
Vol.:(0123456789)1 3

Requirements Engineering (2022) 27:429–455
https://doi.org/10.1007/s00766-022-00384-6

ORIGINAL ARTICLE

Crowd‑based requirements elicitation via pull feedback: method
and case studies

Jelle Wouters1 · Abel Menkveld2 · Sjaak Brinkkemper3 · Fabiano Dalpiaz3

Received: 31 January 2022 / Accepted: 17 July 2022 / Published online: 20 August 2022
© The Author(s) 2022

Abstract
Crowd-based Requirements Engineering (CrowdRE) promotes the active involvement of a large number of stakeholders in
RE activities. A prominent strand of CrowdRE research concerns the creation and use of online platforms for a crowd of
stakeholders to formulate ideas, which serve as an additional input for requirements elicitation. Most of the reported case
studies are of small size, and they analyze the size of the crowd, rather than the quality of the collected ideas. By means
of an iterative design that includes three case studies conducted at two organizations, we present the CREUS method for
crowd-based elicitation via user stories. Besides reporting the details of these case studies and quantitative results on the
number of participants, ideas, votes, etc., a key contribution of this paper is a qualitative analysis of the elicited ideas. To
analyze the quality of the user stories, we apply criteria from the Quality User Story framework, we calculate automated text
readability metrics, and we check for the presence of vague words. We also study whether the user stories can be linked to
software qualities, and the specificity of the ideas. Based on the results, we distill six key findings regarding CREUS and,
more generally, for CrowdRE via pull feedback.

Keywords CrowdRE · Elicitation · User stories · Case studies · Pull feedback

1 Introduction

Crowd-based Requirements Engineering (CrowdRE) is an
emerging paradigm for Requirements Engineering (RE) that
promotes the active involvement of a “crowd” of stakehold-
ers, including the current and potential users, of a software
product [1]. CrowdRE expands the reach of established
RE approaches [2], which involve a selected sample of the

stakeholders, extending the notion of market-driven RE [3,
4] toward the democratic participation of users in RE [5].

So far, CrowdRE research has mainly investigated
requirements elicitation [6]: “the process of seeking, uncov-
ering, acquiring, and elaborating requirements for computer-
based systems” [7]. CrowdRE researchers [1] have proposed
two approaches for complementing existing elicitation tech-
niques with requirements-related feedback from the users1:
(i) in pull feedback, the crowd is requested to express their
needs and wishes through a dedicated feedback channel; and
(ii) in push feedback, the users initiate the process of provid-
ing feedback, e.g., by sending feedback through an app store.

Our research focuses on crowd-based elicitation via pull
feedback; we study the acquisition of feedback in the form of
user stories [8] through an web platform. We report on three
case studies within two organizations. The Tournify case
regards a tournament management app that is developed by
a namesake software start-up company. The V-Sys and S-Sys
cases concern information systems at the Royal Netherlands

 * Fabiano Dalpiaz
 f.dalpiaz@uu.nl

 Jelle Wouters
 j.wouters.01@mindef.nl

 Abel Menkveld
 abel@tournifyapp.com

 Sjaak Brinkkemper
 s.brinkkemper@uu.nl

1 Royal Netherlands Marechaussee, The Hague,
The Netherlands

2 Tournify, Amsterdam, The Netherlands
3 Utrecht University, Utrecht, The Netherlands

1 While CrowdRE promotes the involvement of all stakeholders,
most studies, including this, focus mainly on current and prospective
users.

http://orcid.org/0000-0002-4723-9161
http://orcid.org/0000-0002-2977-8911
http://orcid.org/0000-0003-4480-3887
http://crossmark.crossref.org/dialog/?doi=10.1007/s00766-022-00384-6&domain=pdf

430 Requirements Engineering (2022) 27:429–455

1 3

Marechaussee (RNLN or, based on the Dutch name, KMar),
part of the Ministry of Defence of the Netherlands.

We tackle two limitations of existing research. First,
thanks to our collaboration with non-academic organiza-
tions, we report on cases with a larger size (number of
users, ideas, and votes) than existing attempts to apply
CrowdRE in practice [2, 9, 10]. Second, we go beyond
the quantitative assessment of CrowdRE by conducting a
qualitative analysis of the crowd-generated ideas.

In this paper, we make the following contributions:

• Through an iterative design process that involves three
case studies, we propose the CREUS method: Crowd-
based Requirements Elicitation with User Stories.
CREUS supports the conduction of pull-based elicita-
tion of requirements via an online platform. We present
a precise characterization of CREUS by means of the
Process-Deliverable-Diagram notation [11].

• We analyze the results from the three case studies in a
time-boxed, experimental period in which different ver-
sions of the CREUS method were used to ask a crowd
to provide feedback using an online feedback channel.
These conducted case studies are among the largest in
size, to date.

• We qualitatively analyze the ideas from the experi-
mental period and beyond, where possible, in terms of
whether they are high-quality user stories, their vague-
ness, if they can be linked to quality requirements, the
text readability, and the generality or specificity of the
ideas.

This paper builds on and consolidates our previous work.
The REfine platform [9] was our first systematic approach
for crowd-based elicitation via pull feedback. In that
research, we could gather only a limited crowd though.
The CREUS method is the outcome of an iterative design
process that relies on the conducted case studies reported
earlier: Tournify [12], S-Sys and V-Sys [13]. The qualitative
analysis of the ideas is a novel contribution of this paper.

We use the term idea to refer to the crowd inputs. In
CREUS, ideas are gathered using the user story nota-
tion [8, 14]: As a ⟨role⟩, I want to ⟨action⟩, so
that ⟨benefit⟩ . While some of these ideas may be directly
mapped to a requirement, other ideas need further dis-
cussion and refinement by the analysts prior to becoming
requirements.

Organization. In Sect. 2, we present the relevant
background and the related work. Section 3 presents our
research method, while Sect. 4 describes the CREUS
method through a Process-Deliverable Diagram. The main
results from the case studies are discussed in Sect. 5. The
collected ideas are analyzed qualitatively in Sect. 6. We
presents the key findings and draw conclusions in Sect. 7.

Finally, we discuss limitations and future directions in
Sect. 8.

2 Background and related work

We first introduce the elementary background on Crow-
dRE in Sect. 2.1. Then, we discuss previous CrowdRE via
elicitation platforms in Sect. 2.2. Finally, we review alter-
native approaches for conducting CrowdRE in Sect. 2.3.

2.1 Background on CrowdRE

CrowdRE is defined by Groen et al. as an “umbrella term
for all automated RE techniques, including crowdsourcing,
text mining and data mining” [15] that can be utilized to
actively involve a crowd of stakeholders, including users,
in the RE process. Their proposed approach encompasses
multiple methods: both quantitative data (using mining
techniques) and qualitative feedback (using crowdsourc-
ing) are collected as a source of requirements.

Independently, other research groups conducted studies
along the same lines. Snijders et al. introduced the term
Crowd-centric requirements engineering [16]. They jus-
tified CrowdRE saying that “users are seldom involved,
despite the common agreement that doing it would result
in better requirements elicitation and higher chances for
project success” [16]. Similarly, Johann and Maalej [5]
offered a perspective in favor of the democratic partici-
pation of masses of users in the RE process, which they
called Liquid RE.

Hosseini et al. [17] also studied crowdsourcing in
requirements elicitation. Due to the fast-changing land-
scape of IT products, especially with the introduction of
software-as-a-service and cloud products, they argued that
the user groups of these products would become more het-
erogeneous. Therefore, established requirements elicita-
tion efforts might not be effective, but using crowdsourc-
ing to gather requirements might be.

Many of these researchers co-authored a landscape
paper [1] that distinguishes between two main approaches
to CrowdRE: (i) pull feedback concerns the provision of
a feedback channel for the crowd to formulate their ideas;
and (ii) push feedback denotes user-initiated feedback pro-
cesses, e.g., through the authoring of reviews in an app
store. Both streams of user requirements are then analyzed
by a product team in order to further improve the software
system at hand. The same paper [1] also compares Crow-
dRE to market-driven RE [4], explaining that CrowdRE
can be seen as a “logical upscale form of market-driven
RE”, the same way market-driven RE enables “customer-
specific RE to transcend the organization’s boundaries”.

431Requirements Engineering (2022) 27:429–455

1 3

Furthermore, as per the cases at the KMar in this paper,
CrowdRE can also be applied to cases where the software
product is not released on the market.

2.2 CrowdRE via elicitation platforms

One of the earliest crowd-based elicitation platforms, devel-
oped before the term CrowdRE was coined, was the Require-
ments Bazaar by Renzel et al. [10]. This web-based platform
supports requirements elicitation by providing tools for co-
creation and prioritization. With Requirements Bazaar, users
are able to formulate ideas and to prioritize them. Several
projects were and are being conducted using this platform,
although the results are not reported in depth.

Fernandes et al.’s iThink [18] is a game-based collabo-
rative tool for idea generation. The introduction of game
elements aims at heightening the engagement of the par-
ticipants. The case studies with iThink [19] are, however,
limited to small groups of users. The REfine platform by Sni-
jders et al. [9], together with its supporting crowd-based RE
method [16], combines the gamification aspects of iThink
with the aim of engaging a crowd of users for an internal
software product. In a case study concerning the internal
users of a product, REfine led to 21 needs, 37 comments
and 130 votes, which were provided by 19 active crowd
members. The participants indicated that they were more
engaged than in different requirements elicitation efforts.
However, this study is of limited size and shows the dif-
ficulty of engaging a large crowd.

The GARUSO platform [2] was built with the aim of
involving stakeholders that are outside organizational
reach. GARUSO went beyond REfine in terms of gamifica-
tion, by offering a game-like experience to the participants,
which was expected to engage them for a longer time. The
researchers managed to involve 32 active stakeholders (from
the 700+ participants who visited the platform), and they
contributed 56 ideas.

In 2019, Glinz gave an overview of the status and future
of CrowdRE [20]. Glinz remarks that the existing case stud-
ies have a limited size (see also Table 2), and he also points
out challenges such as the high-number of features that only
few users want, overlooking minorities, and sustaining user
motivation. This paper makes steps forward by reporting
on case studies with larger crowd sizes and with a detailed
analysis of the CrowdRE inputs.

2.3 Alternative approaches within CrowdRE

Feedback channels have been explored by numerous schol-
ars. The most frequently investigated channel consists of
reviews in app stores [21–24], which allows the users of
mobile apps to express their feedback without the necessity

to provide an ad-hoc elicitation platform. According to
Maalej and colleagues, the feedback in this kind of chan-
nel may contain a variety of requirements-relevant informa-
tion such as feature requests, bug reports, and praises [22].
Panichella et al. [23] propose a more refined classification
scheme that includes feature requests, opinion asking, prob-
lem discovery, solution proposal, information seeking, and
information giving.

The research in the app store analysis is vast and goes
well beyond the scope of this paper [25]. Among the most
relevant works in the RE domain, we mention the extraction
of reviews that concern a particular feature [26]; the clas-
sification of user reviews among categories such as bugs and
feature requests [21–23]; and the analysis of the reviews’
sentiment [27]. Researchers have also studied the use of
user reviews for comparing apps in the same category: the
RE-SWOT technique [24] applies the well-known Strength-
Weakness-Opportunity-Threat (SWOT) analysis [28] to
compare the reviews implemented by one app producer to
its competitors based on the user rating; Garousi et al. [29]
analyze COVID-19 tracing apps with the objective of iden-
tifying similarities and differences in the user reviews.

A demographic study [30] of user engagement in app
stores shows some difficulties with this feedback channel,
for users (i) are mostly review readers rather than review
authors, (ii) find it easier to switch to a competing app
instead of providing feedback, and (iii) perceive that resolv-
ing their issues would take too long. While interesting, this
channel is only applicable to apps that are made available
publicly on an app store.

Researchers have also studied other feedback channels
such as Twitter [31, 32] or online fora [33–35]. The major
difficulty regarding Twitter is that requirements-relevant
information is scattered within a sheer amount of interac-
tions that take place on such a broad channel. Online discus-
sions in user forums are closer to our research, as they may
be seen as a more structured way of expressing and discuss-
ing the collected ideas. Future research should consider this
feedback platform and compare it to the inputs obtained via
the type of elicitation platforms that are discussed in this
paper.

Another CrowdRE approach is the use of a crowd-work
platform, where crowd workers are paid for the execution
of RE-related tasks. This technique has been studied in the
context of generating creative ideas [36], classifying app
reviews according to software product qualities [37], and
extracting requirements from privacy policies [38]. In our
work, however, we focus on collecting and analyzing the
feedback that is provided by the users of a system, rather
than on the involvement of additional, external crowd
workers.

