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INTRODUCTION
Androgen ablation has been the mainstay treatment for 

patients with metastatic prostate cancer ever since the direct 
critical link between androgens and prostate tumor progres-
sion was first described (1). The androgen receptor (AR) is the 
key driver of prostate cancer development and progression, 
and multiple therapeutic strategies have been developed over 

the years to effectively block the activity of this hormone-
driven transcription factor (TF). Upon androgen binding, 
AR is associated with the chromatin at distal cis-regulatory 
enhancer elements, where it regulates the expression of genes 
through long-range chromatin interactions in three-dimen-
sional genomic space (2, 3). AR does not operate in isolation 
but rather recruits a large spectrum of coregulators and other 

ABSTRACT In prostate cancer, androgen receptor (AR)–targeting agents are very effective in 
various disease stages. However, therapy resistance inevitably occurs, and little is 

known about how tumor cells adapt to bypass AR suppression. Here, we performed integrative multi-
omics analyses on tissues isolated before and after 3 months of AR-targeting enzalutamide monother-
apy from patients with high-risk prostate cancer enrolled in a neoadjuvant clinical trial. Transcriptomic 
analyses demonstrated that AR inhibition drove tumors toward a neuroendocrine-like disease state. 
Additionally, epigenomic profiling revealed massive enzalutamide-induced reprogramming of pioneer 
factor FOXA1 from inactive chromatin sites toward active cis-regulatory elements that dictate prosur-
vival signals. Notably, treatment-induced FOXA1 sites were enriched for the circadian clock component 
ARNTL. Posttreatment ARNTL levels were associated with patients’ clinical outcomes, and ARNTL 
knockout strongly decreased prostate cancer cell growth. Our data highlight a remarkable cistromic 
plasticity of FOXA1 following AR-targeted therapy and revealed an acquired dependency on the circa-
dian regulator ARNTL, a novel candidate therapeutic target.

SIGNIFICANCE: Understanding how prostate cancers adapt to AR-targeted interventions is critical for 
identifying novel drug targets to improve the clinical management of treatment-resistant disease. Our 
study revealed an enzalutamide-induced epigenomic plasticity toward prosurvival signaling and uncov-
ered the circadian regulator ARNTL as an acquired vulnerability after AR inhibition, presenting a novel 
lead for therapeutic development.
See related commentary by Zhang et al., p. 2017.
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TFs to promote the expression of genes that drive cancer cell 
proliferation (4). Critical AR interactors in the transcrip-
tion complex are HOXB13 and FOXA1, which are both 
upregulated in primary prostate cancer (4–6) and demarcate 
enhancers that drive not only primary tumorigenesis but also 
metastatic disease progression (7). Mechanistically, FOXA1 
acts as a pioneer factor, rendering the chromatin accessi-
ble for AR to bind (8–11). FOXA1 is frequently mutated in 
prostate cancer (12–16), which was shown to alter its pio-
neering capacities, perturb luminal epithelial differentiation 
programs, and promote tumor growth, further highlighting 
the critical role of FOXA1 in human prostate tumors (17, 18).

Most patients are diagnosed with organ-confined prostate 
cancer, which can potentially be cured through locoregional 
therapies, such as surgery (radical prostatectomy), radiother-
apy, and/or brachytherapy (19). However, approximately 30% 
of these patients experience a biochemical recurrence (BCR)—
a rise in prostate-specific antigen (PSA) serum levels—indicat-
ing prostate cancer relapse (20). At this stage of the disease, 
suppression of androgen production is a commonly applied 
therapeutic intervention that can delay further cancer pro-
gression for years (21, 22). Nevertheless, the development of 
resistance to androgen deprivation is inevitable, resulting in 
castration-resistant prostate cancer (CRPC) for which there 
is no cure (23). Most CRPC tumors acquire molecular fea-
tures that enable active AR signaling despite low circulating 
androgen levels, a finding that led to the development of 
several highly effective AR-targeted therapies. Enzalutamide 
(ENZ) is one of the most frequently used AR-targeting agents, 
which functions through a combined mechanism of blocked 
AR nuclear import, diminished AR chromatin binding, and 
decreased transcription complex formation, effectively impair-
ing AR-driven prostate cancer growth (24). ENZ’s potent 
antitumor activity has been demonstrated in multiple clinical 
trials, which led to its FDA approval in various prostate cancer 
disease stages—from metastatic CRPC (mCRPC; refs. 25, 26) 
to metastatic hormone-sensitive prostate cancer (mHSPC; ref. 
27) and even nonmetastatic CRPC (28)—illustrating how AR-
targeted therapies are being progressively introduced earlier 
in clinical practice. A clinical benefit of ENZ monotherapy as 
a neoadjuvant treatment prior to prostatectomy for patients 
with localized disease has not been established. Although 
effective in the CRPC setting, resistance to AR pathway inhibi-
tion will ultimately develop, and the management of advanced 
prostate cancer with this acquired resistance remains a major 
clinical challenge, especially since the underlying mechanisms 
are still not fully elucidated (29). Therefore, furthering our 
understanding of how ENZ affects prostate cancer biology 
may lead to the identification of acquired cellular vulnerabili-
ties that could be therapeutically exploited.

To study global drug-induced transcriptional and epige-
netic plasticity in human prostate tumors and identify cel-
lular adaptation mechanisms to evade drug treatment, we 
designed a phase II clinical trial to perform multiomics 
studies in pre- and posttreatment samples from patients 
with high-risk localized prostate cancer treated with neo-
adjuvant ENZ monotherapy. We identified transcriptional 
reprogramming after treatment, with the deactivation of AR 
signaling and an activation of cell plasticity with neuroendo-
crine (NE)-like features upon 3 months of AR suppression. 

Posttreatment, these tumors harbored a distinct set of 1,430 
de novo occupied FOXA1-positive cis-regulatory elements, 
positive for—yet independent of—AR activity, which are dic-
tated by the circadian clock core regulator ARNTL to drive 
tumor cell proliferation instead. Using ARNTL knockout 
experiments, we could restore ENZ sensitivity in treatment-
resistant cell line and xenograft models, revealing an unex-
pected biological interplay between hormonal resistance and 
circadian rhythm regulation, and identifying a novel, highly 
promising candidate drug target in the clinical management 
of primary high-risk prostate cancer.

RESULTS
Neoadjuvant ENZ Therapy for Patients with  
High-Risk Localized Prostate Cancer

To study how early ENZ intervention affects prostate tumor 
biology in a noncastrate environment, we performed integrative 
multiomics analyses as part of a single-arm, open-label, phase II 
clinical trial: the DARANA study (Dynamics of Androgen Recep-
tor Genomics and Transcriptomics After Neoadjuvant Andro-
gen Ablation; ClinicalTrials.gov identifier, NCT03297385). In 
this trial, 56 men with primary high-risk (Gleason score  ≥7) 
prostate cancer were enrolled (Fig. 1A). Patient demographics 
and disease characteristics are summarized in Table 1, and the 
clinical outcomes of this study are discussed in Supplementary 
Fig.  S1A–S1F, Supplementary Table  S1, and Supplementary 
Data. Prior to ENZ therapy, MRI-guided core needle tumor 
biopsies were taken, hereafter referred to as the pretreatment 
setting. Subsequently, patients received neoadjuvant ENZ treat-
ment (160 mg/day) without additional androgen deprivation 
therapy (ADT) for 3 months, followed by robotic-assisted lapa-
roscopic prostatectomy. Based on baseline MRI information 
and palpation, additional tumor-targeted core needle biop-
sies were taken ex vivo—representing the posttreatment setting. 
This pre- and posttreatment sampling allowed us to study 
the epigenetic, genomic, transcriptomic, and proteomic effects 
of neoadjuvant ENZ therapy in individual patients (Fig.  1A). 
We generated chromatin immunoprecipitation [ChIP sequenc-
ing (ChIP-seq)] profiles of the prostate cancer drivers AR and 
FOXA1 as well as the histone modification H3K27ac before 
and after ENZ treatment, and we integrated these cistromic 
findings with pre- and posttreatment gene expression [RNA 
sequencing (RNA-seq)], copy number [copy-number variation 
sequencing (CNV-seq)], and immunohistochemistry (IHC) data 
from the same tumors. Stringent quality control (QC) analyses 
were performed on all data streams (Supplementary Fig.  S2), 
and the following number of samples passed all QC measures 
(Fig. 1B): AR ChIP-seq (pre: n = 10; post: n = 12), FOXA1 ChIP-
seq (pre: n = 17; post: n = 17), H3K27ac ChIP-seq (pre: n = 24; 
post: n = 23), CNV-seq (pre: n = 24; post: n = 24), RNA-seq (pre: 
n = 42; post: n = 52), and IHC (post: n = 51).

Collectively, we performed integrative multiomics analyses 
as part of a clinical trial that enabled us to examine ENZ-
induced oncogenomic changes to identify early epigenetic steps 
in treatment response, but also therapy-induced resistance.

Characterization of Tissue ChIP-seq Data
To assess how neoadjuvant ENZ treatment affects the 

cis-regulatory landscape in primary prostate cancer, we 
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generated human tumor ChIP-seq profiles for the TFs AR 
and FOXA1 along with the active enhancer/promoter his-
tone mark H3K27ac before and after neoadjuvant inter-
vention. ChIP-seq quality metrics are summarized in 
Supplementary Fig. S3A–S3E and Supplementary Table S2. 
Visual inspection of known AR target genes showed high-
quality data for all ChIP factors in both clinical settings 
(Fig.  2A). On a genome-wide scale, the H3K27ac ChIP-seq 
profiles were highly distinct from the TFs and divided the 
samples into two main clusters irrespective of their treat-
ment status (Fig.  2B and C). Notably, the AR and FOXA1 
ChIP-seq data sets were intermingled in the clustering anal-
ysis, suggesting largely comparable binding profiles, which 
is in line with FOXA1’s role as a canonical AR pioneer 

factor (Supplementary Fig.  S4; refs. 5, 30). As described 
previously (31), the highest Pearson correlation was found 
between H3K27ac samples, indicating comparable histone 
acetylation profiles among primary prostate cancer samples 
(Fig. 2B; Supplementary Fig. S4). Much greater heterogene-
ity in chromatin binding was observed for the TFs AR and 
FOXA1, which was further supported by the steep decrease 
in the number of overlapping AR and FOXA1 peaks with 
an increasing number of samples compared with H3K27ac 
(Fig. 2D; Supplementary Fig. S4). Heterogeneity was compa-
rable when separately analyzing pre- versus posttreatment 
specimens and in the same order of magnitude as compared 
with previous reports describing TF cistromics and epig-
enomics in clinical samples (refs. 31, 32; Supplementary 

Figure 1.  Clinical trial design and omics data sample collection. A, Study design of the DARANA trial (NCT03297385). Multiomics profiling, 
consisting of (I) AR ChIP-seq, (II) FOXA1 ChIP-seq, (III) H3K27ac ChIP-seq, (IV) DNA copy-number sequencing (CNV-seq), (V) gene expression profiling 
(RNA-seq), and (VI) IHC analysis, was performed on MRI-guided biopsy samples prior to ENZ treatment (pre) and tumor-target prostatectomy speci-
mens after 3 months of neoadjuvant ENZ therapy (post). B, Overview of data availability and QC analyses for each sample. Individual data streams 
are indicated separately with ChIP-seq for AR (red), FOXA1 (blue), H3K27ac (green), CNV-seq, RNA-seq, and IHC (all black). The ENZ treatment status 
indicates the pretreatment (top) and posttreatment samples (bottom) per omics data set. Samples not passing QC (light gray) were successfully 
applied for focused raw data analyses. Blank spots for ChIP-seq or CNV-seq samples indicate that the fresh-frozen material did not pass the tumor 
cell percentage cutoff of ≥50%.
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Figure 2.  Characterization of tissue ChIP-seq data streams. A, Representative example snapshots of AR (red), FOXA1 (blue), and H3K27ac (green) ChIP-
seq data for four genomic loci in one patient. Pre- (light colors) and post-ENZ treatment (dark colors) are indicated. Y-axes indicate the ChIP-seq signal in 
fragments per kilobase per million reads mapped. B, Correlation heat map based on peak occupancy. Clustering of the samples is based on all called peaks 
and represents Pearson correlations between individual ChIP-seq samples. The column color bars indicate the ChIP-seq factor (AR, FOXA1, H3K27ac) and 
treatment status (pre, post). C, Principal component analysis (PCA) plot based on peak occupancy. Each dot represents a ChIP-seq sample that is colored 
per factor. D, Elbow plot depicting the peak overlap between ChIP-seq samples per factor. Shown is the percentage of overlapping peaks with an increasing 
number of samples. Consensus peak sets were designed by using a cutoff of peaks present in at least 3 AR, 7 FOXA1, or 13 H3K27ac samples. E, Pie charts 
showing the genomic distribution of AR (left), FOXA1 (middle), and H3K27ac (right) consensus peaks. UTR, untranslated region. F, Word clouds show motif 
enrichment at AR (left) and FOXA1 (right) consensus sites. The font size represents the z-score, and the colors correspond to TF families.

