, NE “ 1.36), which could be characterized as
unhealthy (low positive, high negative emotion) and healthy (high positive, low negative emotion)
stable states of the system. If the system takes on any value above the diagonal (NE ą PE)
it will eventually return to the unhealthy fixed point, and if it takes on any value below the
diagonal (NE ă PE) it will return to the healthy fixed point. The third fixed point, (PE “ 2.80,
NE “ 2.80) represents an unstable fixed point: If the system starts exactly on the diagonal of
the vector field (PE “ NE) it will return to this fixed point, but any deviation will cause the
trajectory to veer off towards one of the stable fixed points. The behavior of the system can be
read off the vector field by starting at a given point and following its arrows. The three green lines
in Figure 1 show the trajectory of the system for three different starting points.

We have seen that in the deterministic system, no matter what value the emotion variables take
on initially, the system eventually moves to one of the fixed points and stays there indefinitely.
However, this is not a realistic model, since the emotions of a person are continuously changing
over time. Rather than staying at a particular fixed point, they are likely to move around the two
fixed points. To allow our model to show such behavior, we add the stochastic noise term σ dWi

dt to
the model. This stochastic version of the bistable system will generally fluctuate around either the
healthy or unhealthy fixed point, but occasionally the noise term will be large enough to “push”
the system from one stable fixed point to another, that is, the noise will cause the system to switch
from the healthy to unhealthy state or vice versa. The frequency with which this switching occurs
is a function of the distance between the two fixed points, the form of the vector field in the areas
between the two fixed points, and the variance of the Gaussian noise process, as determined by
the σ parameter. If the noise variance is low, the probability of a noise draw that is large enough
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to “push” the system to the other fixed point is small, and consequently the frequency of switching
is low. In contrast, if the variance is high, the probability of a large enough noise draw to switch
to the other fixed point is high, and consequently the switching frequency is high. Here we choose
σ “ 4.5 to give a relatively high number of switches in the time series data we generate from
this model. We describe this data generation in the following section, which will also allow us to
visualize the behaviour of the full stochastic system.

2.2 Generating time series
We now show how to generate time series data from the model specified above, allowing us to
illustrate the behavior of the system of differential equations including noise. We generated data
by computing the numerical solution to the model described in the left-hand panel of Figure
1 on the interval r0, 20160s. We interpret a unit of time t “ 1 as one minute, and therefore
the time series spans two weeks (60 ˆ 24 ˆ 14 “ 20160). To generate the data we use Euler’s
method (e.g., Atkinson, 2008), with a step size of ∆t “ 0.01. We chose this step size to limit
computational cost and disk space, however the system shows qualitatively the same behavior
for smaller step sizes. We obtain a time series dataset by sub-sampling the numerical solution
obtained via Euler’s method 10 times per minute (that is, every six seconds). We therefore obtain
a time series dataset with 20160 ˆ 10 “ 201600 measurements, which is shown in Figure 2. The
code to generate data and reproduce all results and figures shown in this paper can be found at
https://github.com/jmbh/RecoveringWithinPersonDynamics.

0 5 10 14

0

2

4

6

8

Days

Em
ot

io
n 

St
re

ng
th

(a)

Cheerful
Content
Anxious
Sad

(b)

Figure 2: Panel (a) shows the “ideal” time series of the four emotion variables Cheerful, Content,
Anxious and Sad. We see that the system switches 17 times between healthy and unhealthy state.
Panel (b) displays the twelfth switch, which is a transition from the unhealthy to the healthy state,
which occurs on day 9.

This time series can be seen as an “ideal” time series since it has been measured with an ex-
tremely high sampling frequency of every six seconds, a continuous response scale, no measurement
error or missing values, and frequent switches. This implies that sampling variation plays essen-
tially no role when estimating models based on this time series dataset. From Figure 2, we can see
that the configuration of the toy model we have chosen ensures that we obtain a time series which
appears to switch approximately 17 times between both stable fixed points in the two week inter-
val. This represents again an idealistic scenario, as observing this many switches between states
gives us the best possible chance to correctly characterize the full system. We use these “ideal”
time series data in Section 3 to study to what extent one can make inferences from misspecified
statistical time series models to the characteristics of the true model if the sampling frequency
is high enough. In Section 4 on insufficient sampling frequency we will use a time series that is
measured with a much lower sampling frequency.
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2.3 Qualitative Characteristics of the True System
In Section 2.1 we defined the true system with a set of four differential equations. These equations
define the rate-of-change of each variable xi given the state of all variables (including xi itself)
and therefore represent the local or micro-dynamics of the system. In the remainder of this paper
we aim to use statistical time series models to make inferences about the true system. These
statistical time series models are misspecified and we therefore already know that it is impossible
to recover the exact local dynamics of the true system. However, it is conceivable that one can make
inferences about qualitative characteristics of the true system that are less specific than the exact
local dynamics. To be able to evaluate to which extent this is indeed possible, we define a number
of general characteristics that describe the true system. We divide those general characteristics in
local and global characteristics:

Local Characteristics

1. Suppressing effects between valences, reinforcing effects within valences

2. Relative size of suppressing/reinforcing effects

3. All parameters are independent of time and independent of variables outside the model

Global Characteristics

4. Bistability (two stable fixed points)

5. Position of stable fixed points

6. Variability around fixed points

7. Frequency of transitions

The local characteristics describe qualitative properties of the local dynamics: The first char-
acteristic is that emotions of the same valence reinforce each other, while emotions of different
valence suppress each other. The second characteristic is the fact that the size (absolute value) of
the reinforcing effects (0.04) are smaller than the suppressing effects (´0.20). The third charac-
teristic is that all parameters in the system of differential equations are independent of time and
independent of variables outside the model. That is, the parameters of the model given in Figure
1 remain fixed over the window of observation.

We describe the remaining four characteristics as global in the sense that they do not refer
to a specific property of the local dynamics, but to the overall qualitative behavior of the system
(which are, of course, produced by the local dynamics). The first global characteristic is bistability,
which means that the data generating mechanism exhibits two stable fixed points. The second
characteristic is the position of the stable fixed points, which are at (PE “ 4.89, NE “ 1.36) for
the healthy fixed point, and (PE “ 1.36, NE “ 4.89) for the unhealthy fixed point. Third, we
consider the variability around the different fixed points. Figure 2 shows that, for both fixed points,
the variability of the emotions with lower values is smaller than the variability of the emotions
with larger values. The final characteristic is the frequency of transitions between the area around
the healthy fixed point and the area around the unhealthy fixed point. In the time series shown in
Figure 2 we see that the system switches around 17 times in a two week period.

3 The Problem of Misspecification
We study the problem of misspecification by trying to recover the characteristics of the true
system with the most popular and some more advanced analysis strategies for time series used
in psychological research. We begin by using simple descriptive statistics and data visualizations,
before analyzing the data with the well-known Hidden Markov Model (HMM) and Vector Auto-
regressive (VAR) model, and finally a less commonly used regime-switching extension of the VAR
model known as the Threshold VAR (TVAR) model. We chose the VAR model, because it has
become an extremely popular model for intensive longitudinal data (see Appendix E). HMMs are
also a popular class of time series models in psychological research (Asparouhov, Hamaker, &
Muthén, 2017; de Haan-Rietdijk et al., 2017; Neale, Clark, Dolan, & Hunter, 2016; Visser, 2011)
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and the TVAR model is an interesting extension of the VAR model (De Haan-Rietdijk, Gottman,
Bergeman, & Hamaker, 2016; Hamaker, Grasman, & Kamphuis, 2010, 2016; Hamaker, Zhang, &
van der Maas, 2009), which allows us to discuss how theoretical input can mitigate the problem
of misspecification. Each of these models is misspecified, which means that the true system is
not a special case of the model at hand. For each model, we examine whether it is possible to
recover the core characteristics of the dynamical system. To study the problem of misspecification
independently of the problem of insufficient sampling frequency, we use the high sampling frequency
time series described in Section 2.2. This means that we have essentially the best data one could
hope for to recover within-person dynamics, and therefore any problems with recovery have to be
due to misspecification.

3.1 Descriptive Statistics and Data Visualization
We begin by analyzing the data with simple descriptive statistics and data visualizations. As a
first step we inspect the histograms of each variable which are shown in the top panel of Figure
3. We see that each of the variables is bimodal, appearing roughly like a mixture of two normally
distributed variables. These distributions are roughly centered around the values 1.6 and 4.8, and
the variance of the higher-valued distribution seems to be slightly larger. This kind of analysis can
be made more sophisticated in many ways. For example, separating the overall density into two
distributions would allow us to calculate means and variances, as well as calculating how frequently
observations appear in each of the two distributions. We will formalize these ideas with a statistical
model in the following subsection, but for now we study the underlying system with additional
visualizations.
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Figure 3: Top panel: The histograms of the four emotion variables Cheerful, Content, Anxious
and Sad. Lower panel: The bivariate relationships between Content and Cheerful, and between
Anxious and Cheerful. All other bivariate relationships are similar to the ones in panel (e) and
(f), due to the symmetry in the true system.

