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Abstract
We study the parameterized complexity of computing the tree-partition-width, a graph parameter
equivalent to treewidth on graphs of bounded maximum degree.

On one hand, we can obtain approximations of the tree-partition-width efficiently: we show that
there is an algorithm that, given an n-vertex graph G and an integer k, constructs a tree-partition
of width O(k7) for G or reports that G has tree-partition width more than k, in time kO(1)n2. We
can improve slightly on the approximation factor by sacrificing the dependence on k, or on n.

On the other hand, we show the problem of computing tree-partition-width exactly is XALP-
complete, which implies that it is W [t]-hard for all t. We deduce XALP-completeness of the problem
of computing the domino treewidth. Finally, we adapt some known results on the parameter tree-
partition-width and the topological minor relation, and use them to compare tree-partition-width to
tree-cut width.
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1 Introduction

Graph decompositions have been a very useful tool to draw the line between tractibility and
intractability of computational problems. There are many meta-theorems showing that a
collection of problems can be solved efficiently if a decomposition of some form is given. By
finding efficient algorithms to compute a decomposition if it exists, we deduce the existence
of efficient algorithms even if the decomposition is not given. In particular, this proves
useful when designing win-win arguments: for some problems, the existence of a solution
and the existence of a decomposition are not independent, so that we can either use the
decomposition for an efficient computation of the solution, or conclude that a solution must
(or cannot) exist when there is no decomposition of small enough width.
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7:2 On the Parameterized Complexity of Computing Tree-Partitions

The most successful notion of graph decomposition to date is certainly tree decompositions,
and its corresponding parameter treewidth. Any problem expressible in MSO2

1 can be solved
in linear time in graphs of bounded treewidth due to a meta-theorem of Courcelle [13] and
the algorithm of Bodlaender for computing an optimal tree decomposition [3]. Treewidth is
a central tool in the study of minor-closed graph classes. A minor-closed graph class has
bounded treewidth if and only if it contains no large grid minor.

In this paper, we focus on the parameter tree-partition-width (also called strong treewidth)
which was independently introduced by Seese [27] and Halin [23]. It is known to have simple
relations to treewidth [14, 29]: tw = O(tpw), and tpw = O(∆ tw), where tw, tpw, ∆ denote
the treewidth, the tree-partition-width, and the maximum degree respectively. Applications
of tree-partition-width include graph drawing and graph colouring [11, 22, 16, 17, 30, 2, 1].
Recently, Bodlaender, Cornelissen and Van der Wegen [5] showed for a number of problems
(in particular, problems related to network flow) that these are intractable (XNLP-complete)
when the pathwidth is used as parameter, but become fixed parameter tractable when
parameterized by the width of a given tree-partition. This raises the question of the
complexity of finding tree-partitions. We show that computing tree-partitions of approximate
width is tractable.

▶ Theorem 1. There is an algorithm that given an n-vertex graph G and an integer k,
constructs a tree-partition of width O(k7) for G or reports that G has tree-partition width
more than k, in time kO(1)n2.

Thus, this removes the requirement from the results from [5] that a tree partition of small width
is part of the input. Our technique is modular and allows us to also give alternatives running
in FPT time or polynomial time with an improved approximation factor (see Theorem 10).
Although not formulated as an algorithm, a construction of Ding and Oporowski [15] implies
an FPT algorithm to compute tree-partitions of width f(k) for graphs of tree-partition-width
k, for some fixed computable function f . We adapt their construction and give some new
arguments designed for our purposes. This significantly improves on the upper bounds to
the width, and the running time.

The results from [5] are stated in terms of the notions of stable gonality, stable tree-
partition-width and treebreadth. The notion of stability comes from the origin of the
notion of gonality (from algebraic geometry); in graph terms, this implies that we look
here at the minimum over all possible subdivision of edges. Tree-partition-width and stable
tree-partition-width are bounded by polynomial functions of each other (see the appendix).

Related to tree-partition-width is the notion of domino treewidth, first studied by
Bodlaender and Engelfriet [7]. A domino tree decomposition is a tree decomposition where
each vertex is in at most two bags. Where graphs of small tree partition-width can have large
degree, a graph of domino treewidth k has maximum degree at most 2k. Bodlaender and
Engelfriet show that Domino Treewidth is hard for each class W [t], t ∈ N; we improve
this result and show XALP-completeness.

▶ Theorem 2. Domino Treewidth and Tree Partition Width are XALP-complete.

In [4], Bodlaender gave an algorithm to compute a domino tree decomposition of width
O(tw ∆2) in f(tw)n2 time for n-vertex graphs of treewidth tw and maximum degree ∆,
where f is a fixed computable function. This implies an approximation algorithm for domino
treewidth.

1 Formulae with quantification over sets of edges or vertices, quantification over vertices and edges, and
with the incidence predicate.
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We also consider the parameter tree-cut width introduced by Wollan in [28]. As the
tractability results of Bodlaender et al. [5] use techniques similar to a previous work on
algorithmic applications of tree-cut width [21], one may wonder whether there is a relationship
between tree-cut width and tree-partition-width. We answer this question in two steps. We
obtain a parameter that is polynomially tied to tree-partition-width and is topological minor
monotone. In particular, this shows that tree-partition-width is relatively stable with respect
to subdivisions. Then, we show how to relate tree-cut width to the tree-partition-width of
a subdivision. We show that a bound on tree-partition-width does not imply a bound on
tree-cut width and that tree-partition-width is polynomially bounded by tree-cut width.

Paper overview

In Section 3, we provide our results on approximating the tree-partition-width. In Section 4,
we show that computing the tree-partition-width is XALP-complete. We then derive XALP-
completeness of computing the domino treewidth. Our results relating tree-cut width to
tree-partition-width are in the appendix.

2 Preliminaries

Figure 1 An example of tree-partition.

A tree-partition of a graph G = (V, E) is a tuple (T, (Bi)i∈V (T )), where Bi ⊆ V (G), with
the following properties.

T is a tree.
For each v ∈ V there is a unique i(v) ∈ V (T ) such that v ∈ Bi(v).
For any edge uv ∈ E, either i(v) = i(u) or i(u)i(v) is an edge of T .

The size of a bag Bi is |Bi|, the number of vertices it contains. The width of the decomposition
is given by maxi∈V (T ) |Bi|. The tree-partition-width (tpw) of a graph G is the minimum
width of a tree-partition of G.

A tree decomposition of a graph G = (V, E) is a pair (T = (I, F ), {Xi | i ∈ T}) with
T = (I, F ) a tree and {Xi | i ∈ I} a family of (not necessarily disjoint) subsets of V (called
bags) such that

⋃
i∈I Xi = V , for all edges vw ∈ E, there is an i with v, w ∈ Xi, and for all v,

the nodes {i ∈ I | v ∈ Xi} form a connected subtree of T . The width of a tree decomposition
(T, {Xi | i ∈ T}) is maxi∈I |Xi| − 1, and the treewidth (tw) of a graph G is the minimum
width over all tree decompositions of G. The domino treewidth is the minimum width over
all tree decompositions of G such that each vertex appears in at most two bags.