432 Requirements Engineering (2022) 27:429–455

1 3

3 Research method

We are interested in studying the feasibility and effectiveness
of crowd-based requirements elicitation via pull feedback
as a tool to enable the users of software systems to express
ideas. In particular, we define two research questions, each
leading to a phase of our research:

1. RQ1. What method can support requirements engineers
in the adoption of crowd-based elicitation via pull feed-
back? This research question is set with a practical use
case in mind, that of assisting the practitioners who may
want to use crowd-based elicitation but do not have
access to methods that are tested in practice. To address
RQ1, we follow Wieringa’s design science research
methodology [39] and conduct three case studies. Each
case study is an iteration of the so-called design cycle:
we investigate the problem at a host organization, we
design a solution that consists of an evolved version of
our elicitation method, and we validate the solution in
that organizational context. The outcomes of each itera-
tion (summarized in Sect. 5) feed the following one,
and the final result is the CREUS method described in
Sect. 4.

2. RQ2. What types of ideas are prevalent when deploy-
ing crowd-based elicitation methods via pull feedback?
After the completion of the three case studies, we con-
duct a qualitative, empirical analysis of the collected
ideas aimed at characterizing the ideas according to
multiple classification schema. The aim of this second
phase of this research, reported in Sect. 6, is to provide
researchers and practitioners with a detailed analysis of
the types of ideas, so to better understand how this elici-
tation method can complement other ones.

Note that we explore the role of crowd-based elicitation
in addition to established elicitation methods, not as a
replacement. Besides its function for gathering new ideas
and for assessing the perceived importance assigned by the
users [21], user involvement has been shown to increase
system usage and acceptance [40] as well as system
success [41].

Iterative design of the CREUS method via case studies
(RQ1)

In the first research step, we answer RQ1 through the
iterative design of the CREUS method via multiple iterations
of Wieringa’s design cycle, one for each of the case studies
listed in the introduction: Tournify , S-Sys, and V-Sys. In each
iteration, we employ crowd-based elicitation to address one

case-specific goal (see Sect. 5.1), and the obtained results
contribute to evolving CREUS.

Each case study is conducted by following the princi-
ples of Canonical Action Research (CAR), “one of the more
widely practiced and reported forms of action research in the
Information Systems literature” [42].

The CAR principle of change through action research
was employed in all cases: crowd-based requirements elicita-
tion was used in projects where the organizations had sub-
optimal involvement of the users in their requirements engi-
neering processes, and we applied crowd-based elicitation as
the means to improve this situation. The CAR principle of
cyclical process model was employed at the KMar by having
the results from the first case (S-Sys) inform the planning and
execution of the second case (V-Sys).

The first and second authors of this paper were acting as
researcher-employee in the involved organizations (the first
author at KMar, the second author at Tournify), while the
other authors acted as supervisors; this aligns with the CAR
principles of collaboration between researcher and client.

The effectiveness of this research phase is measured in
terms of two aspects:

1. Crowd-based elicitation analysis: number of partici-
pants, of ideas, of comments, of votes, dynamics of
participation over time, types of users.

2. Ideas usefulness: innovation, completeness for develop-
ment, granularity, estimated workload.

Each case uses a subset of these indicators, depending on
their relevance, practical constraints regarding their collec-
tion, and the usefulness of assessing them for the goals of
the case study.

The outcome of this phase is the CREUS method that is
presented in this paper. For better readability, we present the
activities and artifacts of CREUS in Sect. 4 before discuss-
ing the results from the case studies in Sect. 5. For each case
study, we explain in Sect. 5.1 how the employed version of
the method differed from the final one presented in Sect. 4.

A-posteriori qualitative analysis of the elicited ideas
(RQ2)

In the second research phase, to address RQ2, we conduct
a qualitative analysis of the ideas that were generated by
the crowd. We consider all the ideas that were collected in
the three cases: Tournify , S-Sys, and V-Sys. For Tournify , we
also examine additional ideas that were posted after the case
study period related to RQ1. We analyze each of the ideas by
considering the aspects and metrics in Table 1.

While the first three aspects (user story quality, vague-
ness, text readability) measure mostly the linguistic quality

433Requirements Engineering (2022) 27:429–455

1 3

of the formulated ideas, the last two aspects (quality require-
ments, generality vs. specificity) concern the type of require-
ments that originate from the crowd members.

To maximize the reliability of the results, for user story
quality and for the quality requirements, two researchers
tagged the user stories independently, the inter-rater agree-
ment was calculated, and then the disagreements were
resolved via discussion rounds.

4 Crowd‑based requirements elicitation
via the CREUS method

Based on our previous experience in crowd-based require-
ments elicitation [9], and following the iterative design
process described in Sect. 3 that builds on the case studies
with Tournify [12], V-Sys and S-Sys [13], we derive a general
method, called CREUS: CRowd-based Elicitation via User
Stories. CREUS can be used by practitioners or researchers
who wishes to conduct such an elicitation activity that can
complement other elicitation techniques.

We present a precise description of CREUS using the
Process-Deliverable Diagram (PDD) notation [11], which

illustrates the activities and artifacts of a process. The PDD
diagram is presented in Fig. 1, while the concept and the
activity tables are in Appendix A in Table 13 and Table 14,
respectively.

The CREUS method consists of four phases: CrowdRE
preparation, idea generation, refinement, and response and
execution. Three roles are active: the core team that coor-
dinates the effort, the crowd member who contributes with
feedback, and the focus group member, a crowd member
who joins the discussions on how to implement the selected
feedback.

While the four phases are linked sequentially in the PDD
to show the conceptual steps of CREUS, it is possible to
either (i) use CREUS in an agile manner by implementing
ideas without waiting for the collection period to end, or (ii)
leave the feedback channel open after an iteration of CREUS.
The PDD is a guideline, not a prescriptive tool.

1. CrowdRE preparation A core team is created, which
consists of requirements analysts who will oversee and
manage the crowd. It is indeed important [9] to direct,
motivate and sustain the crowd engagement. The core
team first defines a goal for the crowd, which determines

Table 1 Metrics used for analyzing the ideas in the a-posteriori analysis

Metric Description

User story quality [8]
 Well-formed A user story includes at least a ⟨role⟩ and an ⟨action⟩
 Atomic A user story expresses a requirement for exactly one user-visible feature
 Conceptually sound The ⟨action⟩ expresses a feature and the ⟨benefit⟩ expresses a rationale
 Problem-oriented A user story only specifies the problem, not the solution to it

Vagueness
 Vagueness Does the user story include one of the weak words from QUARS++ [43]? Is the occurrence of that word leading

to a vague requirement?
Text readability
 Automated readability index Complexity of a text in terms of average number of characters per words, and the average number of words per

sentence [44]
 Flesch reading-ease test Text complexity in terms of the average number of word per sentence and the average number of syllables per

word [45]
Quality requirements (ISO/IEC 25010 standard [46])
 Reliability Degree to which a system, product or component performs specified functions under specified conditions for a

specified period of time
 Performance (efficiency) Performance relative to the amount of resources used under stated conditions
 Security Degree to which a product or system protects information and data so that persons or other products or systems

have the degree of data access appropriate to their types and levels of authorization
 Compatibility Degree to which a product, system or component can exchange information with other products, systems or com-

ponents, and/or perform its required functions, while sharing the same hardware or software environment
 Usability Degree to which a product or system can be used by specified users to achieve specified goals with effectiveness,

efficiency and satisfaction in a specified context of use
Generality versus Specificity
 General The idea refers to the general user of the system, without limitation on certain usage contexts
 Specific The idea concerns specific user types or specific usage contexts

434 Requirements Engineering (2022) 27:429–455

1 3

the primary aim of the crowd-based elicitation and that
allows focused interaction through a feedback chan-
nel. The next step is the selection and configuration of
the feedback channel to employ. This can range from
general-purpose, commercial tools for idea generation
(e.g., UserVoice or GetSatisfaction) to specific Crow-
dRE platforms [2, 9, 10]. Then, the core team advertises

the channel and its purpose by inviting the prospective
participants to join, thereby allowing crowd members to
express their feedback.

2. Idea generation The invited crowd members can
express their feedback via ideas, comments, and votes.
In CREUS, ideas are formulated as user stories, as this
notation allows to concisely state not only what the idea

Fig. 1 Process-Deliverable Diagram representing the CREUS method for crowd-based requirements elicitation. The activities with the sym-
bol are executed by the crowd, the others are performed by the core team

435Requirements Engineering (2022) 27:429–455

1 3

concerns, but also who would reap the benefit, and why
this idea is important. Comments can be added to ideas
to clarify vague ideas, to introduce possible variants or
examples, and to offer counterpoints. Comments also
enable the core team to ask for clarification to the crowd,
if necessary. Finally, up/down-voting aims to estimate
the degree to which an idea is shared among the crowd
members. Throughout this second phase, the core team
monitors the activity of the crowd and provides stimuli
whenever necessary (e.g., by sending reminders to inac-
tive crowd members).

3. Refinement While phase 2 focuses on idea divergence,
phase 3 focuses on convergence thinking [47]: the exist-
ing ideas are consolidated to determine which ones to
consider for implementation. The phase starts with the
core team writing a summary of the ideas collected so
far. This activity is especially useful for newcomers to
obtain an overview of the existing feedback without
browsing through all ideas in the feedback channel.
Moreover, the core team writes responses to the ideas, so
to highlight that their ideas are taken into account. The
crowd is still able to generate, vote, and discuss ideas, as
the responses of the core team might lead to new discus-
sion points. Crowd monitoring activities continues like
in phase 2.

4. Response and execution This phase denotes the transi-
tion from elicitation to the following phases of software
development. First, the core team responds to not-yet-
answered ideas. Second, a timeline is developed that
describes to the team and to the crowd the time hori-
zon for the development. Then, highly-engaged crowd
members are invited by the core team to join a focus
group that will prioritize the feedback, leading to the
definition of a product backlog that consists of back-
log items. A part of these backlog items build on the
feedback provided by the crowd, while others originate
from other elicitation activities as well as from the road-
map and long-term release planning of the product [4].
Finally, the timeline is executed in sprints, each of which
is assigned a number of backlog items taken from the
product backlog.

Note that, although the activities in phase 2 and 3 are
unordered, votes and comments can only be posted for exist-
ing ideas. We do not prescribe a duration for phases 2 and
3. However, we can identify two general scenarios: (i) a
time-bounded, activity-intense scenario in which the crowd
focuses on a specific aspect of the system for a few weeks
(e.g., enhancing the usability on mobile devices [9]); and (ii)
a longer-term deployment in which the feedback channel is
kept active for a longer time without restricting the scope
(e.g., collecting inputs to improve the product [12]).

5 Results from the case studies
of crowd‑based elicitation (RQ1)

We present the results from the three case studies with
CREUS: the first phase of our research, which addresses
RQ1. We present the goals of each of the case studies and
the specifics of the elicitation method in Sect. 5.1. Then, we
describe the feedback channels we employed in Sect. 5.2.
After providing a quantitative overview of the outcomes
in Sect. 5.3, we summarize the main results in Sect. 5.4
(Tournify), Sect. 5.5 (S-Sys), and Sect. 5.6 (V-Sys). Exten-
sive details regarding these case studies can be found in our
previous work: for Tournify , see Menkveld et al. [12]; for
S-Sys and V-Sys, see Wouters et al. [13].

5.1 Goals and details on the use of CREUS

In the first case, CREUS is used in the context of product
evolution for an app, with the goal of assessing the ability
and eagerness of users to provide feedback in terms of user
stories by means of an online platform. The Tournify case
concerns reaching out to the external users of the app, who
would provide their inputs on a completely voluntary basis.
CREUS was instantiated in an agile development process:
the low-hanging fruit ideas were implemented before the end
of the 5-week collection period (phases 2 and 3 in Fig. 1).
The goal for the crowd was general: the company looked for
ideas that would improve the current functionality as well as
introduce new functions. Finally, the feedback channel was
kept alive after the case study period and users continued
using it.

