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Abstract: Therapy for Parkinson’s disease is quite challenging. Numerous drugs are available for
symptomatic treatment, and levodopa (LD), in combination with a dopa decarboxylase inhibitor (e.g.,
benserazide (BZ)), has been the drug of choice for years. As the disease progresses, therapy must be
supplemented with a dopamine agonist (e.g., pramipexole (PDM)). Side effects increase, as do the
required dose and dosing intervals. For these specific requirements of drug therapy, the 3D printing
method fused deposition modelling (FDM) was applied in this study for personalized therapy. Hot
melt extrusion was utilized to produce two different compositions into filaments: PDM and polyvinyl
alcohol for rapid drug release and a fixed combination of LD/BZ (4:1) in an ethylene-vinyl acetate
copolymer matrix for prolonged drug release. Since LD is absorbed in the upper gastrointestinal
tract, a formulation that floats in gastric fluid was desired to prolong API absorption. Using the
FDM 3D printing process, different polypill geometries were printed from both filaments, with
variable dosages. Dosage forms with 15–180 mg LD could be printed, showing similar release rates
(f2 > 50). In addition, a mini drug delivery dosage form was printed that released 75% LD/BZ within
750 min and could be used as a gastric retentive drug delivery system due to the floating properties
of the composition. The floating mini-polypill was designed to accommodate patients’ swallowing
difficulties and to allow for individualized dosing with an API release over a longer period of time.

Keywords: FDM 3D printing; polypill; Morbus Parkinson; personalized medicine; additive
manufacturing; gastro retentive drug delivery

1. Introduction

Worldwide, about 9% of the world’s population is older than 65 years. Over the next
few decades, the UN expects the proportion of older people to continue to rise significantly,
so that by 2100 almost 23% of the population will be at least 65. In the EU, the aging process
is already more advanced; in 2020, more than 20% of the EU population was 65 years
and older [1–3]. Due to the increase in susceptibility to disease with age, approximately
50% of Rx-medications are prescribed to patients older than 65 years [4–8]. The average
geriatric patient (≥65 years) takes 8.5 tablets per day at different times [3]. This can lead
to complications between the different drugs with potential interactions, but also to a
decrease in medication adherence, as certain dosing times and intervals are not adhered to
or administration is forgotten [9,10]. To promote patient adherence, community pharmacies
frequently offer to blister tablets in pouches or place them in medication boxes for daily
use [7]. Also, pharmaceutical manufacturers are trying to produce tablets that contain
multiple active pharmaceutical ingredients (APIs) in fixed dosages that are often prescribed
together [11,12]. For example, several APIs are prescribed for high blood pressure or
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cardiovascular diseases, and these are now in just one tablet for ingestion (e.g., Vocado®

HCT, Berlin-Chemie AG, with olmesartan, amlodipine and hydrochlorothiazide). Another
disease that requires the administration of multiple tablets is Parkinson’s disease. So far,
the disease can only be treated symptomatically and must be tailored very precisely to the
patient, since here effect and side effect go hand in hand, as both too low and too high
dopamine levels can lead to symptoms [13–15]. Parkinson’s disease is the second most
common neurodegenerative disease. On average, patients are diagnosed with Parkinson’s
at around 60 years of age. However, the onset is probably preceded by decades of changes
in the body. The number of patients worldwide has increased from 2.5 million in 1990 to
6.1 million in 2016. The main cause is the increasing aging of the population. However, the
incidence of the disease has also increased by more than 20% within individual age groups
during this time [16,17]. Parkinson‘s disease is characterized by progressive degeneration
of dopaminergic neurons in the substantia nigra [18–22]. This results in an imbalance in the
transmitter system with disinhibition of cholinergic neurons and increased glutamatergic
activity (dopamine deficiency and excess of acetylcholine). This results in inhibition of
movement. Due to the lack of dopamine, akinesia and bradyphrenia develop, rigor and
tremor are consequences of the disinhibited cholinergic system. The disease advances in a
progressive manner, showing a stepwise course associated with various motor, behavioral,
and psychological disabilities. Therapy begins early with the diagnosis. Suitable APIs and
API-classes are: levodopa (LD) (always in combination with dopa decarboxylase inhibitors
(DDI, e.g., benserazide, carbidopa)), dopamine agonists (DA, e.g., pramipexole, ropinirole),
monoamine oxidase B (MAO-B) inhibitors (selegiline, rasagiline), cathechol-O-methyl
transferase (COMT, entacapone, tolcapone) inhibitors, N-methyl-D-aspartate (NMDA)
agonists (e.g., amantadine), and anticholinergics (biperidine). For patients <70 years of
age (biological age), DA are the drug of choice. In patients >70 years, LD combined with
DDI is the preferred therapy [23,24]. As the disease progresses, however, it becomes more
difficult to control symptoms by taking tablets alone [21,25–28]. The effect of the medication
then sets in increasingly later and does not last as long: The optimal range of action in
which a drug is available in the desired concentration in the body and has the intended
effect decreases. Phases with good mobility (ON phases) and with under-mobility (OFF
phases) thus become more and more prominent. Non-motor symptoms such as behavioral
changes or depression may also become more apparent [24,29,30]. That is why the therapy
of Parkinson’s patients is constantly adapted and rarely remains a monotherapy. In the
later course, DA and LD are often combined. As patient suffering increases, pharmaceutical
manufacturers are trying to develop dosage forms that can alleviate suffering. Thus, there
are intestinal pumps (Duodopa®, Lecigon®, [31–33]), transdermal therapeutic systems
(TTS, Neupro®), orodispersible films and tablets (ODF, ODT [34,35]), tablets, capsules, and
floating dosage forms (Madopar® HBS [36,37]) for therapy on the market or in clinical
trials. Various research groups are also working on improved therapy [38]. Accordion
Pill® is one of the new innovative dosage forms [39]. It contains LD and carbidopa (DDI)
in a novel drug delivery system with combined immediate release (IR) and sustained
release (SR) kinetics. The design allows gastric retention and thus improved API uptake
for Parkinson‘s patients. In another approach, nanoparticles are being investigated as oral
and nasal dosage forms, as well as a LD powder inhaler [40–44]. Other research groups test
microspheres, liposome nanocapsules, and niosomes loaded with DA for the treatment of
Parkinson’s disease. The lipophilic formulation is expected to improve transport through
the blood-brain barrier to achieve dose reduction, thereby reducing side effects [45–47].

