
1. Introduction
Greigite (Fe3S4), the thiospinel of iron, is strongly ferrimagnetic. It can form as a precursor to pyrite (FeS2) during 
sulfidic or methanic diagenesis in anoxic sedimentary environments (see review by Roberts et al. [2011]), or as 
magnetosome nanoparticles produced by magnetotactic bacteria in sulfidic aquatic environments (see review by 
Kopp and Kirschvink [2008]). The authigenic pathway involves two complex biogeochemical processes: that is, 
organoclastic sulfate reduction (OSR) or anaerobic oxidation of methane (AOM), as well as iron (oxy)(hydr)oxide 
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bioturbated intervals at the top of muddy turbidite beds. Combined mineral magnetic, microscopic, and 
chemical analyses on both thin sections and magnetic mineral extracts of sediments from a typical interval 
(∼1,103.80–1,108.80 m below seafloor) reveal the presence of coarse-grained greigite aggregates (particles up 
to 50–75 μm in size). The greigite formed under nonsteady state conditions caused by the successive turbidites. 
Organic matter, iron (oxy)(hydr)oxides, Fe 2+, and sulfides and/or sulfate were enriched in these intensively 
bioturbated horizons. This facilitated greigite formation and preservation within a closed diagenetic system 
created by the ensuing turbidite pulse, where pyritization was arrested due to insufficient sulfate supply relative 
to Fe (oxy)(hydr)oxide. This may represent a novel greigite formation pathway under conditions modulated by 
turbidites and bioturbation. Paleomagnetic analyses indicate that the early diagenetic greigite preserves primary 
(quasi-)syn-sedimentary magnetic records. The extremely high greigite content (0.06–1.30 wt% with an average 
of 0.50 wt% estimated from their saturation magnetization) implies that the bioturbated turbiditic deposits are 
an important sink for iron and sulfur. Mineral magnetic methods, thus, may offer a window to better understand 
the marine Fe–S–C cycle.

Plain Language Summary Greigite (Fe3S4, a magnetic iron sulfide) may grow in the sediment 
column at any time during diagenesis. Its formation complicates interpretation of sedimentary magnetic 
records. A thorough understanding of greigite formation pathways is, thus, a prerequisite for paleomagnetic/
environmental magnetic studies of greigite-bearing sediments. Natural greigite particles are often reported 
to be smaller than a few hundred nanometers in size. Here, we find large greigite concentrations with crystal 
sizes up to several tens of micrometers in multiple mudstone horizons in deep-sea sediments offshore Sumatra. 
These natural greigite crystals are the largest ever reported, and currently known greigite formation pathways 
cannot explain their size. Through detailed rock magnetic, microscopic, and chemical analyses, we propose 
that formation of these large greigite crystals is favored by successive organic-rich turbidites that have been 
intensively reworked by benthic fauna. We also demonstrate that these greigite-bearing sediments provide 
a reliable magnetic record for paleomagnetic studies. Our work may represent a new pathway for greigite 
formation and is important for studies of greigite-bearing sediments from similar settings. The greigite 
concentration appears to be extremely high. Thus, greigite formed by this pathway may be an overlooked iron–
sulfur sink that should be considered when assessing the marine iron–sulfur–carbon cycle.
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reduction (Roberts, 2015; Roberts et al., 2011). Via these reactions, the necessary reactants for greigite forma-
tion (i.e., dissolved iron and sulfide) are supplied. Greigite is considered to be metastable but has been reported 
to be generated and preserved in diverse environmental settings with ages ranging from the Ediacaran to the 
Holocene, although the greigite could be younger than its host sediment. Environments include organic-rich 
lacustrine and marine sediments, restricted anoxic basins, gas hydrate systems, and hydrothermal/cold seep envi-
ronments (e.g., Badesab et al., 2020; Dewangan et al., 2013; Dong et al., 2013; Greve et al., 2021; Horng, 2018; 
Housen & Musgrave, 1996; Kars, Greve, & Zerbst, 2021; Kars, Köster, Henkel, et al., 2021; Kelder et al., 2018; 
Krs et al., 1990; Larrasoaña et al., 2007; Reynolds et al., 1994; Roberts et al., 1996; Sagnotti & Winkler, 1999; 
Snowball, 1991; Vasiliev et al., 2007, 2008).

Greigite can in principle form at any time (i.e., during early, late, or progressive diagenetic processes) when 
dissolved iron and sulfide required for its formation are available (Roberts, 2015 and references therein). Early 
greigite authigenesis, which is modulated by nonsteady state inputs of organic matter and iron-bearing miner-
als, is generally associated with OSR, AOM, or methane hydrate formation (e.g., Ebert et al., 2020; Jørgensen 
et al., 2004; Kars & Kodama, 2015; Kasten et al., 1998; Larrasoaña et al., 2007; J. Liu et al., 2004; Neretin 
et al., 2004). Late diagenetic reactions that cause greigite formation generally occur episodically in localized 
intervals (e.g., in permeable zones or faults) driven by incursions of sulfate- or sulfide-bearing fluids (e.g., Greve 
et al., 2021; Horng, 2018; Roberts & Weaver, 2005; Weaver et al., 2002). Hydrocarbon-rich fluids or clathrates 
also play an important role (e.g., Housen & Musgrave, 1996; Larrasoaña et al., 2007; Musgrave et al., 1995, 2019; 
Reynolds et al., 1994). For example, punctuated greigite diagenesis has been reported following the introduction 
of sulfate and methane-rich pore fluids in sediments from International Ocean Discovery Program (IODP) Site 
U1437, Izu-Bonin rear arc (Japan; Musgrave et  al.,  2019). Thermal maturation due to burial typically drives 
progressive diagenesis: the continual loss of fine-grained magnetite and gradual pyritization of greigite. These 
processes are argued to occur from the subsurface to depths corresponding to a burial temperature of ∼60°C (e.g., 
Aubourg et al., 2012; Kars, Greve, & Zerbst, 2021; Kars, Köster, Henkel, et al., 2021; Kars et al., 2012, 2014; 
Musgrave et al., 2019).

Regardless of the greigite formation processes, detrital sedimentary iron (oxy)(hydr)oxides undergo partial or 
complete reductive dissolution. Greigite formation at the expense of iron oxides (especially magnetite) would, 
thus, lead to a partial (or even complete) overprinting of the primary depositional remanent magnetization in 
sediments, which will complicate or compromise interpretation of their magnetic recording (e.g., Florindo & 
Sagnotti, 1995; Horng et al., 1992, 1998; Jiang et al., 2001; Roberts & Turner, 1993; Roberts & Weaver, 2005; 
Robinson, 2001; Robinson & Sahota, 2000; Sagnotti et al., 2010). Knowledge of the mode and timing of greigite 
formation and its geological preservation potential are, therefore, key to resolving the fidelity of (paleo-)magnetic 
signals carried by greigite-bearing sediments, which is crucial for paleomagnetic and environmental magnetic 
studies (e.g., Aben et al., 2014; Y. Chen et al., 2021; Duan et al., 2020; Ebert et al., 2021; C.-F. Fu et al., 2015; 
Jiang et  al.,  2001; Just et  al.,  2019; Kelder et  al.,  2018; S.-Z. Liu et  al.,  2017; Nilsson et  al.,  2013; Roberts 
et al., 1996; Rowan et al., 2009; Vasiliev et al., 2007, 2008). It is also of interest for Fe–S–C geochemistry (e.g., 
Burton et al., 2011; Cutter & Kluckhohn, 1999; Johnston et al., 2014; Kao et al., 2004).

In marine sedimentary sequences, steady state conditions are often interrupted, for example, by organic matter 
input, sulfate reduction rate, and/or sedimentation rate variations (Larrasoaña et  al.,  2003; Roberts,  2015; Y. 
Wang et  al.,  2019). Under nonsteady state sedimentary conditions, limited sulfide concentrations or organic 
carbon supply relative to abundant reactive (ferrous) iron may arrest the pyritization process, favoring greigite 
production, and preservation (Kao et al., 2004; Roberts, 2015; Rowan et al., 2009). In the cored sequence of 
the IODP Expedition 362, Sumatra Subduction Margin, anomalously high magnetic susceptibilities are closely 
associated with the presence of greigite (see below for details). Greigite-rich intervals are observed in multiple 
horizons of structureless mudstone immediately underlying intensely bioturbated intervals at the top of muddy 
turbidite beds rich in plant material (McNeill, Dugan, Petronotis, et al., 2017). A primary example is seen in Core 
362-U1480G-38R over the ∼1,103.8–1,108.8 m below sea floor (mbsf) depth interval, which comprises mainly 
bioturbated black and gray clay and silty clay, where the highest magnetic susceptibility reaches ∼15 × 10 −3 SI 
(Figure 1). In this study, the mechanism of greigite formation and preservation under conditions modulated by 
turbidites and bioturbation was examined with mineral magnetic methods, to assess a previously underappreci-
ated authigenic greigite source in marine sedimentary environments.

Writing – review & editing: Tao Yang, 
Mark J. Dekkers, Xixi Zhao, Katerina E. 
Petronotis, Yu-Min Chou

 21699356, 2022, 11, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/2022JB

024734 by U
trecht U

niversity L
ibrary, W

iley O
nline L

ibrary on [18/01/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



Journal of Geophysical Research: Solid Earth

YANG ET AL.