DARANA cohort (N = 56)
Age, years (95% CI) 67 (65–68)
Baseline PSA level, ng/mL (95% CI) 12.8 (10.4–15.2)
Baseline ISUP grade, n (%)
 ISUP 1 (GS 3 + 3) 0 (0)
 ISUP 2 (GS 3 + 4) 16 (28)
 ISUP 3 (GS 4 + 3) 9 (16)
 ISUP 4 (GS 4 + 4, 3 + 5, 5 + 3) 20 (36)
 ISUP 5 (GS 4 + 5, 5 + 4, 5 + 5) 11 (20)
T stage (T), n (%) Pre (cT) Post (ypT)
 T1  1 (2)  0 (0)
 T2  25 (44)  20 (36)
 T3  29 (52)  36 (64)
 T4  1 (2)  0 (0)
Lymph node status (N), n (%) Pre (cN) Post (ypN)
 N0  53 (95)  39 (70)
 N1  3 (5)  17 (30)
Surgical margins, n (%)
 Negative 39 (70)
 Positive 17 (30)
BCR, n (%) 23 (41)
5-year BCR-free survival, % (95% CI) 38 (28–51)
Radiologic recurrence (RR), n (%) 18 (32)
5-year RR-free survival, % (95% CI) 64 (50–82)
ADT salvage therapy (ADT), n (%) 15 (27)
5-year ADT-free survival, % (95% CI) 67 (53–85)
Distant metastasis (DM), n (%) 16 (28)
5-year DM-free survival, % (95% CI) 74 (61–91)
Mean time to last follow-up, months (95% CI) 51 (47–55)

NOTE: Table summarizing the patient baseline demographics, and pre- and posttreatment disease characteris-
tics of the DARANA cohort. Shown are age (years), initial PSA serum levels (ng/mL), and International Society 
of Urological Pathology (ISUP) grade at diagnosis [with associated Gleason scores (GS)]. In addition, T stage 
(T) and lymph node status (N) before (pre = at diagnosis) and after (post = at surgery) neoadjuvant ENZ therapy 
as well as the surgical margin status of the prostatectomy specimens are shown. Pretreatment measures are 
based on the histologic evaluation of biopsy material and radiographic evaluation (clinical grading; c), while 
posttreatment assessments are based on histologic evaluations of prostatectomy specimens (pathologic 
grading after neoadjuvant therapy; yp). BCR was defined as a rise in PSA of ≥0.2 ng/mL at two consecutive 
time points, radiologic recurrence (RR) was defined as detection of local or distant metastases by PSMA PET 
scanning, ADT salvage therapy was defined as the onset of ADT, and distant metastases (DM) were defined 
as detection of distant metastases by PSMA PET scanning (M1a-c). Five-year recurrence-free survival [% of 
patients and 95% confidence interval (CI)] and time to last follow-up (months) are indicated. For continuous 
variables (age, baseline PSA, and time to last follow-up), the mean and 95% CI are shown. For categorical vari-
ables (baseline ISUP, T stage, N status, surgical margins, BCR, RR, ADT, and DM), the number of patients (n) and 
percentages (%) are indicated.

Table 1. Characteristics of the DARANA cohort

Fig.  S5A and S5B) with a comparable overlap of peaks for 
AR and FOXA1 (Supplementary Fig.  S5C and S5D). In 
order to maintain the high-confidence peaks that have been 
reproducibly identified in multiple patients without los-
ing too much binding site heterogeneity between samples, 

we decided to generate consensus peak sets. To this end, 
we only considered binding sites that were present in at 
least 3 of 22 AR samples, 7 of 34 FOXA1 samples, and 13 
of 47 H3K27ac samples, which corresponds to ∼25% of all 
binding sites identified for each factor (Fig.  2D). Genomic 
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distribution analyses of these consensus sites revealed dis-
tinct enrichments for annotated genomic regions. Although 
AR and FOXA1 were almost exclusively found at intronic 
and distal intergenic regions, H3K27ac peaks were also 
enriched at promoters (Fig. 2E), which is in line with previ-
ously published genomic distributions of AR (5, 31), FOXA1 
(5, 9), and H3K27ac (31, 33). In addition, motif enrichment 
analyses at AR and FOXA1 consensus peaks identified, as 
expected, androgen and Forkhead response elements among 
the top-ranked motifs, respectively (Fig.  2F). Analyses on 
correlations between factors (Fig. 2B–D), genomic distribu-
tions (Fig. 2E), and motif enrichment (Fig. 2F) were repeated 
for the pretreatment samples exclusively, supporting the 
same conclusions (Supplementary Fig. S6A–S6E).

Taken together, we generated multiple high-quality tissue 
ChIP-seq data streams that then allowed us to study ENZ-
induced changes in patients with primary prostate cancer.

ENZ Treatment Enriches for Newly Acquired 
FOXA1-Bound Regulatory Regions

To identify ENZ-induced TF reprogramming and epigenetic 
changes, we performed differential binding analyses compar-
ing the pre- and posttreatment tissue ChIP-seq samples. There-
fore, we first ran occupancy-based unsupervised principal 
component analyses (PCA) to detect whether ENZ treatment 
led to differences in TF chromatin binding. Although the sam-
ple size of the AR ChIP-seq data stream was not sufficient to 
observe significant differences in peak occupancy before versus 
after treatment (Supplementary Fig. S7A), the FOXA1 data did 
show such differences, with a clear separation of pre- and post-
treatment FOXA1 samples in the second principal component 
(Fig. 3A). Subsequent supervised analysis (pre vs. post) revealed 
a total of 1,905 genomic regions [475 pretreatment-enriched 
(pre-enriched), 1,430 posttreatment-enriched (post-enriched); 
Supplementary Table S3] that showed significant differential 
FOXA1 binding between both clinical settings [false discovery 
rate (FDR)  <0.05; Fig.  3B and 3C; Supplementary Fig.  S7B–
S7D]. Further characterization of these differential FOXA1 
regions showed that both sets of binding sites were still pref-
erentially located in intronic and distal intergenic regions 
(with a slight enrichment for promoters at the post-enriched 
sites; Supplementary Fig. S7E). In addition, Forkhead domain 
family motifs were the top enriched motifs at both pre- and 
post-enriched sites, illustrating that treatment does not alter 
FOXA1 motif preference and still occupies canonical FOXA1 
binding sites (Supplementary Fig. S7F).

To examine whether structural variations were underly-
ing these differential FOXA1 binding events, we performed 

CNV-seq on the same tumor specimens and then projected 
onto the differential FOXA1 cistromics the structural copy-
number data. These analyses revealed a comparable level 
of CNV at pre- and posttreatment enriched FOXA1 sites 
before and after ENZ treatment, with an overall trend  
toward less CNV upon treatment (Supplementary Fig. S8A–
S8C). However, in none of the matched sample pairs (pre– 
and post–CNV-seq and FOXA1 ChIP-seq; n  =  15) was a 
strong correlation between copy-number difference and 
ChIP-seq signal difference observed (R =  0.11; Supplemen-
tary Fig.  S8D). In total, at only 44 of 1,905 differential 
FOXA1 binding sites (<2.5%), we observed copy-number 
differences between post- and pretreatment samples that 
could potentially explain binding site occupancy in 3 or 
more patients, indicating that the vast majority of these 
differential binding events is based on treatment-induced 
TF reprogramming rather than structural variation (Sup-
plementary Fig. S8E).

As FOXA1 dictates AR chromatin binding capacity (5), the 
epigenetic plasticity of FOXA1 induced by treatment may 
be associated with alterations in the AR cistrome. To assess 
this, and to explore the epigenetic landscape surrounding 
the differentially bound FOXA1 regions, we compared the  
ChIP-seq signal of all three factors (AR, FOXA1, and H3K27ac) 
at differential (pre-/post-enriched) and consensus (shared 
by ≥30 patients; n = 338) FOXA1 sites before and after ENZ 
therapy. Although the FOXA1 ChIP-seq signal was highest at 
consensus binding sites, the pre- and posttreatment enriched 
regions followed the expected trend and showed significantly 
higher signals in the corresponding settings (Fig. 3D). Nota-
bly, we also observed less binding of FOXA1 to consensus 
sites when treated with ENZ, although the differences were 
much milder compared with the effects seen at pre-enriched 
FOXA1 sites (Padj = 3.62 × 10−22 at consensus vs. 3.76 × 10−130 
at pre-enriched sites, Mann–Whitney U test; Fig.  3D; Sup-
plementary Fig.  S9A). This could be explained by decreased 
FOXA1 gene expression levels upon ENZ treatment (Supple-
mentary Fig. S9B). The AR ChIP-seq signal followed the same 
patterns as observed for FOXA1, suggesting that relocated 
FOXA1 upon treatment functionally drives alterations in the 
AR cistrome (Fig. 3D). Unexpectedly, the pre-enriched FOXA1 
sites were completely devoid of any H3K27ac signal in both 
pre- and posttreatment samples, although the post-enriched 
counterparts were positive for this active enhancer/promoter 
mark with a significant increase post-ENZ (Padj = 5.59 × 10−4, 
Mann–Whitney U test; Fig. 3D; Supplementary Fig. S9C and 
S9D), suggesting that pre-ENZ FOXA1 sites are inactive. To 
validate these observations in an independent cohort, we 

Figure 3.  Differential FOXA1 binding upon ENZ treatment. A, PCA plot based on peak occupancy of FOXA1 ChIP-seq data. Color indicates pretreat-
ment (light blue) and posttreatment (dark blue) FOXA1 samples. B, Coverage heat map depicting differential FOXA1 binding sites selectively enriched 
in the pretreatment (n = 475) or posttreatment (n = 1,430) setting. C, Representative example snapshots of FOXA1 ChIP-seq signal at two pre-enriched 
(left) and two post-enriched (right) FOXA1 sites in one patient (DAR45). Pre- (light blue) and post-ENZ treatment (dark blue) are indicated. Y-axes indi-
cate ChIP-seq signal in fragments per kilobase per million reads mapped. D, Box plots indicating ChIP-seq signal (z-scaled read counts) at pre-enriched 
(n = 475), post-enriched (n = 1,430), and consensus FOXA1 peaks (shared by ≥30 patients; n = 338) for FOXA1 (blue), AR (red), and H3K27ac (green) 
ChIP-seq data sets before (pre; light colors) and after (post; dark colors) ENZ treatment. **, P < 0.01; ***, P < 0.001; ****, P < 0.0001 (Mann–Whitney U 
test adjusted for multiple testing using FDR). E, Coverage heat map showing the occupancy of differential (pre-/post-enriched) and consensus FOXA1 
peaks in an external ChIP-seq data set consisting of 100 untreated primary tumors (31). Heat map color indicates region read counts (z-score) at pre-
enriched, post-enriched, and consensus FOXA1 sites (rows) in the AR (red), H3K27ac (green), and H3K27me3 (gray) ChIP-seq data streams (columns). 
F, Bar chart representing the overlap between differential FOXA1 sites (pre-enriched or post-enriched) and constitutively active (left) or inactive (right) 
ARBS based on STARR-seq. *, P < 0.05; ****, P < 0.0001 (Fisher exact test).
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analyzed previously published AR (n = 87), H3K27ac (n = 92), 
and H3K27me3 (n  =  76) ChIP-seq data from a cohort of 
100 primary treatment-naive prostate cancer samples (31). 
Supporting our previous analyses, the vast majority of post-
enriched FOXA1 sites were H3K27ac-positive and their his-
tone acetylation status positively correlated with AR binding 
(R = 0.78; Fig. 3E; Supplementary Fig. S9E). The pre-enriched 
FOXA1 sites, however, were again H3K27ac-negative, while 
the repressive histone modification H3K27me3 was present, 
which further points toward an inactive epigenetic state of 
these regulatory regions (Fig. 3E).