As Fused Deposition Modelling (FDM) 3D printing is currently being investigated for
many drugs for personalized medicine [48–59], some research groups are also interested
in printing individual drug dosage forms for Parkinson’s patients with tailored dosages
and release profiles [48,49,60–63]. The layered structure of the geometries from FDM 3D
printing and semi-solid 3D printing allows very precise dosage and adjustment of the dose.
This allows the required dose to be administered without triggering side effects, even for
APIs with a small therapeutic range [63,64]. FDM 3D printing, also called fused filament
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fabrication, requires a filament, which is previously produced by hot-melt extrusion (HME)
from a mixture of API and polymer as matrix. By simply changing the filament during
printing, FDM 3D printing enables the use of multiple APIs and polymer matrices in
one tablet during one manufacturing step. This offers the advantage of also being able
to combine APIs that are incompatible with each other in a combined formulation, as
well as being able to individually adjust the release properties of the APIs due to the
polymer matrix and surface area to volume (SA/V) ratio [65,66]. For example, Khaled et al.
developed a 3D printed polypill with five different drugs in various compartments and
two different release profiles for cardiovascular therapy [67].

In our study, we aimed to develop a 3D printed polypill-dosage form containing three
APIs with different release kinetics for the therapy of Parkinson’s disease: pramipexole
(PDM), levodopa (LD), and benserazide (BZ). In addition, the dosage form should be
adapted to the requirements of Parkinson’s patients and thus be easy to swallow, individ-
ually dosed, and have the longest possible gastric residence time (GRT) to saturate the
transporters in the upper small intestine section with LD over a long period of time to
reduce side effects and ON-OFF fluctuations. Levodopa is a precursor of dopamine and
is used in the treatment of movement disorders in Parkinson’s disease and restless legs
syndrome. The initial dose is 100 mg LD once or twice daily combined with 25 mg BZ. A
dose increase should be made every 3rd– 7th day, until a maximum daily dose of 800 mg
LD is reached. LD and BZ are dosed in a 4:1 combination. PDM is a dopamine agonist. The
initial dose is 0.26 mg pramipexole per day (corresponds to 0.375 mg PDM), the lowest
dose of one tablet is 0.088 mg. The daily dose may be increased by 0.52 mg at weekly
intervals, to a maximum dose of 3.15 mg per day (corresponds to 4.5 mg PDM) [23]. For
individual dosage and adjusted release rate, the FDM 3D printing process was used. The
DA PDM should have a fast release and the combination LD/BZ should display sustained
release from the dosage form. Therefore, PDM was processed by HME in a polyvinyl
alcohol (PVA)-filament and the combination LD/BZ in an ethylene-vinyl acetate-copolymer
(EVA)-filament. The dosage form design should be adjusted for the release rate with respect
to the absorption window in the upper jejunum via the SA/V ratio.

2. Materials and Methods
2.1. Materials

For formulation development, various sustained release (SR) polymers were first
screened using the vacuum compression molding (VCM) method (Table 1).

Table 1. SR-polymers used for VCM-formulation development (MW, molecular weight; MFI, melt
flow index).

Polyvinyl Alcohol
(PVA)

Hydroxypropyl
Cellulose
(HPC H)

Hydroxypropyl
Cellulose

(HPC SSL)

Ethylene Vinyl
Acetate (EVA)

(72:28)

Hydroxypropyl
Methylcellulose

Acetate Succinate
(HPMC-AS)

Manufacturer

Parteck MXP®,
87–89% hydrolysis

grade, MW:
approx. 32,000 Da,
Merck, Darmstadt,

Germany

MW: 1,000,000 Da,
Nisso Chemical

Europe,
Düsseldorf,
Germany

MW: 40,000 Da,
Nisso Chemical

Europe,
Düsseldorf,
Germany

Escorene UL
02528®, MFI: 25
g/10 min, TER

Chemicals,
Hamburg,
Germany

Aquasolve®, MW:
75,100 Da,
Ashland,

Wilmington, DE,
USA

After formulation development, the polypill was printed with two different filaments,
manufactured by hot-melt extrusion (HME). The composition of the filaments is shown in
Table 2.
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Table 2. Formulations used for the polypill.