10.1029/2022JB024734

3 of 28

Figure 1. (a) Map of the north Sumatran subduction zone showing the location of drill sites U1480 and U1481 of 
International Ocean Discovery Program (IODP) Expedition 362 (red dots), and the epicenter of the 2004 Mw 9.2 
Sumatra–Andaman earthquake (focal mechanism symbol). Red arrow with number is a convergence vector (mm/year). 
NER, Ninety East Ridge. (b) Interpreted seismic profile BGR06-102 (indicated in a) showing North Sumatran subduction 
input (i.e., Nicobar Fan sediments), with drill site U1480 (modified from McNeill, Dugan, Petronotis, et al. [2017]). (c) 
Lithostratigraphic units and subunits defined in Site U1480 (modified from McNeill, Dugan, Petronotis, et al. [2017]), 
mbsf = meters below sea floor. (d) Downhole mass-specific magnetic susceptibility (χ) measured on discrete samples and 
magnetic susceptibility (Section Half Multisensor Logger [SHMSL] κ) measured with the SHMSL instrument on archive-half 
sections for Site U1480. A close-up view of the ∼1,103.8–1,108.8 mbsf interval (Core 38R) is shown in Figure 2c.
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2. Geological Background and Samples
In the Sumatra–Andaman subduction channel, where the Indo-Australian plate subducts beneath the Burma–
Sunda plate, a ∼1,300-km-long rupture was produced along offshore northern Sumatra to the Andaman Islands 
by the 2004 Mw 9.2 earthquake (Figure 1a). In the Sumatra margin, the thickness of the incoming sediment 
wedge is up to ∼4–5 km at the deformation front (McNeill, Dugan, Petronotis, et al., 2017). This is considerably 
thicker than in most other accretionary margins. The primary objective of IODP Expedition 362 is to establish the 
initial and evolving properties of the incoming sediments of the Indo-Australian oceanic plate and to assess their 
role in seismogenic process on Sumatra margin (McNeill, Dugan, Petronotis, et al., 2017).

During IODP Expedition 362, drilling and coring were conducted at two sites (Sites U1480 and U1481) located 
on the Indo-Australian Plate, east of Ninetyeast Ridge and ∼250 km southwest of the subduction zone (Figures 1a 
and  1b). A detailed preliminary description of lithologic, physical, and geochemical properties is provided 
by McNeill, Dugan, Petronotis, et  al.  (2017). At Site U1480 (water depth of 4,148  m), a thin, distal trench 
wedge section, the Nicobar Fan succession, and a prefan pelagic succession were revealed by seismic imaging 
(Figure 1b; McNeill, Dugan, Petronotis, et al., 2017). At Site U1480, eight holes (U1480A–U1480H) of different 
penetration depths were drilled and cored from the seafloor to 1,431.63 mbsf (Figure 1c). The whole recovered 
section consists of a late Cretaceous to Pleistocene sedimentary succession, as well as the basaltic basement of 
ocean crust (McNeill, Dugan, Petronotis, et al., 2017). Based on major lithologic changes, six lithostratigraphic 
units (and subunits) are recognized (Figure 1c). Units I–IIIA (0–1,310.10 mbsf) are identified as the Nicobar Fan. 
Units IIIB to V (1,310.10–1,415.35 mbsf) represent prefan deposits, while Unit VI (1,415.35–1,431.63 mbsf) is 
basaltic crust of the Indian Plate (McNeill, Dugan, Petronotis, et al., 2017).

The Nicobar Fan is dominated by sandy and muddy turbidites (Pickering et al., 2020). Bioturbated black and gray 
clay characterize its lower portion (i.e., subunit IIC, 784.33–1,250.35 mbsf), along with silty clay and structure-
less muddy sand with abundant plant debris (McNeill, Dugan, Petronotis, et al., 2017; Pickering et al., 2020). 
According to age models for Expedition 362 sites (Backman et al., 2019; McNeill, Dugan, Backman, et al., 2017; 
McNeill, Dugan, Petronotis, et al., 2017), the Nicobar Fan formed during the 15.3–1.7 Ma interval with fluctuat-
ing sediment accumulation rates: a prominent increase in sedimentation rate occurred at ∼9.2 Ma (∼1,250 mbsf, 
the boundary between Units IIIA and IIC): from 8 to 15 m/million years (m.y.) to ∼220 m/m.y. The high sedimen-
tation rate remained, but then decreased to 65–125 m/m.y. at 5.9 Ma (∼520 mbsf) to increase again to 290 m/m.y. 
at ∼2.4 Ma (∼205 mbsf). The sedimentation rate subsequently dropped to 3–42 m/m.y. from ∼1.7 Ma onward 
(∼25 mbsf, boundary between Units I and II).

To quantify the bioturbation level, the ichnofabric index (Droser & Bottjer, 1986) was identified in cores with the 
help of visual charts (Heard et al., 2014). The bioturbation index (BI) represents the disturbed degree of primary 
sedimentary fabric (e.g., lamination) by biological activity and ranges from 1 for nonbioturbated to 6 for total 
homogenization (see McNeill, Dugan, Petronotis, et  al.  [2017] for details). Bioturbation is commonly low to 
moderate and tends to increase upward within turbidite beds, that is, the most bioturbated horizons (BI = 6) are 
generally located at the top of turbidite beds (Figures 2a, 2b, and 2g–2i).

For this study, 18 oriented discrete samples (∼7 cm 3 volume) were taken from Core 362-U1480G-38R using 
Natsuhara-Giken plastic cubes. Excess sediment was also collected in plastic bags for shore-based mineral 
magnetic analyses. These samples are from different portions of turbidites with variable BI (Figure 2). This 
allows us to study the association of greigite formation with bioturbation and turbidites. All samples were stored 
in a freezer and isolated from air before undertaking the measurements described below.

3. Methods
3.1. Rock Magnetic Measurements

Shipboard magnetic susceptibility measurements were carried out with a Bartington Instruments MS2K surface 
sensor with a maximum sensitivity of 2 × 10 −6 SI on the Section Half Multisensor Logger (SHMSL), operating 
at an alternating field (AF) of 100 μT and a 930 Hz frequency (see McNeill, Dugan, Petronotis, et al. [2017] for 
details). Measurements of low-field magnetic susceptibility (expressed on a mass-specific basis as χ) of discrete 
samples were carried out after the expedition with an MFK1-FA Multi-Function Kappabridge susceptome-
ter (AGICO, Brno, Czech Republic) at the Paleomagnetic Laboratory of the State Key Laboratory of Marine 
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Figure 2.
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Geology (PL-SKLMG), Tongji University (Shanghai, China). Detection limit and measurement accuracy of the 
instrument are 2 × 10 −8 SI and 0.1%, respectively, at a 976 Hz frequency and in a 200 A/m (peak-to-peak) field.

Magnetic hysteresis measurements were made with a MicroMag™ Model 3900 vibrating sample magnetometer 
(VSM, Princeton Measurements Corporation, USA), at the Institute of Geophysics, China Earthquake Adminis-
tration (Beijing, China). The maximum applied field was 1.0 T. Hysteresis parameters, that is, saturation magnet-
ization (Ms), saturation remanence (Mrs), and coercive force (Bc) were determined from the hysteresis loops 
using the HystLab software (Paterson et al., 2018), and the remanent coercive force (Bcr) from the progressive 
back-field demagnetization of the isothermal remanent magnetization imparted at 1 T. First-order reversal curves 
(FORCs; Roberts et al., 2000) were measured for 13 selected samples to assess the magnetic domain state and to 
evaluate magnetostatic interactions. All FORC measurements were made with either the aforementioned VSM 
3900 or a Lakeshore VSM 8604 (Lake Shore Cryotronics, Inc., USA) at the Institute of Geophysics and Geomat-
ics, China University of Geosciences (CUG; Wuhan, China). We measured 120 curves for each FORC diagram 
with an averaging time of 0.1–0.2 s per data point and a ∼2 mT field increment. The FORCinel package (Harrison 
& Feinberg, 2008) was used to process FORC diagrams (Pike et al., 1999).

A Quantum Design Inc. (San Diego, CA, USA) SQUID magnetometer (MPMS XL-7) with a sensitivity of 
10 −11 A m 2 was used for low-temperature (LT; down to 5 K) measurements. Fifteen selected samples with a 
mass of 120–150 mg were processed at the State Key Laboratory for Artificial Microstructure and Mesoscopic 
Physics, Peking University (Beijing, China). Each sample was subjected to three measurement cycles. (a) A LT 
saturation isothermal remanent magnetization (SIRM) was imparted in a 2.5 T after the sample was cooled from 
room temperature (300 K) to 5 K in zero field, which was then measured in a zero magnetic field during warming 
back to 300 K (termed ZFC for zero-field-cooled). (b) Next, the sample was cooled to 5 K again but now in a 
2.5 T field, which was switched off at 5 K followed by measurement during warming to 300 K (termed FC for 
field-cooled). (c) Finally, a room temperature SIRM (RT-SIRM) was imparted in a 2.5 T field which was meas-
ured during cooling to 5 K and warming back to 300 K in a zero magnetic field. All the remanence measurements 
were made at intervals of 5 K.

Temperature-dependent magnetization was measured for 10 representative samples in air with a modified hori-
zontal translation type Curie balance (noise level ∼5 × 10 −9 A m 2, Mullender et al., 1993) at the Paleomagnetic 
Laboratory Fort Hoofddijk, Utrecht University (the Netherlands). Stepwise thermomagnetic runs were carried 
out following the procedure described by Yang et al. (2018), with heating and cooling rates of 6 and 10°C/min, 
respectively.