Recently, we reported that prostate cancers can reacti-
vate developmental programs during metastatic progression 
(7). These sentinel enhancers appeared to be premarked by 
FOXA1 from prostate gland development, and albeit inac-
tive in normal prostate and primary tumor specimens, the 
sites get reactivated by AR during metastatic outgrowth. 
Given the inactivity of the pre-enriched FOXA1 sites, we 
hypothesized that FOXA1 might be decommissioned at such 
developmental enhancers prior to hormonal intervention. To 
test this, we overlapped the differential FOXA1 binding sites 
with the metastasis-specific AR binding sites (met-ARBS; 
n  =  17,655), which revealed a strong enrichment for these 
developmental regulatory elements at pretreatment FOXA1 
sites (P  =  2.13  ×  10−16, Fisher exact test; Supplementary 
Fig. S9F). But are the inactive preenriched FOXA1 sites solely 
epigenetically suppressed, or are these regions intrinsically 
incapable of being active in this cellular context? To address 
this question and to further elucidate the role of AR at these 
differentially bound FOXA1 sites, we integrated our tissue 
ChIP-seq findings with previously identified tumor-specific 
ARBS (n = 3,230; ref. 5) that were functionally characterized 
using self-transcribing active regulatory regions sequencing 
(STARR-seq), a massive parallel reporter assay to system-
atically annotate intrinsic enhancer activity (34). With this, 
three distinct classes of ARBS were identified (Supplementary 
Table S4): enhancers that were active regardless of AR stimu-
lation (constitutively active; n = 465), ARBS with no signifi-
cant enhancer activity (inactive; n = 2,479) and inducible AR 
enhancers that increase activity upon androgen treatment 
(inducible; n  =  286). Interestingly, we found that posttreat-
ment FOXA1 sites were enriched for constitutively active 
ARBS, which further supports the high enhancer activity and 
H3K27ac positivity observed at these sites, but also illustrates 
that this activity is constitutive and AR independent (Fig. 3F). 
Consistent with our postulated inactivity of the pretreat-
ment enriched FOXA1 sites, these regions overlapped highly 
significantly with inactive ARBS (P = 8.60 × 10−9, Fisher exact 
test), which implies that these DNA elements are intrinsically 
inactive and incapable of acting as functional enhancers, and 

possibly explains why these AR-bound sites did not show 
active regulatory marks (Fig.  3E and F). As no enrichment 
of our differential FOXA1 sites was observed with inducible 
ARBS (pre-enriched: 4/475; post-enriched: 2/1,430), these 
data further support a conclusion that AR itself is not a driver 
at FOXA1 sites that are differentially occupied after ENZ 
exposure in patients.

Overall, these results suggest that prior to hormonal inter-
vention, FOXA1 is decommissioned at inactive developmen-
tal enhancer elements, which based on their primary DNA 
sequence are intrinsically incapable of being active—at least in 
the tested hormone-sensitive disease setting. However, upon 
ENZ treatment, FOXA1 gets reprogrammed to highly active cis-
regulatory regions, which act in an AR-independent manner.

Transcriptional Rewiring upon Neoadjuvant ENZ
Having assessed the cistromic and epigenomic changes 

in response to neoadjuvant ENZ, we next determined how 
transcriptional programs were affected by this hormonal 
intervention. PCA across both treatment states revealed that 
3 months of ENZ therapy has a major effect on global gene 
expression profiles (Fig. 4A). Subsequently, we performed dif-
ferential gene expression analysis in which we compared pre- 
and posttreatment RNA-seq samples. Gene set enrichment 
analysis (GSEA) showed that AR signaling, along with mitosis 
and MYC signals, was strongly decreased upon treatment 
(Fig.  4B and C; Supplementary Fig.  S10A). As ENZ blocks 
the AR signaling axis, we analyzed the androgen response 
pathway in more detail, which revealed a strong downregula-
tion of AR target genes in almost every patient (Fig. 4D). In 
contrast to this, TNFα signaling, IFNγ response, and epithe-
lial–mesenchymal transition (EMT) signals were the most 
upregulated (Fig. 4B; Supplementary Fig. S10B).

Previously, we identified three distinct subtypes of primary 
treatment-naive prostate cancer (31), which we named clusters 
1 to 3 (Cl1–3). Although Cl1 and Cl2 were mainly dominated 
by their ERG fusion status—with Cl1 expressing high ERG 
levels (ERG fusion–positive) and Cl2 expressing low ERG lev-
els (ERG fusion–negative)—Cl3 was enriched for NE-like fea-
tures, including low AR activity and a high NE gene expression 
score. To assess the impact of neoadjuvant ENZ therapy on 
these prostate cancer subtypes, we performed unsupervised 
hierarchical clustering in pre- and posttreatment settings 
using the originally identified top 100 most differentially 
expressed genes per cluster. Prior to hormonal intervention, 
we could robustly assign the samples into all three clusters 
(Cl1: n = 23, Cl2: n = 11, Cl3: n = 8) with highly comparable 
distributions, as we previously reported in another cohort 
of patients (ref. 31; Supplementary Fig. S11A). Our pre- and 
posttreatment sampling now allowed us to investigate how 

Figure 4.  Neoadjuvant ENZ deactivates AR signaling and induces NE-like gene expression signatures. A, PCA plot based on gene expression data. 
Color indicates pretreatment (gray) and posttreatment (black) samples. Ellipses are based on the 80% confidence interval. B, GSEA for Hallmark gene 
sets. Shown are the top differentially enriched pathways upon ENZ treatment. Y-axis indicates the normalized enrichment score (NES). C, Enrichment 
plot of the Hallmark androgen response pathway. Genes are ranked by differential expression upon ENZ treatment based on patient RNA-seq data (post 
vs. pre). Y-axis indicates enrichment score (ES). GSEA statistics (FDR, ES, NES, nominal P value) are indicated. D, Unsupervised hierarchical clustering 
of pre- and posttreatment RNA-seq samples based on the expression of AR-responsive genes. Color scale indicates gene expression (z-score). E, River 
plot showing state transitions between clusters 1 (dark blue), 2 (green), and 3 (light blue) for paired pretreatment and posttreatment RNA-seq samples 
(n = 39). The number of samples assigned to each cluster before and after treatment as well as the hallmarks per cluster are indicated. F, Waterfall plot 
depicting the Pearson correlation of NE gene expression signature fold changes upon ENZ treatment per patient. Colors indicate the patients’ cluster 
affiliations after treatment.
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individual tumors were affected by neoadjuvant therapy. This 
revealed that three months of ENZ therapy pushed almost 
all of the tumors toward our NE-like Cl3 (Fig.  4E; Sup-
plementary Fig.  S11B). To ensure that the observed effects 
are not solely driven by the treatment-induced reduction 
in AR activity (Fig.  4C and D), we used a well-established 
NE prostate cancer (NEPC) signature (35) to calculate gene 
expression fold changes (FC) pre- versus post-ENZ, which 
confirmed an induction of NE-like signaling upon treatment 
(Fig.  4F). We further validated this transcriptional rewiring 
using gene sets that distinguish the three major lineages of 
prostate epithelial cells (luminal, basal, and NE; refs. 36, 37),  
which jointly illustrated reduced AR-driven luminal cell 
transcriptional activity accompanied by an enrichment of 
NE-like features along with a basal-type transcriptional pro-
gram after treatment (Supplementary Fig. S12A). Along these 
lines, classic NEPC markers (38) and transcriptional disease 
drivers (39–41) were selectively upregulated upon treatment 
(CHGA, PEG10) with the acquisition of promoter-enriched 
H3K27ac (Supplementary Fig.  S12B–S12D), while others 
were not affected on expression level (SYP, N-MYC) or not 
even expressed in primary tumors—irrespective of neoad-
juvant treatment status (BRN2, encoded by the POU3F2 
gene). For the classic NEPC IHC markers chromogranin A 
(CHGA) and synaptophysin (SYP), tissue microarrays (TMA) 
were stained and analyzed, showing no change (SYP) or a 
modest nonsignificant increase (CHGA) upon neoadjuvant 
ENZ treatment (Supplementary Fig. S12E).

Recently, N-MYC ChIP-seq data were reported in models 
of NEPC (40), which showed a limited overlap with our 
posttreatment FOXA1 cistrome (Supplementary Fig.  S12F). 
Although a subset of NEPC markers were enriched at the 
RNA-seq level, FOXA1 reprogramming did not seem to be 
a crucial driver in this phenomenon based on the limited 
overlap of our differential FOXA1 cistromes with a recently 
reported NEPC FOXA1 cistrome (ref.  42; Supplementary 
Fig. S13A), nor was FOXA1 ChIP-seq in our study enriched 
for classic NEPC signature genes (Supplementary Fig. S13B). 
Jointly, these data suggest that altered FOXA1 cistromics 
after neoadjuvant ENZ treatment present a different biological 
state as compared with the fully developed NEPC-associated 
FOXA1 cistrome that presents in the advanced disease stage 
and may represent an early intermediate state.

FOXA1 is frequently mutated in primary prostate cancer 
(14) and metastatic disease, in which FOXA1 mutations 
were associated with loss of lineage-specific transcriptional 
programs and worse clinical outcomes (17, 18). Therefore, 
we determined the FOXA1 mutation status of our clinical 
samples using H3K27ac ChIP-seq and RNA-seq reads cover-
ing the FOXA1 gene (43) and tested for possible enrichment 
for poor clinical outcome and NE-like gene expression fea-
tures specifically in the FOXA1-mutant cases. Although we 
observed a significant enrichment of FOXA1-mutant tumors 
among ENZ nonresponders (BCR ≤6 months after surgery), 
no such enrichment was observed at the transcriptomic 
level, likely affected by the almost-complete transition of all 
our tumor samples toward the NE-like Cl3—irrespective of 
FOXA1 mutation status (Supplementary Fig. S13C–S13F).

Collectively, these results demonstrate that 3 months of 
neoadjuvant ENZ therapy not only uniformly diminish AR 

signaling but also push practically all of our primary pros-
tate cancer samples to acquire some—but not all—features of 
NEPC, independent of their original subtype.