Filament 1

API and Excipients % Function Manufacturer/Source

Pramipexole 2 HCl * H2O (PDM) 5.0 API 99.5%, Chr. Olesen,
Gentofte, Denmark

Mannitol 10.0 plasticizer Parteck M®, Merck,
Darmstadt, Germany

Polyvinyl alcohol (PVA) 84.0 polymer Parteck MXP®, Merck,
Darmstadt, Germany

Fumed silica 1.0 glidant Aerosil® 200 VV Pharma,
Evonik, Essen, Germany

Filament 2

APIs and Excipients % Function Manufacturer/Source

Levodopa (LD) 40.0 API
99.6%, Zhejiang Wild Wind
Pharmaceutical, Dongyang,
Zhejiang Prov., China

Benserazide (BZ) 10.0 API 99.8%, BioPharma Synergies,
Barcelona, Spain

Vinylpyrrolidone-vinyl acetate
copolymer 60:40 (PVP-VA) 15.0 polymer Kollidon VA 64®, MW: 40,000 Da,

BASF, Ludwigshafen, Germany

Ethylene-vinyl acetate copolymer
82:18 (EVA) 34.5 polymer

Escorene® FL01418, MFI:
14 g/10 min, TER Chemicals,
Hamburg, Germany

Fumed silica 0.5 glidant Aerosil® 200 VV Pharma,
Evonik, Essen, Germany

LD, BZ and PDM exhibit good water solubility (cs (LD) ≥ 12 mg/mL, cs
(BZ) ≥ 10 mg/mL, cs (PDM) ≥ 200 mg/mL [68–70]) and thus belong to the biopharmaceu-
tical classification system (BCS) class I. As HME and FDM 3D printing are heat intensive
processes, care was also taken to ensure that the process temperatures were below the
decomposition temperatures (260–330 ◦C) [62,71–74]. Due to the high water solubility of
the drug substances, the dissolution is governed solely by the polymer properties and not
by their solid-state properties.

2.2. Methods
2.2.1. Vacuum Compression Molding

To compare the release profiles of different sustained release (SR) polymers under
the same conditions, molten platelets were prepared with vacuum compression molding
(VCM, MeltPrep GmbH, Graz, Austria) technology [75]. The resulting platelets had the
same surface area (SA) and volume (V), so that the SA/V ratio did not influence the release
profile. For this purpose, powder mixtures of different SR polymers with 33% LD each were
prepared so that there was 100 mg LD in each VCM-sample (300 mg). The physical mixture
of SR polymer and LD was filled into the sample holder, which was connected to a vacuum
source. A piston was pressed onto the sample, which was melted on the hot plate until
the sample was homogeneously mixed. The process settings used are shown in Table 3.
Afterwards, the VCM-platelet was cooled and removed from the holder. The dimensions
of the resulting VCM-platelet were 20 mm in diameter and 1.5 mm in height (Figure 1).

Table 3. VCM-Process settings for different SR-polymers.

PVA HPC H HPC SSL EVA (72:28) HPMC-AS

Heating temperature/◦C 210 170 170 120 210
Heating time/min 7 7 8 7 7

Mass/mg (MV) 307 310 308 311 310
SA/V ratio/mm−1 1.5 1.5 1.5 1.5 1.5
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Figure 1. VCM platelets of different SR polymers.

2.2.2. Hot-Melt Extrusion for Filament Fabrication

All filaments were prepared by HME with a co-rotating twin-screw extruder (Phar-
malab HME 16, Thermo Fisher Scientific, Rockford, IL, USA). A gravimetric feeder (K-SFS-
24/6, Coperion K-Tron, Stuttgart, Germany) was used for all experiments. An in-house
manufactured die with a diameter of 1.85 mm was used. The desired filament diameter
was achieved using a belt haul-off unit of a winder (Model 846700, Brabender, Duisburg,
Germany) with a belt speed of 0.8 m/min and the filament was transported through a roller
system with four 360◦—air flow ring nozzles (Super Air Wipe™, Exair®, Cincinnati, OH,
USA). With the help of a laser-based diameter measurement module (Laser 2025 T, Sikora,
Bremen, Germany), the filament diameter was detected and logged during the process with
a readout rate of 1 Hz to ensure the production of filaments with low diameter fluctuations.
For extrusions with EVA, the screw speed was set to 20 rpm and powder feed rate was
set to 2 g/min. The screw configurations and the temperatures of the heating zones are
summarized in Table 4 and also described in previous publications [60,61,76].

Table 4. Extrusion parameters with adjusted temperatures during extrusion and screw configuration
of performed extrusions.

Temperature Profile in Zone 2–10 [◦C]

2 3 4 5 6 7 8 9 10

PDM-PVA filament 20 20 100 180 180 180 180 195 195
LD/BZ-EVA filament 20 20 100 100 100 100 100 100 100

Screw Configuration (Die-Gear)

PVA/EVA filaments
die–10 CE 1 L/D–KZ 1: 5 × 60◦–3 × 30◦–5 CE 1 L/D–KZ 2: 4 × 90◦–5 × 60◦–3 × 30◦–16 CE 1 L/D–2

