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A B S T R A C T

Understanding power prices dynamics is crucial for valuing flexibility assets such as storage or flexible
consumption facilities that accommodate fluctuations in power supply from variable renewables. Owners of
such assets need to know how extreme power prices can become in order to optimally manage (dis)charging
or adjusting consumption volumes. We examine how to predict those high and low prices, being the
different quantiles of the power price probability distribution function, and question how supply from variable
renewable sources affect different quantile prices.

The first contribution of our paper is that we apply quantile regressions in a panel data framework. This
methodology acknowledges that day-ahead power markets’ data is structured as cross-sectional data and, as
opposed to previous quantile regression techniques introduced in power markets, allows for simultaneous
predictions for all hours during a delivery day. Day-ahead power prices for all 24 h in the next day are
determined at the same moment, one day before delivery. The hourly data is therefore not a time-series, but
a cross section. The second contribution is that we examine the interaction between demand and supply from
variable renewable sources, instead of linear dependencies only.

We find that lower and higher quantile prices are more heavily affected by variations in supply from
variable renewable sources than centre quantile prices. This enables owners of flexibility assets to better
manage their assets in anticipation of excess or scarce supply from renewable sources. By doing so, they
increase the flexibility of power systems that face increasing installed capacity of variable renewable energy
sources.
1. Introduction

The inclusion of supply from variable renewable sources, hereafter
referred to as VRES, challenges power systems. The volume supplied
by these sources is variable as it depends on weather conditions, which
change over time. Even though owners of VRES facilities are balance
responsible parties and are financially bound to keep their positions
balanced at al times, VRES sources have limited capacity to adjust
volumes as they can only curtail, not increase, production. This occurs
because most installed VRES capacities do not have attached to them
flexibility assets such as batteries. Besides, supply from VRES comes
with a low marginal cost which sometimes is complemented by a
subsidy per MWh of power produced. Because of this, curtailment
is most of the times not profitable for owners of such renewable
assets. Moreover, weather dependent supply from wind and solar does
not match demand patterns. Hence, supply from VRES challenges the
power system as their volume variability needs to be dealt with. Many
current power systems are not flexible enough to deal with such an

∗ Corresponding author at: Erasmus School of Economics, Erasmus University Rotterdam, Netherlands.
E-mail addresses: rhuisman@ese.eur.nl (R. Huisman), stet@ese.eur.nl (C. Stet).

1 Demand response applications can provide flexibility to the grid through peak clipping, demand shifting or valley filing concepts.

environment. This leads to frequent negative power prices due to an
abundance of supply from VRES at times when there is no demand for
it. As a consequence, investments are needed to increase the flexibility
of power systems in matching supply and demand.

One can think of power storage and more flexible consumption
(demand response as some call it)1 as potential solutions. What these
solutions have in common is that they are flexibility offering type of
assets. A power storage facility provides the option to charge when
supply from VRES is high and demand for it is low. The facility then
has the option to discharge and deliver power when demand is high
and supply from VRES is low. The same holds for flexible consumption.
Having the option to scale up or down consumption in response to
more or less supply from VRES makes the power system more flexible.
Investments in such flexibility offering type of assets only take place
when sufficient income can be generated from these assets. For storage
facilities and demand response applications, income depends on the
variation of power prices. When power prices are more volatile, the
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owner of a power storage facility can charge at lower prices and
discharge at higher prices and yield more income than when prices are
less volatile. This view of just volatility driving income of flexibility
offering assets comes from financial markets, but is too simplistic for
power markets. There, frictions between supply and demand and often
the lack of storage, make power prices behave more erratically than
prices of financial assets. There is sufficient evidence for that claim
put forward in the literature as it reveals that power prices tend to
mean-revert and frequently jump to high and low (even negative) lev-
els. Understanding these price dynamics is crucial for valuing storage
and demand response assets in power markets, assets which represent
an important source of flexibility and, thereby, enable the efficient
inclusion of VRES.

To include supply from VRES efficiently, we need those flexibility
offering assets to respond to (expected) fluctuations in supply from
renewables. Following the logic of supply and demand, the market price
of power depends on supply from VRES. There is a consensus view
on how a change in supply from VRES affects power prices since a
change in the (expected) supply from VRES shifts the supply curve (or
merit order as it is called in the energy world). Würzburg et al. (2013)
summarises 20 studies and all find that an increase in supply from VRES
decreases the market price of power. This result is intuitive since, by
having almost zero marginal cost, VRES are highly competitive and are
generally included in that part of the supply curve that is dispatched.

Other studies focus on the relation between supply from VRES and
the volatility of the market price of power. Ketterer (2014), Kyritsis
et al. (2017), and Rintamäki et al. (2017) show that an increase in the
supply from wind producers increases the volatility of power prices as
it challenges the flexibility of power markets especially during off-peak
hours when demand is low and only a few power plants can curtail
production. For supply from solar producers, Kyritsis et al. (2017) show
that an increase in supply decreases price volatility as solar typically
supplies during demand peak hours. Rintamäki et al. (2017) go one step
further as they distinguish between periods with high and low prices.
They show that supply from VRES lowers the volatility of power prices
during periods with high prices and increases volatility when prices are
low.

Beyond the mean and the variance of power prices, some papers,
using either extreme value theory or regime switching models, show
that VRES output influences also the likelihood of extremely high and
low power prices. Lindstrom and Regland (2012), in a study on 6 Eu-
ropean power markets, find a positive link between the two. Paraschiv
et al. (2014) touches marginally on this aspect proving a connection
between extreme negative prices and higher wind power output on the
German EEX market. Benhmad and Percebois (2018) and Martin de
Lagarde and Lantz (2018) show that a steep decrease in power prices
was associated with an increase in wind power in-feed. Huisman et al.
(2022) argue that extreme high and low prices should be analysed
separately as VRES output has a different impact on the left tail of the
power price probability distribution (low prices) than on the right tail
(high prices). For instance, an increase in supply from wind sources
decreases the occurrence and magnitude of extremely high prices, while
it increases the occurrence and magnitude of extremely low prices. A
similar conclusion is also drawn by Hagfors et al. (2016b).