Going beyond the univariate distributions, we inspect the bivariate relationships between emo-
tion variables at the same time point. Panel (e) shows the relationship between Cheerful and
Content, two emotions with the same (positive) valence. We see that most density is concentrated
at values in which both emotions are either high, or low. This means that the system is mostly
in a state in which Cheerful and Content are both high, or both low. Some observations are also
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in-between the two states, which suggests that the system is occasionally switching between those
two states. Panel (f) shows the relationship between Cheerful and Anxious, two emotions with
different valence. We see that the system is mostly in a state in which Cheerful is high and Anxious
is low, or the other way around. These two clusters clearly indicate that the system is bistable,
and enable us to get a rough indication of the locations and variance around both fixed points. If
we plot the data as a function of time as in Figure 2 we can additionally gauge how frequently the
system switches between the states at which the system stays most of the time.

Taking all results together, which characteristics of the true system did we recover? We clearly
recovered the fact that the system is bistable and we got a rough idea about the location and
variance of the distributions at the two fixed points. By inspecting Figure 2 we were also able to
gauge the frequency of switches. To provide a more quantitative picture of the fixed points and
the variance around them, in the following subsection we fit a Hidden Markov Model (HMM).

3.2 Mean Switching Hidden Markov Model
In the previous subsection we eyeballed the location and variance of distributions around fixed
points, their relative frequency, and how often the system appeared to switch from one distribution
to the other. We now obtain numerical estimates of these quantities by employing a more rigorous
approach. Specifically, we will fit a Hidden Markov Model (HMM). In an HMM observations are
drawn from a mixture of distributions, where at each time step there is some estimated probability
of switching from one distribution component to another, encoded by a transition matrix. To fit
the HMM, we must specify a particular type of distribution, and the number of components we
believe to make up the mixture.

Here we chose a Gaussian distribution with diagonal covariance matrix and K “ 2 compo-
nents. For more details on this type of model see Zucchini, MacDonald, and Langrock (2017).
We fit the model using the R-package depmixS4 (Visser & Speekenbrink, 2010) and obtained the
following estimates for the means and standard deviations for the two components k1 and k2 and
the transition matrix M̂ :

µ̂p1q “

¨

˚

˚

˝

1.47
1.46
4.71
4.71

˛

‹

‹

‚

, σ̂p1q “

¨

˚

˚

˝

0.41
0.40
0.63
0.62

˛

‹

‹

‚

, µ̂p2q “

¨

˚

˚

˝

4.75
4.76
1.45
1.45

˛

‹

‹

‚

, σ̂p2q “

¨

˚

˚

˝

0.63
0.62
0.40
0.40

˛

‹

‹

‚

,M̂ “

ˆ

k1 k2
k1 0.9996 0.0004
k2 0.0004 0.9996

˙

.

The entries in the parameter vectors refer to the four variables Cheerful, Content, Anxious and
Sad. When inspecting the means µ̂p1q, µ̂p2q of the two components, we see that the HMM picked
up two states: one in which the positive emotions are low and negative emotions are high (State
1); and one in which the reverse is true (State 2). The HMM also picked up that the variance is
lower for variables that are in a state in which their values are lower. The HMM identified the same
qualitative features as eyeballing the visualizations in the previous section. However, it provides
a more principled way to estimate the means and variances of the components. Indeed, the mean
estimates of the two components are very close to the true fixed points of the system (see Section
2.1).

In addition, the HMM predicts for each data point to which state (or components) it belongs
and also provides a transition matrix between states M̂ . Figure 4 displays the full time series
together with the predicted state for each time point (grey/white shading). When inspecting the
predicted components visually, it seems that the HMM captured the switches well. Next to the
larger blocks in which the system stays in the same state, it also identifies switches in which the
system switches back and forth within only a few time points. These switches might have been
missed when merely eye-balling the time series. Since the system mostly stays in the same state
and switches only occasionally, the probabilities on the diagonal of the transition matrix M̂ are
much larger than on the off-diagonal elements.
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Figure 4: Time series of the four emotion variables, also shown in panel (a) of Figure 2, with
background color indicating whether a given time point is assigned to state 1 or state 2 of the
mean-switching HMM.

Taking all results together, which characteristics of the true system did we recover? Qualita-
tively, we reached the same conclusions as with the visualizations in the previous sections. However,
by going beyond mere eyeballing and fitting a HMM, we obtained estimates of the location and
variance of the distributions around fixed points, we obtained a transition matrix, and we were
able to predict for each time point to which component it belongs. This means that we successfully
captured the global characteristics, however we did not capture any local characteristics. We turn
to those next.

3.3 Lag-1 Relationships & VAR Model
We now turn to the local dynamics describing the temporal relations between the four emotion
variables at a very small time scale. We begin by visualizing the temporal relationships between
pairs of variables over two subsequent time steps, which are in the present dataset six seconds
apart. These relationships are also modeled by the VAR model, with the only difference that
in the VAR model these relationships are conditional on all other variables at the previous time
point. Figure 5 displays this temporal relationship between Cheerfult´1 and Contentt in panel (a),
and the relationship between Contentt´1 and Anxioust in panel (b). We first consider the lagged
relationship between Cheerfult´1 and Contentt in panel (a). We see that most of the density is
where both variables have either high or low values. Note that the densities look quite similar
to the ones of the lag-0 relationships shown in the lower panels of Figure 3. This is because the
sampling variance is extremely high and therefore observations do not change much over one time
step. Fitting a linear regression model we find a strong positive relationship between these two
lagged variables ρ “ 0.98 (red line).

What can we conclude from this strong positive lagged relationship? It might be tempting
to conclude that Cheerful has a positive linear effect on the rate-of-change of Content. However,
this would be incorrect, because the relationships in the true system include product interaction
terms. Instead, this parameter represents the best linear approximation to the lagged relationship,
so perhaps we can at least use it to infer a more coarse local characteristic such as whether the
relationship between the two variables is suppressing or reinforcing. For this bivariate relationship,
it turns out that we would correctly infer the local characteristic of the true system that emotions
of the same valence have a reinforcing effect on each other. The same argument applies to the rela-
tionship between Contentt´1 and Anxioust, except that the best linear approximation is negative,
and that we would correctly conclude that emotions with different valences suppress each other.
However, the problem with this type of inference is that we do not know when it actually turns
out to be correct. We illustrate this problem with the popular lag-1 Vector Autoregressive (VAR)
model.
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Figure 5: Panel (a) shows the relationship between Content and Cheerful, two emotions with the
same valence, spaced one time point apart (at a lag of one). The red line indicates the best fitting
regression model. Similarly, panel (b) shows the relationship between Anxious and Content, two
emotions with different valence, at a lag of one. Panel (c) displays the matrix of lagged regression
parameters, estimated from a VAR(1) model, as a network, and panel (d) displays the partial
correlation matrix of the residuals of the VAR(1) model as a network. This latter network is often
referred to as the contemporaneous network.

The VAR(1) model predicts each variable Xi at time t by a linear combination of all variables
(including Xi) at the previous time point, written in vector form as

Xt “ α`ΦXt´1 ` εt , (1)

where α is a vector of intercepts, Φ is a matrix containing the auto-regressive (φii) and cross-lagged
(φij , i ‰ j) effects, and εt is a vector of normally distributed residuals εt „ N p0,Ψq, which are
independent across time, with residual variance-covariance matrix Ψ.

Panel (c) of Figure 5 displays the estimated parameters in the Φ-matrix, and the estimated
intercepts are α “ t0.27, 0.28, 0.26, 0.26u. We see that there are strong auto-regressive effects which
could be taken as evidence that each variable has a strong effect on its own rate-of-change, which
is indeed the case in the true model. In addition, we see again that there are positive linear lagged
effects between emotions with the same valence, and negative lagged effects between emotions
with a different valence. We also see that the effects within valence are about twice as large as
the effects between valence, which could lead us to conclude that the reinforcing effects in the true
model are stronger than the suppressing effects. However, we know that this is incorrect. Indeed,
in the true model the reverse is true. This illustrates the fact that there is no guarantee that
naive inferences from the parameter estimates in misspecified time series models to characteristics
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of the true model need to be correct. The source of misspecification in this case is the presence
of non-linear relationships in the true system, relationships which the VAR model approximates
with linear effects. This becomes clear when comparing the VAR model in equation (1) with
the true bistable system defined on the left-hand side of Figure 1: while the VAR model does
contain a constant term, linear self-dependency and Gaussian perturbation variance term, it fails
to incorporate the non-linear product term Cijxjxi. Note that, although there are well known
complications to making inferences from (discrete-time) VAR parameters to differential equation
models (Kuiper & Ryan, 2018; Ryan & Hamaker, 2020; Voelkle, Gische, Driver, & Lindenberger,
2018), fitting the continuous-time equivalent to the VAR model will not overcome the issue of
model misspecification in this case (for details see Appendix B).

Panel (d) of Figure 5 shows the partial correlations between the residuals of the model. In
practice, dependencies between residuals may be brought about due to multiple factors, such as
the presence of unobserved common cause variables, dependencies between processes operating at
a different time-scale, differences in time-intervals between observed measurement occasions, or
misspecification of the functional form of the lagged dependencies. In this case, we know that
misspecification of the functional form is the source of these residual dependencies, since the other
issues we have listed here are absent from the true system and data generation scheme. Although
the residual partial correlations succeed in flagging model misspecification, it is difficult to interpret
the exact values of the partial correlations in this setting. In practice, applying a reasonable
interpretation of residual structures will likely require assumptions about the absence of one or
more potential sources: For example, if we are willing to accept that the data-generating mechanism
is linear and first-order, and observations are equally spaced, residual partial correlations may flag
the presence of unobserved common cause variables.