CE 3/2 L/D–1 L/D adapter–gear
CE = conveying element, KZ = kneading zone

2.2.3. 3D Printing Process of the Polypill-Geometries

To achieve various dosages and release profiles, the geometries were designed with
the computer-aided design (CAD) program Fusion360® (Autodesk, San Rafael, CA, USA)
with focus on the volume and surface area to volume (SA/V) ratio. Afterwards, the
generated stl-files were transferred to the slicing program PrusaSlicer® (Prusa research,
Prague, Czech Republic). The individual parts of the geometries were assigned to the
respective filament. The layer height and extrusion width were adjusted to generate the
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desired height and width of the geometry. The G-code was sent to a Prusa 3D printer (Prusa
i3 Mk3, Prusa research, Prague, Czech Republic), which printed the objects defined in the
data file (Figure 2). The multi material unit (MMU) from Prusa® was used for printing
the polypill. A cleaning tower was printed between filament changes so that the previous
filament could be washed out of the nozzle and the following used filament was not
contaminated. The best results were obtained with the following temperatures: PDM-PVA
filament: 185 ◦C print temperature and 70 ◦C bed temperature, LD/BZ-EVA-filament:
220 ◦C print temperature and 70 ◦C bed temperature. Cooling during printing was turned
off, otherwise the layers would not adhere to each other. The objects were printed one
by one. The printing speed was set to 10 mm/s because the geometries had little contact
area with the print bed due to their small size and quickly detached, interrupting the
printing process.
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2.2.4. Dissolution Tests of the Polypills

The dissolution tests for the polypill (n = 3) were performed according to European
Pharmacopoeia monographs 2.9.3 and 5.17.1 [77,78]. A modified basket apparatus was
used for the dissolution apparatus (DT 700, Erweka, Langen, Germany) [61,63]. Adapted
baskets were 3D printed with water insoluble polylactide acid filament (PLA, Bavaria-
Filaments, Freilassing, Germany) with a mesh size of 3 mm and the same outer dimensions
as the regular baskets described in the European Pharmacopoeia. This adjustment was
necessary because the 3D printed tablets clogged the small meshes of the original Erweka
baskets (0.36–0.44 mm) with swollen polymer, affecting the hydrodynamics around the
printed tablet. The use of the modified baskets prevented this blockage. In addition, a
3D printed PLA-plate with a mesh size of 3 mm was clipped into the basket above the
floating dosage form so that it could not stick to the stirrer and thus distort the release
profiles. As dissolution medium degassed 0.1 N hydrochloric acid (HCl) was used. The
volume was 1000 mL, the stirring speed was set to 50 rpm and the temperature was set to
37 ± 0.5 ◦C. The dissolution tests were performed under sink conditions [63,76]. Samples
were drawn using an autosampler (Vision® AutoFill™ + AutoPlus™, Teledyne Hanson
Research, Chatsworth, CA, USA). At the set time point, 5 mL were withdrawn from the
vessel, 3.5 mL were used to wash the tubes before sampling, and 1.5 mL were transferred
directly to a HPLC vial. For polypill design (PP) 1-PP3, the first sample was drawn after
15 min, then after 30 min, and subsequently every 30 min until 180 min. Afterwards, a
sample was taken every hour until 360 min, then every 2 h until 600 min. For PP3 additional
samples were taken after 600 min every 5 h until 50 h. For the mini tablet designs MiniTab
and MiniHC, the first sample was taken after 10 min, then every 10 min until 60 min,
followed by every 30 min to 120 min, then after 1 h to 240 min, and every 2 h to 600 min.
Subsequently, samples were taken every 5 h to 1500 min.

2.2.5. HPLC Method: Chromatographic Conditions for Simultaneous Quantification of
Levodopa, Benserazide and Pramipexole

The following method is described in more detail in [76]. High performance liquid
chromatography (HPLC) analysis was used to separate all three APIs (PDM, LD, BZ). The
HPLC (Dionex, Sunnyvale, CA, USA) was equipped with a quaternary pump (P 580 A,
Dionex, Sunnyvale, CA, USA) and an autosampler (ASI-100, Dionex, Sunnyvale, CA, USA).
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For the HPLC method, a C18-column (Eurospher II 100-5, Knauer, Berlin, Germany) with
integrated precolumn was used. The eluent consisted of methanol (mobile phase B) and
ammonium acetate buffer (0.05 M, pH 4). The flow rate was set to 1 mL/min and the
oven temperature for tempering the column to 40 ◦C. The gradient was as follows: mobile
phase B was increased from 1 to 5% (v/v), within the first min, held at 5% (v/v) for 4 min,
increased from 5 to 10% (v/v) within 1 min, held at 10% (v/v) for 4 min, increased again
from 10 to 20% (v/v) within 1 min, held for 4 min at 20% (v/v), increased again from 20 to
99% (v/v) within 5 min, held for 2 min at 99% (v/v) and decreased to 1% (v/v) within 0.5
min, again until 22.5 min after sample injection. An equilibration time of 3.5 min per run
was allowed to pass before the next sample was injected. An injection volume of 200 µL
was chosen to analyze the APIs. Detection was achieved by measuring the UV absorption
of the sample at 264 nm with the help of the HPLC UV-detector [77].

2.2.6. Density Measurements with Helium Pycnometer

To determine the true density of the filaments and printed tablets, measurements were
made using a helium pycnometer (AccuPyk 1330, Model 133/00010/10, Micromeritics,
Norcross, GA, USA). The analysis conditions were 10 cycles with a purging filling pressure
of 134.55 kPa with Helium. 5 measurements per sample were performed in a 1 cm3 chamber.

2.2.7. Comparison of Release Profiles
Mean Dissolution Time

The Mean Dissolution Time (MDT), expressed in units of time, was used to com-
pare the curves and to categorize them [61,79,80]. The MDT was calculated according
to Equation (1).

MDT =
ABC
c∞

=
∑∞

i=0

[
(ci+1 − ci)×

(ti+ti+1)
2

]
c∞

(1)

The quotient of the ABC (area between the curves) and c∞, the initial drug load of the
dosage form results in the MDT. Via the trapezoidal equation, ABC is calculated with ci as
the concentration of the API released over time t. Values up to 100% API release were used,
since the ABC does not change afterwards.