The summarising view is that an increase in supply from VRES
decreases the day-ahead power price on average, changes the volatility
of power prices and the frequency and magnitude of extremely high
and low prices. Consequently, power prices will be low when supply
from VRES is high and demand for power is low. Alternatively, one
may expect power prices to be high when supply from VRES is low
and demand for power is high. But, in order to maximise value, a
power storage (flexibility offering asset) owner wants to make charg-
ing/discharging decisions based on expectations when market prices
will be lowest/highest. She/he wants to profit from extreme prices,
which occur when the flexibility of the power system is challenged
2

most. The same, for someone who can adjust consumption volumes,
she/he wants to reduce consumption when prices are highest and vice
versa. The point is that owners of flexibility offering assets want to
profit from extreme price movements, and by doing so they will offer
their flexibility at times when its most needed. In order to deliver
this, they need to understand what drives those extreme prices. In
power markets volatility by itself is not a sufficient parameter as input
for valuation models of flexibility offering assets. What we need is
to understand how the interaction between supply from VRES and
demand for power affects market prices.

Owners of flexibility offering assets have to take decisions anticipat-
ing on power prices in the near future. Power storage owners want to
have high/low inventory when they expect high/low prices. Therefore,
understanding the range within which power prices behave in the near
future is crucial for these owners in order to maximise the value of their
assets. One could derive such a price range by estimating a confidence
interval using the average price, standard deviation (volatility), and
tail information (extreme prices) blended into a probability distribution
function. More sensible is to estimate the boundaries of the confidence
interval directly using a quantile regression. This enables the owners
of flexibility offering assets to predict what – for instance – the 1st and
99th quantiles of the power price probability distribution function are.
This is what we do in this paper, with a focus on the impact of VRES
on power prices. We use a novel methodology and model for power
markets, later detailed in the paper, and we show that these power
price boundaries depend on information about expected supply from
VRES.

Bunn et al. (2016) summarise the benefits of the quantile regression
technique (applied to power prices): it provides a semi-parametric
formulation for predictive distributions, allows for inclusion of fun-
damental variables, permits for separating moments with differing
patterns, and can offer an alternative to regime switching models
(through the indirect incorporation of regimes at different quantile
levels). Jónsson et al. (2014), Rodríguez et al. (2014), Hagfors et al.
(2016a), Maciejowska et al. (2016), Chen and Lei (2018), Troster et al.
(2018), Kyritsis and Andersson (2019) and Goodarzi et al. (2019) all
use quantile regression models to study power prices, demonstrating
that this research method is suited to study a wide range of research
topics in power markets. More specific to wind and photovoltaic solar
supply, Hagfors et al. (2016c) include supply from VRES in a quantile
regression to predict power prices. They observe that during off-peak
hours, where extreme low prices are more likely to occur, the effect of
wind output on day-ahead prices is stronger than during peak hours.
For solar, at higher price quantiles the effect on day-ahead prices
appears to be stronger than for the centre quantiles. Sapio (2019) and
Maciejowska (2020) use quantile regression to predict price quantiles
conditional on the share of supply from VRES.

Predicting power price quantiles through quantile regression is not
a new topic, but we contribute to the existing literature in two ways.
First, we apply quantile regression in a panel framework for reasons
that we point out below. Second, all papers specify linear quantile
regression models, whereas we think that there is reason to believe that
some interaction between variables might be expected. When power
markets are not flexible enough to accommodate variation in supply
from VRES, we would expect the impact of variation in supply from
VRES to be different during periods with moderate demand or share of
VRES than in periods with low (high) demand and high (low) share of
VRES.

But why a panel framework? Huisman et al. (2007) argue that one
should use a panel framework to study day-ahead power price data.
The reason comes from the microstructure of most day-ahead markets
that we know. In the day-ahead market one can trade contracts that
involve the delivery of 1 MWh of power during a specific hour in the
next day. For instance, one can trade a contract for delivery during hour
1 (starting at midnight) in the next day and/or for delivery during hour
18 (between 5pm and 6pm) in the next day. In fact, day-ahead contracts

are futures contracts for delivery during a specific hour with maturity
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being the next day. The microstructure of such markets instructs traders
to supply their bids and offers before a specific time (11am in the
Netherlands for example) for all day-ahead contracts. The bids and
offers for the hour 1 contract are submitted at the exact same time
as the bids and offers for the hour 18 contract. After receiving those
bids and offers, the market operator determines the market clearing
price for all hour day-ahead contracts. This implies that the price of the
hour 1 contract is determined at the exact same time as the price of the
hour 18 contract. The information embedded in the price for the hour 1
contract is exactly the same information embedded in the price for hour
18 delivery. Therefore, those individual hourly prices are not formed
based on information that evolves in a continuous time series manner.
Identifying those contracts as hour 1 through hour 24 suggests a time-
series but is misleading. This was observed by Huisman et al. (2007)
and they therefore argue that day-ahead price data is in effect panel
data; one should see day-ahead power prices as a time-series of a cross-
section of 24 individual delivery hours. The papers that we mentioned
above that use quantile regressions all use a time-series framework and
not a panel framework. Off course, one can study the prices of hour
18 contracts in isolation, which is a time-series, or the average price
during peak or off-peak hours. That is what the above studies did. But
by doing so, they ignore (or do not need) the information embedded
in the cross-section. Thus, when studying the prices of hour 1 and 18
in isolation, one does not observe the information that is embedded in
both prices simultaneously as they were determined at the same market
clearing time. Thinking about flexibility offering assets, we think that
focusing on average prices or hourly prices in isolation is an important
limitation. For instance, when we expect a high price during hour 10,
for instance because of low supply from renewables, we had expect that
the prices for the adjacent hours 9 and 11 could also be higher as solar
radiation and wind supply does not have hourly boundaries. Huisman
et al. (2007) show that such cross-sectional correlations are apparent.
Correlations are close to one for adjacent hours and between all off-
peak and peak hours. The correlations are lower between peak and
off-peak hours.

Studying the time series of average prices or prices for one-hour
contracts in isolation, in the way the papers cited above do, ignores this
cross-sectional dependence among hourly prices and the information
that is embedded in each hourly day-ahead price. This is fine if one is
interested in the price dynamics of one hour or of the average price of
a group of hours such as the daily average price or the average price
during peak or off-peak hours. This is for instance what Maciejowska
(2020) are interested in. If one is interested in the dynamics of different
hours simultaneously, then using a time series approach ignores the
cross-sectional dependence. For instance, when one wants to operate
a power storage system, one needs to make charging and discharging
decisions based on expected prices over adjacent hours. Then, the
cross-sectional dependence is crucial as the price for one hour relates
to adjacent hours. This is the contribution of this paper upon those
previous studies: we use a panel quantile regression approach. This
avoids this information loss and provides a more realistic framework
that matches the market microstructure of day-ahead markets which
is attractive for market participants. Managers of storage facilities
or demand response applications can use panel quantile regression
techniques to predict how low or high power prices are expected to
be at each hour for the next delivery day. In this way, they can foresee
the moments in time when power prices are likely to become extremely
low or high. This technique would then also indicate for how many
hours power prices are expected to remain extreme. Hence, operators of
flexibility offering assets could use such techniques in optimising their
bidding strategies. To our knowledge, this paper is the first one to apply
a panel quantile regression approach to day-ahead power markets.