In the second case, CREUS is used to elicit ideas for
S-Sys, an operational system that will replace a legacy sys-
tem. S-Sys will allow reporting on violations and offenses,
and to generate formal police reports. A set of requirements
were collected earlier using interviews, task analysis, and
introspection. The main goal of this case study is to validate
whether CREUS will lead to similar requirements to those
that were already gathered. This study focuses on a single
operational unit (“brigade”) within the KMar organization:
the 478 employees of that brigade were invited to partici-
pate. CREUS was used to complement the existing require-
ments; the system would then be implemented by a external
contractor after a tender process. As such, we focused on the
first three phases of CREUS. Also, leaderboards were used
(see Sect. 5.2) as a game element to foster user involvement.

In the third case, CREUS is used to identify ideas for
a software product for which no requirements existed.
The V-Sys product is going to replace another, outdated
product at the KMar. The main goal is to assess whether
CREUS can be scaled up to the whole organization and,
while doing so, is still able to produce useful ideas for the

436 Requirements Engineering (2022) 27:429–455

1 3

analysts who will have to specify the requirements for the
system to-be. CREUS was employed in a similar way as in
the S-Sys case: the leaderboard was included as well, and
the identified ideas would feed into a more comprehensive
elicitation process. One key difference is that (see Sect. 5.6)
the participants were invited to join in multiple rounds, due
to practical constraints.

The KMar case studies targeted operational employees:
the daily users of the systems for which requirements needed
to be gathered. At the KMar, these employees are normally
hardly involved in this process, even though they are the
most important user group: their daily duties (e.g., police
and border control tasks at airports) take priority over their
participation in workshops and other requirements elicita-
tion sessions.

5.2 Feedback channels

The case studies reported in this paper are executed through
the use of two purpose-made CrowdRE platforms, one per
each involved organization.

For the Tournify case, the feedback platform was embed-
ded in the website of the company, so that all users could
access it.

In order to help users formulate user stories, even if they
have never used the notation before, we provided a wizard
with four simple steps (Fig. 2): (i) the role is chosen among
predefined options: organizer, participant, and supporter; (ii)
the goal asks the user what s/he wants to do with Tournify
via a textbox that contains the static text ‘I want to’ before
the user input; (iii) the benefit, also requested via free text,
which starts with ‘so that’; and (iv) verification and category
selection: before submitting the idea, the user can verify the
user story that has been assembled from the inputs, and they
are asked to select one of the predefined categories, repre-
senting parts of the main menu of the application.

All requests are published on a grid visualization on the
Tournify website, which can be accessed via the support
menu. In addition to idea posting, the platform enables the
other actions of phases 2 and 3 of CREUS: voting, comment-
ing, and responding to the posted ideas.

For S-Sys and V-Sys, the KMar Crowd platform was built
by the first author on top of a WordPress site. The platform
(illustrated in Fig. 3) supports phases 2 (idea generation) and
3 (refinement) of the CREUS method. Therefore, it allows
participants to express user stories via a simplified format,
and it allows voting and commenting. Furthermore, inspired
by earlier research [9], it includes gamification elements:

Fig. 2 The wizard template for authoring user stories in the Tournify case

437Requirements Engineering (2022) 27:429–455

1 3

points, badges, and a leaderboard. The platform incorpo-
rates Single-Sign-On, which makes it possible to retrieve
the origin of participants. When users open CREUS for the
first time, they are asked to either fill in their real name or
specify a pseudonym.

As users enter ideas, add comments, and up-/down-vote
existing ideas, they gain points. When a certain amount of
points of each category (ideas, comments, votes) is col-
lected, users are rewarded with stars. As a positive reinforce-
ment, all users start with one star after logging in for the first
time. In the S-Sys and V-Sys case studies, all the participants
who collected two or more stars were eligible for a small
prize that was assigned via a raffle.

5.3 Quantitative comparison of the outcomes

We relate our case studies to earlier empirical research with
CrowdRE elicitation platforms. Table 2 summarizes the
data from the three cases and contrasts them to the results
from REfine [9] and GARUSO [2], the other studies which
measured the quantity of feedback obtained via a dedicated
platform. The table also includes column Tournify ∗ , which
reports figures that include the outcomes obtained after the
Tournify case study was concluded: the platform was left
active and the users could provide their ideas for over two
years.

We present three participant counts: invited is the num-
ber of people (possibly unknown) that were reached by an

Fig. 3 The idea board of the KMar Crowd platform, with data from S-Sys translated to English. On the left, the existing ideas together with vot-
ing buttons button are visible. On the right, new ideas can be expressed via a simplified user-story format

438 Requirements Engineering (2022) 27:429–455

1 3

invitation to join the platform; accessed counts who visited
the platform at least once; and active considers participants
who interacted actively, by posting an idea, adding a com-
ment, or expressing a vote. For the active participants of
Tournify ∗ , we could only count those who posted at least
one idea because of the information that was stored after the
case study period (after the 35 days of Tournify). The data
regarding Tournify ∗ is only used in Sect. 6 to answer RQ2.

Participant invitation differs per case study. For S-Sys and
V-Sys, we used mass emails sent to the organization and
physical briefings executed by team leaders. For Tournify ,
the invitation to participate was included in the product for
which ideas were gathered. For REfine, specific individu-
als were reached by the researchers, while GARUSO used
targeted advertising to recruit participants through organi-
zational mailing lists.

In addition to the participants’ counts, we present the
number of ideas, of logins, of votes, comments, and the aver-
age number of ideas per participant who accessed and who
was active on the platform.

The raw numbers provide a high-level overview, which
will be enriched by the case-specific details in the follow-
ing sections. We can see that our three cases had the high-
est number of active participants within the cases reported
in the literature: 39, 60, and 130 for Tournify , S-Sys, and
V-Sys, respectively. The total number of votes for S-Sys and
V-Sys is also high. When we look at the number of ideas
per user who accessed or who was active, we see how the
S-Sys and V-Sys cases lead to lower engagement than the
Tournify , REfine, or GARUSO. This may be justified by a
few reasons: (i) the type of ideas that were formulated: see
the analysis in Sect. 6; (ii) the organizational culture: KMar
employees are used to conveying their inputs in a single,
extensive message; and (iii) group dynamics: research has

shown [48] that larger groups deliver a lower average of
ideas per participant.

5.4 Tournify

The feedback elicitation via a dedicated channel was
announced via e-mail to 337 users who had shown some ear-
lier participation by requesting a feature via another channel,
by subscribing to the newsletter, or by making a purchase
recently. A reminder was sent one month later. The data
collection period was five weeks. One free Tournify upgrade
was raffled among all active participants. Some ideas were
accepted and were assigned the label in development, visible
in the platform. Phase 4 of CREUS started while the ideas
were being collected: one idea was implemented before the
end of the elicitation period.

In the five-weeks period, 157 unique visitors accessed
the platform. 39 of these users interacted with the platform
by submitting an idea (23), voting (28), and/or comment-
ing (nine). The active participants submitted a total of 57
ideas, 89 votes, and 14 comments (Table 2). The down-
vote idea functionality was never used. 65% (15) of the
requesters submitted only one idea, two users submitted
respectively two and three ideas, four users submitted five
or more ideas, with a maximum of 14 ideas.

In 52% of the cases, the category assigned by the
requester did not match the category assignment that the
researcher-author would have assigned. This probably hap-
pened because we provided no guidance on the labels.

After the study, 13 active users responded to a ques-
tionnaire. Most of them (10) requested a feature, while
the other three respondents only voted for a feature. They
perceived the platform as very useful; their ratings on a
1-to-5 five-point Likert-type scale: posting ideas (x = 4.9 ;

Table 2 Comparison of the
Tournify , S-Sys, and V-Sys cases
with earlier studies

The Tournify ∗ column refers to the additional ideas obtained from the channel after the case study period
ended. † : for Tournify ∗ , we count only participants who posted ideas; for technical reasons, we could not
record participants who voted or commented. ‡ : these numbers are slightly lower than those reported in
previous work [13], as every idea included a vote self-assigned to the author; for consistency, we subtracted
those in this paper

Measurement Tournify S-Sys V-Sys Tournify∗ REfine GARUSO

Duration in days 35 33 56 ∼ 1000 35 92
Participants
 Invited 337 478 2,393 unk. 37 unk.
 Accessed 157 135 385 unk. 19 726
 Active 39 60 130 †135 19 32

Ideas 57 32 78 248 21 56
Logins 247 240 623 unk. unk. unk.
Votes 89 ‡284 ‡453 513 130 160
Comments 14 28 78 161 37 unk.
Ideas/Accessed 0.36 0.24 0.20 unk. 1.11 0.08
Ideas/Active 1.46 0.53 0.60 1.84 1.11 1.75

439Requirements Engineering (2022) 27:429–455

1 3

� = 0.28), viewing (x = 4.8 ; � = 0.38), voting (x = 4.5 ;
� = 0.88), and commenting (x = 4.5 ; � = 0.66).

We did not assess the usefulness of the ideas because
of the product stage: at the time of our study, Tournify was
a very recent product and the company had to balance the
inputs with their own growth strategy. We did, however,
ask the lead developer to estimate the effort required for
implementing the ideas using the Fibonacci sequence (1,
2, 3, 5, 8, 13, 21), with one story point corresponding to
one hour of work. Nine ideas were not estimated, since
seven referred to features that were already implemented
but overlooked by the requester, while two could not be
estimated because of their vagueness. 90% (43/48) of the
estimated ideas can be developed within one workday,
according to this estimation (see Fig. 4).

The Tournify case leads to two major findings. First, the
large number of user stories with relatively little effort (see
Fig. 4) suggests that it is viable to expect specific features
that can be easily implemented. Second, the users of the app
expressed general appreciation for this way of being involved
in the evolution of the product, both through their question-
naire and via follow-up comments such as “every user gets
new ideas while using Tournify on their tournament” and “a
fantastic way to improve the application”.

5.5 S‑Sys

As explained in Sect. 5.1, S-Sys served to assess whether
the deployment of the CREUS method would deliver ideas

that are comparable to those elicited via established tech-
niques and whether they could lead to additional, previously
unidentified ideas. The results were measured in terms of
(i) user engagement, (ii) user origin, (iii) appreciation of
CREUS, and (iv) quality and usefulness of the ideas. The
full results are presented in our previous work [13]. Here,
we only offer some highlights on user origin and on the
usefulness of the ideas.

The statistics in Table 3 show that, in the S-Sys study,
CREUS allowed to reach one of the main goals of the case
study: over 58% of the total number of participants were
operational employees. On the positive side, this shows that
operational employees—a user category that would seldom
be included using established elicitation methods—were
reached and that they delivered substantial input. Yet, mid-
dle management was the most active group on the platform
with a higher number of ideas per user. This can be expected
as military culture is structured around rank and people
with higher rank are more likely to participate in strategic
discussions.

To check the usefulness of the ideas, the two requirements
engineers of S-Sys (who also did the earlier RE work for
S-Sys using established elicitation methods) judged all ideas
based on the KANO model [49], and determined whether the

Fig. 4 Effort estimation for the
not-already-implemented ideas
for Tournify

Table 3 Activity per user type in the S-Sys case study (N=135)

Origin % of total Per user activity

Ideas Votes Logins

Operational employee 58.52% 0.23 2.66 1.84
Middle management 8.15% 0.82 3.18 2.55
Non-targeted employee 33.34% 0.11 0.77 1.55

Table 4 Usefulness of the ideas in the S-Sys case study, assessed by
the two analysts who conducted the elicitation without CREUS

Measurement Value # Ideas

KANO model Must-be 13
One-dimensional 10
Attractive 7

Gathered earlier Completely 19
Partly 6
Not at all 5

Complete for dev teams Yes 11
No 19

440 Requirements Engineering (2022) 27:429–455

1 3

idea was gathered earlier. The results are given in Table 4.
Two of the 32 ideas were unrelated to the goal of the elicita-
tion and are therefore excluded from further analysis. 19 of
these 30 ideas were identified in an earlier stage, five were
partly identified in an earlier stage, and six were completely
new.

When evaluating the ideas according to the KANO
model, 13 of them were must-be requirements, 10 were
one-dimensional (i.e., detrimental if not implemented, use-
ful when implemented), and seven were attractive qualities
(delighters). If we only look at the ideas which were gath-
ered partly or not at all in an earlier stage, five of these 11
ideas were delighters, two of them were one-dimensional
requirements and four of them were must-be requirements.
This shows that the CrowdRE activities could contribute
to enriching the requirements, although many of the inputs
were already identified earlier. Finally, two thirds of the
ideas (19/30) were missing important details prior to their
use for development: this is not surprising, since involving
the crowd of users amounts to allowing people with no RE
experience to participate.