Posttreatment FOXA1 Sites Drive Prosurvival 
Gene Programs, Dictated by the Circadian Clock 
Component ARNTL

Having examined the global cistromic and transcriptomic 
changes upon ENZ therapy, we next sought to character-
ize the biological consequences of the observed FOXA1 
reprogramming using integrative analyses. We hypothe-
sized that the newly acquired FOXA1 sites would be driv-
ing the expression of genes associated with tumor cell 
survival programs. Using H3K27ac-centric chromatin con-
firmation (HiChIP) data generated in LNCaP cells (44), 
pre- and posttreatment FOXA1 sites were coupled to their 
corresponding gene promoters (Supplementary Table  S5). 
Subsequently, genome-wide CRISPR knockout screen data 
from Project Achilles (DepMap 20Q1 Public; VCaP) were 
used to identify those genes essential for prostate cancer 
cell proliferation (45, 46). Although genes associated with 
pretreatment FOXA1 sites were not enriched for essential 
genes (gene effect score  <−1), genes under the control of 
posttreatment FOXA1 sites showed a significant enrich-
ment (P = 8.66 × 10−8, Fisher exact test) for critical drivers 
of tumor cell proliferation (Fig.  5A), pointing toward a 
possible role for these sites in maintaining proliferative 
potential upon ENZ treatment. However, the factor regu-
lating these genes to possibly drive proliferation remained 
elusive, especially since based on our STARR-seq and RNA-
seq data, AR is likely not driving enhancer activity at post-
treatment FOXA1 sites (Fig. 3F; Fig. 4C and D). Therefore, 
we sought to identify TFs involved in the activation of these 
regulatory regions that are selectively occupied by FOXA1 
following treatment. To this end, we overlaid the genomic 
coordinates of the posttreatment enriched FOXA1 binding 
sites with those identified in publicly available ChIP-seq 
data sets (n = 13,976) as part of the Cistrome Data Browser 
TF ChIP-seq sample collection (47, 48). Besides FOXA1 and 
AR, which were expected to bind at these regions (Fig. 3D), 
we also identified the glucocorticoid receptor (GR; encoded 
by the NR3C1 gene), which has previously been described 
to be upregulated upon antiandrogen treatment and able 
to drive the expression of a subset of AR-responsive genes, 
conferring resistance to AR blockade (49–51). Unexpectedly, 
the second most enriched TF after FOXA1 was the circadian 
rhythm core component ARNTL (also known as BMAL1), 
which has not previously been implicated in prostate can-
cer biology (Fig.  5B). Interestingly, ARNTL transcript lev-
els were upregulated upon ENZ treatment (P =  6.4 ×  10−3, 
Mann–Whitney U test; Fig.  5C), which was accompanied 
by increased H3K27ac ChIP-seq signals at the ARNTL locus 
(Supplementary Fig. S14A). Consistent with this, TMA IHC 
analysis also revealed elevated ARNTL protein levels after 
treatment when comparing the prostatectomy specimens 
post-ENZ with those of matched untreated control patients 
(P = 6.89 × 10−19, Fisher exact test; Fig. 5D). To assess whether 
ARNTL levels are also associated with patient outcome, we 
compared the average ARNTL gene expression of patients 
who did not experience a BCR (responders, n  =  29) with  
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Figure 5.  Acquired FOXA1 sites drive key survival genes that are under the control of the circadian rhythm regulator ARNTL. A, Box plot showing 
DepMap (20Q1) genome-wide loss-of-function CRISPR screen data for VCaP prostate cancer cells, separately analyzing the gene effect score of genes 
associated with post-enriched FOXA1 sites (top), pre-enriched FOXA1 sites (middle), or all other tested genes (bottom). Differential (diff.) FOXA1 
binding sites were coupled to their respective target genes using H3K27ac HiChIP data. Indicated as controls are prostate cancer–relevant driver genes: 
oncogenes MYC, FOXA1, AR, and TP53 and tumor suppressor PTEN. The recommended stringent gene effect score cutoff of −1 is shown (dotted vertical 
line), and all genes passing the essentiality threshold are highlighted in light blue. ns, P > 0.05; ****, P < 0.0001 (Fisher exact test). B, Dot plot representing 
ranked GIGGLE similarity scores for transcriptional regulators identified at posttreatment FOXA1 sites. The top 20 identified factors are shown, and the 
five most enriched factors are labeled. C, Box plot showing normalized ARNTL gene expression before and after 3 months of neoadjuvant ENZ treat-
ment. **, P < 0.01 (Mann–Whitney U test). D, Representative ARNTL IHC stainings (left) and quantification of ARNTL staining intensity (right) in TMAs 
consisting of prostatectomy specimens from untreated patients (not receiving neoadjuvant ENZ; n = 110) and DARANA patients post-ENZ (n = 51). Scale 
bars, 100 μm. ****, P < 0.0001 (Fisher exact test). PCa, prostate cancer. E, Box plots depicting normalized ARNTL gene expression in ENZ nonresponders 
(BCR ≤6 months; n = 8) and responders (no BCR; n = 29) in the pretreatment (left) and posttreatment (right) setting separately. ns, P > 0.05; **, P < 0.01 
(Mann–Whitney U test).
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those that experienced an early BCR within ≤6 months after 
surgery (nonresponders, n  =  8; Supplementary Table  S1). 
Although pretreatment ARNTL levels were not significantly 
different between ENZ responders and nonresponders, high 
ARNTL levels after treatment were associated with poor 
clinical outcomes (P  =  4.79  ×  10−3, Mann–Whitney U test; 
Fig.  5E). In agreement with this observation, ARNTL lev-
els were exclusively found upregulated in nonresponders 
(P  =  3  ×  10−4, paired Mann–Whitney U test), while overall 
remaining unaffected upon neoadjuvant ENZ treatment in 
responders (P = 0.33; Supplementary Fig. S14B).

Interestingly, while the CLOCK and NPAS2 proteins, 
which form a heterodimer with ARNTL to activate tran-
scription of core clock genes, did not show differential gene 

expression upon ENZ treatment (Supplementary Fig. S14C), 
all downstream ARNTL targets were upregulated upon 
treatment—except for CRY1, which has recently been shown 
to be AR- and thus ENZ-responsive (52). In addition, the 
gene expression of these ARNTL dimerization partners was 
also not associated with clinical outcomes (Supplementary 
Fig.  S14D), hinting toward a treatment-induced role of 
ARNTL that is independent of its canonical function in the 
circadian machinery.

Notably, in two cohorts of mCRPC (53, 54), ARNTL 
expression was not associated with outcome (Supplementary 
Fig. S15A–S15D), suggesting a context-dependent prognostic 
potential of this gene being associated with outcome in high-
risk primary prostate cancer upon treatment with ENZ.

Figure 6.  Treatment-induced dependency on ARNTL in ENZ-resistant prostate cancer (PCa) cells. A, Experimental set-up for in vitro validation experi-
ments. B, Tornado plots (left) and average density plot (right) visualizing ARNTL ChIP-seq signal [in fragments per kilobase per million reads mapped (FPKM)] 
at post-enriched FOXA1 binding sites in untreated (PreLNCaP), short-term ENZ-treated (PostLNCaP), and ENZ-resistant NE-like LNCaP cells (ResLNCaP-42D). Data 
are centered at posttreatment FOXA1 peaks depicting a 5-kb (heat maps) or 1-kb (density plots) window around the peak center. Heat map color depicts 
the ChIP-seq signal compared with the untreated condition (PreLNCaP), with blue indicating lower peak intensity and orange indicating higher peak intensity 
(n = 2). C, Volcano plot depicting ARNTL interactors in ENZ-treated LNCaP-42D (ResLNCaP-42D) cells over IgG control. Significantly enriched interactors upon 
ARNTL immunoprecipitation (IP) are highlighted, and significance cutoffs are shown as dotted lines [label-free quantitation (LFQ) difference ≥1.8; P ≤ 0.05; 
n = 4]. D, Stacked bar chart (top) indicating the fraction of ARNTL binding sites in ENZ-treated LNCaP-42D (ResLNCaP-42D) cells that are ARNTL unique 
(n = 3,309) or shared with FOXA1 (n = 3,732). Tornado plots (bottom left) and average density plots (bottom right) visualize ARNTL ChIP-seq signal (in 
FPKM) at ARNTL unique or ARNTL–FOXA1 shared binding sites in LNCaP-42D cells upon transfection with nontargeting siRNA (siNT) or siFOXA1. Data are 
centered at ARNTL peaks depicting a 5-kb (heat maps) or 1-kb (density plots) window around the peak center (n = 2). (continued on following page)
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Figure 6. (Continued) E, Word cloud shows motif enrichment at ARNTL consensus sites (n = 1,515). The font size represents the z-score, and colors 
correspond to TF families. Because the human ARNTL motif is not part of the tested database, the homologous mouse motif (Arntl) was included. F, Venn 
diagram (top) indicating the overlap of ARNTL binding sites in all tested cell line conditions (PreLNCaP, PostLNCaP, ResLNCaP-42D). For each condition, only 
peaks present in both replicates were included. Gene ontology terms for ARNTL-bound gene sets uniquely shared between PostLNCaP and ResLNCaP-42D 
conditions are presented below the diagram. Overlapping ARNTL binding sites (n = 1,752) were coupled to their respective target genes using H3K27ac 
HiChIP data. Color indicates the gene set enrichment (FDR q-value), and size depicts the number of genes that overlap with the indicated gene sets. Cell 
cycle–related gene ontology terms are highlighted. G, Bar chart (top) showing relative cell viability of LNCaP (left) and LNCaP-42D (right) cells upon 
transfection with nontargeting siRNA (siNT) or siARNTL and exposure to ENZ. Treatment is indicated, and data are shown relative to the untreated 
(– ENZ) siNT condition per cell line (n = 3). Western blots (bottom) indicate ARNTL protein levels in LNCaP (left) and LNCaP-42D (right) cells follow-
ing siRNA-mediated silencing of ARNTL for 48 hours. Transfection with siNT and staining for ACTIN are included as controls for siRNA treatment and 
protein loading, respectively. Images are representative of three independent experiments. ns, P > 0.05; *, P < 0.05; ***, P < 0.001 (two-way ANOVA 
followed by Tukey multiple comparisons test). H, Growth curves depict tumor volume (measured 3 times per week using calipers) of nontargeting control 
(sgNT) or ARNTL knockout (sgARNTL) LNCaP-42D xenografts upon daily treatment with vehicle alone (sgNT + Veh: n = 4; sgARNTL + Veh: n = 3) or ENZ 
(sgNT + ENZ: n = 4; sgARNTL + ENZ: n = 2). ns, P > 0.05; *, P < 0.05 (t test).

Taken together, these data suggest that the circadian clock 
regulator ARNTL may be functionally involved in ENZ resist-
ance in high-risk primary prostate cancer by driving tumor 
cell proliferation processes.

Acquired ARNTL Dependency in ENZ-Resistant 
Prostate Cancer Cells

To further investigate the relevance of ARNTL as a tran-
scriptional driver at posttreatment FOXA1 sites, we performed 

in vitro validation experiments. To this end, we used hormone-
sensitive LNCaP prostate cancer cells, which we cultured 
either in full medium alone (preLNCaP) or with ENZ for 
48 hours (postLNCaP), mimicking our clinical trial setting 
(Fig. 6A). Based on the ENZ-induced acquisition of NE-like 
gene expression profiles in our patient cohort (Fig. 4E and F), 
we also included the ENZ-resistant LNCaP-42D model (41) 
that possesses NE features (ResLNCaP-42D; Fig. 6A), allowing us 
to further validate our patient-derived findings in cell lines 
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recapitulating the transcriptional features of posttreatment 
clinical specimens.

We performed FOXA1 ChIP-seq experiments in all three 
cell line conditions (Supplementary Fig.  S16A–S16D; Sup-
plementary Table S6), which revealed highly similar FOXA1 
chromatin binding dynamics as observed in our clinical sam-
ples: Although the pre-enriched FOXA1 sites identified in vivo 
showed less binding upon treatment, we observed that merely 
48 hours of ENZ exposure was sufficient to strongly induce 
binding at post-enriched sites, which was further increased 
in the long-term exposed, treatment-resistant LNCaP-42D 
cell line (Supplementary Fig.  S16E and S16F). Similarly, 
genome-wide correlation analyses indicated that short-term 
ENZ treatment in cell lines induced FOXA1 reprogramming 
to regions that are FOXA1 bound in treatment-resistant 
but not in treatment-naive cells (Supplementary Fig.  S16G 
and S16H).