3.2. Paleomagnetic Measurements

Split-core archive sections were measured onboard using a three-axis pass-through superconducting rock 
magnetometer (Model 760, 2G Enterprises, USA) equipped with an in-line automated AF demagnetizer. Succes-
sive AF demagnetization was performed in 4–6 steps for the natural remanent magnetization (NRM) to a maxi-
mum peak field of 25 mT using the in-line AF demagnetizer, with measurements made at 2.5 cm stratigraphic 
intervals (see Chapter “Expedition 362 methods” in McNeill, Dugan, Petronotis, et  al.  [2017] for details). In 
addition, thermal demagnetization of seven discrete samples was performed onboard using a thermal demagnet-
izer (ASC Model TD-48SC) at temperatures of 50°C, 75°C, 100°C, 150°C, 200°C, 250°C, 300°C, 325°C, 350°C, 
400°C, and 450°C. Remanent magnetizations were measured on the JR-6A spinner magnetometer. The rest of 
the studied discrete samples were subjected to stepwise AF demagnetization after the expedition at PL-SKLMG, 
using a horizontal pass-through 2G Enterprises 755-4 K superconducting rock magnetometer (2G Enterprises, 
USA) equipped with an automatic sample handling system and in-line AF coils. Progressive static three-axis AF 
demagnetization was performed in 2.5 mT steps to a peak field of 10 mT, then in 5 mT steps to a peak field of 
40 mT, then in 10 mT steps to a peak field of 60 mT, and finally a step at 80 mT. Principal component analysis 
(PCA; Kirschvink, 1980) was used to calculate the declination and inclination of the characteristic remanent 

Figure 2. (a–f) Downhole bioturbation index (BI) and sediment magnetic parameters from the ∼1,103.8–1,108.8 mbsf interval, Hole U1480G. The blue bars mark 
horizons with magnetic susceptibility spikes (MSS). An expanded view of the ∼1,104.3–1,104.8 mbsf interval with a core image and lithology column is shown 
in (g)–(m). BI: 1 = no bioturbation, 2 = sparse, 3 = slight, 4 = moderate, 5 = heavy, and 6 = complete bioturbation; T, turbidite beds; NRM-DS, natural remanent 
magnetization (NRM) measured on discrete samples (red symbols); NRM-AHS, NRM measured on archive-half sections (gray symbols); χ, mass-specific magnetic 
susceptibility measured on discrete samples (red symbols); SHMSL κ, SHMSL magnetic susceptibility measured on archive-half sections (gray symbols); Ms, saturation 
magnetization (red symbols); Mrs, saturation remanence (gray symbols); Bc, coercive force (red symbols); and Bcr, remanent coercive force (gray symbols).
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magnetization (ChRM) without anchoring to the origin of orthogonal projections, using the PuffinPlot software 
(Lurcock & Wilson, 2012) and www.paleomagnetism.org (Koymans et al., 2020).

3.3. Scanning Electron Microscopy/Energy Dispersive X-Ray Spectrometry Analyses and Electron Probe 
Microanalysis of Thin Sections

For scanning electron microscopy/energy dispersive X-ray spectrometry (SEM/EDS) and electron probe micro-
analysis (EPMA), bulk sediments were dried in an oven at ca. 40°C, then impregnated with epoxy resin under 
vacuum before being cut for polished thin sections. Slices with a thickness of ∼1 mm were cut and polished to 
80 μm thickness. Carbon-coated thin sections were analyzed for magnetic minerals with a Zeiss Sigma 300 field 
emission scanning electronic microscope (FE-SEM, Carl Zeiss, Germany) operated at 5–15 kV at the State Key 
Laboratory of Geological Processes and Mineral Resources, CUG (Wuhan, China). Backscattered and second-
ary electron imaging was carried out. Elemental compositions of individual mineral grains were determined 
by point analyses with the attached Oxford Instruments energy dispersive spectrometer. To confirm the stand-
ardless semiquantitative SEM/EDS determinations, the chemical compositions of magnetic minerals were also 
analyzed on polished thin sections using a JEOL JXA-8230 electron probe microanalyzer (JEOL, Japan) at the 
Center for Global Tectonics, School of Earth Sciences, CUG, Wuhan. The following operating conditions were 
used: 15 kV accelerating voltage, 20 nA cup current, and 2 μm beam diameter. Standards from Structure Probe, 
Inc. (SPI) were used: pyrite (Fe, S), magnetite (Fe), orthoclase (K), yttrium–aluminum–garnet (Al), albite (Si), 
pyrope (Mg), rhodonite (Mn), and rutile (Ti). Dwell times were 10 s on element peaks while those on background 
adjacent to peaks were 5 s. Raw X-ray intensities were corrected using a ZAF (atomic number, absorption, and 
fluorescence) algorithm (e.g., Goldstein et al., 2017).

3.4. X-Ray Diffraction Analysis and SEM Imaging of Magnetic Mineral Extracts

Magnetic particles were extracted from representative sediments with a different BI and magnetic susceptibility 
values for X-ray diffraction (XRD) analysis and microscopic observations. Approximately 200–500 mg subsam-
ples were suspended in deionized water with sodium hexametaphosphate as dispersant in a beaker. Then, samples 
were ultrasonicated for 30 min to separate the magnetic minerals from the nonmagnetic fraction. A rare earth bar 
magnet was then used for isolating magnetic minerals from the suspension with gentle agitation; the procedure 
was repeated several times. The final extract was cleaned with deionized water and collected in centrifuge tubes. 
Magnetically extracted particles were dispersed in 10 mL ethanol.

For XRD analysis, magnetic extracts were transported to a glass slide using a pipette and dried in air. XRD 
analyses were then carried out using a Bruker D8 ADVANCE X-ray diffractometer (Bruker-AXS, Karlsruhe, 
Germany) with Cu-Kα X-ray radiation (λ = 1.5406 Å) in the 2θ range of 5°–70°, step size of 0.02°, and step count 
time of 0.5 s. After XRD analysis, a small portion of the magnetic extracts was transported to a double-sided 
carbon tape on sample holders for SEM imaging, which was conducted using a Zeiss Sigma SEM system (Carl 
Zeiss, Germany) coupled to an Oxford X-Max 50 N EDS detector (Oxford Instruments, UK). Backscattered elec-
tron images were obtained at a working distance of 8.5 mm and an accelerating voltage of 15 kV. Both XRD 
analysis and SEM imaging were carried out at the State Key Laboratory of Earthquake Dynamics, Institute of 
Geology, China Earthquake Administration (Beijing, China).

3.5. Total Organic Carbon and Total Nitrogen Measurements

Subsamples from representative sediments were dried at 50°C until constant weight, followed by grinding with 
an agate mortar and pestle. Approximately 10 mg of sediment was weighed into Ag capsules and decarbonated 
for total organic carbon (TOC) analysis with ∼6%–8% sulfurous acid (H2SO3). Decarbonation was carried out 
following the procedure described by House  (2019). Ag capsules with decarbonated sediment samples were 
sealed in Sn capsules to achieve efficient conversion of organic C to CO2. Separate ∼40 mg nondecarbonated 
portions of each sample were also sealed in Sn capsules for total nitrogen (TN) analysis.

TOC and TN analyses were made for 60 samples including samples from levels adjacent to the studied interval 
at the Stable Isotope Laboratory, University of California, Santa Cruz (CA, USA). Carbon and nitrogen amounts 
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were determined by Dumas combustion using a Carlo Erba 1108 elemental analyzer and estimated according to 
standards of known elemental composition with a precision better than 1%.

4. Results
4.1. XRD Patterns and SEM Imaging of Magnetic Mineral Extracts

XRD analysis of magnetic mineral extracts from six representative sediment samples with different magnetic 
susceptibility values provides clear diffraction patterns (Figure 3) for detailed mineral identification. Greigite, 
which is indexed by its three most intense reflection peaks (at 2θ of 29.96°, 36.34°, and 52.36°, Figures 3a–3d), 
is the dominant magnetic component in extracts from the four samples with magnetic susceptibility spikes (MSS; 
Figures 2c and 2j). We define horizons with magnetic susceptibility spikes as “MSS horizons,” and other sedi-
ments as “host sediments.” Chlorite and illite are present as nonmagnetic phases, along with the occasional 
presence of elemental sulfur in some samples (e.g., sample 38R-2W, 71 cm, Figure 3c). Although the diffraction 
intensity of the two host sediment samples is generally much weaker, the presence of greigite is still discern-
ible from the three most intense reflection peaks (Figures  3e and  3f). The weak reflection peaks imply that 
there is a small amount of greigite in the host sediments; this is consistent with their relatively lower magnetic 
concentration-related magnetic parameters, such as χ and Ms (Figure 2).

Representative SEM images of magnetic mineral extracts are shown in Figure 4. SEM observations indicate that 
large greigite particles (bright grains, mostly >20 μm; the largest are up to 50–75 μm) are ubiquitous in magnetic 
extracts from the MSS horizons (Figures 4a, 4c, and 4e–4g). These large greigite particles have a variable (some-
times polyhedral) morphology, probably due to the gentle crushing that was part of the sample preparation proce-
dure. Also, small (cubo-)octahedral greigite particles with variable size (up to ∼5 μm) are present (Figures 4b, 
4d, and 4h), which resemble the synthetic greigite particles reported by Chang et al. (2007, 2008). In contrast, 
magnetic extracts from host sediments are dominated by silicates (dark sheets, Figures 4i and 4l), with the pres-
ence of only relatively small amounts of fine greigite particles (Figures 4j, 4k, and 4m). Occasionally, hexagonal 
iron sulfide particles are observed (Figures 4k and 4m), whose morphology is similar to that of monoclinic pyrrh-
otite (Horng & Roberts, 2006) and smythite (Fe9S11, Horng et al., 2020). However, it is not sure whether they are 
pyrrhotite or smythite, because there is no reliable evidence for their presence in XRD results (Figures 3e and 3f).