The S-Sys case study shows that CREUS can be used to
collect ideas for IT products and that the results are compa-
rable with requirements collected using more established
requirement elicitation techniques. Some of the identified
ideas were new and not identified in the prior elicitation
activities, as CrowdRE taps into a large user base that
might otherwise be overlooked. The S-Sys case study also
confirms that CREUS cannot replace other RE efforts, as
many requirements collected earlier are not identified using
CREUS.

5.6 V‑Sys

The V-Sys case study focused on scaling up CREUS to the
size of a governmental institution. The results were meas-
ured over the same four dimensions as in the S-Sys case
study: user engagement, user origin, appreciation of CREUS,
and the usefulness of the ideas. We briefly report on user
engagement, user origin, and the usefulness of the ideas
here, while a full analysis is in [13].

Figure 5 summarizes user engagement for the V-Sys
case. While two peaks existed in the S-Sys case (see Fig. 4
in [13]), employees were invited more gradually in the V-Sys
case, once their brigade commander gave consent. Because
of this, the activity on the KMar Crowd platform was more
spread out over time (with peaks shortly after a brigade was
invited to participate). In total, 385 participants used the
platform, 15.8% of the total invited employees. This is a bit
lower than in the S-Sys case (28.25%) since the larger scale
of this case study made it harder for the researcher to pay
attention to and to stimulate the participation of all brigades.
A relationship between registrations and the other activities
is visible, which also occurred in the S-Sys case study.

Since the V-Sys case study was executed across differ-
ent brigades, no distinction is possible between operational
employees, middle management and upper management, as
each brigade is structured differently. Therefore, we made an
analysis based on military rank. 79% of the participants were
part of the group targeted, which further strengthens the
conclusion on the viability of collecting ideas from groups
normally less involved in this process.

Fig. 5 Usage indicators for the
V-Sys case study plotted over
time

441Requirements Engineering (2022) 27:429–455

1 3

For V-Sys, no earlier requirements elicitation work was
conducted. Therefore, we could not reuse all the same meas-
urements we employed for S-Sys. While we kept the KANO
model classification, we introduced new measurements. Four
requirements engineers (all KMar employees with a role in
developing plans for the new system, but not involved in
the CREUS case study until all the data was gathered), were
asked to judge whether the collected ideas would be suf-
ficiently detailed for a minimum viable product (MVP) as
well as for a complete and correct implementation of the
requirement. The difference between these two can best be
explained by whether a requirement is fulfilled completely:
in a MVP, the implementation may still be incomplete (e.g.,
some business rules are not correctly or fully implemented),
while in the final product, the requirement should be imple-
mented completely and to the satisfaction of the end-user.
Finally, the requirements engineers were also asked whether
the idea could be classified as a user story (indicating a sin-
gle feature), or as an epic (denoting several features). Table 5
summarizes the results.

Of the 85 gathered ideas (some inputs were split as they
contained multiple ideas), six ideas were dismissed, mostly
because their implementation would be unfeasible due to
legal reasons. Of the remaining 79 ideas, 59.5% were spe-
cific enough to implement in an MVP. Only 27.8% of the
ideas were specific enough to implement in the final product.
The results are, however, promising, as the ideas come from
people with no expertise in RE. For granularity, 40.5% of the
ideas were classified as epics, 54.4% as user stories. Out of
the 5.1% of the ideas that cannot be classified, one regarded
stakeholder identification.

The V-Sys case study showed that the scale-up of CREUS
can be done successfully as long as enough energy is spent
by the core team to form the crowd. It also showed that over
half of the ideas are useful to be implemented in a MVP, but
that most ideas need further refinement to be actually imple-
mented in a product. The input of CREUS can be seen as a
starting point, to get a first grasp of the domain, to identify

quick wins (the ‘simple’ ideas sent in) and to identify poten-
tial subject matter experts for more complex ideas.

6 Qualitative analysis of the elicited ideas
(RQ2)

In the second research phase, we address RQ2 by conduct-
ing a qualitative analysis of the ideas that were collected
through CREUS via the deployed feedback platforms in the
three case studies. We study the artifacts that crowd-based
elicitation produces, so to evaluate the quality of these ideas
when considered as user requirements. We aim at providing
empirical evidence for researchers and practitioners on the
quality of the collected ideas.

We analyze a total of 358 ideas: in Table 2, the 248 ideas
from Tournify ∗ , the 78 ideas from V-Sys, and the 32 ideas
from S-Sys. We exclude some S-Sys and V-Sys ideas for con-
fidentiality reasons, and a few inputs from Tournify ∗ because
clearly not representing a requirement. This leaves us with
341 ideas: 245 from Tournify ∗ , 67 from V-Sys, and 29 from
S-Sys. All the ideas from S-Sys and V-Sys were written in
Dutch. For Tournify ∗ , 212 ideas were in Dutch, while 33
were in English, as the company expanded their market after
the time period when the first research phase was conducted.

All ideas were qualitatively analyzed on the aspects listed
in Sect. 3 via the metrics of Table 1. We made the following
operationalization choices:

• User story quality and quality requirements. Two
authors tagged independently the ideas by analyzing both
aspects, and they held sessions to reach consensus. For
S-Sys and V-Sys, for confidentiality reasons, we organized
physical meetings using printed copies of the ideas. After
tagging each idea, the authors compared and discussed
their tagging in order to reach agreement. For Tournify ∗ ,
the tagging was conducted in different locations, and the
authors held two sessions for reaching agreement.

• Vagueness. We first used a Python script (in our online
appendix2) that searches for the list of words from
QUARS++ in a text. Since this list of words is in Eng-
lish, we first translated all the ideas by invoking Google
Translate. The returned hits were processed manually by
one researcher-author to identify whether the hit was a
real occurrence of vagueness.

• Text readability. The readability of the requirements was
analyzed automatically using the same script for vague-

Table 5 V-Sys: usefulness of the ideas, assessed by a pool of analysts

Measurement Value Ideas

%

KANO model Must-be 40 50.6
One-dimensional 29 36.7
Attractive 10 12.7

Enough for MVP 47 59.5
Enough for product 22 27.8
Granularity Epic 32 40.5

User story 43 54.4
Not applicable 4 5.1

2 https:// doi. org/ 10. 5281/ zenodo. 69669 78

https://doi.org/10.5281/zenodo.6966978

442 Requirements Engineering (2022) 27:429–455

1 3

ness, by using the textstat 0.7.2 Python library,
which calculates the ARI and the Flesch score.

• Generality vs. Specificity. For the S-Sys and V-Sys ideas,
items were judged as specific or general by the author-
employee, based on whether the idea was specific to one
brigade or could be generalized. For the Tournify ∗ items,
one researcher judged whether the ideas were related to
a single sport or pertained to multiple sports.

For the KMar case studies, due to the format we used to
gather ideas, the two fields ‘what would you like?’ and ‘why
do you want this?’ were combined to create a user story,
representing the ‘I want’ and the ‘so that’ part, respectively.
In the examples below, we denote the concatenation of the
two fields using a ‘/’ symbol. The role was identified via a
separate field; unless necessary, we do not list it here, as its
meaning is domain specific. Also, domain-specific terms are
substituted by a more general term, typeset in angle brackets:
⟨… ⟩.

Each idea has been given a unique identifier which con-
sists of a letter (S for S-Sys, V for V-Sys, and T for Tournify ∗)
and a progressive number. The non-confidential ideas used
in this study are available in our online appendix.

6.1 Quality based on the QUS framework

The analysis using the QUS framework aims to assess
whether the ideas suffer from the common defects of user
story requirements. Within the 13 criteria of QUS [8], we
select four that are suitable for user-generated ideas: (i) well
formed: are both the ⟨role⟩ and the ⟨action⟩ specified? (ii)
atomic : does an idea include a single requirement?; (iii) con-
ceptually sound: does the action include the desired feature,
and does the reason explain the rationale?; and (iv) problem-
oriented: is the user story expressed in problem-space terms,

or does it indicate a specific solution? While the ideas from
the Tournify case study period had been assessed with the
QUS framework before [12], we analyzed all the ideas in
the Tournify ∗ super-set with two taggers, in order to offer
more reliable results. The results are shown in Table 6. In
addition to the number of defects and the percentage of user
stories that exhibit that defect, we present a count based on
the number of violations per user story.

The Tournify ∗ data set contained more ideas with no vio-
lations: 66.9% vs. circa 40% for the other cases. One likely
explanation is the wizard-like template (Fig. 2), which fos-
ters users to express short ideas that stick to the template.
Another reason is that Tournify ∗ ideas were gathered for
improving an app, rather than for replacing a legacy infor-
mation system: ideas that indicated bugs to fix or functional-
ity to be improved, which are prone to violating problem-ori-
ented or conceptually sound, were less common for Tournify
∗.

Across all three case studies, the most violated criterion
was problem-oriented. As the ideas were posted by users
in general and not by requirements engineers, this can be
expected, as users are not familiar with the importance of
problem-orientation in RE. For example, see idea 40 for
V-Sys:

V-40 Change the layout to indicate which steps you need to
take. Activating or deactivating a step is so hard to see that
sometimes the wrong steps are deactivated. / To prevent that,
recovery processes need to be made.

The employee who submitted this idea still thinks about
manually activating or deactivating a step to progress in the
workflow, while the new system might automatically deter-
mine the next steps based on a workflow engine. This shows
that the employees sometimes find it hard to think of their
needs outside the context of the current system. This can
also be seen in idea V-62:

Table 6 Violations of criteria
from the Quality User Story
(QUS) framework

Quality violations S-Sys V-Sys Tournify∗

% # % # %

Not well-formed 7 24.1 12 17.9 0 0.0
Not atomic 10 34.5 18 26.9 33 13.5
Not conceptually sound 3 10.3 3 4.5 11 4.5
Not problem-oriented 7 24.1 23 34.3 46 18.8
Ideas with:
 No violations 12 41.4 26 38.8 164 66.9
 One violation 10 34.5 26 38.8 71 29.0
 Two violations 6 20.7 12 17.9 9 3.7
 Three violations 1 3.4 3 4.5 1 0.4

Total ideas 29 67 245

443Requirements Engineering (2022) 27:429–455

1 3

V-62 Create a menu in ⟨system⟩ where an employee can edit
their rank and workplace to the correct data. The menu should
only be accessible for the employee with perhaps an approval
of this information by an approver. / This relieves the helpdesk
of unnecessary work, which can be edited by the employee
him/herself. This ensures the information in formal reports
are correct and don’t need to be changed using eventually an
additional formal report.

The employee is discussing a way to specify their role in the
system, while this might also be done automatically using
single sign-on. V-62 also violates the atomic criterion, as it
discusses both (i) the possibility of letting staff change their
own information, and (ii) an approval system that lets the
manager of that employee check the information.

We encountered several cases in which multiple require-
ments were expressed in the same idea, also in the Tournify
∗ case. For example, T-14 discusses both the option to show
video replays and the possibility to show a live indicator,
which are clearly two different features.

T-14 As an organizer, I want to show the video replays of
matches that have happened next to the results with a little
icon. I want to also show the LIVE button for games currently
in progress, so that I can get more people to watch the game
and make the games valuable.

The well-formed quality was never violated for Tournify ∗ ,
most certainly thanks to the wizard of Fig. 2, while viola-
tions occurred for the KMar case studies. An example of a
violation comes from S-Sys:

S-26 [As a team lead, I want to] Improve the registration of
goods and make this more simple. [so that I can] Make sure a
connection exists between ⟨new system⟩ and ⟨other system⟩ .
Prevent double entry of goods, make this process easier. Make
sure there is a better overview of where goods are at a certain
time.

Although the violation is not immediately clear, the partici-
pant who entered this idea indicated an incorrect role (‘team

lead’, while it should be ‘operational employee’) in the third
field on the form. Therefore, the well-formed condition was
violated, as the idea did not contain a (correct) role.

Conceptually sound violations did not occur often and
were mostly due to the inadequate rationale given in the ⟨
benefit⟩ : often, the feature was repeated as the rationale. An
example of this is idea T-168:

T-168 As an organizer, I want to keep a top scorer list, so that I
can collect top scores.

Ideas with three violations were rare: in total, four ideas.
One idea which violated three qualities is T-21:

T-21 As an organizer, I would like 1) the possibility to assign
referees to an event, 2) push notifications: is it possible to
write/generate a push notification ourselves with a message,
so that we can reach individual teams during a tournament.