We say that two parameters α, β are (polynomially) tied if there exist (polynomial)
functions f, g such that α ≤ f(β) and β ≤ g(α).

IPEC 2022
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3 Approximation algorithm for tree-partition-width

We first describe our algorithm, then prove correctness and finally discuss the trade-offs
between running time and solution quality.

3.1 Description of the algorithm
Let G be a graph, and k any positive integer. We describe a scheme that produces a
tree-partition of G of width O(wbk3) = kO(1), or reports that tpw(G) > k. We will use
various different functions of k for b and w, depending on the quality/time trade-offs of the
black-box algorithms inserted into our algorithm (e.g. for approximating treewidth).

Step 1. Compute a tree decomposition for G of width w(k) or conclude that tpw(G) > k.
As mentioned above, we do not directly specify the function w = w(k), since different
algorithms for step 1 give different solution qualities (bounds for w(k)) and running times.
Since tw +1 ≤ 2 · tpw, if tw(G) > 2k − 1 it follows that tpw(G) > k. If we obtained a
decomposition of width w, we also know that tw(G) ≤ 2k − 1, and hence there are at most
(2k − 1)n edges in G.

We set a threshold b ≥ max{2k − 1, w + 1}. We define an auxiliary graph Gb as follows.
The vertex set of Gb is V (G). The edges of Gb are given by the pairs of vertices u, v ∈ V (G)
with minimum u-v separator of size at least b.

Step 2. Construct the auxiliary graph Gb with connected components of size at most k or
report that tpw(G) > k.
We later describe several ways of computing the edges of Gb. We will show in Claim 3 that
vertices in the same connected component of Gb must be in the same bag for any tree-partition
of width at most k. For this reason, we conclude that tpw(G) > k if a component of Gb has
more than k vertices.

We define H, the b-reduction of G, which is the graph obtained from G by identifying
the connected components of Gb.

Step 3. We compute a tree decomposition of width w for each 2-connected component of H.
Given the components of Gb, we can compute H, and its 2-connected components in time
O(kO(1)n). Using Claim 4, we obtain a tree decomposition of H by replacing vertices of G,
in the tree decomposition of G, by their component in Gb.

By Claim 5, the maximum degree ∆H within the 2-connected components of H is at
most Cbk2 for some constant C when tpw(G) ≤ k.

Step 4. If ∆H > Cbk2, report tpw(G) > k. Else, compute a tree partition of width
O(w∆H) = O(wbk2) for H.
By rooting the decomposition of H in 2-connected components, we can define a parent
cutvertex for each 2-connected component except the root. We separately compute tree
partitions for each 2-connected component of H with the constraint that their parent cutvertex
should be the single vertex of its bag. A construction of Wood [29] enables us to compute a
tree-partition of width O(∆w) for any graph of maximum degree ∆ and treewidth w; this
can be adjusted to allow for this isolation constraint without increasing the upper bound on
the width. We give the details of this in Corollary 7. After doing this, the partitions of each
component can be combined without increasing the width. Indeed, although cutvertices are
shared, only one 2-connected component will consider putting other vertices in its bag. We
obtain a tree-partition of H of width O(wbk2).
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Step 5. Deduce a tree partition of width O(wbk3) for G.
We “expand” the vertices of H. In the tree-partition of H, each vertex of H is replaced by
the vertices of the corresponding connected component of Gb. This gives a tree-partition of
G of width O(wbk3).

3.2 Correctness
For s, t ∈ V (G) we denote by µ(s, t) the size of a minimum s-t separator in G − st.

▷ Claim 3. Let G be a graph and s, t ∈ V (G).
If µ(s, t) ≥ k + 1, then in any tree-partition of width at most k, s and t must be in
adjacent bags or the same bag;
If µ(s, t) ≥ 2k − 1, then in any tree-partition of width at most k, s and t must be in the
same bag.

Proof. Assume that s and t are not in adjacent bags nor in the same bag of a tree-partition
of width at most k, then any internal bag on the path between their respective bags is an s-t
separator. In particular, µ(s, t) ≤ k. This proves the first point by contraposition.

Assume that s and t are in adjacent bags but not in the same bag for some tree-partition
of width at most k. We denote their respective bags by Bs and Bt. Then, (Bs ∪ Bt) \ {s, t}
is an s-t separator of G − st. Consequently, µ(s, t) ≤ 2k − 2. This proves the second point.

◁

▷ Claim 4. Consider (T, (Xi)i∈V (T )) a tree decomposition of width w of G, b ≥ w + 1, and
let Yi be the set of connected components of Gb that intersect with Xi. Then (T, (Yi)i∈V (T ))
is a tree decomposition of the b-reduction H of G.

Proof. Every component of Gb appears in at least one Yi, because it contains a vertex which
must appear in at least one Xi. Furthermore, for each edge UV of H, there must be vertices
u ∈ U, v ∈ V such that uv is an edge of G. Hence, there is a bag Xi containing u and v so
Yi contains A and B. Finally, suppose that there is a bag Yi not containing a component C

of Gb, and several components of T − i have bags containing C. There must be an edge of
Gb connecting vertices u and v of C such that u is in bags of X and v is in X ′, where X

and X ′ are in different components of T − i. By definition of Gb there are at least b vertex
disjoint u, v-paths in G, so the minimal size of a separator of u and v is at least b ≥ w + 1.
However, since the tree decomposition (T, (Xi)) has width w and the bags containing u are
disjoint from the bags containing v (in particular Xi separates them), there is a separator of
u and v of size at most w, a contradiction. This concludes the proof that (T, (Yi)) is a tree
decomposition of H. ◁

▷ Claim 5. If H is the b-reduction of G, tpw(G) ≤ k, and B is one of its 2-connected
components, then the maximum degree in B is O(bk2).

Proof. Consider u a vertex achieving maximum degree in B. By definition of B, B − u is
connected. We denote by N the neighbourhood of u in B. Let T be a spanning tree of
B − u. We iteratively remove leaves that are not in N , and contract edges with an endpoint
of degree 2 that is not in N . This produces the reduced tree T ′. The maximum degree in
this tree is b − 1 as the set of edges incident to a given vertex can be extended to disjoint
paths leading to vertices in N .

We call the number of vertices in the component of Gb associated to a vertex v of H the
weight of v and denote it |v|.

IPEC 2022



7:6 On the Parameterized Complexity of Computing Tree-Partitions

Clearly the neighbours of u must be either in the same bag as u or in a neighbouring bag.
Since the bag of u will be a separator of vertices that are in distinct neighbouring bags, in
particular, it splits the graph into several components each containing neighbours of u of
total weight at most k.

There must exist a subset of vertices of T ′ of size at most k − |u| whose removal splits T ′

in components containing vertices of N of total weight at most k. Since the degree of a vertex
of T ′ is at most b− 1, removing one of its vertices adds at most b− 2 new components. Hence,
after removing k − |U | ≤ k − 1 vertices, there are at most 1 + (k − 1)(b − 2) components. We
conclude that |N | ≤ k(1 + (k − 1)(b − 2)). Since u had maximum degree in B, we conclude.

◁

In [29], Wood shows the following lemma.