4.2. SEM/EDS Observations and EPMA Analyses of Thin Sections

SEM observations (Figure 5) and EDS analyses (Table 1) on thin sections reveal that greigite appears to be ubiq-
uitous in all studied sediments, with three typical modes of occurrence. The most impressive mode is as large 
crystals up to several tens of μm in the MSS horizons (Figures 5a–5d). Most of them have Fe/S atomic ratios close 
to that of stoichiometric greigite (i.e., ∼0.75; Table 1), except for a few spots with Fe/S atomic ratios of ∼1 or 
higher probably due to the low beam voltage (∼5 kV) used. The second mode is as laths or small interstitial grains 
within cleavages of sheet silicate grains (Figures 5e–5h). In some cases, greigite laths are stacked on top of each 
other, resembling a bunch of bananas (e.g., Figure 5g). The third mode includes aggregates of fine-grained euhe-
dral greigite particles (Figure 5i), which are found occasionally in thin sections. The first two modes are ubiqui-
tous in MSS horizons. In addition, euhedral pyrite grains with Fe/S atomic ratio of ∼0.5 (Figure 5j), magnetite 
grains with varying Ti contents (Figure  5k), and ilmenite (Figure  5l) are occasionally found. EPMA results 
(Table 1) demonstrate that most of the analyzed grains consist entirely of iron and sulfur, which confirms the 
dominance of iron sulfides in the studied sediments. Recalculation of the chemical composition on the basis of 
four sulfur ions reveals that most of the iron sulfide grains are greigite, which is consistent with EDS analyses and 
XRD diffraction patterns for magnetic mineral extracts (Figure 3). Pyrite (FeS2) compositions are also identified 
in some sediments by EPMA (Table 1).

4.3. Rock Magnetism

Anomalously high magnetic susceptibility values (up to ∼765 × 10 −8 m 3 kg −1 on a mass-specific or ∼15 × 10 −3 
SI on a volume-specific basis) are observed in the ∼1,103.8–1,108.8 mbsf interval in the Nicobar Fan sequence 
(Figure 1d and Table 2). This interval contains multiple MSS horizons, which are more evident in the SHMSL 
magnetic susceptibility measured on archive-half sections (SHMSL κ, Figure 2c). These MSS horizons occur 
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Figure 3.
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immediately below the most bioturbated horizons (i.e., with BI = 6) located at the top of each turbidite bed 
(Figures 2a–2c and 2g–2j). The MSS horizons also have high NRM values (Figures 2d and 2k): NRM spikes 
(>80 × 10 −3 A/m measured on discrete samples [referred to as NRM-DS] or >40 × 10 −3 A/m measured on the 
archive-half sections [referred to as NRM-AHS]) occur, with at least 4 times higher values than typical host sedi-
ment NRM (Figures 2d and 2k, and Table 2).

Figure 3. X-ray diffraction patterns of magnetic mineral extracts from representative sediment samples with different magnetic susceptibilities; the extracts contain 
primarily greigite (Gr), chlorite (Chl), and illite (Ill), along with occasional elemental sulfur (S). Greigite is the dominant magnetic mineral in all magnetic extracts 
(a–f), as indexed by the first three most intense reflection peaks at 2θ of 29.96°, 36.34°, and 52.36°, respectively. The powder diffraction file (PDF) from the 
International Centre for Diffraction Data (PDF-4+ 2022) was employed to assist mineral identifications. PDF numbers of minerals are as follows: greigite: PDF 00-016-
0713; chlorite: PDF 00-029-0701; illite: PDF 00-026-0911; smythite: PDF 00-010-0437; 3T pyrrhotite: PDF 00-024-0220; and sulfur: PDF 00-008-0247; vertical lines 
indicate diffraction positions of different minerals and their relative intensities with respect to the largest peak (I/I100) (g).

Figure 4. Backscattered scanning electron microscopy (SEM) images of magnetic mineral extracts from representative sediment samples with different magnetic 
susceptibilities (χ). As demonstrated by the X-ray diffraction (XRD) spectra (Figure 3), these extracts contain greigite (bright grains) and chlorite/illite (dark sheets). 
Large greigite particles (mostly >20 μm, with the largest up to 50–75 μm) are ubiquitous in magnetic extracts from the magnetic susceptibility spikes (MSS) sediments 
(a–h); among them, (cubo-)octahedral greigite particles with variable size (up to ∼5 μm) are also present. (i–m) Chlorite/illite sheets dominate extracts from host 
sediments with lower magnetic susceptibilities, with relatively small amounts of fine greigite particles.
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After high-field slope correction (calculated from magnetizations in fields above 0.7 T), all samples have closed 
hysteresis loops that approach saturation in a field of ∼300 mT (Figures 6a–6f and Figures S1a–S1c in Supporting 
Information S1), which indicates that low-coercivity ferrimagnetic minerals are dominant. However, MSS hori-
zons generally have higher Ms and Mrs, but lower Bcr values compared to host sediments (Figures 2e, 2f and 2l, 2m 
and Table 2). For example, host sediments have variable Ms (from 4.6 to 47.2 × 10 −3 A m 2 kg −1) with an average 
(±standard deviation) of 22.3 ± 12.9 × 10 −3 A m 2 kg −1 (n = 10). In contrast, Ms of the MSS horizons is much 
higher, ranging from 37.7 to 873.0 × 10 −3 A m 2 kg −1 with an average value (±standard deviation) of 337.7 ± 332
.8 × 10 −3 A m 2 kg −1 (n = 7; Table 2). MSS horizons have consistently open single-domain (SD)/vortex-state-like 
hysteresis loops (Figures 6a–6d and Figure S1a in Supporting Information S1); in contrast, the host sediments 
produce much more potbellied loops (Figures 6e and 6f and Figures S1b and S1c in Supporting Information S1) 
that are indicative of mixing of stable SD and superparamagnetic (SP) particles (Roberts et  al.,  2011; Tauxe 

Figure 5. Backscattered (BS) and secondary electron (SE) scanning images of greigite (Gr) microtextures and occurrences in thin sections of selected samples. (a–d) 
Euhedral greigite particles up to several tens of μm in sediments with magnetic susceptibility spikes (MSS). Greigite (e–g) laths or (h) small interstitial grains within 
cleavages of detrital sheet silicates; (g) stacked greigite laths, resembling a bunch of bananas; (i) aggregate of fine-grained euhedral greigite crystals; (j) large euhedral 
pyrite (Py) grains; (k) magnetite (Mag) grains with variable Ti contents; and (l) ilmenite (Ilm). Both the magnetite and ilmenite have rounded edges and are probably 
of detrital origin. Numbered plus symbols mark the spots of energy dispersive X-ray spectrometry (EDS)/electron probe microanalysis (EPMA) analyses, with detailed 
results summarized in Table 1.

+
+ +

+

+

+
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et al., 1996). These differences are also highlighted in FORC diagrams (Figures 6g–6l and Figures S1d–S1f in 
Supporting Information S1). For host sediments, FORC diagrams have closed concentric contours centered on 
a Bc peak at ∼60 mT that are shifted to negative interaction fields (Figures 6k and 6l and Figures S1e and S1f 
in Supporting Information S1), which indicates strongly interacting stable SD greigite particles (e.g., Roberts 
et al., 2011), compatible with their hysteresis loops (Figures 6e and 6f and Figures S1b and S1c in Supporting 
Information S1). However, for FORC diagrams from MSS horizons (Figures 6g–6j and Figure S1d in Supporting 
Information S1), other than the typical SD peak for greigite in the innermost contour, the inner contours have 
greater vertical spreading and the outer contours diverge rather than converge at lower coercivities. This suggests 
the presence of vortex state/multidomain (MD) grains (Lascu et al., 2018; Roberts et al., 2006, 2017, 2018). It is 
also noteworthy that FORC diagrams for MSS horizons generally have a pronounced “kidney” shape. This points 
to the cubic anisotropy of greigite as simulated by Valdez-Grijalva et al. (2018). Overall, FORC diagrams for 
MSS horizons indicate mixed SD and vortex state/MD behavior.

High-temperature thermomagnetic analysis (Figures 6m–6r and Figures S1g–S1i in Supporting Information S1) 
further reveals the dominant magnetic carrier. Thermal alteration is conspicuous in MSS horizons: a promi-
nent magnetization decay starting at ∼250°C and finishing at ∼350°C occurs due to thermochemical altera-
tion of greigite to a nonmagnetic phase (Figures 6m–6p and Figure S1g in Supporting Information S1; Chang 
et al., 2008; Dekkers et al., 2000; Reynolds et al., 1994; Roberts et al., 2011; Torii et al., 1996). This suggests once 
again that greigite is the predominant magnetic carrier in these samples. In thermomagnetic runs of host sedi-
ments (Figures 6q and 6r and Figures S1h and S1i in Supporting Information S1), a similar but relatively weaker 
change in slope is observed at ∼250°C–350°C, and after which a significant fraction of the starting magnetization 
remains, which indicates the presence of relatively small amounts of greigite. Then, the magnetization decreases 
further to ∼580°C–600°C, which points to the presence of minor magnetite (Dunlop & Özdemir, 1997). The 
tiny peaks at ∼500°C (e.g., Figures 6m–6p and Figure S1g in Supporting Information S1) probably due to the 