This idea is not atomic (as it contains two separate require-
ments), it is not conceptually sound (the rationale of the first
part is not explained), and it is also not problem-oriented
(the second part proposes a specific solution)

202 ideas did not include any violation. For example:

S-03 Search functionality which let you search on call sign
so you can see all incidents you need to enter data in one
overview. / Often it is searching to find all incidents in ⟨old
system⟩ of which you need to enter data for.

Ideas with no violations were generally short, as one would
expect for a user story. They did not refer to the legacy sys-
tems, and they did discuss the process that the user wanted
to support with the (new) system.

6.2 Quality requirements based on ISO/IEC 25010

We used five qualities from the ISO/IEC 25010 standard,
which were found to be among the most common in user

Table 7 Analysis of whether the
ideas would pertain to quality
requirements

Property S-Sys V-Sys Tournify

% # % # %

Reliability 0 0.0 3 4.5 1 0.4
Performance 0 0.0 1 1.5 0 0.0
Security 0 0.0 1 1.5 3 1.2
Compatibility 14 48.3 23 34.3 17 6.9
Usability 12 41.4 25 37.3 55 22.4
Ideas with
 No properties 5 17.2 20 29.9 169 69.0
 One property 22 75.9 42 62.7 76 31.0
 Two or three properties 2 6.9 5 7.4 0 0.0

Total ideas 29 67 245

444 Requirements Engineering (2022) 27:429–455

1 3

reviews [50], to determine whether the user stories could
be associated with specific quality aspects, in addition to
functional concerns. The quantitative results are presented
in Table 7.

The KMar ideas from S-Sys and V-Sys contained, in
percentage, more user stories that could be associated
with software qualities than the Tournify ∗ ones. 69% of
the Tournify ∗ ideas could not be linked to qualities, while
this percentage is 29.9% for V-Sys and 17.2% for S-Sys.
A possible explanation is the different domain: while
S-Sys and V-Sys are information systems that enable
well-defined business processes, the Tournify app can
be extended to support additional sports, hobbies (e.g.,
cards), or e-sports.

The most common property in the KMar ideas is com-
patibility. It might be explained by the nature of the con-
sidered information systems, which need to communicate
with those of other governmental institutions. Indeed, many
ideas focused on improved interoperability (a sub-aspect of
compatibility in ISO/IEC 25010 [46]) between the KMar
and other institutions. We cannot share these ideas because
they are classified. However, we share an example about
linking the systems with APIs to make them more robust
and precise:

V-45 When you do dynamic patrols and want to report on these,
this is not possible for certain locations because they don’t
exist. My idea is to connect a street book to ⟨old system⟩ , so
we can report on all our dynamic patrols. / To make our work
easier and to create a complete picture of what we do and
where.

The users of Tournify also expressed compatibility-related
ideas, such as T-47, which specifically mentions a push noti-
fication service outside of the app:

T-47 As an organizer, I want to send notifications to a par-
ticipant. Is it possible to integrate Pushbird in one way or
another, so that I can improve the involvement of the partici-
pant and can actively send him/her information?

After compatibility, usability was mentioned the most in
the collected ideas. Most of the time, usability was not

mentioned explicitly but ideas were written with the clear
intent of improving the usability of the system.

S-11 A tab functionality just as the tabs in your internet
browser. This because then it would be possible to have multi-
ple entries open at once. / This saves actions and thus time.

The KMar case studies focused on information systems that
supported users in their work duties. This might explain why
the usability property was more common in the KMar ideas
than in the Tournify ∗ ones: the participants of the KMar
study are required to use the system—and benefit directly by
its usability—, while the Tournify users could easily switch
to a competing app. The ideas which described usability
within Tournify ∗ focused on making operations easier in
the system, often expressing small changes that would make
common operations within the system easier to perform:

T-134 As an organizer, I want the possibility to copy the divi-
sion’s structure within one tournament, so that I set up of the
local tournament can be done more quickly.

Very few ideas could be linked with Reliability, Security
and Performance, probably because the users do not think
of these qualities that are somehow ‘invisible’ [50]. This
is another confirmation that crowd-based elicitation is not
a complete replacement of established elicitation methods.

An example of a security-relevant idea is V-62, which
was listed in Sect. 6.1. It shows that participants think about
manually changing their security role without waiting for the
help desk, which takes time. It does, however, also show that
this participant only thought of the security of the system as
the current implementation hampers their productivity. For
Tournify ∗ , some ideas were clearly about security, such as
T-241, which is shown in Sect. 6.5. T-87 is another example:

T-87 As an organizer, I want to limit an account so I can share
it, so that I can organize a tournament with multiple people
but do not have to give out admin-rights to everyone.

Idea V-22 shows an idea that relates to reliability: this arises
from a bug in the current system, which is unlikely to exist
in the new one:

Table 8 Specific versus general
ideas

Item S-Sys V-Sys Tournify

% # % # %

Specific 4 13.8 12 17.9 25 10.2
General 25 86.2 55 82.1 220 89.8
Total ideas 29 67 245

445Requirements Engineering (2022) 27:429–455

1 3

V-22 In the ⟨old system⟩ , if you enter data and press the enter
button, you will lose the information entered (except when
you clicked on ‘save’). Maybe this ‘handy’ function can be
removed, and a function that automatically saves information
can be added. / User-friendliness, no loss of data or re-enter-
ing information again.

Ideas that could be associated with two or more quality
properties were rare and did not occur at all in the Tournify
∗ case. For KMar, most were combinations of usability
and compatibility, for instance V-72, showing how com-
patibility improves efficiency and, consequently, higher
user-friendliness.

V-72 Connecting ⟨Schiphol Airport system⟩ to ⟨old system⟩ . To
make it more easy to add flights to a process / Saves time.

6.3 Specificity vs. generality

Table 8 presents the results of the analysis of the specificity
of the ideas. Across all three case studies, general ideas (not
pertaining to a specific user type or usage context) were the
most common. The KMar case studies did contain slightly
more specific ideas, but overall the studies do not differ
much.

For the KMar case studies, specific ideas were mostly
about niche tasks to be performed in the systems.

Employees indicated, sometimes even inside the user
story, that such functionality should not be overlooked. For
example, see V-72, presented in Sect. 6.2: a link with the
Schiphol Airport system only benefits the operational bri-
gade which performs its duties at that airport. For Tournify
∗ , specific ideas were those mentioning, or applicable only
to, a single sport. An example is idea T-152, which asks
explicit support for hexathlons.

T-152 As an organizer, I want to be able to use Tournify for
hexathlon, so that I can use Tournify for different events.

Most ideas, however, were general; many are presented in
the paper, such as those about user-friendliness, which are
applicable for the whole application, not only a specific user
type. This shows that the participants in these case studies
are acting ‘as a crowd’: if most ideas were specific, the inter-
est of the crowd as a whole could be overlooked, leading to
many ideas that are shared by only a few members [20]. This
crowd behavior can also be seen by comparing the average
number of votes according to the two categories: Table 9
shows that general ideas typically received more votes from
the crowd than specific ones.

A notable exception is S-Sys, where the average number
of specific votes was considerably higher. This might be
due to the low number of specific ideas (only four), which
attracted a high number of votes.

Although a high number of votes in the general category
shows that the crowd is able to prioritize the group interest
over that of individual interests, specific ideas are needed
to ensure that niche requirements are considered for inclu-
sion in the system. These ideas may be overlooked if the
core team only considers the vote count when prioritizing
the ideas to implement. In that case, the niche participants
would need to mobilize everyone in their group to vote on

Table 9 Average number of votes per category

Average # of votes S-Sys V-Sys Tournify

Specific 11.25 2.85 1.24
General 5.44 4.65 2.15

Fig. 6 Boxplot of the Flesch-
scores for S-Sys, V-Sys and
Tournify ∗

446 Requirements Engineering (2022) 27:429–455

1 3

their specific idea (as it happened in the S-Sys case study).
The fair treatment of minorities strengthens the importance
of having a core team that analyzes all inputs. Another
approach would be to apply CrowdRE with a sub-crowd
that consists only of people in the niche group. The trade-
off between general and specific ideas is subject to further
research.

6.4 Readability

We assessed the readability of the ideas as general text,
via automated readability scores, to identify differences in
the estimated readability of the ideas across the cases. We
selected the Flesch-score and ARI because of their popular-
ity and as they rely on slightly different way of estimating
complexity (see Table 1). The results are shown in Fig. 6 and
in Fig. 7. If a text is harder to read, the Flesch-score is low,
and the ARI score is high.

Of the three case studies, the Tournify ∗ ideas were the
most readable according to the indices (Flesch x = 41.11,
ARI x = 20.80). The spread of those scores was higher
than the scores of S-Sys, but the number of data points for

S-Sys was also significantly lower (29) than the number of
data points for Tournify ∗ (245). The readability for S-Sys
(Flesch = 29.48, ARI = 25.12) and V-Sys (Flesch = 33.02,
ARI = 25.99) is lower according to the Flesch and ARI
scores. The most likely explanation is the Tournify wizard,
which prompted the users for concise user story parts that
would lead to a single-sentence user story. Other possible
causes are the automatic translation necessary to perform
the calculations, and the more specific domain for which
ideas were gathered.

The ideas posted for S-Sys and V-Sys contained more
text (on average, 349 characters for S-Sys, 421 for V-Sys,
and 264 for Tournify ∗), which might also have led to a less
favorable readability score. In general, all three cases had
readability scores that indicated very complex texts. This
might be because the indices used are mostly meant to be
applied to larger texts, such as books, and the algorithms
may not perform as expected on short text. Experimenting
with other algorithms that could be used to determine the
complexity of crowd-generated ideas is subject to further
research.

Fig. 7 Boxplot of the ARI-
scores for S-Sys, V-Sys and
Tournify ∗

Table 10 Distribution of
vagueness hits

Hits per idea S-Sys V-Sys Tournify

% # % # %

None 8 27.6 25 37.3 153 62.5
One 11 37.9 21 31.3 72 29.4
Two 6 20.7 9 13.4 15 6.1
Three 3 10.3 5 7.5 5 2.0
Four or more 1 3.5 7 10.5 0 0.0
Total ideas 29 67 245

447Requirements Engineering (2022) 27:429–455

1 3

Although the ideas were hard to read according to these
scores, it does not mean they were unusable. First, the ana-
lysts may just need more time in order to fully comprehend
the ideas. Second, the algorithms that estimate readability do
not possess the domain knowledge that analysts and stake-
holders have.

6.5 Vagueness

The vagueness of the collected ideas was assessed using the
method discussed in Sect. 3. We identified the occurrence of
each of the vague words from QUARS++ [43], then calcu-
lated vagueness hits by counting the number of vague words
per idea. Then, we manually processed the hits to determine
whether they would represent a real instance of vagueness
or not and, if not, why. The distribution of the hits per idea
is presented in Table 10.

The S-Sys and V-Sys ideas contained more vagueness hits
than Tournify ∗ when using the QUARS++ word list. Most of
the Tournify ∗ stories did not contain vague words (62.5%),
and the others had only one or two vague words. The S-Sys
and V-Sys ideas contained more vague words: only 27.6% of
S-Sys and 37.3% of V-Sys ideas did not contain vague words.
This discrepancy may be due to the higher number of words
in the ideas from the KMar case studies.

Since most of the Tournify ∗ ideas and all the KMar
ideas were written in Dutch, while the list of words from
QUARS++ is in English, the automatic translation of the
ideas might have affected the results. Therefore, we further
analyzed the results by classifying them based on the type
of hit gathered: true positive of vagueness, false positive
because the vague word gets clarified in the sentence, false
positive because the vague word is used in a common phrasal
expression, false positive because of a typo, or false positive
because the vague word is a domain term. The results of this
analysis are presented in Table 11.

Overall, over 70% of the hits were false positives. Most
of the false positives were words that were in the vagueness
list but were used in the ideas as a phrasal expression. An
example of this is idea S-29, which contained the phrasal

expression ‘makes it possible to’ (possible is the vague word
here):3

S-29 Dashboard Insert function in the module where every-
one can make a management dashboard yourself to keep an
eye on his own processes. Depending on the function of the
employee, various overviews are added to the dashboard. /
Makes it possible to better steer on their own work and work
of colleagues.

Another example of a phrasal expression that led to a false
positive is idea T-241, in which the word ‘nice’ triggered the
vagueness algorithm, even though the phrasal expression
‘nice (to have)’ is not vague:

T-241 As an organizer, I want the assurance that an e-mail
address that is passed on when registration is really valid,
so that a confirmation also knows. For this you could use a
third party check, such as https://www.milgun.com/email-
verification-service, so that we have more certainty about the
mail. Can see that an email is open is also nice. You probably
use an email distribution API and you can simply show that
metrics (sent / open) in the GUI to the user.