▶ Lemma 6. Let α = 1 + 1/
√

2 and γ = 1 +
√

2. Let G be a graph with treewidth
at most k ≥ 1 and maximum degree at most ∆ ≥ 1. Then G has tree-partition-width
tpw(G) ≤ γ(k + 1)(3γ∆ − 1).

Moreover, for each set S ⊆ V (G) such that (γ + 1)(k + 1) ≤ |S| ≤ 3(γ + 1)(k + 1)∆, there
is a tree-partition of G with width at most γ(k + 1)(3γ∆ − 1) such that S is contained in a
single bag containing at most α|S| − γ(k + 1) vertices.

We deduce this slightly stronger version of [29, Theorem 1]

▶ Corollary 7. From a tree decomposition of width w in a graph G of maximum degree ∆,
for any vertex v of G, we can produce a tree-partition of G of width O(∆w) in which v is
the only vertex of its bag.

Proof. We wish to apply Lemma 6 to S ⊇ N(v). Let γ = 1 +
√

2. We have |N(v)| ≤ ∆,
so in particular, |N(v)| ≤ 3(γ + 1)(w + 1)∆. In case |N(v)| < (γ + 1)(w + 1), we can add
arbitrary vertices to N(v) to form S satisfying |S| ≥ (γ + 1)(w + 1). Otherwise, we simply
set S = N(v). We then apply the lemma to S in G − v. There is a single bag that contains
N(v), and so we may add the bag {v} adjacent to this in order to deduce a tree partition of
G of width O(∆w) in which v is the only vertex of its bag. ◀

3.3 Time/quality trade-offs
For Step 1, we consider the following algorithms to compute tree decompositions:

An algorithm of Korhonen [25] computes a tree decomposition of width at most 2k + 1 or
reports that tw(G) > k in time 2O(k)n.
An algorithm of Fomin et al. [19] computes a tree decomposition of width O(k2) or
reports that tw(G) > k in time O(k7n log n).
An algorithm of Feige et al. [18] computes a tree decomposition of width O(k

√
log k) or

reports that tw(G) > k in time O(nO(1)).

Recall that we denote by w the width of the computed tree decomposition of G.
We give two methods to compute Gb in step 2 of the algorithm.
We can use a maximum-flow algorithm (e.g. Ford-Fulkerson [20]) to compute for each
pair {s, t} of vertices of G whether there are at least b vertex disjoint paths from s to t,
in time O(bkn). To compute a minimum vertex cut, replace each vertex v by two vertices
vin, vout with an arc from vin to vout. All arcs going to v should go to vin, and all arcs
leaving v should leave vout. All arcs are given capacity 1. We may stop the maximum
flow algorithm as soon as a flow of at least b was found. Furthermore, we can reduce the
number of pairs {s, t} of vertices to check to O(wn), as each pair must be contained in a
bag due to b ≥ w + 1. This results in a total time of O(wbkn2).
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We can also use dynamic programming to enumerate all possible ways of connecting pairs
of vertices that are in the same bag in time 2O(w2)n, which is sufficient to compute Gb.
A state of the dynamic programming consists of the subset of vertices of the bag that are
used by the partial solution, a matching on some of these vertices, up to two vertices that
were decided as endpoints of the constructed paths, the number of already constructed
paths between the endpoints, and two disjoint subsets of the used vertices that are not
endpoints, nor in the matching such that we found a disjoint path from the first or second
endpoint to them. We first tabulate answers for each subtree of the decomposition by
starting from the leaves, and then tabulate answers for each complement of a subtree by
starting from the root and, when branching to some child, combining with the partial
solutions of the subtree of the other child.

The b-reduction H of G and its 2-connected components can be computed in O(kO(1)n)
time (see e.g. [24]), since the size of the graph is O(kO(1)n) here.

We will now make use of the following result due to Bodlaender and Hagerup [10]:

▶ Lemma 8. There is an algorithm that given a tree decomposition of width k with O(n)
nodes of a graph G, finds a rooted binary tree of G of width at most 3k +2 with depth O(log n)
in O(kn) time.

When implementing the construction of Wood for 2-connected components of H, the
running time is dominated by O(n) queries to find a balanced separator with respect to a set
W of size kO(1). After a preprocessing in time O(kn), we can do this in time kO(1)d where d

is the diameter of our tree decomposition. We first obtain a binary balanced decomposition
using Lemma 8, then reindex the vertices in such a way that we can check if a vertex is in
some bag of a given subtree of tree decomposition in constant time. Using this, we can in
time kO(1) determine whether a bag is a balanced separator of W , and if not move to the
subtree containing the most vertices of W . This procedure will consider at most d bags, hence
the total running time of kO(1)d. Since the decomposition has depth O(log n) it also has
diameter d = O(log n). Hence the construction of Wood can be executed in time kO(1)n log n.

▶ Lemma 9. We can compute a tree partition of width O(∆ tw) in time O(kO(1)n log n)
when given a tree decomposition of width kO(1).

By combining the previous algorithms we obtain the following theorem.

▶ Theorem 10. There is a polynomial time algorithm that constructs a tree-partition of
width O(k5 log k) or reports that the tree-partition-width is more than k.

There is an algorithm running in time 2O(k2)n+kO(1)n log n that computes a tree-partition
of width O(k5) or reports that the tree-partition-width is more than k.

There is an algorithm running in time kO(1)n2 that computes a tree-partition of width
O(k7) or reports that the tree-partition-width is more than k.

Proof. The first algorithm uses the algorithm of Feige et al. to compute the tree
decomposition, then naively computes Gb, and then finds balanced separators for Wood’s
construction using the tree decomposition in polynomial time (no need to balance the
decomposition).

The second algorithm uses Korhonen’s algorithm to compute the tree decomposition, then
computes Gb using the dynamic programming approach, and then finds balanced separators
for Wood’s construction as described.

The third algorithm uses the algorithm of Fomin et al. to compute the tree decomposition,
then computes Gb via a maximum-flow algorithm in time O(wbkn2) = O(k5n2), and then
finds balanced separators for Wood’s construction as described.

The guarantees on the width follow from the analysis of our scheme. ◀

IPEC 2022
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4 XALP-completeness of Tree Partition Width

In this section, we show that the Tree Partition Width problem is XALP-complete, even
when we use the width target and the degree as combined parameter. As a relatively simple
consequence, we obtain that Domino Treewidth is XALP-complete.

XALP is the class of all parameterized problems that can be solved in f(k)nO(1) time
and f(k) log n space on a nondeterministic Turing Machine with access to a push-down
automaton, or equivalently way of the class of problems that can be solved by an alternating
Turing Machine in f(k)nO(1) treesize and f(k) log(n) space. An alternating Turing Machine
(ATM) is nondeterministic Turing Machine with some extra states where we ask for all of
the transitions to lead to acceptance. This creates independent configurations that must all
lead to acceptance, and we call “co-nondeterministic step” the process of obtaining these
independent configurations.

XALP is closed by reductions using at most f(k) log n space and running in FPT time.
These two conditions are implied by using at most f(k) + log n space. We call reductions
respecting the latter condition parameterized logspace reductions (or pl-reductions).