EDS EPMA

Spot a O F Mg Ti Al Si K S Fe Total Fe/S b (atomic ratio) Fe S Total Formula c

1 42.30 57.70 100 0.78 54.12 42.18 96.30 Fe2.95S4

2 41.87 58.13 100 0.79 53.76 41.54 95.30 Fe2.97S4

3 31.87 68.13 100 1.22 53.39 42.06 95.45 Fe2.91S4

4 38.82 61.18 100 0.90 53.17 41.71 94.88 Fe2.93S4

5 42.61 57.39 100 0.77 52.41 43.06 95.47 Fe2.80S4

6 41.05 58.95 100 0.82 52.71 42.45 95.16 Fe2.85S4

7 33.05 66.95 100 1.16 54.12 42.18 96.30 Fe2.95S4

8 38.44 61.56 100 0.92 50.34 39.04 89.39 Fe2.96S4

9 4.15 2.57 0.44 41.47 51.37 100 0.71

10 44.77 23.92 31.31 100 0.75 52.91 40.17 93.08 Fe3.02S4

11 3.43 2.81 0.37 0.28 0.64 39.66 52.80 99.99 0.76 49.58 36.75 86.33 Fe3.08S4

12 7.29 0.92 0.65 1.31 37.92 51.90 99.99 0.78

13 12.16 2.76 0.97 1.23 2.44 0.48 34.34 45.63 100.01 0.76

14 2.85 0.41 40.26 56.47 99.99 0.80

15 53.13 46.87 100 0.50 44.15 51.07 95.22 Fe0.99S2

16 31.64 4.22 64.15 100.01 –

17 35.90 29.62 34.49 100.01 –

 aSpot numbers for analyses of each sample are indicated in Figure 5.  bChemical compositions for typical magnetic grains revealed by EDS analyses do not coincide 
precisely with the expected Fe/S atomic ratio of 0.75 for stoichiometric greigite, because the 2 μm electron beam diameter is larger than individual grains under analysis. 
Analyzed mineral surfaces may also be uneven and the polish quality of resin-impregnated sections can vary.  cChemical formulae are calculated based on four sulfur 
ions for greigite and two sulfur ions for pyrite, respectively, according to the chemical composition determined by EPMA.

Table 1 
Chemical Compositions (Unit: wt%) of Typical Magnetic Grains in Thin Sections of Representative Sediment Samples Determined by EDS and EPMA
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new ferrimagnetic phase (presumably magnetite) produced by Fe-bearing clay minerals or pyrite alteration (Hirt 
et al., 1993; Just & Kontny, 2012; Passier et al., 2001).

The magnetic mineralogy is further constrained by LT magnetic measurements (Figure  7 and Figures S1j–
S1o in Supporting Information  S1). For most MSS horizons, no LT phase transition is observed in ZFC/FC 
(Figures 7b–7d and Figure S1j) and RT-SIRM (Figures 7g–7j and Figure S1m in Supporting Information S1) 
curves, which concurs with the presence of greigite, although it is not indicative of it (Chang et al., 2009; Roberts 
et al., 2011). It is noteworthy that the RT-SIRM demagnetizes continuously during cooling to 5 K in the MSS 
horizons and that irreversible remanence loss (∼7%–17%) of the initial SIRM occurs during warming back to 
room temperature (Figures 7g–7j and Figure S1m in Supporting Information S1), which is a characteristic of 
vortex state/MD behavior (Chang et al., 2007, 2009). The host sediments and a few MSS horizons (e.g., sample 
38R-1W, 70 cm) have a weak Verwey transition (Tv) at ∼120 K in ZFC/FC curves (Figures 7a, 7e, and 7f and 
Figures S1k and S1l in Supporting Information S1) and RT-SIRM curves (Figure 7l and Figures S1n–S1o in 
Supporting Information S1), which indicates the presence of a small amount of stoichiometric magnetite (Dunlop 
& Özdemir, 1997). These results corroborate the interpretation of the thermomagnetic behavior. Together, they 
are consistent with greigite as the dominant magnetic mineral in all of the studied sediments, especially in the 
MSS horizons, as indicated by the XRD patterns of magnetic mineral extracts (Figure 3). Minor magnetite is 
also present in the host sediments and occasionally in the MSS horizons. It is also noteworthy that signifi-
cant remanence “upcurling” is observed below ∼20  K in ZFC/FC curves for the host sediments (Figures 7e 
and 7f and Figures S1k and S1l in Supporting Information S1). This may be indicative of SP grains (Passier & 

Sample Depth (mbsf) NRM (10 −3 A/m) χ (10 −8 m 3 kg −1) Ms (10 −3 A m 2 kg −1) Mrs (10 −3 A m 2 kg −1) Bc (mT) Bcr (mT)

MSS horizons (n = 7)

 38R-1W, 61 cm 1,104.41 173.9 52.4 48.0 18.1 35.5 53.8

 38R-1W, 94 cm 1,104.74 137.5 765.3 369.0 113.3 29.7 49.0

 38R-2W, 34 cm 1,105.34 227.1 44.7 37.7 15.2 40.2 58.2

 38R-2W, 71 cm 1,105.71 124.4 375.2 873.0 327.1 37.5 54.6

 38R-3W, 13 cm 1,106.18 87.3 623.3 701.1 221.8 29.2 47.5

 38R-3W, 21 cm 1,106.26 77.1 184.0 248.6 81.1 28.6 46.3

 38R-1W, 70 cm 1,104.50 21.6 75.1 86.3 25.2 26.9 47.1

 Range 21.6–227.1 44.7–765.3 37.7–873.0 15.2–327.1 26.9–40.2 46.3–58.2

 Mean ± Stdev 121.3 ± 67.4 302.8 ± 293.6 337.7 ± 332.8 114.5 ± 119.0 32.5 ± 5.1 50.9 ± 4.6

Host sediments (n = 11)

 38R-1W, 18 cm 1,103.98 6.3 24.3 17.3 2.3 13.3 50.7

 38R-1W, 88 cm 1,104.68 15.4 33.1 23.3 3.9 18.7 58.5

 38R-2W, 2 cm 1,105.02 10.8 47.1 47.2 18.1 36.6 55.4

 38R-2W, 39 cm 1,105.39 7.9 33.4 23.5 9.1 40.3 59.2

 38R-2W, 76 cm 1,105.76 10.0 35.5 27.9 10.2 37.1 57.6

 38R-3W, 6 cm 1,106.11 13.5 41.2 37.0 15.3 40.9 59.4

 38R-3W, 46 cm 1,106.51 17.0 27.2 – – – –

 38R-4W, 48 cm 1,107.32 26.9 28.8 19.9 7.6 41.6 61.1

 38R-4W, 76 cm 1,107.60 1.3 24.5 14.1 3.8 32.8 67.0

 38R-5W, 8 cm 1,107.88 2.1 18.4 4.6 0.8 18.4 70.0

 38R-5W, 61 cm 1,108.41 3.7 18.2 7.8 2.7 39.8 66.2

 Range 1.3–26.9 18.2–47.1 4.6–47.2 0.8–18.1 13.3–41.6 50.7–70.0

 Mean ± Stdev 10.4 ± 7.6 30.1 ± 9.0 22.3 ± 12.9 7.4 ± 5.8 31.9 ± 10.8 60.5 ± 5.8

Note. NRM, natural remanent magnetization; χ, mass-specific magnetic susceptibility; Mrs, saturation remanence; Ms, saturation magnetization; Bc, coercive force; Bcr, 
remanent coercivity. MSS sediments refer to the sediments with magnetic susceptibility spikes and other sediments to host sediments.

Table 2 
Magnetic Parameters for Discrete Sediment Samples From the Studied Interval (∼1,103.80–1,108.80 mbsf) in Hole 1480G, IODP Expedition 362
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Dekkers, 2002; Roberts, 1995), which is compatible with their potbellied hysteresis loops (Figures 6e and 6f and 
Figures S1b and S1c in Supporting Information S1), although contributions from LT ordering of paramagnetic 
silicates (clay minerals) in the small residual field of the MPMS cannot be excluded.

4.4. Paleomagnetic Results

For many samples, thermal and AF demagnetization results reveal a low-stability remanence component, which 
constitutes a small portion of the NRM (Figure 8). Some samples have a (sub)vertical, downward-oriented NRM 
component, which is easily removed by thermal demagnetization to 100°C–150°C (Figures 8b and 8c) or AF 
demagnetization to 5–10 mT (Figures 8e–8g and 8i). Such a component is common in drill cores and is considered 
a drilling-induced overprint (McNeill, Dugan, Petronotis, et al., 2017; Yang et al., 2019). Thermal decay curves 
of the NRM usually unblock gradually with temperature, and most samples are fully demagnetized at ∼350°C 
(Figures  8a–8d), which further confirms the presence of greigite, as expected from thermomagnetic curves 
(Figure 6 and Figure S1 in Supporting Information S1). AF demagnetization results have omnipresent “NRM 
moving-away-from-the-trend-to-the-origin” behavior during AF demagnetization above 50–60 mT (Figures 8e–8i) 
due to acquisition of gyromagnetic remanent magnetization (GRM; Stephenson, 1980). GRM is also strongly 
indicative of greigite (e.g., Y. Fu et al., 2008; Roberts et al., 2011; Snowball, 1997). GRM acquisition can be 

Figure 7. (a–f) Warming curves of a saturation isothermal remanent magnetization (SIRM) imparted to samples in a 2.5 T magnetic field at 5 K. Blue and red curves 
are ZFC (zero-field-cooled) and FC (field-cooled) runs, respectively. (g–l) Low-temperature cycling curves of a room temperature SIRM (RT-SIRM) imparted to 
samples in a 2.5 T magnetic field. Blue and red curves are cooling and warming runs, respectively. Arrows with “Tv” indicate the Verwey transition.
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Figure 8. Orthogonal demagnetization diagrams and natural remanent magnetization (NRM) intensity (M) decay curves (insets) for representative samples after 
stepwise (a–d) thermal demagnetization and (e–i) alternating field demagnetization. Solid and open squares indicate horizontal and vertical plane projections, 
respectively. Heating steps were 50°C, 75°C, 100°C, 150°C, 200°C, 250°C, 300°C, 325°C, 350°C, 400°C, and 450°C, and peak AF steps were 2.5, 5, 7.5, 10, 15, 20, 
25, 30, 35, 40, 50, 60, and 80 mT.
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described quantitatively by the ΔGRM/ΔNRM ratio (Y. Fu et al., 2008), where ΔGRM = NRM80mT − NRMmin 
and ΔNRM = NRM0mT − NRMmin. Our samples have ΔGRM/ΔNRM ratios between 0.14 and 4.82 with an aver-
age of 2.34, which suggests a significant GRM contribution due to the presence of large amount of SD greigite 
in these samples (Y. Fu et al., 2008; Roberts et al., 2011). The greigite particles here are large (mostly >20 μm), 
especially in MSS horizons (Figures 4 and 5), and far beyond the threshold size for stable SD greigite (i.e., 
∼20–200 nm for cubic grains, and ∼20–500 nm for octahedral grains; Roberts et al., 2011). It, therefore, remains 
unclear whether or to what extent these greigite particles contribute to GRM, or whether the strong GRM is only 
contributed by SD greigite particles in the studied samples.