There are various ways in which panel quantile regression models
can be built and used. This paper chooses to use them focusing on the
impact that supply from VRES has on power prices. Getting back to
3

day-ahead prices and their fundamentals, it makes sense that supply
from VRES influences power prices much stronger at the higher and
lower quantiles of the power price probability distribution function.
To see this, keep the ‘‘hockey stick’’ shape of the supply curve in
mind (see Borenstein, 2002). At high demand levels, when usually high
prices occur, the supply curve is steeply upward curved, whereas it is
almost flat at ‘‘normal’’ demand levels. This implies that the impact
of a change in demand on prices is stronger at high demand levels
than at normal demand levels. Supply from VRES, having zero marginal
costs, will shift the supply curve to the right. At high demand levels,
supply from VRES will have a sharp price reducing impact on power
markets as the upward sloped part of the supply curve shifts to the
right. At normal demand levels, when moderate prices are expected to
occur, the supply curve is almost flat and this remains the case when
supply from VRES moves the supply curve to the right. Consequently,
during periods of high demand, the price impact of an increase in
supply from VRES will be stronger than during periods with normal
demand. In other words, when prices are high due to high demand,
an increase in supply from VRES is expected to reduce that high price
more than what the same level of supply from VRES increase will
reduce the price at normal demand level. This predicts that an increase
of supply from VRES will have a bigger impact on the right side of
the price probability distribution function than on the centre part. We
expect to observe the same effect also on the other side of the power
price probability distribution function, on the very low prices, but for
a different reason. In many countries, the cheaper non-VRES suppliers
are relatively inflexible power producers (i.e. coal and nuclear). For
those producers, ramping up/down production is costly. Therefore,
for short periods, for such inflexible producers, maintaining a stable
level of production, even when the power prices are falling below
their marginal costs, can be less costly than temporarily ramping down
production. Such a situation can lead to extreme low prices during
periods with low demand and high supply from VRES. This predicts
that an increase in supply from VRES during moments when prices
are already very low, should decrease much more the power price
than the same increase in supply from VRES would do during periods
with moderate prices. These predictions suggest the following claim: An
increase in supply from VRES reduces power prices more at extreme
low and high quantiles than at the centre part of the power price
probability distribution function.

We test this claim in this paper using quantile regressions in a
panel framework. The knowledge that we can gain from this result
may help market players to better predict power prices and especially
the likelihood of occurrence and magnitude of extreme power prices.
If the impact of wind and solar output on power prices has differ-
ent magnitudes in different moments in time, this information adds
value to participants in power markets. Consequently, market players
should consider this information when constructing bidding strategies.
More accurate price predictions can lead to less risky and hence more
profitable strategies for storage facilities used in arbitraging in power
markets. This can lead to an increase in investments in storage units
and other flexibility offering assets in the power market and, thus, will
then smoothen the path towards a more sustainable and flexible power
market.

To test our claim, we chose to study day-ahead prices, being one day
futures prices and not real-time imbalance prices. The reason for this
choice comes from the fact that, in many countries, day-ahead markets
are the platform on which most of the supply from VRES is traded.
Especially in European markets, feed-in tariffs are linked to the day-
ahead prices. This policy makes it rational for VRES suppliers to sell
their power output on the day-ahead markets. An alternative would
have been to study intraday or imbalance markets, where, because
of their weather dependency, supply from VRES plays a big role.
However, these markets are less liquid than day-ahead markets. Market
participants use day-ahead markets already for many years and many
of them refer to the day-ahead price as the power price. Therefore, we
leave the exploration of the imbalance and more real-time markets for

future studies. Let us proceed with the panel model we suggest to use.
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2. Methodology

Quantile regression was introduced by Koenker and Bassett (1978)
and build on the notion of estimating conditional quantile functions. In
a quantile regression model one can locate the effect that independent
variables have on the dependent variable for each quantile of the
distribution function of the dependent variable. The model that we use
is as follows. It is a linear model, similar to others used in different
studies about power prices before.

𝑝𝑞,ℎ,𝑡 = 𝛼𝑞,ℎ + 𝛽𝑞 × 𝑚𝑐𝑡 + 𝛾𝑞 ∗ 𝐷ℎ,𝑡 + 𝛿𝑞 × 𝑉 𝑅𝐸𝑆ℎ,𝑡 + 𝜖𝑞,ℎ,𝑡. (1)

The subscripts q, h, and t represent the specific quantile studied, the
delivery hour, and time respectively. The dependent variable is 𝑝𝑞,ℎ,𝑡,
which is the 𝑞th quantile of the day-ahead price probability distribution
function for delivery during hour ℎ in day 𝑡. This linear model follows
the rationale of Hagfors et al. (2016a,c) in the choice of factors that
explain 𝑝𝑞,ℎ,𝑡. Let us discuss those factors in detail.

• 𝛼𝑞,ℎ. This is the fixed effect as it is called in the panel literature.
It represents a constant term for each specific hour ℎ.

• 𝑚𝑐𝑡. This variable captures the local past median marginal cost
of supply from non-VRES at time 𝑡. One way to measure this
is by using the prices of various underlying fuels. Because of
the heterogeneity in the production technologies and also in the
underlying fuels used, this would mean to include a series of
variables like coal price, gas price, nuclear material price, CO2
emission rights and to calibrate them depending on the supply
mix of the power system in cause. Another approach that reduces
complexity is to create a proxy variable which comprises all
underlying fuel information into one variable. That proxy variable
can be formed by making use of recent power prices. Due to the
merit order construction in liberalised day-ahead power markets,
these prices reflect the costs of the marginal producer. Therefore,
it is sensible to use recent market clearing prices as a proxy for
marginal cost. We use the median of hourly power prices over
the past 4 weeks: 28 days * 24 hours/day = 672 observations.2
The model attributes the same marginal cost value for all 24 h in
the day. Hence, the absence of the subscript ℎ in 𝑚𝑐𝑞,𝑡. The logic
behind this is that bidding in the day-ahead market happens in
the same time for all the 24 h of the day and, consequently, the
bidding decision is based on the same level of underlying fuel
prices for each hour within a day. The median value is preferred
over the average value since the median value is less dependent
on extreme power prices, is less volatile and, therefore, it can
better capture the local level of underlying fuel prices.