Similarity Factor

In addition, the similarity factor was used to compare the release curves. Equation (2)
was used to perform the calculation [61,79,81,82].

f2 = 50 × log

{[
1 +

1
n ∑n

t=1(Rt − Tt)
2
]−0.5

× 100

}
(2)

Rt represents the API in % at time point t for the reference and Tt the API in % at time
point t for the test product. The factor n summarizes the considered number of time points.
Since the f2 value is sensitive to the number of measurement points, the number of the
considered values was constantly limited to 12 time points. An f2 value of 100 results if
the dissolution curve of the test product is completely identical to the reference curve. The
measured values may deviate from the reference by a maximum of 10%, resulting in f2
values between 50–100. If the achieved f2 value is below 50, the dissolution profiles differ
strongly, and they are not considered similar.

3. Results and Discussion
3.1. Polymer Selection for Levodopa

To increase Parkinson’s patients’ adherence to their therapy, the LD/BZ combination
should be released slowly over 12–24 h so that dosing intervals increase, and ON-OFF
fluctuations decrease. The PVA-formulation with PDM has already been developed for
previous studies [60,61,63]. To find a suitable SR polymer for the LD/BZ combination,
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VCM-platelets were prepared with a drug loading of 33% (w/w) LD and established SR
polymers: PVA, HPC H, HPC SSL, EVA and HPMC-AS. All VCM-platelets had the same
SA/V ratio and could thus be compared based on their dissolution properties (Figure 3).
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Figure 3. Dissolution profiles of LD from SR-polymer-VCM platelets (33% (w/w) LD-loading);
modified basket apparatus, 1000 mL 0.1 N HCl, 50 rpm, 37.0 ± 0.5 ◦C. x ± s; n = 3.

The aim was to achieve prolonged release with a constant dissolution rate of the
API. This target was set regarding the prolonged gastrointestinal passage in Parkinson’s
patients [83,84] and the resorption window of levodopa in the small intestinal tract via large
neutral amino acid (LNAA) transport carrier [85,86]. To achieve continuous availability
of LD/BZ in the body, the dosage form should release a constant amount of LD/BZ and
saturate the transporters for as long as possible so the “wearing off” phenomenon at the
end of dose interval is decreased [87–89]. To ensure a constant release, the tablet should
release 75% within 12 h, so that a constant API exposition is realized within the desired time
frame. Using the VCM-platelets, it was determined that PVA, HPC H and HPC SSL would
not be considered because they released the API too fast (HPC SSL 75% LD in 25 min, PVA:
75% LD in 33 min, and HPC H 75% LD in 133 min) based on their high hydrophilicity,
the formation of a hydrocolloid matrix, and swelling, as well as eroding properties of the
matrix so that the API can be solubilized faster. The final formulation including BZ should
have 50% drug-loading and thus become even more hydrophilic, so that the API release
will be faster than the VCM-API release. The API release of HPMC-AS, on the other hand,
was too slow (25% LD in 63 h), so the decision was made for the SR polymer EVA (50% API
in 75 h). In addition, EVA has a lower density (0.95 g/cm3) than water and 0.1 N HCl
(gastric fluid), so this property can be exploited for a floating, gastro-retentive drug delivery
dosage form [86].

3.2. Formulation Development with EVA

First, a formulation containing 40% LD and 60% EVA was extruded (F1, Table 5).
However, the API release was too slow, even with a high SA/V ratio of 3 mm−1 (Figure 4),
and the printing process of the filament was difficult, because of the high flexibility of the
filament. Therefore, the formulation was changed. PVA was added in equal parts with EVA
as hydrophilic polymer (F2). Nevertheless, the flexibility of EVA with a VA content of 28%
was too high, so that the printability was poor, the printed objects were not reproducible,
and the printing process repeatedly stopped because the filament clogged the nozzle. Drug
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release was faster than in F1, but still not suitable. Therefore, the EVA polymer with a VA
content of 28% was replaced by EVA with a VA content of 18% (F3). The same excipient
combination with other quantification was now extruded and printed with EVA (18% VA).
Drug release was much faster than with formulation F2, but the dosage form disintegrated
within a few minutes, so no gastro-retentive drug delivery form can be developed with
this composition. Therefore, the EVA content was increased, PVA was replaced by PVP-VA,
and mannitol was added, as the filament otherwise became too brittle (F4).

Table 5. Formulation development of SR LD-EVA formulation.

F1 F2 F3 F4

LD/% 40 10 10 10
EVA (72:28)/% 60 44.5 - -
EVA (82:18)/% - - 25 39.5

PVA/% - 44.5 64 -
Mannitol/% - - - 10
PVP-VA/% - - - 39.5

Fumed Silica/% - 1 1 1
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Figure 4. Dissolution of LD from F1, F2, F3 and F4; modified basket apparatus, 1000 mL 0.1 N HCl,
50 rpm, 37.0 ± 0.5 ◦C. x ± s; n = 3.

All formulations show a burst in the first few minutes. Subsequently, the API is
released constantly over time until approximately 80% of LD has been released. Thereafter,
the release of LD is slower and results in a plateau. The release profile can be described
with Higuchi’s square root-of-time kinetics [90–92]. First, the API, which is on the surface
of the dosage form, is dissolved. The larger the surface, the more API goes directly into the
solution. This results in what is known as a burst. The API is then released from the matrix.
In the inert matrix, depending on the diffusion path, the amount of dissolved API remains
constant over time. After a certain time, the diffusion paths for the API become longer and
longer and less API is released over time until the plateau at 100% is reached.