An additional consequence of the fact that the VAR model only includes linear effects, but the
true system includes non-linear effects, is that the VAR model cannot generate data that has the
same global characteristics of the data generated by the true system. The reason is that the VAR
model exhibits only a single fixed point which is equal to its mean vector µ “ pI ´Φq´1α, where
I is the identity matrix (Hamilton, 1994). Thus, the histograms of data generated from a VAR
model will show a uni-modal distribution, which means that none of the four global characteristics
can be reproduced. We illustrate this in Figure 14 in Appendix C.1 by generating two weeks of
data from the VAR model estimated in this section. Checking the characteristics of the empirical
data against the characteristics of the model-generated data is a valuable tool for model evaluation.
This is especially the case for high-frequency data, because variables do not change much from one
time point to the next. In such a situation, a VAR model can fit the data very well even though
it recovers none of the characteristics of the true system.

Careful researchers may detect that the VAR model is misspecified in this type of situation,
for instance by comparing empirical and model-generated data as we have here, or more generally
by using diagnostic tools (such as correlation and partial correlation plots) to check whether the
assumptions of the VAR model are met. This type of model exploration is crucial: At a minimum,
it would indicate in this case that the VAR model parameters should be interpreted with caution,
thus mitigating the possibility of drawing incorrect conclusions about the true system. Ideally,
such model exploration would lead the researcher to choose a model which is less misspecified, that
is, “closer” to the true system. However, we would caution that there is likely no guarantee that
such a procedure will succeed. In Appendix D we show that standard application of time-series
diagnostics can easily lead one to, for instance, mistakenly remove a (seasonal) trend from the
data, obtaining a VAR model whose assumptions appear to be met in this transformed dataset.
Although the resulting model appears to fit well to the data, it still does not help us to correctly
characterize the true system. Thus, diagnostics and assumption checks should not primarily used
to motivate data transformation that ensure that the assumptions of the misspecified model are
met, but rather to choose models that allow us to characterize the key features of the system under
investigation.

To summarize, the true system is not a special case of the VAR model, and therefore the VAR
model is misspecified. In the present case the main source of misspecification is the fact that the
true system includes non-linear effects, while the VAR model does not. This misspecification has
the effect that we cannot make reliable inferences from parameters of statistical models to the local
characteristics of the true system.
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3.4 Threshold VAR
In the previous section we showed that the VAR model did not allow us to recover most key
characteristics of the dynamical system. The main barrier to using the VAR model was that the
true dynamics in our system are non-linear. That is, the effect of Xi now on Xj later depends
on the current value of Xi. This means that a) it is difficult to infer local characteristics such as
which relationships are stronger or weaker than others, and b) the VAR model in principle cannot
reproduce the global characteristics related to multiple stable states. Here, we go beyond the
VAR model by considering regime-switching VAR models, which allow observations to be drawn
from two or more distinct states with different sets of parameters (Tong & Lim, 1980), potentially
allowing us to overcome these limitations.

Regime-switching VAR models differ from one another in how they specify the mechanism
that allows the system to switch from one state to another. For example, the Markov-Switching
VAR combines the HMM and VAR models, modeling state-switching behaviour as governed by a
latent Markov process. For the dynamical system we study in the current paper, the threshold
VAR (TVAR) model would most closely approximate the behaviour of our true system. The TVAR
describes a system which switches between states depending on the value of a thresholding variable
zt:

Xt “ α
p1q `Φp1qXt´1 ` e

p1q
t if zt ď τ

Xt “ α
p2q `Φp2qXt´1 ` e

p2q
t if zt ą τ

where τ is known as the threshold value, a parameter which must be estimated, and αpiq,Φpiq are
the intercept vector and the matrix of lagged regression coefficients in state i respectively. Notably,
the thresholding variable zt must be specified a-priori, either as a time-varying covariate, or as one
of the X variables in the model itself, and, similar to the HMM, the number of states expected
must be specified a-priori or tested through model selection. Here we choose to fit a TVAR model
with a single threshold value, that is, two states, and use Cheerful (X1,t´1) as the thresholding
variable. We estimate the TVAR model using the R-package tsDyn (Fabio Di Narzo, Aznarte, &
Stigler, 2009).

Figure 6 displays the main results from the estimated TVAR model, in which the threshold is
estimated as τ̂ “ 2.811. In panel (a) of Figure 6 we show the time series and the shading indicates
which observations of Cheerful are below (grey) or above (white) the threshold. We see that the
estimated threshold does well in separating the time series into periods in which the system is in
an unhealthy state (based on Cheerful values below the threshold) and a healthy state (Cheerful
values above the threshold). Inspecting the lagged networks for each regime in panels (b) and
(c) of Figure 6 we see that the auto-regressive effects and the within-valence cross-lagged effects
are quite similar across both regimes. However, this is not the case for the cross-lagged effects
between variables of opposite valence. In the healthy regime, negative valence emotions have much
stronger cross-lagged effects on positive emotions (φ̂p2q13 “ φ̂

p2q
14 “ φ̂

p2q
23 “ φ̂

p2q
24 “ ´0.08), and vice

versa for the unhealthy regime (φ̂p1q31 “ φ̂
p1q
41 “ φ̂

p1q
32 “ φ̂

p1q
42 “ ´0.08). Applying the standard way of

calculating model-implied means for the VAR models above and below the threshold separately,
we obtain µ̂2 “ t4.74, 4.75, 1.45, 1.46u for the healthy state and µ̂1 “ t1.49, 1.48, 4.69, 4.69u for the
unhealthy state.

There are two striking aspects of the TVAR model results. The first is that the TVAR threshold
value picks up on many of the global dynamics present in the system: The threshold correctly
separates the time series based on whether the system is close to the healthy or unhealthy fixed
point, and captures the approximate position of those two fixed points. In part, this is due to
the specific parameterization of our bistable dynamical system. Due to the symmetries in the true
system, the value of Cheerful happens to be a very good indicator of the multivariate position of
the system: If Cheerful is high (i.e. above the unstable fixed point) Content is high and Anxious
and Sad are low (below the unstable fixed point) and vice versa. Thus, although the switching
behaviour in the true system is dependent on the position of the system in multivariate space, in
the simple system used in this paper a univariate threshold is sufficient to capture this to a high
degree of accuracy.
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Figure 6: Panel (a) shows the two weeks of the time series, with observations shaded in either grey
or white as a function of whether Cheerfult´1 is above or below the threshold τ̂ “ 2.811. Panels
(b) and (c) show the estimated VAR(1) parameters as lagged networks in the healthy (white) and
unhealthy (grey) regimes respectively.

Second, the TVAR recovers two separate asymmetric matrices of lagged parameters. These
asymmetries are present because the TVAR model is approximating the continuous non-linear
relationships in the true system with a step-function along the variable Cheerful. That is, we fail
to capture that each lagged relationship is an interaction effect, dependent on the exact value of
the variables involved. However, since thresholding on Cheerful succeeds in separating the two
states in our system, the TVAR lagged parameters correctly pick up that the strength of each
relationship differs depending on whether the system is near the healthy or unhealthy fixed point.
We saw that this was indeed the case in the left hand-panel of Figure 5 (b), where the marginal
relationship between Cheerfult´1 and Anxioust is clearly more strongly negative near the unhealthy
fixed (top left quadrant) point and less strongly negative near the healthy fixed point (bottom right
quadrant). Reflecting this, in Figure 6 we see that in the unhealthy regime Cheerful has a stronger
negative lagged effect on Anxious φp2q14 “ ´0.08 than in the Healthy regime φp1q14 “ ´0.03. In
Appendix C.2 we show that these asymmetric lagged parameter matrices (in combination with the
state-dependent residual covariance matrices) also succeed in reproducing the global characteristic
that the variability of the emotion variables differ in each regime.

In summary, the TVAR model reproduces two regimes or states which are determined by a
univariate threshold. The lagged parameters in each regime are asymmetric, showing that the
strength of the lagged relationships between variables of opposite valence (e.g. Cheerfult´1 and
Anxioust) is dependent on which state the system is in. With knowledge of the true system we
could explain that the univariate threshold is capable of approximating the position of the unstable
fixed point in multivariate space, and that the asymmetric lagged parameters are produced by the
continuous non-linear relationships present in the system. However, without theoretical knowledge
about the true system, one might incorrectly conclude that, for instance, the true parameters of
the system change over time, or that they are dependent only on the Cheerful variable. This shows
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that the use of a misspecified time series model to make direct inferences about the system is
highly challenging even under ideal conditions: Although the global dynamics of the system were
recovered in this case, any inferences about local dynamics were heavily dependent on theoretical
insight about the system at hand.

With those caveats in mind, these results can be interpreted with cautious optimism. The more
complex the model we were able to fit, and the more theoretical knowledge we had with which to
guide model choice, the more characteristics of this system we were able to recover. However, there
is no guarantee that for other dynamic systems, or even variants of the present dynamic system
with different parameter values, that the TVAR model would succeed in allowing any such accurate
inferences. Rather, our analysis suggests that strong theoretical ideas about the underlying system
are necessary to be able to make even the most basic inferences from common time series models.