• 𝐷ℎ,𝑡. This variable captures total demand for power during hour ℎ
in day 𝑡. It is measured from the hourly total system consumption.

• 𝑉 𝑅𝐸𝑆ℎ,𝑡. This variable is the share of total demand that is cov-
ered by wind (offshore and onshore) supply and by photovoltaic
supply during hour ℎ in day 𝑡. We do not separate between wind
and solar output in this analysis as both technologies have close to
zero marginal cost, both are dependent on weather and for each
of them the literature proves that their supply is decreasing the
wholesale power prices.3 Percentages of supply from VRES are

2 The length of the past data was chosen in order to: (i) include an equal
umber of weekdays and weekend days, eliminating in this way the within
eek seasonality concerns; (ii) be short enough to avoid the inclusion of prices

hat are not anymore relevant to the local level of prices; (iii) be long enough
o allow the marginal cost variable to not be dependent on moments with a
igh concentration of extreme high or low prices. Shorter timeframes lead to
uch higher volatility for the calculated marginal cost variable and that is not

n line with the volatility of the underlying fuel prices.
3 The only economical difference between the wind power and the photo-

oltaics power products lays within the moments in time when they are set to
roduce. Solar supply is predominantly produced during peak hours and wind
4

ower can exhibit a high supply both in peak and off-peak hours. c
preferred over the volumes of supply from VRES since the share
of supply from VRES can better capture how dependent the power
system is on the wind and solar output in a particular moment.
Volumes are less accurate in capturing this since a certain volume
of VRES output in a period with a low demand is challenging
more the power system’s flexibility than the same volume of VRES
output in a period with a high demand.

• 𝜖𝑞,𝑡 ≈ (0, 𝛴). This is an independent and identically distributed
error term with 𝛴 being a (24 × 24) covariance matrix.

Having the 𝑚𝑐𝑡, 𝐷ℎ,𝑡 and 𝑉 𝑅𝐸𝑆ℎ,𝑡 present in the model eliminates
he need for introducing seasonality control variables as the chosen
ariables capture the changes that each season brings into a power
ystem. For the volumes of load and supply from VRES, we had to make
decision between using actual/realised or expected/forecasted data.
hile both actual and expected data have their limitations (forecasted

ata is prone to player specific forecasted error; actual data is not
vailable at the moment of day-ahead bidding), we follow Nicolosi
2010) and Kyritsis et al. (2017) by using actual volumes data. As Woo
t al. (2015) explain, forecasted and actual data are highly correlated
nd, thus, the results not to differ much when changing from one
pproach to the other.4

To estimate the parameters in Eq. (1) in a panel framework, we
ollow the methodology suggested in Baltagi (2013). Because of het-
roskedasticity caused by the cross-sectional covariance matrix 𝛴, we
annot directly estimate the parameters. We do the following steps:
i) we set-up a system of 24 seemingly unrelated regressions based
n the model presented in Eq. (1); in fact 24 time-series for the 24
ourly contracts; (ii) we then estimate the system of seemingly unre-
ated regressions using feasible generalised least squares approach and
estricting that each of the coefficients is equal across the 24 regressions
except for the hourly fixed terms); (iii) we estimate the covariance
atrix 𝛴 from the residuals; (iv) we pre-multiply the original data
ith the Choleski decomposition of the inverse of the estimated 𝛴
atrix and we obtained the transformed data; (v) we estimate the
arameters in Eq. (1) using quantile regression on the transformed data.
he process used is not always efficient after the first transformation.
herefore, using the transformed data obtained in step (iv), we redo the
ll the steps above until convergence of results of step (v) is achieved.
e define that convergence occurred when each 𝛿𝑞 estimated coeffi-

ient in Eq. (1) for each quantile level does not deviate by more than 1%
rom the estimated coefficient from the previous transformation panel
uantile regression estimates.

Having these estimates, we then test our claim, that supply from
RES is having a stronger reducing impact on power prices at extreme
uantile levels as compared to moderate quantile levels, by examining
he estimates for the coefficients 𝛿𝑞 . These coefficients show the impact
hat the share of supply from VRES has on day-ahead power prices at
arious quantile levels. Given our claim is correct, we expect to observe
ignificantly lower coefficient estimates for the share of supply from
RES on the lowest quantiles and on the highest quantiles compared

o the quantiles in between.

. Data

The data that we use is comprised by hourly observations from the
erman day-ahead power market between 6th of January 2015 to 30th
f June 2019, collected from Bundesnetzagentur — SMARD.de.5 The

4 When performing robustness checks using forecasted data, the results are
imilar to the ones obtained using actual data.

5 23 days from the dataset were excluded due to unavailable data for
ertain hours. For 0.4% of the hourly observations, where only partial intra-
our (15 min blocks) information are available, adjustments (averaging based
n available intra-hour data) had to be made in order to keep the dataset

onsistent.
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Fig. 1. Overview of the German day-ahead market between January 2015 − June 2019.
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ataset contains information about German day-ahead power prices,
emand level and share of supply from VRES. The first 672 observations
re used solely for estimating the initial marginal cost value of the
ower system, 𝑚𝑐𝑡.

Fig. 1 shows the data that we use from Germany. The first (top)
raph shows the hourly day-ahead prices. It shows frequent extreme
igh and low values, ranging from below −100 euro/MWh to over
63 euro/MWh. The second graph shows the median lagged price
ariable which is our proxy for marginal costs 𝑚𝑐𝑡. It is less volatile
s it represents a moving average. Its values range from 21 euro/MWh
o 58 euro/MWh. The third graph shows system’s realised demand.
he fourth (lower) figure shows the share of supply from VRES and
xhibits huge variability. The VRES share has hourly values from 0%
o over 90%. To be noted that the variable constructed for the model
epresents the ratio between supply from VRES and actual demand
ithout considering the generation related to the export/import of
ower. Since in all of the months included in the analysis except for
ne, June 2019, Germany was a net exporter of power, we would
bserve on average lower values when we had consider the share of
RES out of the total power generated in Germany.