This class is relevant here because the problems we consider are complete for it.
Completeness for XALP has the following consequences: W[t]-hardness for all positive
integers t, membership in XP, and there is a conjecture that XP space is required for
algorithms running in XP time. If the conjecture holds, this roughly means that the dynamic
programming algorithm used for membership is optimal.

The following problem is shown to be XALP-complete in [9] and starts as the starting
point of our reduction.

Tree-Chained Multicolor Independent Set
Input: A tree T = (VT , ET ), an integer k, and for each i ∈ VT , a collection of k pairwise
disjoint sets of vertices Vi,1, . . . , Vi,k and a graph G with vertex set V =

⋃
i∈VT ,j∈[1,k] Vi,j

Parameter: k

Question: Is there a set of vertices W ⊂ V , such that W contains exactly one vertex
from each Vi,j (i ∈ VT , j ∈ [1, k]), and for each pair Vi,j , Vi′,j′ with i = i′ or ii′ ∈ ET ,
j, j′ ∈ [1, k], (i, j) ̸= (i′, j′), the vertex in W ∩ Vi,j is non-adjacent to the vertex in
W ∩ Vi′,j′?

We further use that we can assume the tree T to be binary without loss of generality
(see [9] for more details).

▶ Lemma 11. Tree Partition Width is in XALP.

Proof. To keep things simple, we will use as a black box the fact that reachability in
undirected graphs can be decided in logspace [26]. We assume that the vertices have some
arbitrary ordering σ.

For now, assume that the given graph is connected.
We begin by guessing at most k vertices to form an initial bag B0, and have an empty

parent bag P0 . We will recursively extend a partial tree-partition in the following manner.
Suppose that we have a bag B with parent bag P , we must find a child bag for B in
each connected component of G − B that does not contain a vertex of P . We use the fact
that a connected component can be identified by its vertex appearing first in σ, that the
restriction of σ to these representatives gives an ordering on σ, and that we can compute
such representatives in logspace. Let us denote by c the current vertex representative of
a connected component of G − B. c is initially the first vertex in σ that is not in B and
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cannot reach P in G − B. We do a co-nondeterministic step so that in one branch of the
computation we find a tree-partition for the connected component with representative c,
and in the other branch we find the representative of the next connected component. The
representative c′ of the next component is the first vertex in σ such that it cannot reach a
vertex appearing before c (inclusive) in σ, nor a vertex of P in G − B. When found, c is
replaced by c′ and we repeat this computation. If we don’t find such a vertex c′, then c must
have represented the last connected component, so we simply accept.

Let us now describe what happens in the computation branch where we compute a new
bag. We can iterate on vertices in the component of c, by iterating on vertices of G − B and
then skipping if they are not reachable from c in G − B. In particular, we can guess a subset
B′ of size at most k of vertices from this component. We then check that the neighbourhood
of B in this component is contained in B′. If it is the case, we can set P := B and B := B′

and recurse. If not, we reject.
If the graph is not connected, we can iterate on its connected components by using the

same technique of remembering a vertex representative. For each of these components, we
apply the above algorithm, with the modification that in each enumeration of the vertices
we skip the vertex if it is not contained in the current component.

During these computations, we store at most 3k + O(1) vertices and use logspace
subroutines. Furthermore, the described computation tree is of polynomial size. ◀

We first give a brief sketch of the structure of the hardness proof. We have a trunk gadget
to enforce the shape of the tree from the Tree-Chained Multicolor Independent Set.
On the trunk are attached clique chains which are longer than the part of trunk between
their endpoints, and have some wider parts at some specific positions. The length of the
chain gives us some slack which will be used to encode the choice of a vertex for some subset
Vi,j . Based on the edges of G, we adjust the width along the trunk so that only one clique
chain may place its wider part on each position of the trunk. In other words, part of the
trunk is a collection of gadgets representing edges of G that allow for only one incident vertex
to be chosen.

▶ Lemma 12. Tree Partition Width with target width and maximum degree as combined
parameter is XALP-hard.

Proof. We reduce from Tree-chained Multicolor Independent Set.
Suppose that we are given a binary tree T = (VT , ET ), and for each node i ∈ VT , a

k-colored vertex set Vi. We denote the colors by integers in [1, k], and write Vi,j for the set
of vertices in Vi with color j. We are also given a set of edges E of size m. Each edge in E is
a pair of vertices in Vi × Vi′ with i = i′ or ii′ an edge in ET . We can assume the edges are
numbered: E = {e1, . . . , em}.

In the Tree-chained Multicolor Independent Set problem, we want to choose
one vertex from each set Vi,j , i ∈ VT , j ∈ [1, k], such that for each edge ii′ ∈ ET , the chosen
vertices in Vi ∪ Vi′ form an independent set (which thus will be of size 2k).

We assume that each set Vi,j is of size r. (If not, we can add vertices adjacent to all other
vertices in Vi,j′ , j ∈ [1, k].) Write Vi,j = {vi,j,1, vi,j,2, . . . , vi,j,r}.

Let N = (m + 1)r. Let L = 36k + 5.

Cluster Gadgets. In the construction, we use a cluster gadget. Suppose Z is a clique.
Adding a cluster gadget for Z is the following operation on the graph that is constructed.
Add a clique with vertex set CZ = {cZ,1, cZ,2, . . . , cZ,2L} of size 2L to the graph, and add
an edge between each vertex in Z and each vertex cZ,j , 1 ≤ j ≤ L, i.e, Z with the first L

vertices in CZ forms a clique.
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In a tree partition of a graph, the vertices of a clique can belong to at most two different
bags. The cluster gadget ensures that the vertices of clique Z belong to exactly one bag.
This cluster gadget will be used in two different steps in the construction of the reduction.

▶ Lemma 13. Suppose a graph H contains a clique Z with the cluster gadget for Z. In each
tree partition of H of width at most L, there is a bag that contains all vertices from Z.

Proof. There must be two adjacent bags that contain the vertices of CZ and no other vertices.
Similarly, there must be two adjacent bags containing all vertices in Z ∪ {cZ,1, . . . , cZ,L}.
This forces all vertices in {cZ,1, . . . , cZ,L} to be in a single bag, and all vertices in Z to be in
a single adjacent bag. ◀

A subdivision of T . The first step in the construction is to build a tree T ′ = (VT ′ , ET ′),
as follows. Choose an arbitrary node i from VT . Add a new neighbor i′ to i, Add a new
neighbor r0 to i′. Now subdivide each edge N times. The resulting tree is T ′ = (VT ′ , ET ′).
We view T ′ as a rooted tree, with root r0. We will use the word grandparent to refer to the
parent of the parent of a vertex. The nodes that do not result from the subdivisions are
referred to as original nodes. Nodes i ∈ VT and their copies in T ′ will be denoted with the
same name.

The graph H consists of two main parts: the trunk and the clique chains. To several
cliques in these parts, we add cluster gadgets.

The trunk. The trunk is obtained by taking for each node i ∈ VT ′ a clique Ai. We specify
below the size of these cliques. For each edge ii′ in T ′, we add an edge between each vertex
in Ai to each vertex in Ai′ . We add for each Ai a cluster gadget.