4 The Problem of Insufficient Sampling Frequency
We now turn to the problem of sampling the system with a sampling frequency that is insufficient
for it to be recovered. To study the effects of insufficient sampling frequency, we create a time
series with measurements every 90 minutes, which is a sampling frequency that is typical for ESM
studies. We create this time series by taking every 900th measurement from the original time series
shown in Figure 2. The resulting sub-sampled time series is shown in Figure 7.
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Figure 7: Panel (a) shows the ESM time series which was obtained by taking measurements
snapshots every 90 minutes. Panel (b) displays the information the ESM data captures about the
twelfth switch in the system, as depicted in Figure 2. Note that the ESM time series we analyze
in Section 4 is much longer (1800 weeks) than the 14 day ESM time series shown here.

The ESM time series appears less dense, which is what we would expect since it contains only
1/900 of the time points of the ideal time series in Figure 2. However, we see that the system is
still bistable and that the location of and variance around the fixed points is largely the same. In
this section we will use this emulated ESM time series to try to recover the true bistable system
using the same array of methods as in Section 3, in which we analyze the ideal time series. To
ensure that results reflect only the effect of lowering the sampling frequency, and not the effect
of lowering the overall sample size, we increase the period of the ESM time series to 1800 weeks,
resulting in 201600 observations spaced at 90 minute time-intervals, equal to the sample size used
in the previous section.1

1Note that, to ensure comparability, we use the same Euler step size of ∆t “ 0.01 to generate the ESM data as
was used to generate the ideal time series. However, this makes generating a single time series of the required length
prohibitively time-consuming. In order to make data generation more feasible, we instead generate 900 sub-sampled
time series in parallel, where the first observation of each series is a random draw from a Gaussian distribution
centered around the healthy fixed point and with unit variance.
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4.1 Descriptive Statistics, Data Visualization & HMM
We again begin by analyzing the data with descriptive statistics and data visualizations. We see
that both the histograms and the bivariate relationships at the same time point look exactly the
same as the ones of the high sampling frequency time series shown in Figure 3. We again see that
the system is bistable, and get a rough idea of the location and variance and the frequency of the
two states.
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Figure 8: Top panel: The histograms of the four emotion variables Cheerful, Content, Anxious
and Sad in the ESM-time series. Lower panel: The bivariate relationships between Content and
Cheerful, and between Anxious and Cheerful in the ESM-time series. The red line indicates the
best fitting regression line. Note that all other bivariate relationships are similar to the two shown
ones, due to the symmetry in the true system.

To obtain numerical estimates for those quantities, we fit the Mean Switching HMM to the
ESM-time series and obtain the following estimates:

µ̂p1q “

¨

˚

˚

˝

1.47
1.46
4.71
4.71

˛

‹

‹

‚

, σ̂p1q “

¨

˚

˚

˝

0.41
0.41
0.63
0.63

˛

‹

‹

‚

, µ̂p2q “

¨

˚

˚

˝

4.71
4.71
1.47
1.47

˛

‹

‹

‚

, σ̂p2q “

¨

˚

˚

˝

0.64
0.64
0.41
0.41

˛

‹

‹

‚

, M̂ “

ˆ

k1 k2

k1 0.915 0.085
k2 0.090 0.910

˙

.

Again, we see a very similar pattern of results as obtained from the HMM fit to the ideal time
series in Section 3.2, with the means and standard deviations of state 1 and state 2 reflecting the
unhealthy and healthy states respectively. The only difference is that the off-diagonal elements are
larger than in the high sampling frequency time series. The reason is that there is still the same
amount of switches in a given time period, however, there are much fewer observations between
any two switches. Similarly to the analysis of the high frequency time series, we could predict the
state for each time point. We display the predicted states for the first two weeks of the time series
in Figure 11 in Appendix A, where we can see that the model again succeeds in capturing which
observations are close to the healthy or unhealthy fixed point.

Taken together, we were still able to recover bistability, the location and variance around fixed
points, and the frequency of switches. That is, the recovery of global dynamics was unaffected by
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reducing the sampling frequency. This makes sense, because the global characteristics used here
are not defined with respect to dependencies across time. Therefore, and because we kept the
sample size constant, the data visualizations and HMM model show results that are similar to the
ones obtained in the high sampling frequency time series. This is good news, because it shows that
one can learn some characteristics of a system, even if measurements are taken at a frequency that
is unlikely to tap into the local dynamics of the phenomena of interest.

4.2 Lag-1 Relationships & VAR Model
We now turn to dependencies across time. Again, we begin by inspecting bivariate dependencies
between t´1 and t. Panel (a) of Figure 9 displays the within-valence dependency between Cheerful
at t ´ 1 and Content at t. We see that the density looks very different from the one of the high
frequency time series shown in Figure 5: First, there seem to be four density clusters instead of
two. And second, each of the density clusters Cheerfult´1 and Contentt has a circular shape or is
oriented along one of the two axis, which implies that the variables are locally uncorrelated.
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Figure 9: Panel (a) shows the relationship between Content and Cheerful, two emotions with the
same valence, spaced one measurement occassion apart (i.e., at a lag of one but with 90 minutes
between measurements) for the ESM time series. The red line indicates the best fitting regression
model. Similarly, panel (b) shows the relationship between Anxious and Content, two emotions
with different valence, at a lag of one. Panel (c) displays the matrix of lagged regression parameters,
estimated from a VAR(1) model, as a network, and panel (d) displays the partial correlation matrix
of the residuals of the VAR(1) model as a network. This latter network is often referred to as the
“contemporaneous” network.

The two additional density clusters are explained by the fact that in the ESM time series it
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is possible that a switch occurs between two subsequent measurements. For example, at t´ 1 the
system is in the healthy state, and at t the system is in the unhealthy state. This would lead to
a point in the cluster in the bottom right corner. Such large “jumps” are possible in the ESM
data, because in-between every pair of ESM measurement we skip 900 measurements in the high
frequency time series. In the latter, such jumps are not possible, because the process changes
relatively slowly from one time step to the next.

The lowered sampling frequency also explains the absence of dependency in each separate
density. The differential equations of the true system specify a local dependency between variables,
essentially from one infinitely small time step to the next. However, we now omitted 900 time
points that are present in the ideal dataset between any two measurement points in the ESM
dataset. Since independent noise is injected at a rate of every six seconds, there is hardly any
dependency left between measurements taken 90 minutes apart. This is very similar to simulating
900 measurements from a VAR model, and trying to predict the 900th observation from the first.
The density of the relationship between Content at t ´ 1 and Anxious at t shown in panel (b) of
Figure 9 is explained analogously.

We now know how to explain the densities of the bivariate relationships between lagged vari-
ables. How does this influence how we interpret the parameters of the VAR model fit to these
variables? Above, we were struggling with the fact that the linear relationships were an approx-
imation of non-linear relationships. However, now we are dealing with the additional problem
that there are essentially no dependencies anymore between subsequent time points, except the
dependency implied by the global characteristics. While the VAR parameters still reflect the global
characteristics, it would be a mistake to interpret its parameters as “moment-to-moment” inter-
actions at a short time scale. In fact, the remaining relationships between pairs of variables can
be summarized in a simple 2ˆ 2 table which shows that emotions of the same valence are usually
both high or both low, and emotions with different valence are hardly ever both high or both low.
If such relations hold between any pair of variable, then each variable is equally predictive of any
other variable. This is why all parameters in the VAR model in panel (c) have roughly the same
value.

To summarize, we showed that, in the present case study, subsampling the data to a sampling
frequency typical for an ESM-study removed essentially all local dependency from the time series.
This means that it is impossible to recover them with any type of model. However, the linear lagged
effects still provided some information about the global characteristics. This shows that important
information can still be obtained from time series models even if the data is subsampled to the
extent that all local dependencies are lost. However, it is crucial to carefully interpret these time
series models. Interpreting them directly as reflecting local dynamics would clearly be incorrect.
The example of the VAR model illustrated this: The relations do describe how the variables are
related, however, they provide an extremely poor estimate of the local dynamics of the true system.

4.3 Threshold VAR
Finally, we examine the degree to which the threshold VAR model is able to recover characteristics
of the bistable system based on data with a low sampling frequency. Figure 10 displays the main
results of the estimated TVAR model. As we might expect based on the previous analyses, the
TVAR model is able to recover some global characteristics of the system. The estimated threshold
value (again using Cheerful as the thresholding variable) is τ̂ “ 2.796, quite close to the position of
the unstable fixed point position. Panel (a) of Figure 10 shows that this threshold value succeeds
in separating the time series into healthy and unhealthy states respectively, since the identification
of these states is largely driven by the means.

However, the recovery of local characteristics by the TVAR model runs into the same fundamen-
tal problems as we encountered in the VAR model: The sampling frequency is so low that no local
dependencies are present in the data, and introducing a threshold into our model is unable to solve
this problem. Panels (b) and (c) of Figure 10 display the lagged parameters for each regime, as
estimated by the TVAR model. Although we again recover asymmetric between-valence relation-
ships, as we did in Section 3.4, there are a number of differences in the lagged parameter estimates
based on ESM data, such as the positive relationship of Cheerfult´1 with Sadt and Anxioust in
the healthy regime, and the large within-valence cross-lagged relationships of Anxious and Sad
in the healthy regime and between Cheerful and Content in the unhealthy regime, respectively.
As was the case for the VAR model above, these lagged parameter estimates are produced by the
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global characteristics of this system and should not be interpreted as reflecting local characteristics
directly.
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Figure 10: Panel (a) shows the first two weeks of the time series, with observations shaded in either
grey or white as a function of whether Cheerfult´1 is above or below the threshold τ̂ “ 2.796. Panels
(b) and (c) show the estimated VAR(1) parameters as lagged networks in the healthy (white) and
unhealthy (grey) regimes respectively.