To get an initial insight from the data, in Table 1 we split the dataset
nto day-ahead price deciles followed by a further sub segmentation
y the share of supply from VRES. While not having any statistical
ower, already from this initial table we can observe that the share
f supply from VRES is putting a much higher pressure on the German
ay-ahead power market during the moments when prices are more
xtreme, the lowest and the highest price deciles. Table 1 shows that for
rice deciles 0.2–0.3 to 0.7–0.8, an average increase in the VRES share
f 10% decreases prices only marginally by 0.00–0.04 euro/MWh. The
5

ame average increase in the share of supply from VRES in the highest i
and the lowest price deciles decreases on average the day-ahead price
with more than 2.8 euro/MWh. Based on Table 1, the price impact of a
10% increase in the share of VRES appears to be the highest, in absolute
terms, in the two extreme cases: (i) high VRES share in the lowest price
decile and (ii) low VRES share in the highest price decile. In the highest
and the lowest price deciles, the price variation is also the highest, since
in these moments the power system’s flexibility is challenged more. The
lack of flexibility in the highest and lowest price deciles, appears to lead
to more abrupt price response when the share of supply from VRES
changes.

4. Results

The first result that we show is to demonstrate the validity of the
panel framework. Table 2 shows the (24 × 24) correlation matrix ob-
tained from the estimate of the cross-sectional covariance matrix 𝛴. The
able clearly shows high correlations for adjacent hours. For example,
he correlation between the residuals for the (seemingly unrelated)
egressions for hours 10 and 11 is 0.94 and 0.92 for hours 11 and
2. The residuals for the regression on hour 11 have a much lower
orrelation, of 0.36, with the residuals of hour 23. A clear correlation
and covariance) pattern occurs indicating that information is thrown
way when one considers the time-series of hour 11 separate from
ours 10 and 12 for instance. Similar examples can be provided for
ach of the 24 h within a day.6

6 Another way of stating is that our approach accounts for the cross-
ectional covariance between different hourly prices. To test whether this is
ndeed the case, we have calculated the average absolute covariance between
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Table 1
German day-ahead average price behaviour by share of VRES supply and price decile.

Day ahead
price decile

Minimum
day ahead
price

Maximum
day ahead
price

Price interval
(max–min)

Average day-ahead price by VRES share subsample Price change by 10% VRES share increase

1 2 3 4 5 6 (2-1) (3-2) (4-3) (5-4) (6-5) Avg0%–10% 10%–20% 20%–30% 30%–40% 40%–50% 50%+

0.0–0.1 −100.1 18.0 118.1 16.5 15.5 14.8 13.9 12.3 2.3 −0.96 −0.71 −0.88 −1.64 −9.98 −2.84
0.1–0.2 18.1 24.3 6.3 22.3 21.9 21.8 21.6 21.7 21.1 −0.38 −0.12 −0.11 0.03 −0.53 −0.22
0.2–0.3 24.3 28.2 3.8 26.4 26.4 26.3 26.3 26.3 26.2 −0.01 −0.04 0.00 0.00 −0.15 −0.04
0.3–0.4 28.2 31.1 2.9 29.8 29.7 29.7 29.7 29.7 29.7 −0.07 −0.04 0.02 −0.04 −0.01 −0.03
0.4–0.5 31.1 34.4 3.3 32.7 32.8 32.8 32.7 32.7 32.5 0.04 0.02 −0.09 0.00 −0.17 −0.04
0.5–0.6 34.4 37.9 3.5 36.1 36.1 36.1 36.1 36.1 36.0 −0.04 −0.02 0.01 0.03 −0.12 −0.03
0.6–0.7 37.9 41.9 4.0 39.8 39.8 39.8 39.7 39.8 39.8 0.03 0.03 −0.15 0.11 −0.01 0.00
0.7–0.8 42.0 47.0 5.0 44.3 44.4 44.3 44.3 44.3 44.3 0.09 −0.07 −0.05 0.05 −0.06 −0.01
0.8–0.9 47.0 54.8 7.8 50.5 50.3 50.2 50.3 50.6 49.9 −0.23 −0.09 0.13 0.28 −0.73 −0.13
0.9–1.0 54.8 163.5 108.8 70.9 65.8 63.6 60.7 58.0 56.7 −5.11 −2.18 −2.87 −2.70 −1.35 −2.84
Table 2
Correlation of residuals matrix estimated using the SUR model.