Although most samples acquired a GRM at AFs higher than 50 mT, the initial demagnetization steps can still 
be used to calculate a ChRM. A highly stable magnetization component can be isolated for most of the discrete 
samples (e.g., Figures  8a, 8b, 8e, and 8g–8i) with PCA (Kirschvink,  1980) for data between 10–15  mT and 
40–50 mT or between 150°C and 325°C. Maximum angular deviation values are mostly <10°, and often <5° (see 
Table S1 for details). Only a few samples, especially those subjected to thermal demagnetization, have incoherent 
demagnetization behavior and random remanence directions (e.g., Figure 8c). These high-coercivity components 
all have reversed polarity and their inclinations are mostly concentrated at −9° ± 7°.

4.5. TOC and TN Contents

The typical TOC background value is <0.6 wt% with an average of 0.37 ± 0.18 wt% (n = 334; Figure 9a), while 
TN is typically <0.1 wt% with an average of 0.06 ± 0.02 wt% (n = 334; Figure 9b) throughout Site U1480 
(House, 2019). TOC in the studied interval ranges from 0.44 to 0.84 wt% with an average of 0.60 ± 0.13 wt% 
(n = 14; Figure 9d), while TN ranges from 0.08 to 0.14 wt% with an average of 0.11 ± 0.02 wt% (n = 14; 
Figure 9e), which is much higher than typical background values. It is also noteworthy that the MSS horizons 
generally have relatively low TOC but are enriched in TN (Figures 9c–9e).

5. Discussion
5.1. Occurrence of Large Greigite Particles in Bioturbated Turbidites

The above-mentioned rock magnetic and paleomagnetic results reveal distinct magnetic behavior in the studied 
sediments, including the negative slope of FORC distributions, thermal alteration above ∼250°C during heating, 
lack of a LT magnetic transition, and GRM acquisition during AF demagnetization (Figures 6–8 and Figure S1 
in Supporting Information S1). All of these observations together point to the presence of greigite as the most 
likely dominant magnetic mineral. However, the authigenic 3T pyrrhotite (Fe7S8) polytype (Horng, 2018; Horng 
& Roberts, 2018) and smythite (Fe9S11; Horng et al., 2020) also have similar magnetic behavior. The overlap of 
magnetic properties of iron sulfides (i.e., greigite, smythite, and 3T pyrrhotite) makes their identification chal-
lenging through mineral magnetic means.

Nevertheless, 3T pyrrhotite is reported to have a higher Bc (>100 mT at room temperature; Horng, 2018; Horng 
& Roberts,  2018) compared to natural greigite with typical Bc values of 40–60  mT (Roberts,  1995; Roberts 
et al., 2011). Here, the studied sediment samples have average Bc values between 13 and 42 mT with an average 
of ∼32 mT (Table 2), which is much lower than that of 3T pyrrhotite. On the other hand, among these three 
magnetic iron sulfide minerals, 3T pyrrhotite has the weakest magnetization, followed by smythite, while greigite 
has the strongest magnetization (Horng, 2018; Horng & Roberts, 2018). Ms for sediments from the MSS hori-
zons ranges from 37.7 to 873.0 × 10 −3 A m 2 kg −1 with an average of 337.7 ± 332.8 × 10 −3 A m 2 kg −1 (Table 2). 
Taking 10.3 and 3 A m 2 kg −1 as Ms estimates for smythite (Hoffmann et al., 1993; Horng et al., 2020) and 3T 
pyrrhotite (Horng & Roberts, 2018), respectively, these sediments would contain 0.37–8.5 wt% (with a mean of 
3.28 ± 3.23 wt%) smythite or 1.26–29.1 wt% (with a mean of 11.3 ± 11.1 wt%) 3T pyrrhotite to produce the 
observed high Ms values in the MSS horizons (Figure 2 and Table 2). Such high concentrations of smythite or 
3T pyrrhotite seem unlikely in marine sediments and would have been detected by XRD analysis. This suggests 
that neither smythite nor 3T pyrrhotite would be the main magnetic carrier in the studied sediments. Importantly, 
our nonmagnetic analyses, including XRD analysis and SEM/EDS observations of magnetic extracts, and SEM/
EDS observations and EMPA analyses of thin sections provide strong evidence for greigite rather than smythite 
or 3T pyrrhotite in the studied sediments (Figures 3–5 and Table 1). The possibility that 3T pyrrhotite and/or 
smythite occur between chlorite sheets cannot be fully precluded. However, if present they apparently occur 
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only in trace amounts. Therefore, the combination of above-mentioned mineral magnetic properties, paleomag-
netic demagnetization behavior, microscopic observations, and chemical composition data provides compelling 
evidence that all of the studied sediments are dominated magnetically by greigite with variable size and distinct 
morphology, with minor magnetite in the host sediments. It is also worth mentioning that lath-shaped magnetic 
iron sulfide particles (Figures 5e and 5g) are identified here for the first time as greigite; such morphologies have 
previously been misinterpreted as monoclinic pyrrhotite and are likely to be a different authigenic phase (e.g., 
Roberts, 2015; Roberts et al., 2010, 2011; Weaver et al., 2002). Lath-shaped 3T pyrrhotite polytype has also 
been reported (Horng, 2018; Horng & Roberts, 2018). Each of these minerals likely requires specific formation 
conditions. Future work is needed to understand the sedimentary conditions in which lath-shaped greigite and 
other iron sulfides form.

The remanent coercive force Bcr could be a first-order grain-size indicator for natural greigite in sedimentary 
settings, with the general “ferrimagnetic” rule from SD upward in size: the coarser the grain size, the lower 
the Bcr (Dunlop & Özdemir, 1997). Bcr values in the MSS horizons are between 46 and 58 mT with an average 
of 50.9 mT (n = 7; Table 2; Figure 10a), which is at the low end of the range reported for natural greigite (i.e., 

Figure 9. Downhole (a) total organic carbon (TOC) and (b) total nitrogen (TN) of sediments from Site U1480. Close-up views of the ∼1,103.8–1,108.8 mbsf interval 
are shown in (d) and (e), with (c) comparison to magnetic susceptibility (χ). Blue bars mark MSS horizons. Diamonds: data collected in this study; dots: data from 
House (2019).
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45–95 mT) and demonstrated by SD greigite (Roberts, 1995; Roberts et al., 2011). Values are notably higher 
than those reported for synthetic vortex state/MD greigite (i.e., 11–19 mT) with mean grain sizes from <4 to 
13 μm (Chang et al., 2007). However, our Bcr values are much lower than Bcr values for SD greigite-bearing sedi-
ments from other regions worldwide, such as southwestern Taiwan (Horng et al., 1992), Hikurangi Subduction 
Margin, New Zealand (Greve et al., 2021), Nankai Trough (Kars & Kodama, 2015), South Yellow Sea, China 
(J.-X. Liu et al., 2014), and Valle Ricca, Rome, Italy (Florindo & Sagnotti, 1995), which range between 60 and 
86 mT (Figure 10a). It is also lower than that of Czech greigite from Miocene coal-bearing lacustrine sediments 
(∼56.3 mT; Chang et al., 2007), which is 4–8 μm in size and has MD-like magnetic properties (Hoffmann, 1992). 
This suggests that greigite in the MSS horizons is much coarser than widely reported natural greigite. This is 
further illustrated with a bilogarithmic plot of Mrs/Ms versus Bcr/Bc (Figure 10b), in which MSS horizons and 
host sediments have different distributions: most of the host sediments lie along the widely reported natural 
greigite data “cloud,” whereas data for some of the MSS samples plot far below it. This is indicative of different 
magnetic domain states for them. Natural greigite particles are often less than a few hundred nanometers in size 
(e.g., Lesniak et al., 2021 and references therein). Thus, in most sediments, greigite is in the SP or SD state; MD 
behavior has only been reported rarely for natural greigite (Pósfai et al., 2001; Roberts et al., 2011). Until now, 
the coarsest natural greigite reported seems to be the above-mentioned greigite from the Czech Republic (Krs 
et al., 1990). In contrast, here the MSS horizons contain abundant coarse-grained greigite particles with sizes up 
to ∼50–75 μm (Figures 4 and 5).