To specify the sizes of sets Ai, we first need to give some definitions:
For each node i′ ∈ VT ′ , we let p(i′) be the number of nodes i ∈ VT (i.e., “original nodes”),
such that i′ is on the path (including endpoints) in T ′ from i to the vertex that is the
grandparent of i in T . I.e., for each original node i, we look to the grandparent of i (if it
exists), and then add 1 to the count of each node i′ on the path between them in T ′.
For each edge ej ∈ E, let g(ej) = 2jr.
For each edge ej = {vi,c,s, vi′,c′,s′}, we have that i = i′ or i′ is a child of i. Let iej

be the
node in T ′, obtained by making g(ej) steps up in T ′ from i: i.e., iej

is the ancestor of i

with distance g(ej) in T ′.

Now, for all nodes i ∈ VT ′ ,
|Ai| equals L − 6k · p(i) − 1, if i = iej for some ej ∈ E. At this node, we will verify that
a choice (encoded by the clique chains, explained below), indeed gives an independent
set: we check that we did not choose both endpoints of ej .
|Ai| equals L − 6k · p(i) − 2, otherwise.

The clique chains. For each i ∈ VT , and each color class c ∈ [1, k], we have a clique chain
with 2N + r + 5 cliques, denoted CCi,c,j , j ∈ [1, 2N + r + 5]. All vertices in the first clique
CCi,c,1 are made incident to all vertices in Ai. All vertices in the last clique CCi,c,2N+r+5
are made incident to all vertices in Ai′ with i′ the parent of the parent (i.e., the grandparent)
of i in T . (Notice that the distance from i to i′ in T ′ equals 2(N + 1).) All vertices in CCi,c,j

are made incident to all vertices in CCi,c,j+1, i.e., all vertices in a clique are adjacent to all
vertices in the next clique in the chain.

To each clique CCi,c,j we add a cluster gadget.
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The cliques have different sizes, which we now specify. Consider i ∈ VT , c ∈ [1, k],
γ ∈ [1, 2N + r + 5]. The size of CCi,c,γ equals:

L − 7, if γ = 1 or γ = 2N + r + 5 (i.e., for the first and last clique in the chain.)
7, if there is an edge ej with one endpoint in Vi,c for which one of the following cases
holds:

ej = {vi,c,α, vi,c′,α′}, c ̸= c′, i.e., one endpoint is in Vi,c, and the other endpoint is in
another color class in Vi, and γ = g(ej) + 1 + α.
ej = {vi,c,α, vi′,c′,α′}, i′ is a child of i, and γ = g(ej) + 1 + α.
ej = {vi,c,α, vi′,c′,α′}, i is a child of i′, and γ = g(ej) + N + 2 + α.

6, otherwise

Let H be the resulting graph.

▶ Lemma 14. H has tree partition width at most L, if and only if the given instance of
Tree-chained Multicolor Independent Set has a solution.

Proof. Suppose we have a solution of the Tree-chained Multicolor Independent
Set. Suppose for each class Vi,c, we choose the vertex vi,c,h(i,c). Now, we can construct the
tree partition as follows. First, we take the tree T ′, and for each node i in T ′, we take a
bag initially containing the vertices in Ai; we later add more vertices to these bags in the
construction.

Now, we add the chains, one by one. For a chain for Vi,c, take a new bag that contains
CCi,j,1, and make this bag incident to the bag of i. We add the vertices of CCi,c,h(i,c)+1
to the bag of i. If h(i, c) > 1, then we place the vertices of cliques CCi,c,α+1 with 1 <

α < h(i, c) in bags outside the trunk: CCi,c,h(i,c) goes to the bag with CCi,c,1; to this bag,
we add an adjacent bag with CCi,c,2 ∪ CCi,j,h(i,c)−1; to this, we add an adjacent bag with
CCi,j,3 ∪ CCi,j,h(i,c)−2, etc.

Now, add the vertices of CCi,c,h(i,c)+2 to the bag of the parent of i, and continue this:
each next clique is added to the next parent bag, until we add a clique to the bag of the
parent of the parent of i in T ; name this node here i′′. Add a new bag incident to i′′ and
put CCi,c,2N+r+5 in this bag (i.e., the last clique of the chain). Similar as at the start of the
chain, fold the end of the chain (with possibly some additional new bags) such that a bag
containing CCi,c,2N+r+4 is adjacent to the bag with CCi,c,2N+r+5.

Finally, for each cluster gadget, add two new bags, with the first incident to the bag
containing the respective clique.

One easily verifies that this gives a tree partition of H. For bags outside the trunk, one
easily observes that the size is at most L. Bags i in the trunk contain a set Ai, and precisely
p(i) · k cliques of the clique chains: for each path that counts for the bag, and each color
class in [1, k], we have one chain with one clique. Each of these cliques has size six or seven.
Now, we can notice that a clique of size 7 corresponds to an edge ej′ with endpoint in the
class. This clique will be mapped to a node in the trunk that equals iej′ , if and only if this
endpoint is chosen; otherwise, the clique will be mapped to a trunk node with distance less
than r to iej′ . Thus, there are two cases for a trunk node i:

There is no edge ej with i = iej . Then, a close observation of the clique chains shows that
there are at most two clique chains with size 7 mapped to i. Indeed, the construction is
such that each edge has its private interval, and affects the trunk both between i and its
parent i′, and between i′ and its parent i′′.
i = iej

. Now, at most one endpoint of ej is in the solution. The clique chain of the color
class of that endpoint can have a clique of size 7 mapped to i. The “offset” of the clique
chain for the color class of the other endpoint is such that there is a clique of size 6 for
that chain at i.
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In both cases, the total size of the bag at i is at most L. Thus, the width of the tree partition
is at most L.

Suppose we have a tree partition of H of width L. First, by the use of the cluster gadgets,
each clique Ai is in one bag. A bag cannot contain two cliques Ai as each has size larger than
L/2. Now, the bags containing Ai form a subtree of the partition tree that is isomorphic
to T ′. For each clique chain of a class Vi,c, we have that the first clique CCi,c,1 is in a bag
incident to i, and the last clique CCi,c,2N+r+5 is in a bag incident to the trunk bag that
corresponds to the grandparent of i in T , say i′′. Each trunk bag from i to i′′ thus must
contain a clique (of size 6 or 7) from the clique chain of Vi,c. It follows that each trunk
bag i′ contains at least p(i) · k cliques of size at least 6 each of the clique chains. Now,
|Ai′ | + 6p(i) · k ∈ {L − 1, L − 2}, and thus we cannot add another clique of a clique chain to
a trunk bag.

For a clique chain of Vi,c, there is a clique mapped to the trunk bag of i. Suppose
CCi,c,h(i,c) is mapped to i. We claim that choosing from each Vi,c the vertex vi,c,h(i,c) gives
an independent set, and thus, we have a solution of the Tree Chained Multicolor
Independent Set problem.