To summarize, we again have seen that sub-sampling the data to a sampling frequency typical
for an ESM-study removes all local dynamics from the time series. However, even with a lowered
sampling frequency, the threshold VAR model was still able to recover global characteristics, again
separating the time series appropriately into the healthy and unhealthy regimes. This suggests
that time series models which are appropriately informed by theory, though still misspecified, can
be used to gain insights into global characteristics of the system at hand, even when the sampling
frequency is to low to recover local characteristics directly.

5 Discussion
In this paper we discussed the two fundamental challenges of misspecification and insufficient
sampling frequence in recovering within-person dynamics from psychological time series. To be
able to illustrate these general problems, we assumed a theoretically interesting true system and
attempted to recover this system using popular time series analysis tools. First, we studied the
problem of misspecification. We were able to obtain global characteristics of the true system, such
as that the system is bistable, the rough nature of the two stable states and an estimate of the
switching frequency. However, we also showed that we cannot make straightforward inferences from
the parameters of misspecified models to the local or even the more coarse global characteristics of
the true system. Next, we investigated the problem of insufficient sampling frequency. We showed
that if the sampling frequency is too low, the temporal dependencies in the true system are not
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captured anymore in the data. Consequently, no statistical model was able to recover the local
characteristics of the true system. However, the global characteristics could still be recovered, since
they are not based on dependencies across time.

We used our example system to illustrate that misspecification and insufficient sampling fre-
quency present fundamental challenges to making inferences from time series models about within-
person dynamics. This raises the questions of how time series models can be used, despite those two
fundamental challenges, to learn about within-subjects dynamics and to develop formal theories
of such dynamics.

5.1 Consequences for Analyzing Psychological Time Series
We have demonstrated that making inferences from time series models about the characteristics of
an unspecified and more complicated model is highly problematic. For instance, for our toy system
we found that in the VAR model the cross-lagged effects across emotions with the same valence
were stronger than the cross-lagged effects across emotions with a different valence (see Figure
5). However, the perhaps intuitive interpretation of these parameters as evidence for stronger
reinforcing effects within-valence compared to the suppressing effects between-valence in the data-
generating model would be incorrect. From the true system we know that the suppressing effects
are in fact stronger (see Figure 1). Since all models are misspecified in practice, any kind of direct
inference from a time series model to some unknown underlying system is potentially problematic.

Critically, however, this is not a criticism of the time series models themselves, but rather the
manner in which researchers attempt to interpret or make inferences based on their parameters.
Since in the current paper we have essentially no sampling error due to the large sample sizes, in a
sense all statistical models we have estimated here are correct, in that they correctly capture some
implication of the data-generating model: For instance, that at short time intervals, conditional
linear dependencies within-valence are stronger than those between-valence (Figure 5) but that at
very long time intervals those linear dependencies are essentially equal in value (Figure 9). These
statements are true, and although it may in some cases be a somewhat complicated process, they
could be derived from the data-generating model without any need to simulate data as we have
done here. The problems arise when we try to reverse this process, to take an implication of a
model and attempt to infer from it the model itself or other characteristics of it. We have shown
here the extreme difficulty of such inferences, and highlighted the caution with which they must be
approached. To twist an oft-misused quote in the statistics literature (cf. Box, 1976): All statistical
models are right, but most aren’t useful (or at least not in the way you might think).

So how can we hope to improve our ability to make inferences from misspecified times series
models? This problem can be mitigated to some extent by informing the choice of time series model
theoretically, and thereby reducing the degree of misspecifiction. For example, if we assume that
the true system has several stable states, and if we take time series measurements from the system
while it remains around a single stable state, then we could fit a VAR model to obtain a linear
approximation of the dynamics close to that stable state. If we have other time series capturing
other states, taken from the same or similar individuals, we are possibly able to piece together
these separate models to obtain a characterization of the overall dynamics of the system. If such
local models are allowed to vary over time, it might even be possible to detect critical transitions
in the stability landscape of the system, even though we only observe a part of the landscape (e.g.,
Snippe et al., 2017; Wichers, 2016). The crucial point here is that if we use time series in this way,
we do not make naive inferences from parameters of the time series models about characteristics
of the true system. Instead, we use our theoretical expectations to choose the right time series
model to extract a specific characteristic of the true system. Eventually, all these characteristics
should be integrated in a formal theory of the true system, which is what we turn to in the next
subsection.

In the second part of the paper we illustrated the problem of insufficient sampling frequency.
We reduced the sampling frequency from every six seconds to 90 minutes and showed that all
micro-dynamics were removed from the time series data. Of course, to illustrate the problem
of insufficient sampling frequency we chose the time scale of our system such that the sampling
frequency of a typical ESM study would be insufficient to recover the true system. However, this
is not necessarily always the case. For example, when investigating slow changing variables such
as mood, body weight, psychiatric symptoms, or processes that occur at regular intervals such
as sleep, then a few measurements a day may be sufficient. However, we think that for many
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psychological dynamics this is likely not the case. For example, it seems unlikely to appropriately
capture the dynamics of emotions, which are defined on a time scale of seconds and minutes
(Houben, Van Den Noortgate, & Kuppens, 2015), by sampling every 1.5 hours. While we suspect
that this problem occurs often in practice, a quick survey of the literature reveals that the time
scale of target processes is often unspecified in empirical research. In Appendix E we provide a
review of 43 ESM studies within the network perspective of psychopathology, which shows that the
time scale of variables is typically not clearly defined and that in all studies at least one variable
plausibly changes at a time scale of minutes. This suggests that it is important to characterize
more clearly on which time scale the variables of interest change, and to adapt the study design
accordingly. While intuitively we may consider the highest possible sampling frequency to be
optimal, in practice questions of optimal design will depend on the number of observations we
are able to make, the dynamics of the underlying system (such as the timescale of the target
processes), and our analysis goals, such as the characteristics we wish to learn about and the way
in which the design should be optimal (to see the variety of different discussions on optimal design,
see for instance Adolf, Loossens, Tuerlinckx, & Ceulemans, 2019; Adolph, Robinson, Young, &
Gill-Alvarez, 2008). Furthermore, while study designs can be adapted to some extent, for example
with higher sampling frequencies or measurement bursts (Adolph et al., 2008; Nesselroade, 1991),
there are of course limits to how often a day individuals can be queried with an ESM questionnaire.
Then the question becomes how we can still make use of time series models based on data that
was sampled with an insufficient frequency to allow, at least in principle, direct recovery of the
microdynamics. We think that this problem can be addressed by adopting a way of constructing
theories that puts formal theories at the center of theory development.

5.2 Constructing Formal Theories of Within-person Dynamics
We showed that we can use global characteristics to obtain a rough description of the dynamics of
interest; and we suggested that, if guided by theory, relatively simple time series models like the
VAR model could be used to describe different aspects of the within-person dynamics of interest.
However, the goal of idiographic modeling should not only be the accumulation of empirical facts.
Instead, we think that the eventual goal should be to construct a formal theory of the within-person
dynamics which explains those facts.

We recently proposed a framework for how to construct such formal theories, which consists
of a three-step methodology of generating an initial theory, developing the theory, and testing the
theory (Haslbeck et al., 2020). Here we only focus on the theory development step, since it is most
relevant for the two problems studied in this paper. An initial theory is developed by generating
time series data from it, and fitting a time series model that captures the aspect of the formal
theory that should be tested with empirical data. This gives rise to a theory-implied time series
model. Next, we collect the corresponding empirical time series data and fit the same time series
models to them. Finally, we compare the theory-implied and empirical time series model. If they
are similar, we take this as tentative evidence for the adequacy of our current formal theory; if not,
we use the discrepancy between the two to devise adaptations to the current theory, such that it
implies a time series model that is closer to the empirical one. This procedure is similar to the
idea of predictive checks in Bayesian analysis, where data are simulated from the fitted model, and
checks are performed on summary statistics of the simulated data (Gelman et al., 2013; Gelman
& Hill, 2006).

While this approach clearly does not solve the fundamental problems of misspecification and
insufficient sampling frequency, it does allow us to deal with those problems in a more flexible way.
For example, our current formal theory may predict a strong negative cross-lagged effect between
variables Xt and Yt`1. We then collect the corresponding empirical data and estimate this cross-
lagged effect. If we find a strong negative cross-lagged effect, we take this as evidence that our
theory correctly accounts for this empirical phenomenon; if not, we try to think of ways to change
the formal theory such that it predicts the cross-lagged effect we find empirically. Critically, in this
approach the VAR model including the cross-lagged effect between Xt and Yt`1 does not serve as
a plausible true system, and we do not make naive inferences from its parameters to the structure
of the true system. Instead, we consider it as a descriptive model, which captures patterns in
the data that need to be reproduced by a successful theory. This provides a much clearer process
of theory development: instead of having to make inferences about a completely unknown and
unspecified structure, we have a formal theory which we can adapt to account for more and more
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empirical phenomena captured by time series models and other statistical models. Similarly, if
we have an insufficient sampling frequency to recover the entire true system, we can still use the
above approach. We now downsample the time series generated from the formal theory to the
empirical sampling frequency, and create an implied time series model on the level of this sampling
frequency. While there is clearly a loss in information due to the insufficient sampling frequency,
it is still possible to make predictions with the formal theory on that level, and make adaptions to
the theory if its predictions do not line up with the empirical time series model.