Hour 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

0 1 0.91 0.83 0.80 0.76 0.72 0.58 0.39 0.38 0.41 0.40 0.41 0.41 0.38 0.34 0.37 0.29 0.20 0.18 0.22 0.31 0.39 0.41 0.44
1 0.91 1 0.94 0.90 0.85 0.80 0.66 0.44 0.41 0.42 0.41 0.42 0.41 0.39 0.36 0.38 0.29 0.22 0.18 0.20 0.27 0.35 0.36 0.41
2 0.83 0.94 1 0.96 0.90 0.83 0.67 0.44 0.42 0.44 0.43 0.44 0.44 0.41 0.37 0.38 0.30 0.22 0.18 0.17 0.24 0.32 0.33 0.39
3 0.80 0.90 0.96 1 0.96 0.88 0.69 0.46 0.44 0.45 0.44 0.45 0.45 0.42 0.38 0.40 0.31 0.22 0.18 0.17 0.24 0.34 0.34 0.41
4 0.76 0.85 0.90 0.96 1 0.92 0.69 0.46 0.43 0.44 0.43 0.45 0.44 0.41 0.37 0.39 0.31 0.23 0.19 0.17 0.24 0.33 0.33 0.40
5 0.72 0.80 0.83 0.88 0.92 1 0.80 0.55 0.49 0.48 0.46 0.46 0.45 0.41 0.38 0.41 0.34 0.25 0.23 0.22 0.30 0.40 0.38 0.44
6 0.58 0.66 0.67 0.69 0.69 0.80 1 0.80 0.73 0.65 0.60 0.56 0.51 0.47 0.44 0.49 0.45 0.40 0.40 0.39 0.42 0.43 0.33 0.35
7 0.39 0.44 0.44 0.46 0.46 0.55 0.80 1 0.93 0.83 0.75 0.67 0.59 0.55 0.53 0.59 0.59 0.60 0.59 0.54 0.49 0.37 0.23 0.24
8 0.38 0.41 0.42 0.44 0.43 0.49 0.73 0.93 1 0.91 0.83 0.75 0.66 0.60 0.57 0.62 0.60 0.61 0.60 0.55 0.50 0.39 0.25 0.26
9 0.41 0.42 0.44 0.45 0.44 0.48 0.65 0.83 0.91 1 0.94 0.86 0.78 0.70 0.64 0.69 0.67 0.65 0.62 0.55 0.52 0.42 0.31 0.31
10 0.40 0.41 0.43 0.44 0.43 0.46 0.60 0.75 0.83 0.94 1 0.94 0.85 0.76 0.69 0.72 0.69 0.64 0.59 0.50 0.49 0.41 0.33 0.32
11 0.41 0.42 0.44 0.45 0.45 0.46 0.56 0.67 0.75 0.86 0.94 1 0.92 0.83 0.74 0.76 0.72 0.64 0.56 0.45 0.46 0.40 0.35 0.36
12 0.41 0.41 0.44 0.45 0.44 0.45 0.51 0.59 0.66 0.78 0.85 0.92 1 0.92 0.84 0.81 0.75 0.60 0.52 0.42 0.44 0.41 0.37 0.36
13 0.38 0.39 0.41 0.42 0.41 0.41 0.47 0.55 0.60 0.70 0.76 0.83 0.92 1 0.95 0.90 0.79 0.59 0.48 0.37 0.39 0.36 0.32 0.38
14 0.34 0.36 0.37 0.38 0.37 0.38 0.44 0.53 0.57 0.64 0.69 0.74 0.84 0.95 1 0.94 0.83 0.61 0.49 0.38 0.39 0.36 0.32 0.37
15 0.37 0.38 0.38 0.40 0.39 0.41 0.49 0.59 0.62 0.69 0.72 0.76 0.81 0.90 0.94 1 0.91 0.71 0.58 0.45 0.45 0.41 0.36 0.41
16 0.29 0.29 0.30 0.31 0.31 0.34 0.45 0.59 0.60 0.67 0.69 0.72 0.75 0.79 0.83 0.91 1 0.84 0.70 0.56 0.54 0.46 0.38 0.35
17 0.20 0.22 0.22 0.22 0.23 0.25 0.40 0.60 0.61 0.65 0.64 0.64 0.60 0.59 0.61 0.71 0.84 1 0.86 0.67 0.55 0.39 0.28 0.21
18 0.18 0.18 0.18 0.18 0.19 0.23 0.40 0.59 0.60 0.62 0.59 0.56 0.52 0.48 0.49 0.58 0.70 0.86 1 0.83 0.68 0.46 0.32 0.21
19 0.22 0.20 0.17 0.17 0.17 0.22 0.39 0.54 0.55 0.55 0.50 0.45 0.42 0.37 0.38 0.45 0.56 0.67 0.83 1 0.84 0.62 0.44 0.29
20 0.31 0.27 0.24 0.24 0.24 0.30 0.42 0.49 0.50 0.52 0.49 0.46 0.44 0.39 0.39 0.45 0.54 0.55 0.68 0.84 1 0.84 0.66 0.47
21 0.39 0.35 0.32 0.34 0.33 0.40 0.43 0.37 0.39 0.42 0.41 0.40 0.41 0.36 0.36 0.41 0.46 0.39 0.46 0.62 0.84 1 0.87 0.70
22 0.41 0.36 0.33 0.34 0.33 0.38 0.33 0.23 0.25 0.31 0.33 0.35 0.37 0.32 0.32 0.36 0.38 0.28 0.32 0.44 0.66 0.87 1 0.81
23 0.44 0.41 0.39 0.41 0.40 0.44 0.35 0.24 0.26 0.31 0.32 0.36 0.36 0.38 0.37 0.41 0.35 0.21 0.21 0.29 0.47 0.70 0.81 1

Model: 𝑝𝑞,ℎ,𝑡 = 𝛼𝑞,ℎ + 𝛽𝑞 × 𝑚𝑐𝑡 + 𝛾𝑞 ∗ 𝐷𝑞,ℎ,𝑡 + 𝛿𝑞 × 𝑉 𝑅𝐸𝑞,ℎ,𝑡 + 𝜖𝑞,ℎ,𝑡.
Data: German day-ahead prices.
s
f

f

We proceed with testing the claim that an increase in supply from
VRES reduces power prices more at extreme low and high quantiles
than at the centre part of the power price probability distribution
function. Table A.1 in the appendix shows the parameter estimates for
model (1) for different quantiles. To make it readable, we summarise
the main findings in Table 3. That table only shows the estimates for
the parameter 𝛿𝑞 in model (1). That parameter can be interpreted as
the ceteris paribus increase in the price of power as a result of a one
unit increase in the share of demand supplied by VRES. Our hypothesis
predicts that this parameter should be negative and more pronounced
at extreme quantiles. This is exactly what we observe. For the extreme
quantiles 1 and 99, the parameters are −68 and −67 respectively,

the pairs of hourly prices before and after convergence. We observe that the
average absolute covariance between a pair of hours decreases by a factor of 4
from about 30 to 7. This is not equal to zero, although we think that a value of
zero would be unlikely to achieve for the following reasons. First, we calculate
the average of the absolute values. Second, we only focus on the cross-sectional
covariance and assume that variation over time is constant, which might not
be the case within our sample. To deal with this, is another topic and we think
it is beyond the scope of this paper. We do conclude, based on this test, that
we adequately account for the heteroskedastic structure (within the limits set
6

by the scope of this paper).
Table 3
Impact of share of VRES supply on selected day-ahead price quantile levels.

Quantile 1 2 3 . . . 50 . . . 97 98 99

𝛿𝑞 −68.84 −63.77 −61.21 ... −55.85 ... −64.63 −65.72 −67.74
𝛿𝑞 − 𝛿50 −12.99 −7.92 −5.36 ... – ... −8.78 −9.87 −11.89
s.e. (2.30) (1.14) (0.83) ... (0.03) ... (0.76) (1.02) (2.20)

Model: �̂�𝑞,ℎ,𝑡 = �̂�𝑞,ℎ + 𝛽𝑞 × 𝑚𝑐𝑡 + 𝛾𝑞 ∗ �̂�ℎ,𝑡 + 𝛿𝑞 × 𝑉 𝑅𝐸ℎ,𝑡 + 𝜖𝑞,ℎ,𝑡
Data: German day-ahead market data.

whereas the parameter is −55 at the 50th (median) quantile. The
econd row in Table 3 shows the difference between the parameter
or a quantile and for the median (𝛿𝑞 − 𝛿50), and reveals that this

difference is negative and significant (because of the low standard
errors) at the extreme quantiles. Clearly, the estimates show support
for the prediction that supply from VRES has a stronger impact on the
extreme price quantiles than on the median price quantile.

Fig. 2 provides the complete picture by showing the 𝛿𝑞 estimates
or all the quantiles 1 through 99.7 This figure, while not being a

7 In Fig. 2, 𝜏 represents the various quantiles considered.
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focal point of our research,8 it illustrates two aspects which are worth
mentioning. First, it is clear that 𝛿𝑞 is negative for all quantiles, sup-
porting the existing view from the literature that an increase in supply
from VRES reduces power prices (because of its near zero marginal
cost). Second, it shows that the impact is most negative at the higher
and lower quantiles. When predicting power price ranges, one should
keep in mind that supply from VRES has a different impact on power
prices for different quantiles; the impact is relatively low when one
is interested in predicting mean or median prices and more dramatic
when one is interested in predicting high and low price ranges. This is
what owners of flexibility offering assets are interested in since price
ranges can help them optimise their bidding strategies. Because of this,
we argue that is more important to use the model proposed in Eq. (1)
for investigating the behaviour of extreme power prices rather than the
one of moderate power prices.