The vertices of CCi,c,h(i,c)+2 must be mapped to the bag of the parent of i, as otherwise,
i will contain an additional clique of size at least 6, and the size of the bag of i will become
larger than L. By induction, we have that the αth parent of i, α ∈ [1, 2N + 2] contains the
vertices of CCi,c,h(i,c)+α+1. (Note that the (2N + 2)nd parent equals the node corresponding
the grandparent of i in T .)

We now consider the node iej
for edge ej ∈ E. Suppose ej = vi,c,αvi′,c′,α′ . Without loss

of generality, suppose i = i′ or i′ is a child of i; otherwise, switch roles of i and i′. For each
endpoint of this edge, if the endpoint is chosen (i.e., α = h(i, c) or α′ = h(i′, c′)), then the
corresponding clique chain has a clique of size 7 in the bag iej

. This can be seen by the
following case analysis:

By assumption, CCi,c,h(i,c)+1 is placed in the bag of i. As each successive clique in the
chain is placed in one higher bag along the path from i to the grandparent of i (in T ),
we have that CCi,c,h(i,c)+g(ej)+1 is placed in the bag of iej , as this node is the g(ej)th
parent of i in T ′. This clique has size 7.
If i′ = i, the same argument shows that CCi′,c′,h(i′,c′)+1 is a clique of size 7 placed in the
bag of iej

.
If i′ is a child of i in T , then CCi′,c′,h(i′,c′)+1 is placed in the bag of i′. Again, each
successive clique in the chain of Vi′,c′ is placed in the next parent bag, for all nodes on the
path from i′ to the grandparent of i′ in T (which is the parent of i in T .) This implies
that CCi′,c′,h(i′,c′)+N+2 is placed in the bag of i and CCi′,c′,h(i′,c′)+N+2+g(ej) is placed
in the bag of iej ; this bag has size 7.

Now, if both endpoints would be chosen, then the size of the bag of iej
is larger than L: it

contains Aiej
(which has size L − 6kp(iej ) − 1), 6p(iej ) bags of clique chains, of which all

have size at least 6 and two have size 7; contradiction. So, at most one endpoint is chosen,
so choosing vertices vi,c,h(i,c) gives an independent set. ◀

The maximum degree of a vertex in H is less than 5kL + 5L = O(k2):
Vertices in cluster gadgets have maximum degree less than 2L.
A vertex in a trunk clique Ai of a node i that resulted from a subdivision have maximum
degree less than 4L as i has two incident nodes, each with a trunk clique of size less than
L, and there is a cluster gadget attached to Ai.
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A vertex in a trunk clique Ai of a node i that is an original node (i.e., also in T ) have
less than L neighbors in Ai, less than 3L neighbors in Ai′ with i′ incident to i in T ′, less
than kL neighbors of cliques CCi,c,1 (one clique of size L − 7 for each class c ∈ [1, k]),
less than 4kL neighbors of cliques CCi′,c,2N+r+5 (one clique of size L − 7 for each node
of which i is the grandparent in T for each class c ∈ [1, k]), and less than L neighbors in
the cluster gadget attached to Ai.

Finally, we conclude that the transformation can be carried out in f(k) log n space, thus
the result follows. ◀

From Lemmas 11 and Lemma 12, the following result directly follows.

▶ Theorem 15. Tree Partition Width is XALP-complete, both when the target value,
and when the target value plus the maximum degree is used as parameter.

▶ Theorem 16. Domino Treewidth is XALP-complete.

Proof. Membership: We use the fact that the maximum degree of the graph is bounded by
2k where k is the domino treewidth. We can discard an instance where this condition on
the maximum degree is not satisfied in logspace. We first assume that the given graph is
connected.

The “certificate” used for this computation will be of size O(k2 + k log(n)) and consists of:
The current bag and for each of its vertices whether it was contained in a previous bag or
not. This requires at most k + k log(n) bits.
For each neighbour of the bag, whether it was already covered by a bag. This requires
O(k2) bits.

The algorithm works as follows. Given the current certificate, if all neighbours have been
covered we accept. Otherwise, we guess a new child bag by picking a non-empty subset of
k + 1 vertices among the vertices of the current bag that were contained only in this bag,
and the neighbours that were not already covered. We then check that each vertex that is
in both the current bag and child bag has all of its neighbours in these two bags. We then
guess for each not already covered neighbour of the current bag if it should be covered by
the subtree of this child. These vertices are then considered as covered in the current bag
certificate. In the child bag certificate, the non covered neighbours are these vertices and the
neighbours of the child bag that are not neighbours of the parent bag. We then recurse with
both certificates, and accept if both recursions accept.

This computation uses O(k2 + k log n) space and the computation tree has polynomial
size.

We can handle disconnected graphs by iterating on component representatives and
discarding vertices that are not reachable using the fact that reachability in undirected
graphs can be computed in logspace (see membership for Tree Partition Width for more
details).

Hardness follows from a reduction from Tree Partition Width when we use the target
value and maximum degree as parameter.

Suppose we are given a graph G = (V, E) of maximum degree d and an integer k.
Let L = kd + 1, and M = (k + 1)L − 1. Now, build a graph H as follows. For each vertex

v ∈ V , we take a clique Cv with L vertices. For each vertex w ∈ Cv, we add a set Sw with
2M − 2 vertices, and make one of the vertices in Sw incident to w and to all other vertices
in Sw; call this vertex yw.

For each edge e = vw ∈ E, we add a vertex ze, and make ze incident to all vertices in Cv

and all vertices in Cw. Let H be the resulting graph.
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▶ Lemma 17. G has tree partition width at most k, if and only if H has domino treewidth
at most M − 1.

Proof. Suppose H has domino treewidth at most M − 1. Suppose ({Xi|i ∈ I}, T = (I, F )) is
a domino tree decomposition of H of width at most M − 1, i.e., each bag has size at most M .

First, consider a vertex w in some Cv. The vertex yw has degree 2M − 2, which implies
that there are two adjacent bags that each contain yw, and M − 1 neighbors of yw. One of
these bags contains w.

For each v ∈ V , there must be at least one bag that contains all vertices of Cv, by a well
known property of tree decompositions. There can be also at most one such bag, because
each vertex w ∈ Cv is in another bag that is filled by w, yw, and M − 2 other neighbors
of yw.

Let for i ∈ I, Yi ⊆ V be the set of vertices v ∈ V with Cv ⊆ Xi. We claim that
({Yi|i ∈ I}, T = (I, F )) is a tree partition of G of width at most k (some bags are empty).
First, by the discussion above, each vertex v ∈ V belongs to exactly one bag Yi. Second, as
M < (k + 1)L, each Yi has size at most k. Third, if we have an edge e = vw ∈ E, then ze

is in the bag that contains Cv, and ze is in the bag that contains Cw. As ze is in at most
two bags, these two bags must be the same, or adjacent, so in ({Yi|i ∈ I}, T = (I, F )), v and
w are in the same set Yi or in sets Yi and Yi′ with i and i′ adjacent in the decomposition
tree T .