5.2. A New Greigite Formation Pathway

The most important determinants for greigite formation and preservation in reducing sedimentary environments 
are the amount of biologically degradable organic matter and reactive iron, as well as the availability of dissolved 
sulfate that is biologically reduced to sulfide by sulfate-reducing microorganisms (Berner,  1984; Blanchet 

Figure 10. (a) Comparison of Bcr values from this study with those reported for natural sedimentary greigite from SW Taiwan (Horng et al., 1992), Hikurangi 
Subduction Margin, New Zealand (Greve et al., 2021), Nankai Trough (Kars & Kodama, 2015), South Yellow Sea, China (J.-X. Liu et al., 2014), Valle Ricca, Rome, 
Italy (Florindo & Sagnotti, 1995), Czech Republic (Chang et al., 2007), and synthetic greigite (Chang et al., 2007). (b) Bilogarithmic plot of the hysteresis ratios Mrs/
Ms and Bcr/Bc of sediments from this study, compared to published hysteresis data for greigite from a global compilation by Roberts et al. (2011), South Yellow Sea, 
China (J.-X. Liu et al., 2014), Lake Qinghai, China (C.-F. Fu et al., 2015), Yungan Ridge, Taiwan (Horng, 2018), Lake Ohrid, Balkans (Just et al., 2019), and Hikurangi 
Subduction Margin, New Zealand (Greve et al., 2021).
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et al., 2009; Chang et al., 2014; Kao et al., 2004; Roberts, 2015). In marine sedimentary sequences, sulfate is 
omnipresent and pyrite (FeS2) is typically the end-product of sulfate reduction during diagenesis. Steady state 
diagenetic conditions are often interrupted by, for example, temporally variable organic matter input and  sedi-
mentation rate changes (Roberts, 2015). This may lead to arrest of the pyritization process, favoring the greigite 
formation and preservation. Other than greigite magnetosomes produced by magnetotactic bacteria (e.g., Kopp 
& Kirschvink, 2008) and biologically induced extracellular greigite as a by-product of sulfate-reducing bacte-
ria (e.g., Watson et al., 2000), several pathways for authigenic greigite formation have been documented (e.g., 
Roberts, 2015). They include neoformation of greigite on surfaces of early pyrite, authigenic clays (smectite, 
illite), siderite, and gypsum, or within cleavages of detrital sheet silicate grains (Florindo et  al.,  2007; Jiang 
et  al.,  2001; Roberts & Weaver,  2005). In the cored sequence, abundant coarse-grained greigite is confined 
to multiple horizons of structureless mudstone immediately below the most bioturbated intervals at top of the 
muddy TOC-rich turbidite beds (Figures 3–5 and 9). Reported sedimentary greigite formation pathways do not 
cover this mode of occurrence, which suggests the need to further explore greigite formation pathways that would 
lead to the large crystal sizes as in the present study.

Based on the mineral magnetic signatures recorded in the studied bioturbated turbidites, a conceptual model 
is proposed to illustrate the modulation of turbidites and bioturbation on greigite formation and preservation 
(Figure 11). Since ∼9.2 Ma, rapid exhumation in the broad Himalayan syntaxial region led to increased erosion 
of the Greater Himalaya (McNeill, Dugan, Backman, et al., 2017; Pickering et al., 2020). Thus, a large terrige-
nous sediment load was delivered to the Nicobar Fan by rivers, primarily the Brahmaputra River (W.-H. Chen 
et al., 2020). The Nicobar Fan sediments studied here have relatively high TOC contents (Figure 9d), implying that 
turbidite deposition introduced an external organic matter input. This would disrupt steady state conditions, under 
which pyrite is the foremost product of sulfidic diagenesis with the occasional presence of fine-grained greigite 
(Figure 11a). Benthic fauna bioturbate and rework sediments, thereby facilitating sediment–pore–water interac-
tions. Intensive bioturbation would cause downward transportation of reactive compounds like previously buried 

Figure 11. Conceptual model for the greigite-rich layers formation and preservation modulated by turbidites and bioturbation. (a) Under steady state conditions 
in anoxic sediment, reductive dissolution of detrital iron (oxy)(hydr)oxide minerals releases dissolved Fe 2+ into pore waters, where it reacts readily with upward 
diffusing hydrogen sulfide (HS −) produced by organoclastic sulfate (𝐴𝐴 SO

2−

4
 ) reduction (OSR). This leads to iron monosulfide (FeS) precipitation, which subsequently 

reacts with sulfur (S0) produced by direct reactions of iron oxides with HS − to yield pyrite (FeS2) with intermediate greigite (Fe3S4). Transformation of ferrimagnetic/
antiferromagnetic iron (oxy)(hydr)oxides into paramagnetic pyrite results in a magnetic susceptibility decrease. (b) Deposition of organic-rich turbidites disrupts steady 
state conditions. Intensive bioturbation causes downward transport of previously buried organic matter, iron (oxy)(hydr)oxides, and 𝐴𝐴 SO

2−

4
 . Upward diffusion of HS − and 

Fe 2+ in pore waters also occurs. Once in contact with O2 at/near the sediment–water interface, they are (partially) reoxidized with formation of additional iron (oxy)
(hydr)oxides and 𝐴𝐴 SO

2−

4
 , respectively. These lead to enrichment of organic matter and iron (oxy)(hydr)oxides, Fe 2+, and HS − and/or 𝐴𝐴 SO

2−

4
 at the top of the turbidite 

bed. (c) The ensuing mud-rich turbidite pulse quickly buried the previous turbidite bed and creates closed system conditions. Rapid pore water 𝐴𝐴 SO
2−

4
 consumption via 

microbially mediated OSR leads to pore water SO4 2− depletion and production of dissolved HS −. Due to the relatively abundant reactants, plentiful Fe 2+ and HS − can be 
supplied to favor iron monosulfide (FeS) formation. Once supply of Fe 2+ exceeds HS −, the pyritization process is arrested and intermediate greigite is preserved. With 
successive turbidite pulses, multiple greigite-rich layers form in intensely bioturbated horizons at the tops of turbidite beds, resulting in multiple sedimentary magnetic 
susceptibility spikes (d). See main text for details. Cartoons partially refer to Lin et al. (2021).
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organic matter, iron (oxy)(hydr)oxides, and sulfate through biological mixing (Figure  11b; e.g., Aller,  1994; 
Canfield & Farquhar,  2009; van de Velde & Meysman,  2016). Intensive bioturbation also promotes upward 
movement of sulfides from the underlying sediments, and upward diffusion of Fe 2+ in pore waters. Free Fe 2+ 
and sulfides could then be (partially) reoxidized with formation of additional iron (oxy)(hydr)oxides and sulfate, 
respectively, when they come into contact with O2 at the top of the turbidite bed and/or are recycled repeatedly 
near the sediment–water interface (Figure  11b; Anderson & Raiswell,  2004; Y. Wang et  al.,  2019; Wijsman 
et al., 2001). Fecal pellets and carcasses of these benthic bioturbating fauna would represent a further organic 
matter input to the sediments. All of these induce enrichment of organic matter, iron (oxy)(hydr)oxides, Fe 2+, and 
sulfides and/or sulfate in intensively bioturbated horizons at the top of turbidite beds.

The ensuing muddy-rich turbidite pulse rapidly buried the previous turbidite bed, which would cut off the 
downward oxygen flux and lead to a closed diagenetic system (Figure 11c). This “coffin-lid” effect facilitates 
rapid buildup of reducing conditions within sediments immediately below a turbidite (Anschutz et  al.,  2002; 
Deflandre et al., 2002; de Lange, 1986, 1998; McKay & Pedersen, 2014; Raiswell et al., 2008; Robinson, 2001; 
Robinson & Sahota, 2000; Schimmelmann, 2011; Thomson et al., 1993, 1998; Volvoikar et al., 2020). Other 
similar quasi-instantaneous depositional events, such as floods (e.g., Tesi et al., 2012; Y. Wang et al., 2019), 
can also cause punctuated redox changes. The sediments of interest here are enriched in organic matter and iron 
(oxy)(hydr)oxides, Fe 2+, and sulfides and/or sulfate as discussed above. In such closed system conditions, rapid 
porewater 𝐴𝐴 SO

2−

4
 consumption via OSR (Berelson et al., 2019; Burdige, 2006; Claypool, 2004; X. Liu et al., 2019; 

Shaw & Meyers, 1996; Thomson et al., 1993, 1998; Volvoikar et al., 2020) leads to pore water 𝐴𝐴 SO
2−

4
 depletion 

and production of dissolved HS − (e.g., Canfield, 2001). Due to the relatively high stock of reactants, abundant 
Fe 2+ and HS − can be supplied and favor iron monosulfide formation (Figure 11c). Once the Fe (oxy)(hydr)oxide 
reduction outpaces sulfide production from microbial sulfate reduction (when porewater sulfate is consumed 
completely) and supply via diffusion, a surplus of Fe 2+ over HS − is created. This will arrest the ongoing pyriti-
zation process, and greigite will be preserved as an intermediate (Kao et al., 2004). This is also supported by the 
(almost complete) lack of pyrite in the MSS horizons, which indicates that pyrite growth was effectively stopped 
by the burial conditions combined with the high sedimentation rate (∼220 m/m.y.; e.g., van Baak et al., 2016). 
It may be that the prolonged small degree of supersaturation of Fe 2+ and HS − in such a quasi-closed system 
favors the growth of greigite crystals to larger particles, because the free energy for crystal growth is typically 
lower than that for crystal nucleation (i.e., forming new “seed” crystals). For pyrite, the degree of supersatura-
tion in solution is the primary factor controlling its morphology (e.g., Murowchick & Barnes, 1987; Q. Wang & 
Morse, 1996). However, no data on crystal growth versus supersaturation exist yet for greigite, which precludes 
specific statements. This warrants further geochemical work. Accumulation of large amounts of coarse-grained 
greigite significantly elevates the magnetic susceptibility (Figure 11d). Similar diagenetic magnetic enhancement 
has been reported for organic-rich sapropels from the eastern Mediterranean Sea (Larrasoaña et al., 2003; Roberts 
et al., 1999) and Baltic Sea (Reinholdsson et al., 2013).