Having shown that differential FOXA1 chromatin binding 
in tumors could be recapitulated in vitro, we next sought to 
further assess the role of ARNTL in these preclinical models. 
Therefore, we first measured the intrinsic enhancer activity 
of our patient-derived and cell line–validated differential 
FOXA1 binding sites by STARR-seq for 1,209/1,905 differen-
tial regions in LNCaP cells. Notably, we identified a subset of 
regions (n = 968) with sustained enhancer activity upon ENZ 
treatment (Supplementary Fig. S17A), confirming our initial 
STARR-seq analysis (Fig. 3F). Although GIGGLE analyses on 
the inactive regions showed enrichment for FOXA1 and AR, 
active enhancers—irrespective of treatment—were specifically 
enriched for ARNTL (Supplementary Fig.  S17B and S17C). 
These data are in full concordance with the tumor H3K27ac 
ChIP-seq (Fig. 3D) analyses, showing AR-independent activity 
at the posttreatment enriched FOXA1 sites, and uncovered 
once more ARNTL as a possible driver for transcriptional 
activity in the case of AR suppression.

Next, we confirmed that treatment with ENZ increased 
ARNTL protein levels in prostate cancer models (Supple-
mentary Fig.  S18A), recapitulating the clinical observations 
(Fig. 5C and D). Interestingly, this treatment-induced ARNTL 
upregulation appeared to be FOXA1-dependent, as FOXA1 
knockdown abolished the ENZ-driven increase in ARNTL 
levels (Supplementary Fig. S18B).

As cistromic ARNTL profiling has to date not been reported 
in prostate cancer models, we generated ARNTL ChIP-seq 
data (Supplementary Fig. S19A–S19C) to validate its binding 
at posttreatment FOXA1 sites. Interestingly, while we had 
already observed ARNTL binding to these regulatory regions 
in the pretreatment setting, this was strongly enhanced upon 
ENZ exposure (Fig. 6B; Supplementary Fig. S19D–S19F).

Functional interactions between FOXA1 and ARNTL 
could be further validated using ARNTL rapid immunopre-
cipitation mass spectrometry of endogenous proteins (RIME) 
experiments in ENZ-treated LNCaP-42D and LNCaP cells, 
confirming interactions of ARNTL not only with AR and 
FOXA1 but also with other classic circadian rhythm compo-
nents including CLOCK/NPAS2, CRYs (CRY1, CRY2), and 
PERs (PER1, PER2, PER3; Fig. 6C; Supplementary Fig. S20A). 
As FOXA1 acts as a pioneer factor, enabling chromatin bind-
ing for other TFs including AR (9), we hypothesized that 
FOXA1 serves a comparable role for ARNTL. To test this 

hypothesis, we performed ARNTL ChIP-seq upon FOXA1 
knockdown (Fig.  6D; Supplementary Fig.  S20B–S20E), 
showing a significant decrease of ARNTL chromatin interac-
tions exclusively for those regions co-occupied by FOXA1—
highlighting FOXA1’s critical role in determining ARNTL 
chromatin binding.

In agreement, at ARNTL consensus peaks, motifs were 
found to be enriched for not only CLOCK and MYC but also 
FOXA1 and ARNTL itself (Fig.  6E). To identify functional 
differences in ARNTL cistromes induced upon treatment, 
we overlapped the ARNTL peaks identified in all tested cell 
line conditions, which revealed a massive cistromic repro-
gramming upon ENZ treatment (Fig.  6F; Supplementary 
Fig. S19E and S19F). Notably, ∼70% of ENZ-gained ARNTL 
peaks (n = 1,752) in LNCaP cells were captured by the ARNTL 
cistrome in treatment-resistant cells. Interestingly, upon 
ENZ treatment, ARNTL binding was found to be enriched 
at promoter regions of key NEPC drivers, including BRN2 
(POU3F2), FOXA2, EZH2, ASCL1, and SOX2 (Supplementary 
Fig.  S21A), positioning ARNTL as a possible driver of the 
NE-like transcriptional program we identified. In addition, 
pathway overrepresentation analyses of genes coupled to 
PostLNCaP–ResLNCaP-42D shared ARNTL binding sites revealed 
a treatment-induced enrichment for gene sets implicated in 
cell-cycle progression and cell division, further supporting 
a possible functional involvement of ARNTL in sustaining 
tumor cell proliferation when AR is blocked by ENZ (Fig. 6F). 
To challenge this hypothesis, we assessed whether ARNTL 
knockdown affects the viability of hormone-sensitive and 
in particular of long-term ENZ-exposed cell lines. Although 
ARNTL targeting had minimal effect on LNCaP cell prolifera-
tion (with or without ENZ), ARNTL knockdown significantly 
suppressed the cell growth of ENZ-resistant LNCaP-42D cells 
in the absence (P = 0.031, two-way ANOVA) and even more so 
in the presence of ENZ (P = 7 × 10−4, two-way ANOVA), indi-
cating that targeting ARNTL also partially restores ENZ sen-
sitivity in this treatment-resistant cell line model (Fig.  6G). 
Although ARNTL was essential for sustaining cellular fitness 
upon ENZ treatment, exogenously introduced ARNTL did 
not suffice to further enhance cell proliferation when expos-
ing LNCaP and LNCaP-42D cells to ENZ (Supplementary 
Fig.  S21B), suggesting that ARNTL is required but not suf-
ficient to drive the observed phenotype. Importantly, we 
could successfully validate the functional role of ARNTL in 
additional cell line models of ENZ resistance [LNCaP-ResV, 
originally referred to as LNCaP-ENZR (55), and LNCaP-ResA 
(56)] using ARNTL knockdown and CRISPR/Cas9-mediated 
ARNTL knockout (Supplementary Fig. S21C–S21E). In line 
with these in vitro validation experiments, ARNTL knock-
out also strongly inhibited the growth of LNCaP-derived 
ENZ-resistant xenografts (LNCaP-42D and LNCaP-ResA) 
in intact mice upon ENZ exposure (Fig.  6H; Supplemen-
tary Fig. S21F). Importantly, parental LNCaP cells were not 
affected in their proliferation potential by ARNTL knockout 
(Supplementary Fig. S21F), supporting the acquired depend-
ency of ENZ-resistant cells on this circadian factor instead 
of a general impact on cellular fitness. Jointly, these data 
further highlight the treatment-induced ARNTL dependency 
of high-risk prostate cancer models, both in vitro and in vivo, 
and position ARNTL as a novel candidate therapeutic target.

D
ow

nloaded from
 http://aacrjournals.org/cancerdiscovery/article-pdf/12/9/2074/3203587/2074.pdf by U

niversity of U
trecht user on 18 January 2023



Drug-Induced Epigenomic Plasticity Drives Prostate Cancer Cell Survival RESEARCH ARTICLE

 SEPTEMBER  2022 CANCER DISCOVERY | 2089 

GR was identified in the GIGGLE analysis as the third-
most enriched factor at posttreatment FOXA1 sites, directly 
following ARNTL and FOXA1 itself (Fig.  5B). Given the 
known GR function in driving ENZ resistance in advanced 
CRPC (49, 57, 58), we next tested whether sustained tumor 
cell survival after short-term antiandrogen treatment was 
not only ARNTL but also GR (encoded by the NR3C1 gene) 
dependent. Interestingly, NR3C1 expression was upregulated 
upon neoadjuvant ENZ treatment in patients with primary 
prostate cancer (Supplementary Fig.  S22A), but expression 
levels neither before nor after therapy were associated with 
clinical outcome (Supplementary Fig. S22B). Using publicly 
available GR ChIP-seq data from LNCaP-derived GR-positive 
LREX’ cells (49), we could identify GR occupancy at the 
majority of pretreatment FOXA1 sites and at a subset of 
posttreatment sites (Supplementary Fig.  S22C and S22D). 
However, GR knockdown did not affect cellular fitness after 
short-term ENZ treatment in the majority of cell line models 
we tested (Supplementary Fig. S22E), suggesting the observed 
ARNTL-driven early adaptation to ENZ exposure represents 
a different biological entity as compared with the known GR-
driven treatment resistance described in CRPC.

Overall, these data confirm the ENZ-induced FOXA1 
reprogramming as observed in prostate cancer patients upon 
neoadjuvant antiandrogen therapy and revealed an acquired 
dependency on the circadian rhythm regulator ARNTL to 
drive tumor cell growth, positioning ARNTL as a highly 
promising new drug target in combination with ENZ for the 
treatment of high-risk prostate cancer.

DISCUSSION
In medicine, the evolutionary selection pressure imposed 

by drug treatment has been a well-known clinical challenge 
ever since the first antibiotics were discovered in the early 
20th century. Also in oncology, clear escape mechanisms 
for both targeted therapeutics and systemic treatments are 
known for many years, involving ESR1 mutations in meta-
static breast cancer (59), EGFR mutations in lung cancer 
(60), and KRAS mutations in metastatic colorectal cancer 
(61) but also somatic amplification of the AR locus and/
or an upstream AR enhancer in CRPC (62, 63). Apart from 
genetic alterations, epigenetic rewiring (7, 50) or transdiffer-
entiation are reported as mechanisms of resistance, includ-
ing treatment-emergent NE prostate cancers that occur as 
an adaptive response under the pressure of prolonged AR-
targeted therapy (64, 65).

Our unique clinical trial design with paired pre- and post-
treatment biopsies of high-risk primary prostate cancer 
treated with ENZ monotherapy allowed us to unravel global 
ENZ-induced alterations in gene regulation. We report that 
large-scale treatment-induced dedifferentiation in prostate 
cancer may be a gradual process, of which the early signs are 
identified at the transcriptomic level within the first months 
of treatment onset. Although complete adenocarcinoma-to-
NE transdifferentiation was not observed in any of our 
samples, cellular plasticity characterized by the acquisition 
of cistromic, transcriptomic, and proteomic features of NE 
disease may not only be present in primary tumors prior to 
treatment (31) but also become enriched upon short-term 

exposure to endocrine treatment, thus representing an early 
intermediate disease state.

In prostate cancer development (5, 32) and progression (7), 
AR has been reported to expose substantial plasticity in its 
enhancer repertoire, and we now illustrate this is also the case 
in primary disease upon short-term treatment. Besides AR, 
FOXA1 is considered a master TF and critical prostate line-
age-specific regulator acting in prostate cancer, which upon 
overexpression during tumorigenesis gives rise to a tumor-
specific AR cistrome. Also in NEPC, FOXA1 cistromes are 
reprogrammed (42), which indicates a direct AR-independent 
role of FOXA1 in prostate cancer progression. Our study con-
firms these observations and shows that, while co-occupied 
by AR, the pre- and post-ENZ enriched FOXA1 sites appeared 
indifferent to AR signaling.

The functional implications of the pretreatment FOXA1 
sites remain unclear, as those regions were inactive, both in 
primary tissues and in reporter assays. A subset of these cis-
regulatory elements demarcates developmental epigenomic 
programs that we previously reported as being occupied by 
FOXA1 from prostate development to tumorigenesis and 
metastatic progression (7), whereas others may be relevant for 
different physiologic processes.

The treatment-induced cistromic repositioning of pioneer 
factor FOXA1 initiated a thus far unknown transcriptional 
rewiring, in which ARNTL, a classic circadian rhythm regu-
lator and dimerization partner of CLOCK, compensates for 
AR inhibition and becomes essential to rescue cellular prolif-
eration signals. Recently, it has been reported that CRY1—a 
transcriptional coregulator of ARNTL—is AR regulated in 
prostate cancer and modulates DNA repair processes in a cir-
cadian manner (52). The current data illustrate that certain 
components of the circadian machinery may have a poten-
tial impact on drug response, as most clock components 
are not only temporally regulated at the transcriptional 
level but also dysregulated upon exposure to hormonal 
therapy. Our data now show that AR blockade forces tumor 
cells to adapt epigenetically, upon which these cells—over 
time—become dependent on ARNTL as a transcriptional 
regulator of proliferation processes. This acquired cellular 
vulnerability appears to be dependent on whether or not 
AR activity is inhibited and cells have had time to achieve 
full epigenetic reprogramming, explaining the limited effect 
of ARNTL knockdown in hormone-sensitive prostate can-
cer cells as compared with the long-term ENZ-exposed 
treatment-resistant models.