Some vague words were clarified elsewhere in the sentence,
and therefore should not be seen as vague. In idea V-28, the
word ‘user-friendly’ is flagged as vague, but the context of
the sentence clarifies this term:

V-28 In the ⟨old system⟩ there are pages that you have to press
saving, but at the same time also goes further. If you press
further, you will lose everything from the page, this should
be more user-friendly with a popup notification (you are sure
that you do not want to save this page) or just only show one
option with further (automatically save). / Usability

Some hits denoted a truly vague idea, for which we could not
determine what the participant meant with certain words. An
example of this is idea V-06, where the words ‘legible’ and
‘user-friendly’ were flagged as vague:

Table 11 Quantitative results of
vagueness analysis

Statistic S-Sys V-Sys Tournify

% # % # %

True positive 10 27.0 27 31.0 29 24.8
False positive
 Clarified by sentence 4 10.8 20 23.0 42 35.9
 Phrasal expression 22 59.5 40 46.0 40 34.2
 Typo 0 0.0 0 0.0 1 0.8
 Domain term 1 2.7 0 0.0 5 4.3

Vagueness hits 37 87 117

3 While all the ideas presented in the paper are manually translated
for the readers’ convenience, the ideas presented in the vagueness
section are automatically translated and presented as such, as this
translation was used to decide whether the idea was truly vague or
that it was a false positive.

448 Requirements Engineering (2022) 27:429–455

1 3

V-06 Now it is true that you have to enter a stranger in the ⟨old
system⟩ and again in the ⟨KMar system⟩ , for the future if it is
possible to link these systems. Also make user-friendly. In the
⟨old system⟩ a number of option are not legible which must
be checked. The processes are also not clearly defined. Where
there must be a cross then the rest which does not apply. This
is clearer. Also save a screen before continuing. Now you
can continue without saving, with the result that people have
lost everything. Making more user-friendly, if the Enter key
is accidentally touched that does not hits the entire system on
tilt. By linking data does not always have to be filled in the
same data, in other words, time saving. / The above makes it
all more user-friendly and easier to process.

In this case, the first hit with ‘make user-friendly’ is vague:
it is not clear what the user sees as ‘user-friendly’. The same
applies to ‘legible’: even with basic domain knowledge this
term is too vague and hinders the idea to be implemented
as-is. Some Tournify ∗ ideas also contained truly vague
words, such as idea T-113. It is not clear what is meant with
a ‘large’ screen and implementation choices might depend
on how large the screen is going to be.

T-113 As an organizer, I want to show the top score in the slide,
so that we can immediately show this on a large screen

Although the vagueness list might help to quickly identify
ideas that need further refinement, a true positive rate of
27.6% over 241 hits shows that a basic lexical approach is
not sufficient for crowd-generated ideas. Possible ways to
overcome this challenge is to automatically split multiple
ideas in the same text, thus shortening the text, or having
language-specific lists of vague words, which could increase
accuracy. Once the TP rate for vagueness is sufficiently high,
an automated system may be introduced to support CREUS
by alerting a participant of vague words while s/he is send-
ing in an idea, prompting her/him to refine the idea by avoid-
ing or clarifying vague terms.

7 Key findings and conclusions

We first present the key findings we could identify empiri-
cally from the two phases of our research, and discuss how
these relate to existing literature. Then, we explicitly address
the research questions RQ1 and RQ2.

KF1. In addition to their functional orientation, many of
the crowd-generated user stories can be associated with
quality aspects.

 Virtually all of the posted ideas include functional
aspects. This is likely explainable by the user story nota-
tion (“As a ... I want”), which highlights the interaction
between the user and the system and prompts the user to
specify some expected functionality. This is also pointed
out by Cohn’s popular book on user stories [14, p. 4]: “A
user story describes functionality that will be valuable
to either a user or purchaser of a system or software”.
Besides this functional orientation, a good number of
user stories (83% for S-Sys, 70% for V-Sys, and 31% for
Tournify ∗ , see Table 7) can be associated with quality
aspects. While some of these links are implicit (T-87
refers to security by indirect words such as ‘password’),
others are explicit: the user who wrote T-113 (Sect. 6.5)
explains how showing the top score in the slide would
contribute to user friendliness by making the score imme-
diately shown on a large screen. Our finding aligns with
the work by Gilson [51], which showed how quality
aspects can be found in one in four user stories from a
publicly available collection [52].
KF2. Crowd-generated user stories can be associated
mostly with two software qualities: usability and com-
patibility.
 In our three cases, usability is the quality aspect that user
stories can more consistently be associated with, having
a varying percentage from 22% (Tournify ∗) to 41% (S-
Sys). Compatibility is also highly mentioned, especially
in the S-Sys and V-Sys cases where the information sys-
tems under design are highly linked to other systems.
This finding aligns with the study by Groen et al. [50]
on app store reviews, which showed how usability is the
most prominent quality aspect, while other qualities are
‘invisible’ to the users [50]. The prevalence of these two
software qualities may vary with other types of software
systems. However, previous studies show that usability is
a prominent quality aspect that can be often found in user
reviews [50] as well as in documented requirements [53],
and that it is considered of high importance [54]. On the
other hand, it is plausible that the prevalence of compat-
ibility in our cases has to do with the type of systems.
The coverage of quality aspects could increase should the
crowd members be more aware of RE basics. However,
our goal was to study how lay, untrained users would
contribute.
KF3. The elicited ideas are proto-requirements, but fur-
ther refinement is needed.

449Requirements Engineering (2022) 27:429–455

1 3

 Circa 40% of the ideas that we analyzed in Sect. 6
include at least one quality violation according to the
QUS framework [8], showing that the ideas elicited via
CREUS do not always represent a ready-to-use require-
ment. In particular, the most common violations concern
expressing multiple requirements in the same idea (non-
atomic) and writing a solution rather than the problem to
be solved (solution-oriented). This is also confirmed by
the analysis of usefulness for S-Sys (Table 4) and V-Sys
(Table 5), which show that only 36.7 and 27.8% of the
user stories are complete enough for development teams.
Thus, CREUS’ inputs need to be further analyzed by
requirements engineers. This is in line with our expecta-
tions, as we see CREUS as an additional elicitation tech-
nique that complements existing processes, rather than a
replacement.
KF4. Steering the crowd is essential for sustained inter-
action.
 The activities of monitoring the crowd, responding
to ideas, and writing summaries are necessary to fos-
ter and to retain participation. For S-Sys and V-Sys, we
witnessed peaks of engagement (e.g., see Fig. 5) when
the core team’s activity was higher. This is also vis-
ible for Tournify : when we compare the density of ideas
for the case study period against the post-experimen-
tal period, we have 1.62 ideas per day (57 ideas in 35
days for Tournify in Table 2) versus 0.2 ideas per day
(248 − 57 = 191 ideas / 1000 − 35 = 965 days for Tournify
∗). Therefore, pull elicitation platforms should be consid-
ered only as part of a method in which the requirements
engineers are involved to monitor and push the interac-
tion. However, Kolpondinos and Glinz [2] identified a
long-tail effect concerning user activity; it is likely that
the effect of steering the crowd will gradually vanish
over time. The design of effective mechanisms to sustain
crowd engagement is still an open topic of research [2,
20]. Extrinsic motivation techniques such as gamifica-
tion [9] do not always work: in the KMar studies [13],
the participants did not perceive game elements as useful.
KF5. The crowd-generated ideas are mostly general in
nature, with a smaller part focusing on specific user types
or usage contexts.
 Since crowd members are not trained in RE, one pos-
sible challenge was that their ideas could pertain only to
their specific use case. The results shown in Table 8 and
in Table 9 seem to indicate that most of the expressed
features are not only general (thus, not specific to a given

user type or usage context), but also that these general
ideas have on average more votes than the specific ones.
One exception is the S-Sys case, where the specific ideas
received more votes on average, but this is probably due
to the low number of specific ideas.
KF6. Simple automated techniques for vagueness identi-
fication lead to a significant number of false positives for
crowd-generated ideas.
 We applied the lexical technique for vague requirements
detection proposed by Ferrari et al. [43] in the context
of requirements for safety-critical systems. While they
report precision of 45, 56 and 70% in three studies, we
see that the results with crowd-generated ideas are much
lower: 27% for S-Sys, 31% for V-Sys, and almost 25%
for Tournify ∗ . This may have to do with the fact that our
user stories are written by users and not by requirements
engineers. Therefore, the outputs need to be reviewed by
human experts in order to determine true occurrences of
vagueness, and further research is necessary to improve
the accuracy of vagueness detection techniques.
Based on the analysis of the key findings and the other
materials presented in this paper, we can now provide our
answer to the researchquestions.
RQ1. What method can support requirements engineers
in the adoption of crowd-based elicitation via pull feed-
back?
 Through the conduction of three case studies using
canonical action research, we have iteratively devised
the CREUS method that is presented and discussed in
this paper. To provide clear guidance, we formalized the
method description using a PDD. CREUS complements,
rather than replaces, established elicitation techniques.
As shown in Sect. 5, users appreciate being involved, and
CREUS has the potential to deliver some ideas that were
not considered earlier. CREUS is not prescriptive; while
the key activities are important for crowd-based elicita-
tion via pull feedback, their interleaving and duration
need to be adapted to the context. One of the pillars of
the method is steering the crowd (KF4); yet, the feedback
intensity is likely to diminish over time.
RQ2. What types of ideas are prevalent when deploying
crowd-based elicitation methods via pull feedback?
 The major novel contribution of this paper is the anal-
ysis of the quality of the crowd-generated ideas. We
selected five aspects to measure the quality of the ideas:
user story quality, vagueness, text readability, quality
aspects that can be associated with the ideas, and gen-

450 Requirements Engineering (2022) 27:429–455

1 3

erality vs. specificity. Our analysis reveals that a good
number of user stories can be associated with quality
concerns, in addition to expressing a functional perspec-
tive (KF1), with a prevalence of usability and compat-
ibility (KF2). The results confirm the CREUS cannot
replace other elicitation techniques, not only because of
the limited focus on quality concerns, but also because
most ideas need substantial refinement (KF3). Yet, the
participants seem to be able to think beyond their niche
use of the systems, as most of the generated ideas were
of general nature (KF5).

8 Limitations and future work

8.1 Threats to validity

We discuss the limitations of our research by reporting on
the validity threats using the four types of validity suggested
by Runeson and Höst for case study research [55]: construct,
internal, external, and reliability.

8.1.1 Construct validity

 This category assesses whether the operational measures
actually align with the researchers’ aims and the research
questions.

For RQ1, the cross-case comparison in Table 2 relies on
uniform metrics to analyze the size of the crowd and of the
produced feedback. These indicators were primarily selected
for their availability. However, they do not accurately rep-
resent a crowd as a whole: the dynamics of a crowd are a

more complex, hard-to-measure notion. Also, given the dif-
ferent goals and contexts of the case studies (see Sect. 5.1),
we could not always use the same metrics: for example, we
could not assess the usefulness of the ideas collected for
Tournify. These are, however, minor threats, as the collected
data provided us with sufficiently rich information for us to
analyze and compare the cases.

For RQ2, requirements quality is still subject to academic
research. We applied two frameworks (the Quality User Story
Framework and the ISO/IEC 25010) to evaluate the quality of
the ideas. Although this approach revealed interesting differ-
ences and commonalities, we cannot claim that we conducted
a comprehensive analysis of requirements quality.

8.1.2 Internal validity

 This aspect concerns the causal relationships that are identi-
fied in the research.

The CREUS method described in Sect. 4 is built on top of
earlier work in the CrowdRE community, and it is the result
of an iterative design process, as explained in Sect. 5: the
three case studies adopted different versions of CREUS. This
threat to RQ1 is mitigated by the fact that we do not draw
comparisons on the effectiveness of our method compared
to other CrowdRE approaches, besides the quantitative over-
view in Table 2 that is only meant to show the size of the
case studies in comparison to previous research.

The results across our three case studies may be affected
by the evolution of the method, although the changes are
minor (see Sect. 5.1). The most notable difference is in the
platforms, which used different templates for formulating
the user stories: the wizard used in Tournify prevented, for
instance, user stories that are not well formed (RQ2).