It is noteworthy that lower TOC values in the studied intervals generally coincide with MSS (Figures 9c and 9d). 
This may imply that a large amount of organic carbon was consumed during the sulfate reduction process to 
supply hydrogen sulfide for intermediate iron monosulfide formation. This (anti)correlation further highlights 
the control of the amount of organic matter on greigite production and preservation (e.g., Kao et al., 2004; J. 
Liu et al., 2005; J.-X. Liu et al., 2018). The presence of greigite in the upper portion of each turbidite bed, there-
fore, is attributed to insufficient sulfate supply resulting from enhanced organic matter and Fe (oxy)(hydr)oxide 
input by successive turbidite pulses, which were significantly reworked by intensive bioturbation. Nitrate (𝐴𝐴 NO

−

3
 ) 

can oxidize FeS back to ferric iron and induce incomplete iron monosulfide oxidation to form greigite (Y. Fu 
et al., 2008; Schippers & Jørgensen, 2002). Therefore, here the anomalously high TN content (Figure 9e) may 
also have contributed to greigite formation to some extent.

5.3. Implications for Paleomagnetic Studies and Fe–S–C Cycling

The most important impact of authigenic greigite on sedimentary magnetizations is the partial or even complete 
overprinting of the primary (paleo)magnetic signal due to partial or complete detrital iron oxides dissolution. 
Greigite formation, thus, leaves a secondary paleomagnetic signal in host sediments. Only when greigite forma-
tion can be shown to be early diagenetic, that is, quasi-primary, can paleomagnetic records involving greigite 
be considered trustworthy (Roberts et al., 2011), especially for classic paleomagnetic and magnetostratigraphic 
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studies. The suitability of greigite-bearing strata for high-resolution geomagnetic field studies, like paleosecular 
variation studies, remains questionable. The timing of greigite formation, which varies greatly with the availabil-
ity of dissolved sulfide and iron, is the key issue for assessing the fidelity of the paleomagnetic record carried by 
greigite (Roberts & Weaver, 2005).

As shown in demagnetization diagrams of representative samples (Figure 8), a stable ChRM can be isolated for 
most of the studied sediments (Table S1), and all have reversed polarity with inclinations mostly concentrated at 
−6.7° with α95 = 5.5°. This suggests that the samples maintained an inclination close to the expected geocentric 
axial dipole field inclination (−5.2°) for the drill site latitude at ∼8.6 Ma in the Late Miocene (approximately 
∼2.6°N, following the Indian Plate motion model of Acton [1999]). Magnetite, which has reductive dissolution 
half-lives that range from 72 days (Poulton et al., 2004) to 105 years (Canfield et al., 1992) depending on reaction 
conditions, is not detected in the MSS horizons. This implies rapid magnetite dissolution to release Fe 2+. Release 
of Fe 2+ sorbed onto silicate layers is expected to be a more important Fe 2+ source from a mass balance viewpoint 
than the few per mil of magnetite. The dissolved Fe 2+ reacts with dissolved sulfide to form iron sulfides during 
early diagenesis as discussed above (Figure 11; e.g., Berner, 1984; Hüsing et al., 2009). Also, greigite occurs here 
dominantly as large particles, laths, and only occasionally as fine-grained euhedral greigite crystal aggregates 
(Figures 4 and 5). In contrast, greigite produced by slow late diagenetic reactions, such as between the cleavages 
of detrital sheet silicates (e.g., Figure 5h; Canfield et al., 1992; Jiang et al., 2001; Passier & de Lange, 1998; 
Raiswell & Canfield, 1996; Roberts & Weaver, 2005; Roberts, 2015), is not so common in the studied sediments 
(Figure 5). Overall, these observations suggest that the coarse-grained greigite formed in an early stage after 
deposition. Vortex state greigite grains (≥70 nm) can be expected to carry a stable magnetization over billion-year 
timescales (Valdez-Grijalva et al., 2018). Here, the turbidite and bioturbation-modulated greigite particles have 
crystal sizes up to ∼10–20 μm (Figures 4 and 5), with dominantly SD/vortex state behavior (Figure 6). It is, 
thus, conceivable that the newly formed greigite recorded a (quasi-)primary near-syn-sedimentary paleomag-
netic signal. Similar cases have been reported in Dallas, TX (USA; Reynolds et al., 1999), Black Sea (Chang 
et al., 2014; Cutter & Kluckhohn, 1999; J.-B. Liu et al., 2018), eastern New Zealand (Rowan & Roberts, 2006), 
northern Italy (Hüsing et al., 2009), Santa Barbara basin (Blanchet et al., 2009; Y. Wang et al., 2019), and south-
eastern Romania (S.-Z. Liu et al., 2017; Palcu et al., 2015; Vasiliev et al., 2007).

From another perspective, our observations highlight the role of enhanced sulfur burial through the pathway 
of greigite formation and preservation in bioturbated turbidite fan sediments (Otero et al., 2003; Riedinger & 
Brunner, 2014; Shaw & Meyers, 1996; Taillefert et  al.,  2017; Yucel, Konovalov, et  al.,  2010; Yucel, Luther, 
et al., 2010). This may have important implications for the global Fe–C–S cycle. In the MSS horizons, the greigite 
content is estimated to range between 0.06 and 1.30 wt% with a mean of 0.50 ± 0.50 wt%, by comparing meas-
ured Ms values (Table 2) to that of pure greigite (67.17 A m 2 kg −1; Li et al., 2014). This implies that the samples 
contain at least ∼0.04–0.94 wt% Fe and ∼0.02–0.36 wt% S, respectively, with Fe and S in pyrite and Fe in other 
minerals not included. At the deformation front offshore of North Sumatra, the Nicobar Fan sediments are as 
thick as 4–5 km (McNeill, Dugan, Backman, et al., 2017; McNeill, Dugan, Petronotis, et al., 2017; Pickering 
et al., 2020). Bioturbated turbidites are common facies in the Nicobar Fan (Pickering et al., 2020), thus, greigite 
appears to be an important Fe and S sink.

Similar fan sediments (e.g., Congo, Bengal, and Indus Fans) should be considered globally significant iron–sulfur 
sinks which are coupled with high loadings of organic carbon. Submarine fans generally have enormous areas, 
with appreciable thicknesses. Bioturbation has been documented widely in turbidites from the late Cambrian to 
early Ordovician times (e.g., Crimes & Fedonkin, 1994). The global volume of bioturbated sediment is estimated 
to be up to 20,700 km 3 per year (Teal et al., 2008), which implies that bioturbation is the norm in many deep-sea 
floor areas (including these deep-sea fans). It also is a foremost important factor controlling the biogeochemical 
cycling of iron and sulfur (e.g., van de Velde & Meysman, 2016), as evidenced by our observations. Our results 
indicate that greigite formation and preservation modulated by turbidites and bioturbation in deep-sea fan sedi-
ments could be an overlooked Fe–S sink and that mineral magnetic methods may offer an approach for better 
understanding of the marine Fe–S–C cycle.
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6. Conclusions
Mineral magnetic measurements in combination with SEM/EDS observations, and EPMA and XRD analyses 
demonstrate the presence of massive coarse-grained (up to ∼50–75 μm) greigite confined to multiple horizons 
that lie immediately below the most bioturbated intervals at the top of muddy turbidite beds in the Sumatra 
Subduction Margin cored by IODP Expedition 362. These greigite-bearing horizons also have elevated TOC 
and TN contents than elsewhere in the sediment column. The greigite is associated with successive organic-rich 
turbidites that have tops reworked by intense bioturbation. This leads to enrichment of organic matter, iron 
(oxyhydr)oxides, Fe 2+, and sulfides and/or sulfate in the intensely bioturbated horizons at the top of turbidite 
beds, which favors greigite formation and preservation within a closed diagenetic system created by neighboring 
turbidite beds. This may be a new greigite formation pathway under conditions modulated by turbidites and 
bioturbation. The formation of abundant coarse-grained greigite results in anomalously high magnetic suscepti-
bility and NRM. Paleomagnetic analyses indicate that these greigite-bearing sediments preserve a quasi-primary 
paleomagnetic record that was acquired in an early stage after deposition. Early diagenetic greigite may, thus, 
yield reliable near-syn-sedimentary magnetic signals for paleoenvironmental and paleomagnetic studies. The 
large greigite concentrations imply that similar intensely bioturbated turbiditic sediments are an important iron 
and sulfur sink and play an important role in the global Fe–S–C cycle.

Data Availability Statement
All Expedition 362 data used for this study are available in the Zenodo database (https://web.iodp.tamu.edu/
publish/01/OVERVIEW.HTML), including (a) downhole magnetic susceptibility measured onboard with the 
SHMSL instrument (https://doi.org/10.5281/zenodo.3754971), and (b) NRM measured onboard with the 2G 
three-axis pass-through superconducting rock magnetometer (https://doi.org/10.5281/zenodo.3754797). Other 
rock magnetic and paleomagnetic data, TOC/TN data, and XRD data collected for this study can be found at: 
https://doi.org/10.5281/zenodo.7025598.
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