ARNTL expression did not correlate with outcome in 
patients with mCRPC. Furthermore, posttreatment-induced 
FOXA1 profiles showed limited overlap with NEPC–FOXA1 
sites, and GR action—previously reported as a driver in 
CRPC—did not play a decisive role in our data sets to sustain 
cellular fitness following short-term ENZ exposure. Jointly, 
these data position the clinical state as induced by short-
term neoadjuvant AR-targeted therapy in primary prostate 
cancer as a separate biological entity, exposing already in this 
early clinical stage some—but not all—features of progressive 
therapy-resistant disease that are invoked by drug-induced 
epigenetic plasticity.

With the identification of ARNTL as a rescue mechanism 
for tumor cells to evade AR blockade, the next question is 
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whether ARNTL could serve as a novel therapeutic target, 
which should be further pursued in future drug development 
and clinical research. With ARNTL being critically relevant 
for circadian rhythm regulation, it would be imperative to 
balance its targeting in relation to any adverse side effects. 
Additionally, we demonstrate that the surprisingly dynamic 
enhancer repertoire of FOXA1 is critical not only in pros-
tate tumorigenesis (5) and NE differentiation (42) but also 
in evading AR therapy–induced growth inhibition, further 
supporting the rationale to intensify efforts in targeting this 
highly tissue-selective yet critical transcriptional regulator 
directly or indirectly (66).

METHODS
Study Design

Primary prostate cancer tissues before and after ENZ treat-
ment were acquired as part of the phase II, prospective, single-arm 
DARANA study (ClinicalTrials.gov #NCT03297385) at the Nether-
lands Cancer Institute Antoni van Leeuwenhoek hospital. The pri-
mary clinical outcome measure of the trial was the positive margin 
rate after neoadjuvant ENZ treatment. To allow sample size calcu-
lation, we performed a survey into the surgical margins of 1,492 
in-house prostatectomy specimens (Gleason  ≥7) not treated with 
antihormonal therapy prior to surgery, which revealed 34% not-radi-
cal resections. Earlier randomized studies on neoadjuvant androgen 
ablation showed reductions in the positive surgical margin rate of at 
least 50% (67–69). To detect a reduction of positive surgical margins 
from 34% to 17% with a power of 80% and an alpha level set at 0.05, 
55 patients needed to be included. Inclusion criteria were over 18 
years of age, Gleason  ≥7 prostate cancer, and planned for prosta-
tectomy. Prior to treatment, a multiparametric MRI scan was made 
to identify tumors in the prostate (cT stage) and pelvic lymph node 
metastasis (cN stage). Patients were treated with ENZ, once daily 
160 mg orally without ADT, for 3 months prior to robotic-assisted 
laparoscopic prostatectomy and a pelvic lymph node dissection. The 
resection specimen was assessed for tumor margins, prostate tumor 
stage (ypT stage), and pelvic lymph node involvement (ypN stage). 
Secondary endpoints included the assessment of downstaging by 
comparison of preoperative clinical cT and cN stages with post-
treatment and postoperative ypT and ypN stages, and differences 
in pre- and posttreatment prostate cancer cleaved caspase-3 and 
Ki-67 staining as markers of apoptosis and tumor cell proliferation, 
respectively. Moreover, various clinical time-to-event outcomes were 
included: time to BCR, defined as the time from trial inclusion to 
two consecutive rises of serum PSA with a minimal level of ≥0.2 ng/
mL; ADT-free survival, defined as time from trial inclusion to the 
onset of ADT therapy; time to radiologic recurrence, defined as time 
from trial inclusion until detection of local or distant metastases 
by PSMA PET scanning; and time to distant metastases, defined as 
time from trial inclusion until the detection of distant metastases 
by PSMA PET scanning. The trial was approved by the institutional 
review board of the Netherlands Cancer Institute, written informed 
consent was signed by all participants enrolled in the study, and 
all research was carried out in accordance with relevant guidelines 
and regulations.

Pre- and Posttreatment Sampling
Prior to ENZ intervention, four preoperative MRI-guided 18-gauge 

core needle tumor biopsies were taken per patient. Directly after 
prostatectomy, eight additional tumor-targeted core needle biopsies 
(4 × 14-gauge, 4 × 5-mm) were taken from prostatectomy specimens 
ex vivo using previous MRI information and palpation. Biopsy and 
prostatectomy specimens were fresh-frozen (FF) or formalin-fixed, 

paraffin-embedded (FFPE) for ChIP-seq and CNV-seq or RNA-seq 
and IHC analyses, respectively. Prior to ChIP-seq experiments, FF 
material was cut in 30-μm sections, while FFPE material was cut 
in 10-μm sections prior to RNA extraction. Tissue sections were 
examined pathologically for tumor cell content, and only sam-
ples with a tumor cell percentage of  ≥50% were used for further 
downstream analyses.

ChIP-seq
Sample Processing. Chromatin immunoprecipitations on pros-

tate cancer tissue specimens and cell line models were performed 
as previously described (70). In brief, cryosectioned tissue samples 
were double cross-linked in solution A (50 mmol/L HEPES-KOH, 
100 mmol/L NaCl, 1 mmol/L EDTA, 0.5 mmol/L EGTA), first sup-
plemented with 2 mmol/L disuccinimidyl glutarate (DSG; Cova-
Chem) for 25 minutes at room temperature. Then, 1% formaldehyde 
(Merck) was added for 20 minutes and subsequently quenched with 
a surplus of 2.5 mol/L glycine. Cell lines were cross-linked using 
single-agent fixation. Therefore, 1% formaldehyde was added to 
the cell culture medium and incubated at room temperature for 10 
minutes, followed by glycine quenching as described above. Tissue 
and cell line samples were lysed as described (71) and sonicated for 
at least 10 cycles (30 seconds on; 30 seconds off) using a PicoBiorup-
tor (Diagenode). For each ChIP, 5 μg of antibody were conjugated to 
50 μL magnetic protein A or G beads (10008D or 10009D, Thermo 
Fisher Scientific). The following antibodies were used: AR (06-680, 
Merck Millipore), FOXA1 (ab5089, Abcam), H3K27ac (39133, Active 
Motif), and ARNTL (ab93806, Abcam).

ChIP-seq. Immunoprecipitated DNA was processed for library 
preparation using a KAPA library preparation kit (KK8234, Roche), 
and generated libraries were sequenced on the Illumina HiSeq2500 
platform using the single-end protocol with a read length of 65 bp 
and aligned to the human reference genome hg19 using Burrows-
Wheeler Aligner (v0.5.10; ref. 72). Reads were filtered based on map-
ping quality (MAPQ ≥20), and duplicate reads were removed.

Analysis of ChIP-seq. Peak calling over input controls (per tissue 
sample or cell line) was performed using MACS2 (v2.1.1) and Dfilter 
(v1.6) for tissues, and MACS2 (v2.1.2) for cell lines (73, 74). For tis-
sue samples, only the peaks shared by both peak callers were used 
for downstream analyses. DeepTools (v2.5.3) was used to calculate 
read counts in peaks (FRiP; ref. 75). Read counts and the number of 
aligned reads, as well as normalized strand coefficient and relative 
strand correlation, which were calculated using phantompeaktools 
(v1.10.1; ref.  76), are shown in Supplementary Table  S2 for tissue 
ChIP-seq data and Supplementary Table  S6 for cell line ChIP-seq 
data. Tissue ChIP-seq samples that passed the following quality 
control (QC) measures were included in the final analyses; tumor cell 
percentage ≥50%, ChIP-qPCR enrichment, and more than 100 peaks 
called (Supplementary Fig. S2).

For the visualization of cell line ChIP-seq data, an average enrich-
ment signal was generated by merging mapped reads of replicate 
samples using SAMtools (v1.10–3; ref. 77).

Genome browser snapshots, tornado plots, and average density 
plots were generated using EaSeq (v1.101; ref.  78). For snapshot 
overviews across multiple samples, bigWig files were generated from 
aligned bam files with the bamCoverage function from deepTools 
(v2.0), and snapshots were produced using pyGenomeTracks (v3.6; 
ref. 79) with the added NCBI RefSeq genome track (80, 81). Genomic 
distribution and motif enrichment analyses were performed using 
the CEAS and the SeqPos motif tools on Galaxy Cistrome (82), 
respectively. The CistromeDB Toolkit was used to probe that TFs 
and chromatin regulators had a significant binding overlap with 
the differential FOXA1 peak sets (48). For this, genomic coordinates 
of high-confidence binding sites (FC  ≥1.2) were converted between 
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assemblies (from hg19 to hg38), using the UCSC Genome Browser 
liftOver tool (83). The DiffBind R package (v2.10) was used to gener-
ate correlation heat maps and prostate cancer plots based on occu-
pancy, to perform differential binding analyses using an FDR <0.05, 
and to generate consensus peak lists (84).

ChIP-seq signal of various data sets (FOXA1, AR, and H3K27ac 
from this study; AR, H3K27ac, and H3K27me3 from a previously 
reported study; ref. 31) at differential and consensus FOXA1 sites was 
investigated by counting mapped reads in FOXA1 peak regions using 
bedtools multicov (v2.27.1; ref. 85). Read counts were subsequently 
z-transformed and visualized using the aheatmap function from the 
R package NMF (v0.21.0; ref. 86) with a color scheme from RColor-
Brewer (v1.1-2; https://CRAN.R-project.org/package=RColorBrewer). 
To determine the significance in binding site occupancy differences 
between pre- and posttreatment FOXA1 sites, median z-transformed 
read counts were calculated per sample and compared using a Mann–
Whitney U test. These median read counts per sample were also used 
to assess the correlation between ChIP-seq signals of AR, FOXA1, 
and H3K27ac at pre-enriched, post-enriched, and consensus FOXA1 
binding sites.

Bedtools intersect (v2.27.1; ref. 85) was used to determine the over-
lap of differential FOXA1 binding sites and inactive, constitutively 
active, and inducible ARBS.

To assign FOXA1 and ARNTL binding regions to potential tar-
get genes, we overlapped differential FOXA1 binding sites with 
H3K27ac HiChIP data (44) using bedtools intersect. To assess 
whether or not genes coupled to FOXA1 binding sites were consid-
ered to be essential for the VCaP prostate cancer cell line, we used 
the DepMap (Broad 2020) 20Q1 Public gene effect data set (45) with 
a stringent gene effect score cutoff ≤−1. Gene set overlaps between 
genes linked to ChIP-seq binding sites and the Molecular Signa-
tures Database (v7.4) were computed using GSEA (87) with an FDR 
q-value cutoff ≤0.05.

RNA-seq
RNA Isolation. Prior to RNA isolation, FFPE material was 

pathologically assessed. The expert pathologist scored tumor cell 
percentage and indicated most tumor-dense regions for isolation 
on a hematoxylin and eosin (H&E) slide. RNA and DNA from 
FFPE material were simultaneously isolated from 3 to 10 sections 
(depending on tumor size) of 10  μm using the AllPrep DNA/RNA 
FFPE isolation kit (80234, Qiagen) and the QIAcube according to 
the manufacturer’s instructions. cDNA was synthesized from 250 ng 
RNA using SuperScript III Reverse Transcriptase (Invitrogen) with 
random hexamer primers.

RNA-seq. Strand-specific libraries were generated with the 
TruSeq RNA Exome kit (Illumina) and sequenced on the Illumina 
HiSeq2500 platform using the single-end protocol with a read length 
of 65 bp. Sequencing data were aligned to the human reference 
genome hg38 using HISAT2 (v2.1.0; ref. 88), and the number of reads 
per gene was measured with HTSeq count (v0.5.3; ref. 89).

For QC purposes, total read counts per sample were determined 
and hierarchical clustering based on the Euclidean distance was 
applied. Samples with a read count ≥2 standard deviations below the 
mean of all sample read counts were removed, as well as samples that 
clustered in a separate branch.

Analysis of RNA-seq. Global gene expression differences between 
pre- and posttreatment samples passing QC were determined using 
DESeq2 (v1.22.2; ref. 90). The significance of expression level differ-
ences between pre- and posttreatment samples was determined using 
a paired t test.