Table 12 Inter-rater reliability
calculations

Quality S-Sys V-Sys Tournify

� % � % � %

(a) Quality User Story (QUS) Framework
 Well-formed 0.79 93.1 0.83 95.5 n/a 100.0
 Atomic 1.00 100.0 0.72 89.6 0.60 91.4
 Conceptually sound 0.33 79.3 0.57 94.0 0.37 95.1
 Problem-oriented 0.37 75.9 0.44 73.1 0.35 81.6

(b) ISO/IEC 25010 qualities
 Reliability n/a n/a 0.48 97.0 0.00 99.6
 Performance n/a n/a 1.00 100.0 n/a 100.0
 Security n/a n/a 1.00 100.0 0.50 99.2
 Compatibility 0.73 86.2 0.90 95.5 0.47 94.3
 Usability 0.60 79.3 0.59 80.6 0.54 85.7

451Requirements Engineering (2022) 27:429–455

1 3

To identify causality rather than spurious correlation
(RQ2), we analyzed a large number of data items. Despite
the 341 analyzed ideas and 325 active users in total, the
case studies were diverse in terms of system type and
domains. As a mitigation, we made sure that at least one case
(Tournify) considered a different domain than the other two,
but even then the results obtained may be affected by the
selected domains. In particular, it is possible that the most
common software qualities (see finding KF2) may differ in
other domains, e.g., reliability is very common for video-
games [50]. Additional studies with CREUS and analogous
methods are needed to draw stronger implications.

8.1.3 External validity

 This category concerns the extent to which it is possible to
generalize the findings beyond the investigated cases.

While canonical action research enables studying the
effect of an intervention within a real-world context, this
requires adapting the research method to a specific prob-
lem that is faced by the organization. Therefore, the V-Sys,
S-Sys, and Tournify cases (RQ1) are not a homogeneous set
of cases from which conclusions can be drawn. For example,
V-Sys and S-Sys are similar types of information systems,
while Tournify focuses on a mobile app. Also, the scale of
the crowds is different, both in terms of potential crowd and
engaged crowd. Finally, the number and complexity of the
collected ideas varies.

To mitigate this inherent challenge, we focused on com-
parable time frames in Sect. 5 (RQ1), and the qualitative
analysis in Sect. 6 (RQ2) takes into account the cases’
characteristics. Certain findings, especially KF2 and KF5,
require additional research in order to obtain more general
findings.

8.1.4 Reliability

 This aspect concerns the impact of the specific researchers
on the results.

For the data collection for RQ1, the core teams inter-
preted the crowd ideas, which could have been mis-inter-
preted. This risk was partially mitigated by using domain
experts in the KMar cases and by selecting a simple domain
for the Tournify case, but erroneous interpretation issues
might still have occurred.

For RQ2, we let two researchers independently classify
ideas. In case of disagreement, a discussion was held until
the disagreement was resolved. Table 12a and b shows the
inter-rater agreement for the tagging using the Quality User

Story framework and the ISO/IEC 25010 qualities, respec-
tively. We report both the percentage of agreement (%) and
Cohen’s kappa (�). The value n/a applies to (i) � whenever
the raters do not have at least one agreement on the positives
and one agreement on the negatives; (ii) % whenever there
are no true positives at all.

The � of some qualities are rather low, although none of
them is lower than ‘fair agreement’ according to the inter-
pretation guidelines by Landis and Koch [56]. This occurs
because the datasets are unbalanced. For Tournify ∗ , only
three ideas had the ‘security’ quality, and initially, the two
researchers disagreed as one of them overlooked this. There-
fore, the � is low, even though the percentage of agreement
in this category is high. Taking the combined results of these
two statistics, we believe that the inter-rater reliability is
good enough to base conclusions on, especially in light of
the follow-up discussions that resolved the disagreements.
Thus, the results behind findings KF1 and KF2 are suffi-
ciently reliable.

The specificity vs. generality decision (leading to KF5)
was made by a single researcher, the only one who pos-
sessed the necessary domain knowledge for the KMar case
studies. To increase consistency across the cases, the same
researcher also tagged the Tournify ∗ data. The impact of
involving a single researcher for this decision is limited, as
determining if an idea is specific is straightforward when
using the operationalizations described in Sect. 6.

For the vagueness analysis (leading to KF6) and the read-
ability scores, the data set was split. One researcher handled
the Tournify ∗ data set, another researcher handled the KMar
outputs. While the readability score relied fully on an auto-
mated script, the decision on whether a vague word would
be a true positive was made by a single researcher, which
differed across the case studies. Due to time constraints and
confidentiality reasons, this unfortunately could not be done
in another way, and this might have resulted in the introduc-
tion of rater bias. To mitigate this, the researchers discussed
exemplary cases.

8.2 Future directions

In the first research phase, we assessed the ideas using
the Kano model, which combines aspects of novelty with
the expected impact on user satisfaction. However, that is
not a full metric for novelty, and future work should study
idea novelty using the frameworks from creativity in RE
research [57].

452 Requirements Engineering (2022) 27:429–455

1 3

In the Tournify case, the use of a wizard to express user
stories led to shorter and crisper ideas than those we derived
from the KMar cases. Future work should investigate more
thoroughly how authoring tools (similar to those that support
requirements engineers [58]) can assist crowd participants in
the task of expressing high-quality requirements. The wizard
can also be extended to more interactive techniques such as
requirements bots [59].

Furthermore, it might also be interesting to introduce dif-
ferent voting types. This might enable the core team to better
understand the importance of the ideas and let the crowd
indicate the importance of ideas for multiple factors such as
business importance, feasibility, or other factors.

In the second phase of our research, we used multiple
frameworks to measure the quality of the generated ideas. It
would be interesting to conduct additional research that uses
the employed metrics and other ones to estimate the addi-
tional time investment that is required to refine the ideas into
requirements that can be assigned to development teams.
These indicators may also be employed for comparing dif-
ferent methods for crowd-based elicitation.

Our application of vagueness and readability scores
showed that the selected state-of-the-art techniques did not
prove to be perfectly suitable for their application to ideas
generated via CREUS. Future research should study which
other techniques could be reliably used to evaluate vague-
ness and readability. These techniques could then be embed-
ded in an automated assistant that nudges crowd members to
improve their ideas before submitting them.

Most of the discussed directions aim at enabling a com-
prehensive assessment of and the explicit comparison
between CrowdRE solutions, which is essential for further
advancing CrowdRE research.

Appendix A Concept and activity tables
for the PDD ofCREUS

See Tables 13 and 14.

Table 13 Concept table for the CREUS method illustrated in Fig. 1

Concept Description

CROWDRE GOAL It defines the main objective of the crowd-based elicitation [9], e.g., improving the UI, identifying new functionali-
ties, etc.

FEEDBACK CHANNEL The platform through which the crowd members express their feedback, for instance, an idea generation portal.
CROWD MEMBER A crowd participant who accesses FEEDBACK CHANNEL and may express FEEDBACK.
USER STORY A concise representation of a requirement that expresses an expected action the system should support, the role who

wants the action, and the benefit for the role [8, 14].
FEEDBACK Any input provided by the crowd that addresses the CROWDRE QUESTION via the FEEDBACK CHANNEL:

either an IDEA, a VOTE, or a COMMENT.
IDEA A suggestion or a request for the system that a crowd member expresses as an USER STORY.
VOTE Expresses the positive or negative support to an IDEA. Can be expressed by crowd members who are not the authors

of the USER STORY.
COMMENT A clarification or explanation of an IDEA provided by a crowd member (either the author or another crowd member).
SUMMARY A recap of a set of FEEDBACK items that is intended to provide an overview of that FEEDBACK.
RESPONSE A response to an IDEA given by the core team, to show that the IDEA is being considered. Preferably, RESPONSEs

show whether IDEAs are being included in the product under consideration, and show what the argumentation for
ex/inclusion is.

TIMELINE An overview of the temporal horizon of the expected implementation of the FEEDBACK. The level of details
depends on the development method.

PRODUCT BACKLOG The master list of all functionality desired in the product [14], each of which is called a BACKLOG ITEM.
BACKLOG ITEM A single unit of work that is placed on the PRODUCT BACKLOG [60], which may possibly build on the FEED-

BACK provided by the crowd.
SPRINT A short iteration (2-4 weeks, typically) through which a subset of the PRODUCT BACKLOG (thus, a number of

BACKLOG ITEMS) is moved onto a sprint backlog, which is implemented in that iteration.

453Requirements Engineering (2022) 27:429–455

1 3

Declarations

Conflict of interest The authors have no competing interests to declare
that are relevant to the content of this article.

Open Access This article is licensed under a Creative Commons Attri-
bution 4.0 International License, which permits use, sharing, adapta-
tion, distribution and reproduction in any medium or format, as long
as you give appropriate credit to the original author(s) and the source,
provide a link to the Creative Commons licence, and indicate if changes
were made. The images or other third party material in this article are
included in the article's Creative Commons licence, unless indicated
otherwise in a credit line to the material. If material is not included in
the article's Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder. To view a
copy of this licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/.

References

 1. Groen EC, Seyff N, Ali R, Dalpiaz F, Doerr J, Guzman E, Hos-
seini M, Marco J, Oriol M, Perini A et al (2017) The crowd in
requirements engineering: the landscape and challenges. IEEE
Softw 34(2):44–52

 2. Kolpondinos MZ, Glinz M (2020) GARUSO: a gamification
approach for involving stakeholders outside organizational reach
in requirements engineering. Requir Eng 25:185–212

 3. Kabbedijk J, Brinkkemper S, Jansen S, van der Veldt B (2009)
Customer involvement in requirements management: lessons from
mass market software development. In: Proc. of the international
requirements engineering conference (RE), pp 281–286. IEEE

 4. Regnell B, Brinkkemper S (2005) Market-driven requirements
engineering for software products. In: Engineering and Managing
Software Requirements. Springer, pp 287–308

 5. Johann T, Maalej W (2015) Democratic mass participation of
users in requirements engineering?. In: Proc. of the international
requirements engineering conference (RE), pp 256–261. IEEE

 6. Khan JA, Liu L, Wen L, Ali R (2019) Crowd intelligence in
requirements engineering: current status and future directions.
In: Proc. of the international working conference on requirements

Table 14 Activity table for the CREUS method illustrated in Fig. 1

Activity Sub-activity Description

CrowdRE preparation Create core team The core team oversees and interacts with the crowd after its deployment, in order to sup-
port and retain their engagement.

Define goal for the crowd The core team defines the CROWDRE GOAL for the crowd to address, so to maximize
the relevance of the collected ideas [9].

Setup feedback channel A FEEDBACK CHANNEL is selected and configured so that FEEDBACK can be col-
lected from the crowd [1].

Deploy crowd The CrowdRE elicitation is kickstarted by opening up the FEEDBACK CHANNEL and
by inviting the crowd members to join.

Idea generation Generate ideas CROWD MEMBERs formulate IDEAs via the FEEDBACK CHANNEL using the
USER STORY format.

Vote on ideas CROWD MEMBERs post up- and down-VOTEs on previous IDEAs to express their
support [61].

Discuss ideas CROWD MEMBERs post COMMENTs that elaborate on the previously posted IDEAs.
Monitor crowd The core team oversees the progress of the crowd and sends stimuli when necessary to

boost participation.
Refinement Write summary The core team puts together a SUMMARY of the FEEDBACK obtained, and shares it

with the crowd to give a quick overview.
Respond to ideas The core team adds RESPONSEs to the IDEAs to clearly indicate that they are currently

being considered
Generate ideas As earlier: the generation of IDEAs continues, also based on the RESPONSEs and the

SUMMARY.
Vote on ideas As earlier: the casting of VOTEs continues
Discuss ideas As earlier: more COMMENTs are posted
Monitor crowd The overseeing process continues, with a focus on supporting convergence for the current

IDEAs.
Response and execution Respond to remaining ideas The core team writes RESPONSEs to all the remaining IDEAs.

Develop and share timeline The core team prepares a TIMELINE for the implementation of the system, based on the
crowd-based elicitation. This TIMELINE is shared with the CROWD MEMBERs.

Invite to focus group The most active participants are invited to join a focus group [9] that discusses and prior-
itizes the BACKLOG ITEMS, which become the PRODUCT BACKLOG.