One way in which this approach could be applied is to use global characteristics to select a class
of dynamical systems that is known to produce these characteristics. For example, van der Maas,
Molenaar, et al. (1996) list a number of global characteristics, which they refer to as “catastrophe
flags”, which indicate that a dynamical system based on catastrophe theory could have generated
the data. Next, one could use additional data to narrow down the possibilities to a smaller class
of models, such as the cusp catastrophe model. Finally, some parameters of this model could
be estimated directly from data (Grasman, van der Maas, Wagenmakers, et al., 2009). Another
example is the formal theory of panic disorder developed by Robinaugh et al. (2019). This theory
was developed by listing the core empirical phenomena of panic disorders and then using existing
verbal cognitive-behavioral theories to construct a formal theory of the within-person dynamics
that lead to the development of panic disorder. In Haslbeck et al. (2020) we provide a detailed
discussion for how to develop this method with the above outlined approach both with time series
data and cross-sectional data.

We argued that we need to adopt a more flexible modeling approach to obtain formal theories
of within-person dynamics, which goes beyond fitting statistical time series models alone. While
such an approach cannot resolve the fundamental problems of misspecification and insufficient
sampling frequency, it allows us to deal more flexibly with these problems. For a detailed account
of the above proposed approach to constructing formal theories of within-person dynamics see
Haslbeck et al. (2020). Our approach is only one of several recently proposed approaches that have
identified the use of formal theories and computational models as critical to developing theoretical
understanding of psychological phenomena (e.g., Borsboom, van der Maas, Dalege, Kievit, & Haig,
2020; Burger et al., 2020; Guest & Martin, 2020; Robinaugh, Haslbeck, Ryan, Fried, & Waldorp,
2020; van Rooij & Baggio, 2020).

5.3 Limitations of our Approach
In the present paper we investigated to which extent one can infer the characteristics of our
bistable system of emotion dynamics from a specific set of time series models. Strictly speaking,
we thereby only provided evidence that misspecification and insufficient sampling frequency are
a problem in this specific setting. However, we argue that it is reasonable to assume that the
psychological systems we are interested in are more complicated than the simple bistable system
used in this paper (for a discussion see Haslbeck et al., 2020). And our intuition is that the problem
of misspecification will not disappear when studying a more complicated system with the same
time series models.

If the true system is more complex, why don’t we simply fit more complex time series models?
Much progress has been made in broadening the dynamic modeling toolbox in psychology in recent
years, with new tools allowing for the estimation of a variety of more complex auto-regressive and
moving average of time series models (e.g Asparouhov, Hamaker, & Muthén, 2018) and linear as
well as non-linear differential equation models (e.g. Driver, Oud, & Voelkle, 2017; Ou, Hunter, &
Chow, 2019) directly from data. These developments allow researchers to overcome many practical
issues typically faced in psychological time series studies, such as accounting for the presence of
unequal time-intervals between measurement occasions (for a discussion, see Kuiper & Ryan, 2018;
Ryan & Hamaker, 2020; Voelkle & Oud, 2013, amongst many others) and allowing for the use of
multi-level models to regularize parameter estimates. However, the use of more complex statistical
models to recover within-person dynamics is still subject to the same fundamental problems we
have highlighted in this paper. First, even with more complex time series models we will never
know when and to what extent the model will be misspecified, and consequently, we cannot trust
straightforward inferences from the time series model to the measured system. Second, it is unclear
whether in psychological settings we ever have the data to fit such models. Either because the
sampling frequency is too low, or because the time series is too short. Although the use of multilevel
models may enable us to estimate time series models using less observations per person, the barrier
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of attaining sufficient sampling frequency is more difficult to overcome. While integral solution
based (Voelkle & Oud, 2013) and Kalman filter based (Chow, Ferrer, & Nesselroade, 2007) methods
of estimating differential equation models (such as implemented in the dynr and ctsem packages
Carpenter et al., 2017; Driver et al., 2017; Ou et al., 2019) may require less frequent observations
than difference-based methods (e.g. Boker, Deboeck, Edler, & Keel, 2010), these methods rely still
have the fundamental limit that, to recover dynamics at a certain frequency, information on those
dynamics must still be present in the dataset at hand.

In addition, we choose a parameter configuration for our toy model such that we observe a high
number of switches between states in the simulated datasets. The premise of our approach here
is that, if we wish to recover the full bistable system, or as many characteristics of that system
as possible, having a dataset in which we observe multiple switches is ideal. However, it may be
the case that for many psychological phenomena, it is not possible to collect single-individual time
series data in which a large number of transitions are observed. For example, depressive states may
last a number of months or years and transitions from healthy to depressive episodes or vice versa
may only occur once in a lifetime (American Psychiatric Association, 2013; Freeman, 1996; Post,
1992). With this in mind, many recent ESM studies in psychology have begun to collect such long
time series in the hope of capturing those transitions (e.g., Helmich et al., 2020; Kuranova et al.,
2020; Smit, Snippe, & Wichers, 2019). From a theoretical viewpoint, many discussions of bistable
systems as they relate to psychological phenomena indeed focus on so-called cusp-catastrophe
models, where the system exhibits one stable state for a long period of time, before the system
becomes a bistable system (Cramer et al., 2016; Wagenmakers, Molenaar, Grasman, Hartelman,
& Van Der Maas, 2005; Wichers, Wigman, & Myin-Germeys, 2015). While we believe that it is
possible in principle to learn about bistable systems from datasets where, for instance, we only
observe a single state per individual, or a single transition for some individuals, we suspect that
this is more difficult than attempting to make inferences from the type of dataset we study in the
current paper. This would likely require additional assumptions about complicating factors such
as the homogeneity or heterogeneity of individuals and counterfactual behaviours which may not
be directly captured in the dataset.

Throughout the paper we used a very large sample size of n “ 201600 to be able to study the
effects of misspecification and insufficient sampling frequency without confounding them with the
effects of sampling variance. Typical sample sizes in applied research are of course much lower and
one has to deal with sampling variance, which poses an additional challenge to recovering within-
person dynamics from time series data. Another idealization in our setting was that we were
able to sample all variables in the true system. This means that there are no spurious statistical
relationships that can be explained by the presence of unobserved common causes. In addition, we
were able to measure all variables directly and without any distortion in the measurement process.
Both idealizations are unrealistic, which renders system recovery more challenging in practice.

5.4 Conclusions
Idiographic modeling of within-person dynamics is an exciting area in psychological science, both
because it avoids known problems associated with making inferences to within-person processes
based on cross-sectional data and because of the rapidly increasing availability of within-person
time series data. However, in this paper we showed that it is difficult to make direct inferences
from time series models to underlying within-person systems. The reasons are that arguably all
time series models are misspecified and that the sampling frequency is possibly insufficient. To
deal with these problems we suggest to adopt a framework to construct theories of within-person
dynamics that goes beyond estimating statistical time series models alone and puts formal theories
at the center of theory development.
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A Predicted States for Mean Switching HMM for ESM time
series
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Figure 11: Time series of the four emotion variables, also shown in panel (a) of Figure 2, with
background color indicating whether a given time point is assigned to the first or second component
of the mean-switching HMM estimated from the ESM dataset.

B Continuous-Time VAR(1) results
Multiple researchers have pointed out that when data are generated from a differential equation
model, the signs, sizes and relative orderings of lagged parameters of VARmodel parameters depend
on the sampling frequency in the dataset (Kuiper & Ryan, 2018; Ryan & Hamaker, 2020; Voelkle
et al., 2018). In practice this means that direct inferences from VAR parameters to differential
equation parameters is challenging due purely to this time-interval dependency. In the main text
we have demonstrated in section 3.3 that it is difficult to make inferences about local characteristics
such as the relative size of suppressing and reinforcing effects from the VAR model parameters due
to the problem of model misspecification. Primarily, the VAR model is misspecified in that it
allows only for linear relationships between processes, but strictly speaking, we could also say that
the VAR model is misspecified in the sense that it is a discrete-time autoregressive model rather
than a continuous-time differential equation model, of which the true system is a special case.