Gene set enrichment was performed using preranked GSEA (87) 
based on the Wald statistic provided by DESeq2. For visualization 

purposes, the data were z-transformed per gene. Heat maps of 
gene expression values were created using the aheatmap function 
from the R package NMF (v0.21.0; ref.  86) with a color scheme 
from RColorBrewer (v1.1-2; https://CRAN.R-project.org/package= 
RColorBrewer).

To assign samples to previously described prostate cancer sub-
types (31), the z-transformed expression levels of the top ∼100 most 
differentially expressed genes (n = 285) in each of the three clusters 
were investigated. Using these values, samples were clustered based 
on their Pearson correlation. The resulting tree was divided into 
three clusters corresponding to the previously published prostate 
cancer subtypes. The potential transitioning of samples from one 
cluster to another after treatment was visualized using a riverplot 
(v0.6; https://CRAN.R-project.org/package=riverplot).

To calculate FCs of NE scores upon treatment, expression of 70 
NE signature genes was obtained from castration-resistant NE and 
prostate adenocarcinoma samples as published previously (35). The 
expression of 5 of the 70 NE signature genes was not included in 
the analysis (KIAA0408, SOGA3, LRRC16B, ST8SIA3, and SVOP) 
because the genes are not expressed in these samples. Expression 
FCs between paired pre- and posttreatment samples were calculated 
(n  =  39), and concordance in gene expression differences (FC sign) 
was measured using Pearson correlation.

CNV-seq
CNV-seq. Low-coverage whole-genome sequencing of ChIP-seq 

input samples was performed on a HiSeq 2500 system (single end, 
65-bp), and samples were aligned to hg19 with Burrows-Wheeler 
Aligner (BWA) backtrack algorithm (v0.5.10; ref. 72). Per sample, the 
mappability of all reads with a phred quality score of 37 and higher 
per 20 kb on the genome was rated against a similarly obtained map-
pability for all known and tiled 65-bp subsections of hg19. Sample 
counts were corrected per bin for local guanine–cytosine (GC) con-
tent effects using a nonlinear Loess fit of mappabilities over 0.8 on 
autosomes. Reference values were scaled according to the slope of a 
linear fit, forced to intercept at the origin, of reference mappabilities 
after GC correction. Ratios of corrected sample counts and refer-
ence values left out bins with mappability below 0.2 or overlapping 
ENCODE blacklisted regions (91).

Analysis of CNV-seq. Copy-number log ratios were smoothed 
and segmented using the R package DNACopy (v1.50.1; https://
bioconductor.org/packages/release/bioc/html/DNAcopy.html) with 
the parameters set to alpha = 0.00000000001, undo.SD = 2, and undo.
splits  =  “sdundo.” Bedtools intersect (v2.27.1; ref.  85) was used to 
determine overlap between copy-number segments and differential 
FOXA1 binding sites. These data were subsequently visualized using 
the aheatmap function from the R package NMF (v0.21.0; ref. 86) with 
a color scheme from RColorBrewer (v1.1-2; https://CRAN.R-project.
org/package=RColorBrewer).

To correlate FOXA1 ChIP-seq signal with copy-number status at 
differential FOXA1 sites, we used the z-transformed FOXA1 ChIP-
seq read counts as described in the ChIP-seq section. The difference 
in transformed ChIP-seq read counts and the difference in normal-
ized segmented copy-number data between matched posttreatment 
and pretreatment samples were calculated for every patient. Subse-
quently, the Pearson correlation between these two sets of differences 
was calculated.

IHC
For IHC analysis, we matched our ENZ-treated patient cohort 

(n  =  51) in a 1:2 ratio to untreated control patients (not receiving 
ENZ prior to prostatectomy; n  =  110) based on clinicopathologic 
parameters [initial PSA, Gleason score, tumor–node–metastasis 
(TNM) stage, age] using the R package MatchIt (v.4.1.0; ref. 92).
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TMAs were prepared containing three cores per FFPE tumor 
sample. Tumor-dense areas in FFPE megablocks were marked by an 
expert pathologist on an H&E slide. Cores were drilled in a receptor 
block using the TMA grandmaster (3D Histech/Sysmex). Next, cores 
were taken from the donor block and placed in the receptor block 
using the manual tissue arrayer (4508-DM, Beecher instruments). 
The filled receptor block was placed in a 70°C stove for 9 minutes 
and cooled overnight at room temperature.

IHC was applied to TMA slides using a BenchMark Ultra auto-
stainer (Ventana Medical Systems). In brief, paraffin sections were 
cut at 3 μm, heated at 75°C for 28 minutes, and deparaffinized in the 
instrument with EZ prep solution (Ventana Medical Systems). Heat-
induced antigen retrieval was carried out using Cell Conditioning 1 
(CC1, Ventana Medical Systems) for 24 minutes (cleaved caspase-3), 
32 minutes (chromogranin, synaptophysin), or 64 minutes (ARNTL, 
Ki-67) at 95°C. The following antibodies and staining conditions were 
used: anti-ARNTL (ab230822, Abcam; 1:1,000 dilution; 60  minutes 
at room temperature), anti-Ki-67 (M7240, Agilent; 1;100 dilution; 
60 minutes at 37°C), anti–cleaved caspase-3 (9661, Cell Signaling 
Technology; 1:100 dilution; 32 minutes at room temperature), anti-
chromogranin (760–2519, Ventana Medical Systems; undiluted; 32 
minutes at 37°C), and anti-synaptophysin (SYNAP-299-L-CE, Leica; 
1:100; 32 minutes at 37°C). For synaptophysin, signal amplification 
was applied using the OptiView Amplification Kit (Ventana Medi-
cal Systems; 4 minutes). Bound antibody was detected using the 
OptiView DAB Detection Kit (Ventana Medical Systems). Slides 
were counterstained with hematoxylin and bluing reagent (Ventana 
Medical Systems).

Percentage of positive tumor cells or IHC staining intensity (weak, 
moderate, and strong) in tumor cells was scored by an expert pathol-
ogist and used for statistical analysis.

FOXA1 Mutation Status
FOXA1 mutation status was assessed from H3K27ac ChIP-seq 

and RNA-seq reads covering the gene. We focused our search 
on genomic coordinates with mutations previously reported in  
cBioPortal (https://www.cbioportal.org). cBioPortal was queried for 
all somatic mutations in FOXA1 (n = 567 mutations) across all pros-
tate cancer samples (n =  6,875 patients). Nonreference alleles were 
called from bam files with H3K27ac ChIP-seq or RNA-seq reads 
using the mpileup and call commands from bcftools (v1.9). The 
–prior variable for call was set to 0.05 to enhance sensitivity in the 
setting of low read coverage. The genomic coordinates of variants 
were listed in bed files and tested for overlap with FOXA1 mutations 
from cBioPortal.

Survival Analysis in mCRPC Cohorts
RNA-seq data from mCRPC were processed as previously described 

(53, 54, 93) and converted to transcripts per million or fragments per 
kilobase per million reads mapped (FPKM). Patients were grouped by 
ARNTL expression levels as low (< median) or high (≥ median). Sur-
vival analysis was performed using the Kaplan–Meier method with 
endpoint overall survival from diagnosis of mCRPC, and the Wald 
test was used to test for statistical significance.

Cell Lines and Cell Culture
The LNCaP human prostate cancer cell line and HEK293T cells 

were purchased from the American Type Culture Collection. ENZ 
-resistant LNCaP-42D (41) and LNCaP-ResA (56) cells were described 
previously. LNCaP clones were maintained in RPMI 1640 medium 
(Gibco, Thermo Fisher Scientific) supplemented with 10% FBS 
(Sigma-Aldrich), with ENZ-resistant cell lines further supplemented 
with 10  μmol/L ENZ (MedChemExpress). HEK293T cells were cul-
tured in DMEM (Gibco, Thermo Fisher Scientific) supplemented with 
10% FBS. Cell lines were subjected to regular Mycoplasma testing, and 

all cell lines underwent authentication by short tandem repeat profil-
ing (Eurofins Genomics). For hormone stimulation with synthetic 
androgen, cells were treated with 10 nmol/L R1881 (PerkinElmer) for 
48 hours. For in vitro AR blockade, cells were treated with 10 μmol/L 
ENZ and harvested at the indicated time points.

STARR-seq
Generation of the FOXA1-Focused STARR-seq Library. Pooled human 

male genomic DNA (Promega) was randomly sheared, end-repaired, 
and ligated with Illumina compatible xGen CS stubby adapters 
(IDT) containing 3-bp unique molecular identifiers. The adapter-
ligated gDNA fragments (500–800 bp) were hybridized to a custom 
biotinylated oligonucleotide probe (Agilent) and captured by Dyna-
beads M-270 Streptavidin beads (NEB). The library was designed to 
capture regions from clinical ChIP-seq. Any overlapping reads were 
collapsed using the BedTools “merge” (v2.30.0) command to elimi-
nate possible overrepresentation. Target regions were PCR-amplified 
with STARR_in-fusion_F (TAGAGCATGCACCGGACACTCTTTCC 
CTACACGACGCTCTTCCGATCT) and STARR_in-fusion_R (GGC 
CGAATTCGTCGAGTGACTGGAGTTCAGACGTGTGCTCTTC 
CGATCT) primers, and cloned into AgeI-HF (NEB) and SalI-HF 
(NEB) digested hSTARR-ORI plasmid (#99296, Addgene) by Gibson 
Assembly. The STARR-seq capture library was transformed into 
MegaX DH10B T1R electrocompetent cells (Invitrogen). Plasmid 
DNA was extracted using the Qiagen Plasmid Maxi Kit.

STARR-seq. LNCaP cells (>1.6  ×  108 cells/replicate; three bio-
logical replicates for each cell line) were electroporated with the 
STARR-seq capture library (1 × 106 cells: 2 μg DNA; ∼320 μg plasmid 
DNA/replicate) using the Neon Transfection System (Invitrogen). 
Electroporated LNCaP cells were immediately recovered in RPMI 
1640 medium supplemented with 10% FBS, and the culture medium 
was refreshed 24 hours after electroporation. LNCaP cells (∼0.5 × 108 
cells) were treated with dimethylsulfoxide (DMSO) or 10  μmol/L 
ENZ for 48 hours and then either EtOH or 10 nmol/L DHT for  
4 hours. All electroporated LNCaP cells were harvested 72 hours after 
electroporation. Cell samples were lysed with the Precellys CKMix 
Tissue Homegenizing Kit and Precellys 24 Tissue/Cell Ruptor (Berin 
Technologies). Total RNA was extracted using the Qiagen RNeasy Maxi 
Kit (Qiagen), and poly-A mRNA was isolated using the Oligo (dT)25 
Dynabeads (Thermo Fisher). FOXA1-focused STARR-seq cDNA was 
synthesized with the gene-specific primer (CTCATCAATGTATCTT 
ATCATGTCTG) and amplified by junction PCR (15 cycles) with 
the RNA_jPCR_f (TCGTGAGGCACTGGGCAG*G*T*G*T*C) and 
jPCR-r (CTTATCATGTCTGCTCGA*A*G*C) primers. FOXA1-focused 
STARR-seq capture library plasmid DNA was extracted from 0.1 × 108 
transfected but untreated cells using the QIAprep Spin Miniprep Kit 
(Qiagen). The extracted plasmid DNA and the input plasmid DNA 
were PCR-amplified with the DNA-specific junction PCR primer  
(DNA_jPCR_f, CCTTTCTCTCCACAGGT*G*T*C) and the jPCR-r 
primer. After purification with Ampure XP beads, Illumina com-
patible libraries were generated by PCR amplification with NEBNext 
universal and single indexing primers (NEB) and were sequenced on 
an Illumina NovaSeq6000 (150-bp, paired-end).

Analysis of STARR-seq. STARR-seq data were analyzed using a 
custom Snakemake pipeline (https://github.com/birkiy/starr-pipe). 
Briefly, paired-end STARR-seq samples were aligned to the hg19 
genome using BWA (v0.7.17). Raw alignment files were converted 
into BEDPE format using the BedTools (v2.30.0) “bamtobed -bedpe” 
command. The start of the first paired read and the end of its mate 
defined the fragments from the BEDPE file. Any fragments overlap-
ping with hg19 blacklisted regions (https://github.com/Boyle-Lab/
Blacklist) or MAPQ scores <30 were filtered from downstream analy-
sis. Fragments containing unique genomic positions were counted 
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using the “uniq -c” UNIX command. A count table of the unique 
fragment collection count was generated using a custom Julia script 
(v1.5.2) fragments.jl, which uses library input samples to first generate 
the reference fragment population and then quantifies the frequen-
cies of each fragment.