Execute timeline in sprints The TIMELINE is executed iteratively by defining and carrying out SPRINTs, each of
which gets assigned a number of BACKLOG ITEMs from the PRODUCT BACKLOG.

http://creativecommons.org/licenses/by/4.0/

454 Requirements Engineering (2022) 27:429–455

1 3

engineering: foundation for software quality (REFSQ). LNCS,
vol. 11412, pp 245–261

 7. Zowghi D, Coulin C (2005) Requirements elicitation: a survey
of techniques, approaches, and tools. In: Aurum A, Wohlin C
(eds) Engineering and managing software requirements. Springer,
Berlin, pp 19–46

 8. Lucassen G, Dalpiaz F, van der Werf JME, Brinkkemper S (2016)
Improving agile requirements: the quality user story framework
and tool. Requir Eng 21(3):383–403

 9. Snijders R, Dalpiaz F, Brinkkemper S, Hosseini M, Ali R, Ozum
A (2015) REfine: a gamified platform for participatory require-
ments engineering. In: Proc. of the International workshop on
crowd-based requirements engineering (CrowdRE), pp 1–6. IEEE

 10. Renzel D, Behrendt M, Klamma R, Jarke M (2013) Requirements
bazaar: social requirements engineering for community-driven
innovation. In: Proc. of the international requirements engineer-
ing conference (RE), pp 326–327. IEEE

 11. van de Weerd I, Brinkkemper S (2009) Meta-modeling for situ-
ational analysis and design methods. In: Handbook of research
on modern systems analysis and design technologies and applica-
tions. IGI Global, pp. 35–54

 12. Menkveld A, Brinkkemper S, Dalpiaz F (2019) User story writing
in crowd requirements engineering: the case of a web applica-
tion for sports tournament planning. In: Proc. of the international
workshop on crowd-based requirements engineering (CrowdRE),
pp 174–179. IEEE

 13. Wouters J, Janssen R, van Hulst B, van Veenhuizen J, Dalpiaz F,
Brinkkemper S (2021) CrowdRE in a governmental setting: les-
sons from two case studies. In: Proceedings of the international
requirements engineering conference, industrial innovation track
(RE), pp 312–322. IEEE

 14. Cohn M (2004) User stories applied: for agile software develop-
ment. Addison-Wesley Professional, USA

 15. Groen EC, Doerr J, Adam S (2015) Towards crowd-based require-
ments engineering: a research preview. In: Proc. of the interna-
tional working conference on requirements engineering: founda-
tion for software quality (REFSQ). Springer, pp 247–253

 16. Snijders R, Dalpiaz F, Hosseini M, Shahri A, Ali R (2014) Crowd-
centric requirements engineering. In: Proc. of the international
workshop on crowdsourcing and gamification in the cloud
(CGCloud). IEEE

 17. Hosseini M, Phalp K, Taylor J, Ali R (2014) Towards crowd-
sourcing for requirements engineering. In: Joint proceedings
of REFSQ-2014 workshops, doctoral symposium, empirical
track, and posters. CEUR workshop proceedings, vol. 1138, pp
82–101. http:// ceur- ws. org/

 18. Fernandes J, Duarte D, Ribeiro C, Farinha C, Pereira JM, da
Silva MM (2012) iThink: a game-based approach towards
improving collaboration and participation in requirement elici-
tation. Procedia Comput Sci 15:66–77

 19. Ribeiro C, Farinha C, Pereira J, da Silva MM (2014) Gamify-
ing requirement elicitation: practical implications and outcomes
in improving stakeholders collaboration. Entertain Comput
5(4):335–345

 20. Glinz M (2019) CrowdRE: achievements, opportunities and pit-
falls. In: Proc. of the international workshop on crowd-based
requirements engineering (CrowdRE), pp 172–173. IEEE

 21. Pagano D, Maalej W (2013) User feedback in the AppStore:
an empirical study. In: Proc. of the international requirements
engineering conference (RE), pp 125–134. IEEE

 22. Maalej W, Kurtanović Z, Nabil H, Stanik C (2016) On the auto-
matic classification of app reviews. Requir Eng 21(3):311–331

 23. Panichella S, Di Sorbo A, Guzman E, Visaggio CA, Canfora G,
Gall HC (2015) How can I improve my app? classifying user
reviews for software maintenance and evolution. In: Proc. of the

international conference on software maintenance and evolution
(ICSME), pp 281–290. IEEE

 24. Dalpiaz F, Parente M (2019) RE-SWOT: from user feedback to
requirements via competitor analysis. In: Proc. of the interna-
tional working conference on requirements engineering: founda-
tion for software quality (REFSQ). LNCS, vol. 11412

 25. Martin W, Sarro F, Jia Y, Zhang Y, Harman M (2016) A sur-
vey of app store analysis for software engineering. IEEE Trans
Softw Eng 43(9):817–847

 26. Johann T, Stanik C, Maalej W et al (2017) Safe: a simple
approach for feature extraction from app descriptions and app
reviews. In: Proc. of the international requirements engineering
conference (RE), pp 21–30. IEEE

 27. Guzman E, Maalej W (2014) How do users like this feature? a fine
grained sentiment analysis of app reviews. In: Proc. of the inter-
national requirements engineering conference (RE), pp 153–162.
IEEE

 28. Hill T, Westbrook R (1997) SWOT analysis: it’s time for a product
recall. Long Range Plan 30(1):46–52

 29. Garousi V, Cutting D, Felderer M (2022) Mining user reviews
of COVID contact-tracing apps: an exploratory analysis of nine
European apps. J Syst Softw 184:111136

 30. Tizard J, Rietz T, Liu X, Blincoe K (2021) Voice of the users: an
extended study of software feedback engagement. Requir Eng.
https:// doi. org/ 10. 1007/ s00766- 021- 00357-1

 31. Williams G, Mahmoud A (2017) Mining Twitter feeds for soft-
ware user requirements. In: Proc. of the international requirements
engineering conference (RE), pp 1–10. IEEE

 32. Guzman E, Alkadhi R, Seyff N (2016) A needle in a haystack:
what do Twitter users say about software?. In: Proc. of the inter-
national requirements engineering conference (RE), pp 96–105.
IEEE

 33. Morales-Ramirez I, Kifetew FM, Perini A (2017) Analysis of
online discussions in support of requirements discovery. In:
Proc. of the international conference on advanced information
systems engineering (CAiSE). LNCS, vol. 10253. Springer, pp
159–174

 34. Kanchev GM, Murukannaiah PK, Chopra AK, Sawyer P (2017)
Canary: extracting requirements-related information from
online discussions. In: Proc. of the international requirements
engineering conference (RE), pp 31–40. IEEE

 35. Tizard J, Wang H, Yohannes L, Blincoe K (2019) Can a conver-
sation paint a picture? Mining requirements in software forums.
In: Proc. of the international requirements engineering confer-
ence (RE), pp 17–27. IEEE

 36. Murukannaiah PK, Ajmeri N, Singh MP (2016) Acquiring crea-
tive requirements from the crowd: understanding the influences
of personality and creative potential in Crowd RE. In: Proc. of
the international requirements engineering conference (RE), pp
176–185. IEEE

 37. van Vliet M, Groen EC, Dalpiaz F, Brinkkemper S (2020) Iden-
tifying and classifying user requirements in online feedback
via crowdsourcing. In: Proc. of the international working con-
ference on requirements engineering: foundation for software
quality (REFSQ). LNCS, vol. 12045. Springer, pp 143–159

 38. Breaux TD, Schaub F (2014) Scaling requirements extraction
to the crowd: experiments with privacy policies. In: Proc. of
the international requirements engineering conference (RE), pp
163–172. IEEE

 39. Wieringa RJ (2014) Design science methodology for information
systems and software engineering. Springer, Berlin

 40. Kujala S (2003) User involvement: a review of the benefits and
challenges. Behav Inf Technol 22(1):1–16

 41. Bano M, Zowghi D (2015) A systematic review on the relationship
between user involvement and system success. Inf Softw Technol
58:148–169

http://ceur-ws.org/
https://doi.org/10.1007/s00766-021-00357-1

455Requirements Engineering (2022) 27:429–455

1 3

 42. Davison R, Martinsons MG, Kock N (2004) Principles of canoni-
cal action research. Inf Syst J 14(1):65–86

 43. Ferrari A, Gori G, Rosadini B, Trotta I, Bacherini S, Fantechi A,
Gnesi S (2018) Detecting requirements defects with NLP patterns:
an industrial experience in the railway domain. Empir Softw Eng
23(6):3684–3733

 44. Senter R, Smith EA (1967) Automated readability index. Techni-
cal report, Cincinnati University, Ohio

 45. Flesch R (1948) A new readability yardstick. J Appl Psychol
32(3):221

 46. Systems and software engineering (2011) Systems and software
quality requirements and evaluation (SQuaRE)—System and soft-
ware quality models. ISO/IEC Standard 25010:2011. International
Organization for Standardization

 47. Cropley A (2006) In praise of convergent thinking. Creat Res J
18(3):391–404

 48. Jones EE, Lambertus JD (2014) Expecting less from groups:
a new perspective on shortcomings in idea generation groups.
Group Dyn Theory Res Pract 18(3):237

 49. Berger C, Blauth R, Boger D (1993) Kano’s methods for under-
standing customer-defined quality. Center Qual Manag J 2(4):3–36

 50. Groen EC, Kopczyńska S, Hauer MP, Krafft TD, Doerr J (2017)
Users-the hidden software product quality experts? A study on
how app users report quality aspects in online reviews. In: Proc.
of the international requirements engineering conference (RE), pp
80–89. IEEE

 51. Gilson F, Galster M, Georis F (2019) Extracting quality attributes
from user stories for early architecture decision making. In: Com-
panion proc. of the IEEE international conference on software
architecture (ICSA-C), pp 129–136. IEEE

 52. Dalpiaz F (2018) Requirements data sets (user stories). https:// doi.
org/ 10. 17632/ 7zbk8 zsd8y.1

 53. Eckhardt J, Vogelsang A, Fernández DM (2016) Are non-func-
tional requirements really non-functional? an investigation of non-
functional requirements in practice. In: Proc. of the international
conference on software engineering (ICSE), pp 832–842

 54. Svensson RB, Gorschek T, Regnell B, Torkar R, Shahrokni A,
Feldt R (2011) Quality requirements in industrial practice-an
extended interview study at eleven companies. IEEE Trans Softw
Eng 38(4):923–935

 55. Runeson P, Höst M (2009) Guidelines for conducting and report-
ing case study research in software engineering. Empir Softw Eng
14(2):131–164

 56. Landis JR, Koch GG (1977) The measurement of observer agree-
ment for categorical data. Biometrics 33:159–174

 57. Horkoff J, Maiden N, Asboth D (2019) Creative goal modeling
for innovative requirements. Inf Softw Technol 106:85–100

 58. Femmer H, Fernández DM, Wagner S, Eder S (2017) Rapid qual-
ity assurance with requirements smells. J Syst Softw 123:190–213

 59. Rietz T, Maedche A (2019) LadderBot: a requirements self-elici-
tation system. In: Proc. of the international requirements engineer-
ing conference (RE), pp 357–362. IEEE

 60. Backlog Item. Scrum dictionary. https:// scrum dicti onary. com/
term/ backl og- item/. Accessed 18 Jan 2022

 61. Leavitt A, Robinson JJ (2017) Upvote my news: The practices of
peer information aggregation for breaking news on reddit.com. In:
Proc. of the conference on human-computer interaction (CSCW).
ACM New York, NY, USA, pp 1–18

Publisher's Note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

https://doi.org/10.17632/7zbk8zsd8y.1
https://doi.org/10.17632/7zbk8zsd8y.1
https://scrumdictionary.com/term/backlog-item/
https://scrumdictionary.com/term/backlog-item/

	Crowd-based requirements elicitation via pull feedback: method and case studies
	Abstract
	1 Introduction
	2 Background and related work
	2.1 Background on CrowdRE
	2.2 CrowdRE via elicitation platforms
	2.3 Alternative approaches within CrowdRE

	3 Research method
	4 Crowd-based requirements elicitation via the CREUS method
	5 Results from the case studies of crowd-based elicitation (RQ1)
	5.1 Goals and details on the use of CREUS
	5.2 Feedback channels
	5.3 Quantitative comparison of the outcomes
	5.4 Tournify
	5.5 S-Sys
	5.6 V-Sys

	6 Qualitative analysis of the elicited ideas (RQ2)
	6.1 Quality based on the QUS framework
	6.2 Quality requirements based on ISOIEC 25010
	6.3 Specificity vs. generality
	6.4 Readability
	6.5 Vagueness

	7 Key findings and conclusions
	8 Limitations and future work
	8.1 Threats to validity
	8.1.1 Construct validity
	8.1.2 Internal validity
	8.1.3 External validity
	8.1.4 Reliability

	8.2 Future directions

	References