In order to remove this latter source of model misspecification, one can instead fit a continuous-
time VAR model to data. This model is the integral form of (and thus equivalent to) a first-order
stochastic differential equation with only linear relationships between variables, and so is still
critically misspecified with respect to the true system. The parameters estimated by fitting a
continuous-time VAR model fit to the ideal data, using the stan functionality in the R-package
ctsem, (Driver et al., 2017), are displayed in network form in Figure 12 (cf. Ryan & Hamaker,
2020). Inspecting the drift matrix in panel (a), that is, the linear dependencies in the estimated
differential equation model, we can see that we reach very similar conclusions as we did when
interpreting the parameters of the DT-VAR model: The model yields negative moment-to-moment
dependencies of approximately equal strength between-valence, with stronger positive dependen-
cies, also of approximately equal strength, within valence. The diffusion matrix in panel (b),
which is the continuous-time version of a residual covariance matrix, shows weak negative residual
dependencies between each process, similar to the discrete-time residual dependencies (for more
detail on the interpretation of this model see Ryan & Hamaker, 2020; Ryan et al., 2018; Voelkle
& Oud, 2013). The similarity of the CT- and DT-VAR models in this case is likely due to the
high sampling frequency present in the ideal data: As was the case for the discrete-time model,
the problematic aspect of model misspecification in the current situation is the approximation of
non-linear relationships with linear dependencies, a problem which cannot be solved by fitting a
linear continuous-time model to the data.
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Figure 12: Parameter estimates from the CT-VAR model fit to the ideal time series. Panel (a)
shows the estimated drift matrix parameters, the linear relationships between in the first-order
differential equation model. Panel (b) shows the diffusion matrix, the residual covariance matrix
of the continuous-time model

One may also wonder whether continuous-time models could help to overcome the problem
of insufficient sampling frequency discussed in Section 4. In principle, continuous-time models
can aid in making parameter estimates from different studies comparable, by mapping lagged
dependencies at different time-intervals back to the same moment-to-moment dependencies in a
differential equation model (Kuiper & Ryan, 2018; Voelkle & Oud, 2013). However, this will only
work if the sampling frequency is sufficiently high such that some information on the moment-to-
moment dependencies is present. To explore this, we also fit the continuous-time VAR model to
the ESM time series described in Section 4. The estimated parameters are shown in Figure 13.
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shows the estimated drift matrix parameters, the linear relationships between in the first-order
differential equation model. Panel (b) shows the diffusion matrix, the residual covariance matrix
of the continuous-time model
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As we can see from Figure 13 (a) the estimated drift matrix parameters are quite different to
those obtained from the ideal time series. Although we again obtain negative between-valence and
positive within-valence relationships, the latter have an even greater difference in absolute value
than in the ideal case. Furthermore, there is quite some variation in the size of the between-valence
relationships, with the smallest effect (from Anxious to Content ´0.06) more than half the size
of the largest effect (from Content to Sad ´0.16). Furthermore, although the qualitative patterns
of relationships obtained here are somewhat different from those obtained from the discrete-time
VAR model (Figure 9), no greater clarity or insight into the underlying dynamics is obtained from
the continuous-time model.

That no direct inferences can be made from the continuous-time VAR parameters at a longer
time-interval is hardly surprising, since the model is still misspecified. What is instructive however
is that the continuous-time VAR parameters here do not capture the same linear approximation of
the moment-to-moment dynamics as the continuous-time VAR parameters obtained from the high-
sampling frequency dataset. In this sense, misspecified continuous-time models do not allow us to
overcome the time-interval dependency problem in this setting. This may be entirely due to model
misspecification, but we also suspect that this can be explained by the extremely low sampling
frequency chosen for the latter dataset: Even if the continuous-time model was to be correctly
specified, there is likely to be some limit to how large the time-intervals between observations
can be in order to still enable model recovery in practice, since at long enough time-intervals the
implied dependency between observations approaches zero for most systems.

C Simulated Data from Estimated Time Series Models
In this appendix we presented data generated from on models estimated on the ideal dataset in
Section 3. This kind of simulation based model checking can be used to check the appropriateness
of a model by allowing is to visually inspect which characteristics of the original time series a
particular model can reproduce.

C.1 First-Order Vector Autoregressive Model
Figure 14 displays a time series of two weeks generated from the VAR(1) model in Section 3.3:
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Figure 14: A time series of two weeks generated from the VAR(1) model estimated in Section 3.3

The generated data does not show bistability, which is expected because the VAR(1) model exhibits
only a single fixed point. What looks approximately like oscillating behaviour is a result of the
high auto-regressive effects present in the estimated VAR(1) model: given a stochastic input, the
high auto-regressive effects ensure that the system is slow to eventually return to equilibrium. This
oscillating behaviour is also evident in the eigenvalues of Φ, which consist of one complex conjugate
pair (Strogatz, 2015).
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C.2 Threshold Vector Autoregressive Model
Figure 15 displays a time series of two weeks generated from the threshold VAR(1) model in Section
3.4:
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Figure 15: A time series of two weeks generated from the Threshold VAR(1) model estimated in
Section 3.4

As expected, the generated data shows bistability as governed by a univariate threshold. We can
also see that the combination of lagged regression parameters and residual covariance matrices
unique to each state succeeds in reproducing the characteristic that emotions show a lower vari-
ability when they are in the low state (i.e., the healthy state for negative emotions, unhealthy state
for positive emotions) than when they are in the high state (i.e., the unhealthy state for negative
emotions, healthy state for positive emotions).

D Assumption Checking, Diagnostics and the Box-Jenkins
Approach

In this appendix we present the results of applying standard time-series diagnostics and model
assumption checking to the ideal dataset discussed in Section 3. Our analysis here is based on
applying what is known as the Box-Jenkins approach (Box & Jenkins, 1976; Hamilton, 1994), a
standard approach to investigate and tackle model misspecification in a time-series setting. The
main tools used in this approach are the correlation and partial correlation functions, which al-
low us to visualize the marginal (ρpXt, Xtq, ρpXt, Xt`1q . . . ρpXt, Xt`T q) and partial correlations
(ρpXt, Xt`1q, ρpXt, Xt`2 | Xt`1q, . . . ρpXt, Xt`T | Xt`1 . . . Xt`T´1q) in the time series respec-
tively, as a function of the lag between measurements. The auto correlation and partial correlation
functions depict the dependency of a time series variable on itself, and the cross-correlation and
partial correlations depict the dependencies between variables. Due to the symmetries in the
true system, we will here consider only two variables (as we did in Section 2.1), since the pat-
terns observed between those two variables generalize to all within-valence and between-valence
relationships.

Essentially, the Box-Jenkins approach involves using time-series plots and the correlation func-
tions in an iterative way in order to a) establish the need to remove a trend or seasonal effect from
the data such that the transformed data is stationary, b) choose an appropriate ARIMA model to
fit to the (possibly transformed) data, and c) check the residuals of the chosen model for evidence
of model misspecification. We begin by plotting the correlation and partial correlation functions
based on the raw data, shown in Figure 16. In panel (a) we can see that the auto-correlation func-
tion of the Cheerful variable decays to zero very slowly, and oscillates between somewhat strong
negative and positive values at longer lags. An identical pattern occurs for the cross-correlation
function of the opposite-valence variable (in this case Anxious). In panel (b) however we see that
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the partial auto-correlation and partial cross-correlations are non-zero at a lag of 1, but are ap-
proximately zero at longer lags: When we control for the value of Xt`1, there is no longer any
relationship between Xt and Xt`2 or Xt`3 and so forth. Note that although we plot the partial
correlations only for a lag of 10, no strongly non-zero partial correlation appears at longer lags.
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Figure 16: Correlation and Partial Correlation Functions for the raw time series. Here we plot only
the auto-(partial)-correlations for Cheerful and the (partial) cross-correlation functions of Cheerful
with Anxious.

Taken together, what might we infer from these diagnostics? Usually, a correlation function
that oscillates between positive and negative values is taken to be suggestive of either a) some kind
of trend or seasonal effect, or b) an indication of a higher-order autoregressive process. However,
this second possibility is ruled out by the partial correlation function: If a higher-order lagged
relationship was present, we would see this with some non-zero partial correlation at that longer
lag. With this in mind, inspecting the raw time series (Figure 2) we may conclude that there is
indeed some kind of cyclic or seasonal effect present. The time-series overall appears to be non-
stationary, in that the mean of each process is not constant across our window of observation. In
the true system, we know that this is the case because the system switches between two stable fixed
points, a key characteristic produced by the microdynamics of the system. From a Box-Jenkins
perspective, however, this suggests that, in order to fit an appropriate ARIMA model, we must
first transform the data by removing this apparent source of non-stationarity.

Given this conclusion, the best we could hope to achieve would be to center the observed
time series around a time-varying mean which exactly captures the position of the nearest stable
fixed point. This produces a new transformed time series which is Gaussian, mean-stationary and
appears to be at least approximately (co)variance-stationary, displayed in Figure 17 (a).
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(a) Transformed Time Series
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Figure 17: Panel (a) shows the ideal time series of the four emotion variables Cheerful, Content,
Anxious and Sad, centered around the position of the nearest stable fixed point. This represents
the best case scenario for a combination of de-trending and removing seasonal effects from the
time series that we could hope to achieve. Panels (b) and (c) show the correlation and partial
correlation functions for the transformed dataset, with the auto-correlation based on the Cheerful
variable, and the cross-correlation based on Cheerful and Anxious.

The correlation and partial correlation functions calculated from this transformed data are shown
in Figure 17(b) and (c) respectively. We can see from this that the auto-correlation function now
decays quickly to zero at longer lags, and no longer shows the oscillatory pattern of the raw data.
Instead, the auto- and cross-correlations look similar to what we would expect a first order (lag
1) system to produce. The partial correlations look qualitatively similar to those produced by
the raw data. Taken together, these diagnostics (correctly) suggest that a lag-1 model would be
appropriate for the transformed data. As such, a natural choice of model based on these diagnostics
is the first order vector autoregressive (VAR) model.