The formulations F3 and F4 result in a fast release profile (50% released API in 60 min,
75% released API in 125 min), which may be advantageous when the dosage form is
not gastro retentive, and the API must be fully released prior to small intestinal passage.
However, since F3 dissolves and does not retain an inert matrix, F4 was used as orientation
for the fixed-combination formulation. Formulations F1 and F2 released the API much
more slowly (F1: 25% released API in 960 min; F2: 75% released API in 1200 min) and were
thus not developed further.
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From the obtained results, it could be concluded that the fixed-combination formu-
lation should contain more than 25% EVA for the tablet to remain durable. In addition,
PVP-VA was identified as a good pore former and stiffness enhancer for better printabil-
ity. Since the desired release profile of the fixed combination should still be slower than
displayed by F4, the amount of EVA could be increased.

3.3. Formulation Development for Fixed Combination LD/BZ

Based on the previously found formulation with 10% LD, different fixed combinations
(FC) were now extruded. The EVA content was set above 30% to produce an inert, non-
disintegrating matrix (Table 6). The API proportions were fixed, as they are dosed in a 4:1
ratio (LD:BZ). The maximum dose is 200 mg LD per tablet, which is equivalent to a 500 mg
tablet at 40% content, which should be swallowable by patients and designable so that the
dimensions of the dosage form are similar to those of tablets on the market. The PVP-VA
content varied from 5–20%. The filaments with 20% PVP-VA (FC4) were too brittle and
broke directly during cooling after HME, so that they could not be used for printing. The
density measurements also reflect the EVA content. The higher the content of EVA in the
filament, the lower the density.

Table 6. Formulation development of LD/BZ fixed combination (FC) formulation.

FC1 FC2 FC3 FC4

LD/% 40 40 40 40
BZ/% 10 10 10 10

EVA (82:18)/% 44.5 39.5 34.5 29.5
PVP-VA/% 5 10 15 20

Fumed Silica/% 0.5 0.5 0.5 0.5
Density/g/cm3 1.15 1.16 1.17 -

After extrusion, parts of the filaments were used for dissolution tests to assess which
formulation was most likely to reproduce the desired release profile (SA/V: 2.3 mm−1).
Parallel quantification of LD and BZ is challenging, and the development of a suitable
analytical method to quantify the APIs simultaneous in the presence of PDM is described
in another publication [76]. As other publications have already shown, the release profiles
of BZ and LD are comparable [93–97]. To simplify the analyses in the present study, the
release profile of LD is also used as a surrogate for BZ release (Figure 5).
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Figure 5. Dissolution of LD/BZ from FC1, FC2, and FC3; modified basket apparatus, 1000 mL 0.1 N
HCl, 50 rpm, 37.0 ± 0.5 ◦C. x ± s; n = 3.
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Also with these formulations, the release starts with a burst effect. Subsequently, the
release of the APIs is more uniform. The diffusion paths within the filament strand are very
short (Ø 1.75 mm), so that the decrease in the release rate towards the end is small.

The formulations FC 1+2 release the APIs too slow (FC 1: 50% API in 1260 min, FC
2: 50% API in 780 min), whereas FC 3 shows the fastest release course and displays the
desired course (50% API in 290 min, 75% API in 720 min, 100% API in 1440 min).

3.4. Design and Dissolution of Polypill Tablet Variations

With the final LD-EVA filament formulation (FC3), and the beforehand developed
PDM-PVA filament, different geometries with various PDM and LD/BZ contents were
printed and released. The selected doses were adjusted to the dosages in available
market preparations.

First, a simple polypill design was chosen (PP1) to observe the release behavior of the
printed formulation (Figure 6 left). A cylinder with a diameter of 10 mm was selected as
geometry, which should therefore also be easy to swallow (Figure 6 right). A LD/BZ dose
of 50/12.5 mg was targeted, which corresponds to the lowest dose of tablets available on
the market, as well as a PDM dose of 3.5 mg (Table 7). The release rate was calculated for
the linear section of the profiles, after the burst until the end of the measurement (LD/BZ),
or until the plateau was reached (PDM).
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Table 7. Structure and release properties of PP1.

LD/BZ PDM

SA/V total/mm−1 1.2
SA/V/mm−1 1.6 2.4
mg API/mg 50.0/12.5 3.5

% API in 600 min 22 100
t75%/min n.d. 140

MDT/min n.d. 97
release rate/%/min 0.03 0.33

The geometry has a total SA/V ratio of 1.17 mm−1. As the PDM-PVA formulation
dissolves over time, the SA of the insoluble LD/BZ formulation increases to 1.65 mm−1.
The release of PDM can be described by the Peppas Sahlin equation [61]. The formulation
releases the API by diffusion and erosion due to the formation of a hydrocolloid matrix [98].
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Due to the layered structure of the FDM printed geometry, the medium can easily penetrate
the cylinder and release the API from the individual strands. The formulation begins to
swell and dissolve over time. The API can release through the layers and dissolve directly
due to its good solubility. After 140 min, 75% PDM was released, and thus the dissolution
profile can be categorized as prolonged release. The combination of LD/BZ is released
very slowly from the SR polymer. The matrix is inert, and the APIs can only enter solution
by diffusion. After 600 min, just 22% LD/BZ is released. The density of the entire PP1 is
1.18 g/cm3. Due to the low EVA density and most probably included pores, the buoyancy
of the polypill is maintained (Figure 7). While the PDM-PVA layer (density 1.3 g/cm3)
dissolves over time, the remaining EVA-based part retains the floating property.
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To increase the dose, a hollow cylinder-geometry (PP2) was designed that is built
up in three layers, with a total SA/V ratio of 0.9 mm−1 (Table 8). The SA/V ratio was
kept similar to PP1 to see if it is possible to increase the dose without strongly affecting
the overall release. This is of particular importance for personalized therapy [63]. The
PDM filament was printed between two LD/BZ-EVA hollow cylinder layers, so that these
two hollow cylinders can detach from each other after a while due to the solubility of
PDM-PVA-compartment and further increase the SA of the geometry during release to a
SA/V ratio of 1.3 mm−1 (Figure 8).