Now, suppose G has tree partition width at most k, say with tree partition ({Yi|i ∈
I}, T = (I, F )). For each i ∈ I, let Xi =

⋃
v∈Yi

Cv ∪ {ze | ∃v ∈ Yi, w ∈ V : e = vw}. For
each v ∈ V , w ∈ Cv, add two bags, one containing w, yw, and M − 2 other neighbors of yw,
and the other containing yw and the remaining M − 1 neighbors of yw, and make these bags
adjacent, and the first adjacent to the bag in T that also contains w. One easily verifies that
this results in a domino tree decomposition of H with maximum bags size at most M , hence
H has domino treewidth at most M − 1. ◀

It is easy to see that H can be constructed from G with f(k) log |V | memory. So, the
hardness of Domino Treewidth follows from the previous lemma. ◀

5 Conclusion

We settle the question of the exact computation of tree-partition-width, and show that
its approximation is tractable. However, many questions remain regarding approximation
algorithms:

Is a constant factor approximation tractable?
Can we improve the approximation ratios with similar running times?
Can we improve the dependence on n to something linear in n?

Regarding the running time of the approximation algorithm, the following results could
improve the final running times. Firstly, although the techniques of [6] are nontrivial, it
seems reasonable to hope that they can be adapted to implement Wood’s construction in
time f(k)n. This would give an algorithm running in time f(k)n to compute a tree-partition
of width kO(1). Secondly, is there some value of b polynomial in w and k such that we can
compute Gb in time kO(1)n log n or in time 2o(k2)n ? This would directly give faster running
times for the approximation algorithm, possibly at the cost of a worse approximation ratio.

The parameter treebreadth studied in [5] is polynomially tied to tree-partition-width, but
might be easier to approximate.

Another interesting direction is to study the complexity of computing (approximate) tree
decompositions on graphs of bounded tree-partition-width.
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A Tree-cut width and the stability of tree-partition-width

In this section, we consider the relation of the notion of tree-cut width with (stable) tree-
partition-width. Tree-cut width was introduced by Wollan [28] . Ganian et al. [21] showed
that several problems that are W [1]-hard with treewidth as parameter are fixed parameter
tractable with tree-cut width as parameter.

We begin by defining the tree-cut width of a graph G = (V, E). A tree-cut decomposition
(T, X ) consists of a rooted tree T and a family X of bags (Xi)i∈V (T ) which form a near
partition of V (G) (i.e. some bags may be empty, but nonempty bags form a partition of
V (G)). For t ∈ V (T ), we denote by e(t) the edge of T incident to t and its parent. For
e ∈ E(T ), let T1, T2 denote the two connected components of T − e. We denote by cut(e)
the set of edges with an endpoint in both of

⋃
i∈V (T1) Xi and

⋃
i∈V (T2) Xi. The adhesion of

t ∈ V (T ) is adh(t) = | cut(e(t))|, and its torso-size is tor(t) = |Xt|+ bt where bt is the number
of edges e ∈ E(T ) incident to t such that | cut(e)| ≥ 3. The width of the decomposition
is then maxt∈V (T ){adh(t), tor(t)}. Note that edges are allowed to go between vertices that
are not in the same bag. The tree-cut width of a graph is the minimal width of tree-cut
decomposition. When | cut(e)| ≥ 3, the edge e is called bold, and otherwise, e is called thin.
When adh(t) ≤ 2, node t is called thin, otherwise it is called bold. In [21], it is shown that a
tree-cut decomposition can be assumed to be nice, meaning that if t ∈ V (T ) is thin then
N(Yt) ∩

(⋃
b sibling of t Yb

)
= ∅, where Yi is the union of Xj for j in the subtree of i.
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Wollan shows that having bounded tree-cut width is equivalent to only having wall
immersions of bounded size.

▶ Observation 18. K3,n−3 has tree-partition-width at most 3 but unbounded tree-cut width.

Indeed, note that any graph on n − 3 vertices with maximum degree 3 can be immersed
in K3,n−3. In particular, this works for any wall. The lower bound given by Wollan shows
that the tree-cut width of K3,n−3 is Ω(n 1

4 ).
We denote by tpw(G) the minimum tree-partition-width over subdivisions of G, and by

tpw(G) the maximum tree-partition-width of subdivisions of G. We will show that both
are polynomially tied to the tree-partition-width of G, which proves useful in polynomially
bounding tree-partition-width by tree-cut width due to the following lemma.

▶ Lemma 19. tpw = O(tcw2).

Proof. Consider a nice tree-cut decomposition (T, X ) of a graph G of width k. We will
construct a tree-partition for a subdivision of G. Note that the bags are already disjoint, but
some edges are not between neighbouring bags of T .

Each edge uv of G is subdivided dT (u, v) times, which is the distance between the nodes
containing u and v respectively in their bag (recall that the bags form a near partition). We
then add the vertices of the subdivided edge in the bags on the path in the decomposition
between the bags containing their endpoints. This is sufficient to make the decomposition a
tree-partition T ′ of a subdivision of G.

We now argue that T ′ has a width of O(k2). A bag Yt of T ′ contains at most:
k initial vertices
max(2, k) vertices from subdivisions of edges in cut(e(t)) accounting for edges going from
a child of t to an ancestor of t

k2/2 vertices from edges that are between bold children of t. For u, v children of T ,
there are only edges between Tu and Tv if both are bold. There are also at most k such
edges incident to Tu for any child u of T , and we may divide by 2 since each edge will
be counted twice this way. We stress that thin children do not contribute because the
tree-cut decomposition is nice.

Hence, tpw(G) ≤ 2 + k(k + 2)/2 + k = O(tcw(G)2) ◀

Next, we consider the parameters tpw and tpw.

▶ Lemma 20. tpw ≤ tpw ≤ tpw(tpw +1)

Proof. The lower bound is immediate. We prove the upper bound.
Consider a graph G with a tree-partition (T, X ) of width k, and a subdivision G′ of G.

We construct a tree-partition (T ′, X ′) of G′ of width at most k(k + 1).
We root the decomposition T arbitrarily.
Suppose that u, v are in the same bag of T and the edge uv was subdivided to form the

path u, a1, . . . , aℓ, v. We add the vertices ai in new bags containing, {a1, aℓ}, {a2, aℓ−1, . . .

which corresponds to a new branch of the decomposition of width at most 2.
Consider next the vertices obtained by subdividing an edge uv for u in the child bag of

the bag of v. If a subdivided edge was between two vertices of adjacent bags, we order the
vertices of the path obtained by subdividing the edge from the vertex in the child bag to
the vertex in the parent bag. We add the penultimate vertex to the child bag, and fold the
remaining vertices of the path in a fresh branch of the decomposition of width at most 2
similarly to the previous case.
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This gives a tree partition T ′. Bags of T ′ that are not in T have size at most 2, and, to
bags of T ′ that are also in T , we added at most k2 vertices (at most one per edge between
the bag and its parent). We conclude that T ′ has width at most k(k + 1). ◀

A result of Ding and Oporowski [15] shows that tree-partition-width is tied to a parameter
γ that is (by design) monotonic with respect to the topological minor relation. We adapt
their proof to derive the following stronger result.

▶ Theorem 21. There exists a parameter γ which is polynomially tied to the tree-partition-
width, and is monotonic with respect to the topological minor relation. More precisely,
tpw = Ω(γ) and tpw = O(γ24).