STARR-seq aligned files were downsampled using SAMtools 
(v1.10) to make files with equivalent read counts across conditions. 
Next, count tables were generated from the downsampled files for all 
tested FOXA1 regions (n = 1,209) using the deepTools (v2.0) multi-
BamSummary function. The most correlated replicates were chosen 
for further analysis using the cor function in R (v3.4.4). Regions with 
zero counts across samples were removed, leaving 968 regions. These 
count tables were used as input for a differential expression analysis 
using DESeq2 (v1.22.2) in R. Regions with nonsignificant changes 
(FDR ≤ 0.05, logFC ≥ |2|) in read counts upon ENZ treatment were 
identified, and k-means clustering from the plotHeatmap function 
of deepTools was performed. To determine possible functional asso-
ciations within these clusters, the sets of regions were queried using 
the CistromeDB Toolkit to identify factors with significant overlap.

RIME
Sample Processing. Following treatment of LNCaP and LNCaP-

42D cells with ENZ (10 μmol/L) for 48 hours, cells were fixed, lysed, 
and sonicated as previously described (94). The nuclear lysates were 
incubated with 50 μL magnetic protein A beads (10008D, Thermo 
Fisher Scientific) conjugated to 7.5 μg of ARNTL antibody (ab93806, 
Abcam) or rabbit IgG control (12-370, Merck Millipore).

LC-MS/MS. Peptide mixtures were prepared and measured as 
previously described (4) with the following noted exceptions. Peptide 
mixtures (10% of total digest) were loaded directly onto the analytical 
column (ReproSil-Pur 120 C18-AQ, 2.4 μm, 75 μm × 500 mm, packed 
in-house) and analyzed by nano LC-MS/MS on an Orbitrap Fusion 
Tribrid mass spectrometer equipped with a Proxeon nLC1200 sys-
tem (Thermo Scientific). Solvent A was 0.1% formic acid/water, and 
solvent B was 0.1% formic acid/80% acetonitrile. Peptides were eluted 
from the analytical column at a constant flow of 250 nL/minute in 
a 120-minute gradient containing a 105-minute step-wise increase 
from 7% to 34% solvent B, followed by a 15-minute wash at 80% 
solvent B.

Analysis of RIME Data. Raw data were analyzed by MaxQuant 
(v2.0.1.0; ref. 95) using standard settings for label-free quantitation 
(LFQ). MS/MS data were searched against the Swissprot human 
database (20,397 entries, release 2021_01) complemented with a 
list of common contaminants and concatenated with the reversed 
version of all sequences. The maximum allowed mass tolerance was  
4.5 ppm in the main search and 0.5 Da for fragment ion masses. FDRs 
for peptide and protein identification were set to 1%. Trypsin/P was 
chosen as cleavage specificity allowing two missed cleavages. Carba-
midomethylation was set as a fixed modification, while oxidation 
and deamidation were used as variable modifications. LFQ intensi-
ties were log2-transformed in Perseus (v1.6.15.0; ref. 96), after which 
proteins were filtered for at least three of four valid values in at least 
one sample group. Missing values were replaced by imputation based 
on a normal distribution (width: 0.3; downshift: 1.8). Differentially 
enriched proteins were determined using a Student t test (threshold: 
P ≤ 0.05 and [x − y] ≥ 1.8 | [x − y] ≤ −1.8).

Transient Cell Line Transfections
Transient transfections of cell lines were performed according to 

the manufacturer’s instructions using Lipofectamine 2000 (Invit-
rogen) or Lipofectamine RNAiMAX (Invitrogen) for overexpression 
or siRNA knockdown experiments, respectively. ARNTL containing 
expression plasmid was obtained from the CCSB-Broad Lentiviral 

Expression Library. siRNA oligos targeting ARNTL (M-010261-00-
0005), FOXA1 (M-010319-01-0020), and NR3C1 (M-003424-03-0005) 
and the nontargeting control (D-001206-14, D-001210-05-20) were 
purchased from Dharmacon. For ARNTL ChIP-seq upon FOXA1 
knockdown, LNCaP and LNCaP-42D cells were reverse transfected 
with 50 nmol/L siFOXA1 using Lipofectamine RNAiMAX. ENZ 
(10 μmol/L) was added after 24 hours, and cells were fixed and har-
vested for ChIP-seq analysis 72 hours after transfection.

CRISPR/Cas9-Mediated Knockout Cell Lines
Guide RNAs targeting human ARNTL (CTGGACATTGCGTTG 

CATGT) and a nontargeting control guide (AACTACAAGTAAAA 
GTATCG) were individually cloned into the lentiCRISPR v2 plas-
mid (97). CRISPR vectors were coexpressed with third-generation 
viral vectors in HEK293T cells using polyethyleneimine (PEI; Poly-
sciences). After lentivirus production, the medium was harvested and 
transferred to the designated cell lines. Two days after infection, cells 
were put on puromycin (Sigma-Aldrich) selection for 3 weeks, and 
knockout efficiency was tested using Western blot analysis.

Western Blotting
Total proteins were extracted from cells using Laemmli lysis buffer 

supplemented with a complete protease inhibitor cocktail (Roche). 
Per sample, 40  μg of protein was resolved by SDS-PAGE (10%) and 
transferred on nitrocellulose membranes (Santa Cruz Biotechnol-
ogy). The following antibodies were used for Western blot stainings: 
ARNTL (ab93806, Abcam), PSA (5365, Cell Signaling Technology), 
FOXA1 (ab5089, Abcam), GR (12041, Cell Signaling Technology), 
and ACTIN (MAB1501R, Merck Millipore). Blots were incubated 
overnight at 4°C with designated primary antibodies at 1:1,000 
(ARNTL, PSA FOXA1, GR) or 1:5,000 (ACTIN) dilution and visual-
ized using the Odyssey system (Li-Cor Biosciences).

RNA Isolation and mRNA Expression
Total RNA from cell lines was isolated using TRIzol Reagent 

(Thermo Fisher Scientific), and cDNA was synthesized from  
2 μg RNA using the SuperScript III Reverse Transcriptase system 
(Thermo Fisher Scientific) with random hexamer primers accord-
ing to the manufacturer’s instructions. Quantitative PCR (qPCR) 
was performed using the SensiMix SYBR Kit (Bioline) according 
to the instructions provided by the manufacturer on a Quant-
Studio 6 Flex System (Thermo Fisher Scientific). Primer sequences 
for mRNA expression analyses were FOXA1 (forward: CGACTG 
GAACAGCTACTACG; reverse: TGGTGTTCATGGTCATGTAGGT) 
and ARNTL (forward: CTGGAGCACGACGTTCTTTCTT; reverse: 
GGATTGTGCAGAAGCTTTTTCG). mRNA levels are shown relative 
to the expression of housekeeping gene TBP (forward: GTTCTGG 
GAAAATGGTGTGC; reverse: GCTGGAAAACCCAACTTCTG).

Cell Viability and Proliferation Assays
For cell viability assays, LNCaP, LNCaP-42D, or LNCaP-ResA cells 

were seeded at 2  ×  103 cells per well in 96-well plates (Greiner) ± 
10  μmol/L ENZ, and reverse transfected with 50 to 100 nmol/L 
siRNA (Dharmacon) using Lipofectamine RNAiMAX (Invitrogen). 
Cell viability was assessed 7 days after transfection using the 
CellTiter-Glo Luminescent Cell Viability Assay kit (Promega) per the 
manufacturer’s instructions. Bar charts were plotted using GraphPad 
Prism 9 software.

Proliferation curves for stable ARNTL knockout clones were gen-
erated using a Lionheart FX automated microscope (BioTek). Cells 
(LNCaP, LNCaP-42D, and LNCaP-ResA) were seeded at 2 × 103 cells 
per well in 96-well plates ± 10 μmol/L ENZ. SiR-DNA (Spirochrome) 
live-cell nuclear stain was added 2 hours before imaging. Cell growth 
was recorded with a time resolution of 4 hours for a total time span 
of 144 hours. The microscope was maintained at 37°C in 5% CO2, 

D
ow

nloaded from
 http://aacrjournals.org/cancerdiscovery/article-pdf/12/9/2074/3203587/2074.pdf by U

niversity of U
trecht user on 18 January 2023



Linder et al.RESEARCH ARTICLE

2094 | CANCER DISCOVERY SEPTEMBER  2022 AACRJournals.org

and live-cell imaging was performed using a 4× lens and a Sony CCD, 
1,25-megapixel camera with two times binning (BioTek). Gen5 soft-
ware (BioTek) was used to quantify cell numbers, and growth curves 
were plotted using GraphPad Prism 9 software.

Xenograft Studies
For in vivo tumor growth studies, 7.5  ×  106 sgNT or sgARNTL 

(LNCaP, LNCaP-42D, and LNCaP-ResA) cells in PBS with 50% BME 
(3536-005-02, Bio-Techne) were injected subcutaneously into one 
of the flanks of  ∼7-week-old male NOD-SCID (NSG) mice. Once 
tumor size reached 150 mm3, mice were randomized and treated 
with either 10 mg/kg ENZ (MedChemExpress) or vehicle control 
(1% carboxymethylcellulose sodium salt, 0.1% Tween-80, 5% DMSO; 
Sigma-Aldrich) through oral gavage on a daily basis. Tumor vol-
ume was monitored by caliper measurements 3 times a week. Mice 
were kept under standard temperature and humidity conditions in 
individually ventilated cages, with food and water provided ad 
libitum. All animal experiments were approved by the Animal Welfare 
Committee of the Netherlands Cancer Institute and performed in 
accordance with institutional, national, and European guidelines 
for animal research.

Statistical Analysis
For differential binding and differential gene expression analyses 

(pre- vs. post-ENZ), an FDR cutoff <0.05 (P < 0.01) and Padj < 0.01 
was used, respectively. A Mann–Whitney U test was used to determine 
differences in region read counts (adjusted for multiple testing using 
FDR) and differences in gene expression levels before and after ENZ 
treatment. For peak set and gene set overlaps as well as to deter-
mine differences in IHC staining intensities, Fisher exact tests were 
applied. Differences in cell viability or cell/tumor growth were tested 
using a two-way or one-way ANOVA followed by Tukey multiple 
comparisons test, respectively (GraphPad Prism 9). Corresponding 
bar chart or growth curves show the mean with error bars represent-
ing the SD. All box plots indicate the median (center line), upper (75) 
and lower (25) quartile range (box limits), and 1.5  ×  interquartile 
range (whiskers). Significance is indicated as follows: ns, P  >  0.05;  
*, P <  0.05; **, P <  0.01; ***, P <  0.001; ****, P <  0.0001. Further 
details of statistical tests are provided in the figure legends.

Data Availability
All tissue ChIP-seq and RNA-seq raw data generated in this 

study have been deposited in the European Genome-phenome 
Archive (EGA) under the accession numbers EGAS00001006017 
and EGAS00001006016, respectively. The cell line ChIP-seq, as 
well as all processed tissue ChIP-seq and RNA-seq data, have been 
deposited in the Gene Expression Omnibus (GEO) database under 
accession number GSE197781. The mass spectrometry proteomics 
(RIME) data have been deposited to the ProteomeXchange Consor-
tium via the PRIDE partner repository with the data set identifier 
PXD032041. Public ChIP-seq data sets used in this study are avail-
able from GEO or EGA under the following accession numbers: 
GSE120738 (AR, H3K27ac, H3K27me3 ChIP-seq), GSE51497 (GR 
ChIP-seq), GSE117306 (N-MYC ChIP-seq), and EGAS00001003928 
(FOXA1 ChIP-seq).
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