Another takeaway from Table 3 and Fig. 2 is that the coefficient 𝛿𝑞
has similar values at the lowest and highest price quantiles. This means
that extreme low and high German day-ahead power prices are affected
similarly by an increase in supply from VRES. While the values of the
coefficients 𝛿𝑞 are similar at the lowest and highest day-ahead power
price quantiles, the reasons for them occurring are different. We explain
this as follows. High prices occur when demand is high and the share of
supply from VRES is low. During these moments, the higher marginal
cost producers are the ones setting the power price. Many power plants
produce to supply the high demand and there is competition to ramp
down production when the VRES share increases. In this situation, an
increase in share of VRES will reduce the power price fast as it will
replace in the merit order curve the high marginal cost producers. On
the other end of the power price distribution function, at extreme low
prices, the fast decrease of power prices that comes with VRES share
increases is due to less competition and inflexibility of base load power
producers9 to ramp down production. Competition to ramp down is
low during low demand periods as only a few power plants operate.
An increase in supply from VRES puts higher pressure to ramp down
production on the few base load producers that are still operating
in such moments than the same increase in supply from VRES when
demand is moderate. If the base load producers are inflexible, in the
sense that it is less costly for them to temporarily accept producing at
price levels below their marginal cost rather than to ramp down and up

8 The model proposed in Eq. (1) is aimed at investigating the extreme ends
f the probability distribution function of power prices and not the specific
oderate price quantiles.
9 We refer to base load producers as conventional fuel producers that

sually generate power at relatively constant levels for all hours of the day.
7

their production level, the impact of a change in VRES share is getting
bigger at extreme low power price quantile levels than at moderate
power price quantile levels.

4.1. The impact of VRES share on quantile power prices conditional on
demand level

Interpreting the difference between the estimates of 𝛿𝑞 in Eq. (1) is
ur means to examine the claim that VRES are having a varying impact
n power prices. This model has similar variables as other models
roposed in the literature that we discussed before. There is one aspect
e want to discuss here. When we look in Table A.1 in the appendix,
e see that the demand coefficients, 𝛾𝑞 , have all positive values and are

tatistically different from 0. This means that, the higher the demand
evel is, the higher the power price10 will be. At the same time, a part
f that demand is catered by supply from VRES. Furthermore, as Fig. 2
hows, the VRES share coefficient 𝛿𝑞 is always significantly negative.
e can then infer that an increase in demand will put upward pressure

n power prices but, if that increase in demand is catered supply from
RES, that upward pressure on prices will be diminished by supply

rom VRES. We therefore expect that an interplay between demand and
hare of VRES should provide important information to better predict
he impact of VRES share on power prices. We therefore suggest to use
revised model expressed in equation (2):

𝑞,ℎ,𝑡 = 𝛼𝑞,ℎ+𝛽𝑞×𝑚𝑐𝑡+𝛾𝑞 ∗ 𝐷ℎ,𝑡+𝛿𝑞×𝑉 𝑅𝐸𝑆ℎ,𝑡+𝜁𝑞×𝐷ℎ,𝑡×𝑉 𝑅𝐸𝑆ℎ,𝑡+𝜖𝑞,ℎ,𝑡,

(2)

Compared with model (1), we include the interaction term 𝐷ℎ,𝑡 ×
𝑅𝐸𝑆ℎ,𝑡. Note that the interaction term represents the actual supply
f VRES. While it might appear counterintuitive to include in a model
oth the share and actual volume of supply from VRES,11 this technique
llows the model to control for the interplay between demand and share
f VRES. Thus, the coefficient 𝜁𝑞 , is aimed at capturing the effect of the
nteraction between demand and share of VRES on power prices. We
stimate the parameters in Eq. (2) by following the same steps as we
id for Eq. (1).

Using the revised model, we perform the same analysis as for the
nitial model in order to isolate the impact of VRES share on power

10 While Table A.1 presents the 𝛾𝑞 coefficients only for a selection of price
quantiles, for each analysed quantile, from the 1st to the 99th, the 𝛾𝑞 values
are statistically significantly higher than 0

11 The actual volume of supply from VRES is represented in the model by
the interaction between demand and the share of supply from VRES.
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Fig. 3. VRES share impact on German day-ahead price quantiles, conditional on demand level.
Fig. 4. AIC comparison between models (1) and (2) estimated on the German day-ahead market.
prices conditional on a fixed demand level. To calculate this, we take
the first order derivative of the estimated model (2) with respect to
share of VRES. Thus, the impact of the share of VRES on power prices
is: 𝛿𝑞 +𝜁𝑞 ×𝐷. To be noted that in this estimation of the impact of share
of VRES on power prices demand is exogenous to the estimation. This
simplification is necessary for making it easier to exemplify the results
of the second model, results that are shown in Fig. 3. Similar as for the
first model, in the appendix Table A.2 we present the coefficients for
all the variables included in the model estimated on Eq. (2) at selected
extreme and at median price quantile levels.

Fig. 3 shows the impact the share of supply from VRES has on
quantile power prices conditional on the demand level. The demand
level axis is formed by all the values comprised between the minimum
and the maximum observed demand level in the German day-ahead
8

power market. Conditional on a fixed demand level, results show
similar patterns as for the first model. For any fixed demand level, in
the lowest and highest price quantiles, the impact of VRES share on
power prices is much more negative than for moderate quantiles. For
example, let us consider a fixed moderate hourly demand of 50,000
MWh. Conditional on this demand level, all else equal, an increase in
the share of supply from VRES leads to a higher power price decrease
when power prices are very low (1st quantile coefficient for share
of VRES being −65) or very high (99th quantile coefficient for share
of VRES being −64) than when prices are moderate (50th quantile
coefficient for share of VRES being −53).