We deduce the following statement.

▶ Corollary 22. tpw, tpw, and tpw are polynomially tied.

Proof. Lemma 20 shows that tpw and tpw are polynomially tied. Note that, by definition,
tpw ≤ tpw. Then, for a fixed graph G, consider H a subdivision of G achieving tpw(H) =
tpw(G). tpw(G)O(1) ≤ γ(G) ≤ γ(H) ≤ tpw(H)O(1) = tpw(G)O(1). The first and last
inequalities come from the fact that γ and tpw are polynomially tied. The middle inequality
is because γ is monotonic with respect to the topological minor relation. ◀

From Lemma 19 and Corollary 22, we deduce the following theorem.

▶ Theorem 23. The parameter tree-partition-width is polynomially bounded by the parameter
tree-cut width. In other words, we show that there exist constants C, c > 0 such that for any
graph G, tpw(G) ≤ C tcw(G)c.

We now turn our focus to the technical proof of Theorem 21. We define the m-grid as the
graph on the vertex set [m] × [m] with edges (i, j)(i′, j′) when |i − i′| + |j − j′| ≤ 1. We then
define the m-wall as the graph obtained from the m-grid by removing edges (i, j)(i + 1, j)
for i + j even. The wall number of a graph G is then defined as the largest m such that G

contains the m-wall as a (topological)2 minor, and the grid number of G is the largest m such
that G contains the m-grid as a minor. We denote them by wn(G) and gn(G) respectively.

▶ Observation 24. The wall number and the grid number are linearly tied: wn(G) =
Θ(gn(G)).

We use the following result of Chuzhoy and Tan [12] (the bound is weakened to have a
lighter formula).

▶ Lemma 25 (Chuzhoy and Tan [12]). The treewidth is polynomially tied to the grid number:
tw = Ω(gn) and tw = O(gn10).

Hence, the treewidth is polynomially tied to the wall number: tw = Ω(wn) and tw =
O(wn10).

We call m-fan the graph that consists of a path of order m with an additional vertex
adjacent to all of the vertices of the path. We call m-branching-fans the graphs that consist
of a tree T and a vertex v adjacent to a subset N of the vertices of T containing at least
the leaves, such that m is the minimum size of a subset of vertices X of T such that each
component of T − X contains at most m vertices of N . In particular, the (m + 1)2-fan is an

2 The notions of minor and topological minor coincide for graphs of maximum degree at most 3.
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(m + 1)-branching-fan. We call m-multiple of a tree of order m a graph obtained from a tree
of order m after replacing its edges by m parallel edges and then subdividing each edge once
to keep the graph simple.

Let γ1(G) be the largest m such that G contains an m-branching-fan as a topological
minor. Let γ2(G) be the largest m such that G contains an m-multiple of a tree of order m

as a topological minor.
Let γ(G) be the maximum of wn(G), γ1(G), and γ2(G).

▷ Claim 26. The parameter γ is monotonic with respect to the topological minor relation.

Proof. Let G be a graph and H be a topological minor of G. Any topological minor of H is
also a topological minor of G, hence wn(G) ≥ wn(H), γ1(G) ≥ γ1(H), γ2(G) ≥ γ2(H). We
conclude that γ(G) ≥ γ(H). ◁

▶ Observation 27. The m-branching-fans, the m-multiples of trees of order m and the
m-wall have tree-partition-width Ω(m). Hence, we have tpw(G) = Ω(γ(G)).

We fix a graph G and let m = γ(G). Note that m ≥ γ2(G) > 0.
We denote by Gb the graph on the vertex set of G, where xy is an edge if and only if

there are at least b vertex disjoint paths from x to y. We now consider Gb for b = Ω(m10).

▷ Claim 28. The connected components of Gb have size at most m.

Proof. We proceed by contradiction, and assume there is a connected component C of size
at least m + 1.

Since C is connected, it contains a spanning tree T . We number its edges e1, . . . , eℓ such
that every prefix induces a connected subtree of T . We construct a subgraph H of G that
should be an (m + 1)-multiple of a tree of order m + 1, contradicting the definition of m.
For each edge uv, in order, we try to add to H m + 1 vertex disjoint paths from u to v that
avoid vertices of C and the vertices already in H. If we manage to do this for at most m

edges, then we have placed at most m(m + 1) paths. Let uv be the first edge for which we
could not find m + 1 vertex disjoint paths that do not intersect previous vertices (except for
u or v). By definition of Gb, there are b vertex disjoint u, v-paths in G, we denote the set of
such paths by π. At most m of the paths of π hit vertices of C already in H. Then, since at
least b − m are hit by previous paths and there are at most m(m + 1) previous paths. By
the pigeon hole principle, one of the previous paths P0 must hit b−m

m(m+1) ≥ (m + 1)2 paths
in π. By considering P0 and the paths it hits in π, we easily obtain a subdivision of an
(m + 1)2-fan. This is a contradiction with the definition of m. Hence, we must have been
able to process m edges. Which means we obtained a subdivision of an (m + 1)-multiple of a
tree of order m + 1. This is a contradiction to the definition of m. We conclude that the
connected component must have size at most m. ◁

Let H be the quotient of G by the connected components of Gb. We call it the b-reduction
of G.

▷ Claim 29. The blocks of H have maximum degree at most bm3.

Proof. Assume by contradiction that the maximum degree is more than bm3. Let B be a
block of H, and X be one if its vertices of maximum degree. X contains at most m vertices
of G by Claim 28. The vertices of G in B − X must be in the same connected component
C of G since b > m. There are at least bm3 + 1 edges between X and C. By the pigeon
hole principle, one vertex v of X must have at least bm2 + 1 neighbours in C. Consider a
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spanning tree T of C. We iteratively remove leaves that are not neighbours of v, and then
replace any vertex of degree 2 that is not a neighbour of v by an edge between its neighbours.
We denote this reduced tree by T ′.

First, note that the degree in T ′ is bounded by b − 1 because incident edges can be
extended to vertex disjoint paths to leaves of T ′ which are neighbours of v by construction.
We now use the fact that G contains no (m + 1)-branching-fans as topological minors. In
particular, there must be a set U of vertices of T ′ of size at most m such that components of
T ′ − U contain at most m neighbours of v. By removing at most m vertices of degree at
most (b − 1), we have at most 1 + (b − 2)m components in T ′ − U meaning v has degree
bounded by (b − 1)m2. We found our contradiction. ◁

▷ Claim 30. The treewidth of H is at most O(b).

Proof. We first apply Lemma 25 to bound the treewidth of G by O(b). Consider a tree
decomposition of G of adequate width Θ(b), and replace each bag by the components of Gb

that intersect it. By Claim 4, this is a decomposition of H. ◁

Using Claim 29 and Claim 30 and the construction of Wood as we did in the approximation
algorithm, we obtain a tree-partition of H of width O(b2m3). We then replace components
of Gb by their vertices, obtaining a tree-partition of G of width O(b2m4) due to Claim 28.

We have obtained a tree-partition of width O(b2m4) = O(m24). This concludes the proof
of Theorem 21.
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