Table 8. Structure and release properties of PP2.

LD/BZ PDM

SA/V total/mm−1 0.9
SA/V/mm−1 1.3 2.6
mg API/mg 83/20.75 3.5

SA/V/mm−1 1.2 -
mg API/mg 97/24.25 -

%API in 600 min 21 100
t75%/min n.d. 310

MDT/min n.d. 187
release rate/%/min 0.02 0.20
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Compared to PP1, PDM is released more slowly here. This is due to the enclosed
SA of the two LD/BZ hollow cylinders. The LD/BZ release curve is very similar to PP1
(f2: 87.5). Here, 21% API is also released in 600 min. Due to the small outer SA of the
PVA formulation in contact with the medium (24% of the SA), the separation of the layers
could not proceed as quickly as desired, so that the increase in SA due to the separation
of the hollow cylinders occurred late and thus did not lead to a faster API dissolution. In
addition, it was observed that during printing of the PVA layer, EVA residues were still
present in the print head, which were rinsed out despite the intermediate cleaning step
and thus contaminated the PVA layer with EVA. The total density of the PP2 is 1.1 g/cm3.
Despite the large shape, the dosage form floats on the medium, again most likely because
of air entrapped in the structure (Figure 9). If the PDM-PVA layer between the LD/BZ-
EVA-hollow cylinders dissolves, both parts (hollow cylinders with LD/BZ-EVA) float on
the surface of the medium.
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In another polypill design (PP3), the PDM dose was changed. The total SA/V ratio
was kept similar to PP1 and PP2. PP3 design was a hollow cylinder, this time with a
small cylinder as inlay printed with the PDM-PVA filament (Figure 10). PDM-PVA was
low-dosed with 1.5 mg and LD/BZ-EVA had a content of 50/12.5 mg (Table 9).
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Table 9. Structure and release properties of PP3.

LD/BZ PDM

SA/V total/mm−1 1.1
SA/V/mm−1 1.3 2.0
mg API/mg 50.0 / 12.5 1.5

% API in 600 min 33 75
t75%/min 2100 600

MDT/min 1130 360
release rate/%/min 0.03 0.11

To represent the complete release profile, the time of the dissolution test was extended
to 3000 min. In this design, PDM was released very slowly. Despite a comparable SA/V
ratio to PP1 and PP2, only 75% PDM was released within 600 min. The SA in contact
with the medium was limited to 50%, so the SA in the complete design was reduced by
the hollow cylinder from the EVA formulation. In addition, a filament change had to be
performed for every single layer in this geometry, which again resulted in carryover of
EVA into the PVA layers. For the LD/BZ-EVA formulation, a constant drug release after
the burst could be realized with this design. With a release rate of 0.03% API/min, the
release profile is comparable to PP1 and PP2, which was desired with the choice of SA/V
ratio (f2: 60.1). The total density of the PP3 is 1.1 g/cm3. It also floats on the surface of the
medium and maintains this property over the time of release.

With these geometries, it is possible to achieve a prolonged gastro-retentive API
release for various dosages, which allows a larger time interval for drug absorption. In
addition, due to the different geometric forms but comparable SA/V ratios, it is possible
to vary the dosages from 50/12.5 mg–200/50 mg LD/BZ but keep the release profile
similar (f2 > 50). However, the release profile of the LD/BZ combination is very slow
(75% LD/BZ in 2100 min). For patients who need to respond more specifically to LD/BZ
spikes, a 24 h ingestion-interval is not an option. In addition, the selected tablet sizes are
not advantageous for patients with swallowing difficulties. Therefore, the possibility of
printing mini tablets was also investigated in this study.

3.5. Design and Dissolution of Polypill Mini Tablet Variations

With mini tablets, the dose can be finely adjusted by the patient himself by the selected
number of mini tablets. Since the diameter is ≤5 mm, these dosage forms are easy to
swallow [99,100].
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First, a mini tablet (MiniTab) was printed with the dimensions of 4 mm in diameter
and 3.6 mm in height (Figure 11 and Figure S1, Supplementary Material). The dose of
LD/BZ was reduced to 15/3.75 mg per mini tablet, so the patient can adjust the desired
LD/BZ dose in 15/3.75 mg steps by the number of tablets (Table 10). The dose of PDM
was set to 0.375 mg, which represents the smallest dose in market preparations for SR.
Therefore, the therapy can be adapted in small discreet steps.
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LD/BZ-EVA.

Table 10. Structure and release properties of MiniTab.