Figure 18 displays the lagged relationships and VAR model obtained from the centered time
series.
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Figure 18: This figure replicates the VAR analysis in the main text using the centered time series.
Panel (a) shows the relationship between Content and Cheerful, two emotions with the same
valence, spaced one time point apart (at a lag of one). The red line indicates the best fitting
regression model. Similarly, panel (b) shows the relationship between Anxious and Content, two
emotions with different valence, at a lag of one in the centered time series. Panel (c) displays the
matrix of lagged regression parameters, estimated from a VAR(1) model, as a network, and panel
(d) displays the partial correlation matrix of the residuals of the VAR(1) model as a network. This
latter network is often referred to as the contemporaneous network.

As we can see, although the VAR model appears to meet the necessary assumptions based on the
transformed data, the resulting model gives us no greater insight into the underlying system than
obtained previously. For instance, we would still conclude that the within-valence relationships are
stronger than the between-valence relationships. In this model, we would even be unsure whether
any between-valence relationships exist at all due to their small absolute value. Thus, although we
have followed standard procedure and obtained a model whose assumptions appear to be met, we
do not obtain an appropriate insight into the underlying mechanism of interest. Of course, the Box
Jenkins method can be continued in an iterative way from this point forward, though our analysis
of this approach ends here. Researchers may investigate the considerable autocorrelation still
present in the residuals of this model, and use this to guide further model building: For instance,
by including lag-2 effects, a different functional form for the lagged relationships, or a different
time-series model entirely. Of course, some of these model building choices may eventually lead
to the choice of an appropriate model, such as the threshold VAR discussed in Section 3.4. We
suspect however a large number of models which could result from this process (such as any model
which involves transforming the data to adjust for non-stationarity) would appear to be more or
less appropriate based on these model diagnostics while failing to capture the key characteristics
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of the true system.

E Literature Review of ESM studies within the network ap-
proach to psychopathology

The goal of the literature review was to obtain an overview of the time scales of variables and the
primary time series analyses used by empirical studies using ESM data that operate within the
network approach to psychopathology. To do so, we compiled all empirical papers that analyzed
ESM data and cited at least one of the following eight key papers on the network approach to
psychopathology according to Google Scholar in May 2019: Borsboom (2017); Borsboom and
Cramer (2013); Borsboom, Cramer, Schmittmann, Epskamp, and Waldorp (2011); Bringmann et
al. (2013); Cramer et al. (2016); Hosenfeld et al. (2015); Schmittmann et al. (2013); Wichers,
Wigman, and Myin-Germeys (2015). This procedure yielded the 43 papers shown in Table 1:

Paper M/day Main Analysis Target Process Seconds Minutes Hours Days Weeks
Wichers (2016) 10 PCA + VAR Momentary mental states 1 1 0 0 0
Vrijen et al. (2018) 3 ML VAR Emotions 1 1 0 0 0
Lee et al. (2017) 6 ML regression Emotional, pain, sleep 1 1 0 0 0
van Winkel et al. (2017) 10 ML VAR Loneliness, social contact, appraisal 0 1 1 1 0
Bringmann et al. (2013) 10 ML VAR Positive/Negative Emotions 1 1 0 0 0
J. Wigman et al. (2015) 10 ML VAR Momentary mental states 1 1 0 0 0
Bak et al. (2016) 10 VAR in subsets Psychotic symptoms, emotions 0 1 1 1 0
Snippe et al. (2017) 10 ML VAR Momentary affect and cognitions 1 1 0 0 0
Klippel et al. (2017) 10 ML mod/mediation Emotions and psychotic experience 1 1 0 0 0
De Vos et al. (2017) 3 ML VAR Emotions 1 1 0 0 0
Hasmi et al. (2017) 10 ML VAR Emotions 1 1 0 0 0
Oreel et al. (2019) 9 ML VAR Emotions, physical symptoms 0 1 1 1 0
Wigman et al. (2013a) 10 Lagged effects Momentary mental states 1 1 0 0 0
Wigman et al. (2013b) 10 Hypothesis tests Momentary mental states, psychosys liability 1 1 1 0 0
Kroeze et al. (2017) 5 (lagged) correlations Mood, physical activity, social context 1 1 1 0 0
Geschwind et al. (2011) 10 Hypothesis tests Momentary positive emotions 1 1 0 0 0
Levinson et al. (2018) 4 ML VAR Eating disorder cognitions and behaviors 0 1 1 0 0
Pe et al. (2015) 7 ML VAR Positive/negative emotions 0 1 1 0 0
Pavani et al. (2017) 5 moderated ML VAR Positive/negative affect, rumination, appraisal 1 1 1 0 0
Lutz et al. (2018) 4 ML VAR Momentary affective states 1 1 0 0 0
Beck et al. (2020) 4 VAR models Personality traits at state level 0 1 1 1 0
Poerio et al. (2016) 3 Mediation model Daydreaming, mood, and dissociative symptoms 0 1 1 0 0
Klippel et al. (2018) 10 ML VAR affect, daily stressors, psychotic experiences 1 1 0 0 0
Greene et al. (2018) 2 ML VAR PTDS related intrusions, avoidance, mood 1 1 1 1 0
Yang et al. (2018) 6 VAR models Emotions, depression symptoms 1 1 1 1 1
Bringmann et al. (2016) 10 ML VAR Emotions, stress 1 1 1 0 0
Aalbers et al. (2019) 7 ML VAR Momentary depr. symptoms, social media usage 0 1 1 0 0
Fisher et al. (2017) 4 ML VAR Mood, anxiety 0 1 1 1 0
van de Leemput et al. (2014) 10 AR(1) and Var Emotions 1 1 0 0 0
Clasen et al. (2015) 5 Lagged effects Feeling well, self-esteem 1 1 1 0 0
Brose et al. (2017) 10 Cross-lagged model Indicators of micro-level stress 0 1 1 0 0
Hoorelbeke et al. (2019) 6 ML VAR Positive affect, rumination, positive appraisal 1 1 1 0 0
Snippe et al. (2018) 3 ML VAR Prosocial behavior, positive affect 1 1 1 0 0
Bernstein et al. (2019) 5 ML VAR Present emotion, physical activity 1 1 1 0 0
Spanakis et al. (2015) 10 ML VAR Emotion, eating behavior 1 1 1 0 0
Fang et al. (2019) 8 State space analysis Affect, rumination 1 1 0 0 0
Van der Velden et al. (2018) 10 VAR Motor symptoms, mood states 0 1 1 0 0
Hasmi et al. (2018) 10 ML VAR Emotions 1 1 0 0 0
Van Os et al. (2014) 10 ML regression Psychotic experiences, affect, psychotic symptoms 1 1 1 1 1
Wichers, Kasanova, et al. (2015) 10 Lagged effects Affect, appraisal of social context, physical activity 0 1 1 0 0
Cristóbal-Narváez et al. (2016) 8 ML regression Psychotic-like experiences, stress reactivity 0 1 1 0 0
Wolf et al. (2015) 4 Lagged ML regression Loneliness, clinical pain 0 1 1 0 0
Uink et al. (2014) 5 ML AR change model Emotions, daily stress 1 1 1 0 0

Table 1: ESM-measurements per day, main analysis, target process and coded time scale of the
target process for 43 empirical ESM studies working within the network approach to psychopathol-
ogy. A one indicates that for at least one of the studied variables it seems reasonable that it evolves
at the given time scale.

For each study we coded the main analysis and the main target process under investigation.
We define the target process as the process that is captured by the ESM-questions. For example,
Fang et al. (2019) capture daily dynamics in rumination and affect with ESM-questions, and then
evaluate whether those dynamics predict depressive symptoms at a follow up. In such cases, we
treat the variables captured by ESM as parts of the target process.

We then tried to categorize the target process in terms of its characteristic time scale, which
we define to be smallest time scale at which meaningful change can be observed. We use the five
categories: seconds, minutes, hours, days, and weeks. In none of the 43 papers we were able to
clearly identify the time scale, and we therefore assigned all time scales that seemed plausible based
on how those processes are typically discussed in the substantive field. In some studies the ESM
questions include variables with clearly different time scales, like emotions and symptoms. In these
cases we collapsed to coding of all variables into a single coding for all variables captured.
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Many studies assert that they aim to study “moment-to-moment“ mental states or relations.
While this seems to refer to a time scale of seconds, we are unsure whether authors take “moment”
literally and therefore also assign the time scale of minutes to these studies. Whenever a study
investigates emotion dynamics, we assign a time scale of seconds to minutes, since emotions are
defined on such a time scale to differentiate them from mood (e.g., Houben et al., 2015). Next to
the target process and the intuitively coded time scales we also report the type of main analysis
how many measurements were taken each day.

A few things in Table 1 stand out. With respect to the time scale of variables, we were not able
to identify a single time scale for the studied processes in any of the 43 papers. For 58% of the
papers we assigned two time scales, and for the remaining three or more. In addition, we identified
a time scale of minutes for all of the 43 papers. In relation to the problem of insufficient sampling
frequency, the results of our small literature review are interesting for at least two reasons: first,
it is often unclear on which time scale the processes of interest are evolving. And second, most
processes seem to evolve at a time scale of seconds and minutes, which are possibly difficult to
capture with ESM measurements with a frequency in the order of hours.

Many ESM studies (47%) use 10 measurements a day, but a lot of studies also use substantially
less. While there was a large variety in analyses performed, the main analysis was usually a linear
regression model at the same time point, or a lagged linear regression model, usually in a multilevel
setting. The most ubiquitous main analysis was the multilevel VAR model, which was used in 49%
of all papers as the main analysis.
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