LD/BZ PDM

SA/V total/mm−1 2.1
SA/V/mm−1 1.6 4.4
mg API/mg 15/3.75 0.375

% API in 600 min 22.7 100
t75%/min n.d. 40

MDT/min n.d. 26
release rate/%/min 0.02 0.80

The release of PDM is fast (100% PDM in 60 min). The small cylinder can be well
covered by the medium, so that the API is quickly released from the matrix and the PDM-
PVA cylinder can be well dissolved. The release of LD/BZ is again comparable to PP1-PP3
(f2: 80.3). 23% API was released in 600 min, and the release rate is 0.02% API/ min. With
the MiniTab design, it would therefore be possible to reproduce the same release rate as
with PP1-PP3, but the dose can be individually adjusted in small steps. In addition, PDM is
released much faster with this form, so that any OFF phases of the patient can be treated
quickly. Due to the low density (1.1 g/cm3), as well as the low volume likely in combination
with entrapped air, this dosage form also floats on the surface of the medium and can thus
be used as a gastro-retentive dosage form.

To increase the release rate of the LD/BZ combination, a SA/V ratio of 4.7 mm−1 was
targeted with the next design. Therefore, a mini-hollow cylinder (MiniHC) with a dose of
10 mg LD and the appropriate SA/V ratio was printed. The interior was filled with a cross
of PDM-PVA (Figure 12, Figures S2 and S3). This design allows for maximum circulation
of the medium around both formulations. In addition, the dose of PDM can be varied by
the height of the cross, or with a different design, which can be inserted into the hollow
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cylinder. The variation in height was tested with two different PDM-doses (Table 11).
Figure 12 shows the release of MiniHC with cross with 0.4 mg PDM (MiniHCwC1, Top)
and bottom shows the release of MiniHCwC2 with 1.5 mg PDM.
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Table 11. Structure and release properties of MiniHC with a cross.

LD/BZ 1 + 2 PDM 1 PDM 2

SA/V total/mm−1 - 4.7 with LD/BZ 3.7 with LD/BZ
SA/V/mm−1 4.7 4.6 2.9
mg API/mg 10/2.5 0.4 1.5

% API in 600 min 65 100 100
t75%/min 750 20 60

MDT/min 363 14 28
release rate/%/min 0.07 1.88 0.95
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The LD/BZ release shows the same dissolution profile in both MiniHC versions. First,
a burst is seen; then, the API is released continuously over time at a rate of 0.07% API/
min. Due to the low wall thickness of the HC (1 mm) and the resulting short diffusion
pathways for the APIs, the release profile remains constant over a long time and the release
rate hardly decreases towards the end. With a released API fraction of 75% LD/BZ in
750 min, this release profile corresponds to the initially desired course. The PDM release
is faster and differs in both variations. This was expected due to the various SA/V ratios.
The printed cross with 0.4 mg PDM (PDM1, Table 11) has almost twice the SA/V ratio than
the cross with 1.5 mg PDM (PDM2). Thus, the MDT is half as big, and the drug is released
faster. This design makes it possible to insert various designs of other filaments, various
SA/V ratios, and APIs, and to combine different release profiles. The inserted geometries
can also be printed and inserted individually, independently of the outer hollow cylinder,
so that there is no cross-contamination or mixing of the filaments. The floating property
of the formulation allows prolongation of the GRT, a continuous release of the API and
thus a saturation of the amino acid transporters in the upper small intestine section with
LD (Figure 13). The small diameter and height, as well as the flexibility of the structure
facilitate the swallowing of the 3D printed form for the Parkinson’s patients. This allows
the therapy to be individually adapted to the patient.
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4. Conclusions

In this study, the first printed oral dosage form with PDM/LD/BZ was developed.
VCM was used as another new technology that is very useful to study the release properties
of polymers without the influence of SA/V ratio. HME was used to prepare a fixed-
combination of two drugs, and the FDM 3D printing process allowed the filament with the
fixed-combination to be combined with another drug-loaded filament in variable dosages.
In addition, the FDM 3D printing process enables variation of the SA/V ratio through the
variety of possible geometries, as well as the incorporation of different layers and pores,
all of which have an impact on the drug release process. Thus, not only the dose but also
the onset and duration of the effect can be influenced. This approach makes it possible to
address the individual needs of Parkinson’s patients, titrating the dose and increasing or
decreasing it in small steps as needed. In this study, it was possible to increase the LD/BZ
dose from 15–180 mg LD (3.75–107 mg BZ) and achieve a similar release profile (f2 > 50). In
addition, mini tablets and mini hollow cylinders were printed, which might be easier for
Parkinson’s patients to swallow and can be varied in number for ingestion so that the dose
can be adjusted to the situation and the daily dose, to respond to ON-OFF-phenomena.
Furthermore, the formulation has a low density, resulting in a floating property, which was
used to prolong GRT. For drugs that are absorbed in the upper part of the small intestine,
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this increases the time of API absorption, and thus the medicine intake interval is increased.
This improves patient adherence to their therapy.

The choice of polymer resulted in a very slow release; further studies may test whether
the results can be achieved with other polymers. In addition, the polypill was prepared only
with well water-soluble APIs. It would also be interesting to see how such a combination
behaves with APIs of different BCS classes.

Supplementary Materials: The following supporting information ca be downloaded at: https://
www.mdpi.com/article/10.3390/pharmaceutics14050931/s1, Figure S1: Dimensions of MiniTab:
4.93 mm in diameter, deviation of 0.07 mm to the CAD model; Figure S2: Dimensions of MiniHCwC:
6.03 mm in diameter, deviation of 0.03 mm to the CAD model; Figure S3: Images of MiniHCwC1 (left)
and MiniHCwC2 (right).
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