While for this chosen fixed demand level of 50,000 MWh the
estimated share of VRES impact on power prices is similar to the one
estimated in the first model, for other demand levels, the estimates
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Fig. A.1. Overview of the Spanish day-ahead market between January 2015 − June 2019.
iffer. The differences come from the fact that in the second model,
he share of VRES impact on power prices is conditional on a fixed
elected demand level. When reading Fig. 3 and comparing it with

we have to keep in mind the fact that Fig. 2 presents the average
mpact of VRES share on power prices and that Fig. 3 separates the
mpact based on demand level. Furthermore, it is important to note
hat, while Fig. 3 presents an estimate for the share of VRES impact
or each demand level at each quantile, the frequency of a certain pair
f price quantile and demand level varies greatly. For example, it is
nlikely that high prices appear on low demand levels or that low prices
ppear on high demand levels. Thus, the results in Fig. 3 should be read
s an indication on what is the VRES share impact on power prices at
pecific power price quantile and demand level.

To compare the two models, Fig. 4 presents the AIC for both models.
n the upper part of the figure, the AIC values for the two models are
hown. The model estimated on Eq. (1) is represented with by the solid
ine and the model estimated on Eq. (2) is represented by the dashed
ine. For all the quantiles investigated, the second model has a lower
IC value, indicating a better performance of model (2). In the lower
art of Fig. 4, the ratio between the AIC values of the model (2) and
odel (1) is illustrated, indicating that the second model (estimated

n Eq. (2)) has values between 0.14% − 0.18% lower than the first
odel (estimated on Eq. (1)). From here, we can conclude that the

nteraction between demand and share of VRES is a factor that adds
alue to models aiming to predict German day-ahead power prices.
his is another important finding that can help flexibility offering asset
wners in Germany as it shows that, for this market, the interplay
etween demand and supply from VRES influences day-ahead power
9

rices.
4.2. Challenge: the Spanish day-ahead market

The results presented so far provide a clear picture on how a
alteration in output from VRES changes day-ahead power prices in
Germany. Having a significant share of coal and nuclear supply in
its power mix, the German power market is relatively inflexible. This
fact reveals itself through the frequent price spikes that appear in the
German day-ahead price. In this section, we challenge our findings
and apply the same analysis to a more flexible power market which
is not directly linked to the German power market: the Spanish power
market. Spain has a relatively high share of supply from VRES in its
power mix, and compared to Germany, the Spanish power mix has
a higher share of hydro, hydro pumped and gas supply and a lower
share of coal supply. This is why we label the Spanish power market as
more flexible than the German power market. Moreover, the policies of
the Spanish power market do not allow for negative day-ahead power
prices, limiting in this way the price reduction impact in periods with
extreme low demand and high share of VRES.

To investigate the Spanish day-ahead power market, we use data
collected from ENTSOE Transparency platform and use a timeframe
similar to the one for the German market: from 1st of January 2015 to
30th of June 2019.12 A visual representation of the data used for this
exercise is presented in the appendix Fig. A.1. In the upper part of this
figure, we can observe that the Spanish hourly day-ahead power prices
are exhibiting, on the high end, less extreme high spikes as compared

12 25 days from the Spanish data were excluded due to unavailable data for
certain hours. The same as for the German market, the presented results are
based on actual realised demand and share of VRES data.



Energy Economics 105 (2022) 105685R. Huisman and C. Stet

t
i

Table A.1
A selection of quantile regression coefficients estimated using the transformed Eq. (1).

Quantile level 1 2 3 . . . 50 . . . 97 98 99

Marginal cost (𝛽𝑞) 0.82 0.73 0.70 ... 0.68 ... 0.56 0.51 0.56
(0.09) (0.05) (0.03) ... (0.001) ... (0.03) (0.04) (0.09)

Demand (𝛾𝑞) 0.00067 0.00064 0.00062 ... 0.00057 ... 0.00064 0.00068 0.00078
(0.00005) (0.00002) (0.00002) ... (0.00000) ... (0.00001) (0.00002) (0.00005)

VRE share (𝛿𝑞) −68.84 −63.77 −61.21 ... −55.85 ... −64.63 −65.72 −67.74
(2.30) (1.14) (0.83) ... (0.03) ... (0.76) (1.02) (2.20)

Hour 0 (𝛼𝑞,0) −394.57 −282.23 −228.47 ... −4.66 ... 190.88 233.14 328.68
(19.07) (10.81) (9.45) ... (0.24) ... (6.89) (9.51) (18.64)

Hour 1 (𝛼𝑞,1) −398.13 −285.14 −226.35 ... −4.74 ... 191.53 234.69 330.47
(19.97) (12.78) (8.31) ... (0.24) ... (6.97) (9.62) (19.06)

Hour 2 (𝛼𝑞,2) −399.13 −288.86 −234.17 ... −5.14 ... 192.63 237.17 335.55
(21.40) (11.10) (8.64) ... (0.25) ... (7.04) (10.17) (21.35)

Hour 3 (𝛼𝑞,3) −397.60 −284.39 −231.09 ... −6.53 ... 190.00 232.39 328.42
(19.26) (10.69) (9.49) ... (0.24) ... (6.79) (9.51) (18.89)

Hour 4 (𝛼𝑞,4) −401.45 −288.03 −229.95 ... −6.85 ... 190.77 233.58 329.92
(19.84) (12.85) (8.31) ... (0.24) ... (6.85) (9.59) (19.24)

Hour 5 (𝛼𝑞,5) −401.67 −291.81 −236.72 ... −6.51 ... 191.72 236.49 334.45
(21.23) (11.25) (8.63) ... (0.25) ... (7.07) (10.15) (21.51)

Hour 6 (𝛼𝑞,6) −397.57 −283.31 −230.59 ... −4.45 ... 191.96 233.81 328.93
(19.13) (10.62) (9.44) ... (0.25) ... (6.91) (9.24) (18.78)

Hour 7 (𝛼𝑞,7) −395.70 −283.03 −225.01 ... −0.81 ... 196.07 238.66 334.38
(19.65) (12.84) (8.40) ... (0.24) ... (6.71) (9.79) (19.19)

Hour 8 (𝛼𝑞,8) −394.80 −284.45 −229.97 ... 1.25 ... 199.05 243.33 340.31
(21.51) (11.14) (8.50) ... (0.26) ... (7.09) (10.19) (21.52)

Hour 9 (𝛼𝑞,9) −391.56 −278.16 −225.33 ... 1.21 ... 198.28 239.67 333.27
(19.33) (10.73) (9.50) ... (0.25) ... (6.95) (9.36) (18.86)

Hour 10 (𝛼𝑞,10) −393.07 −280.93 −222.41 ... 0.89 ... 197.46 239.65 334.59
(19.84) (13.09) (8.47) ... (0.24) ... (6.86) (9.55) (19.28)

Hour 11 (𝛼𝑞,11) −393.77 −283.20 −228.63 ... 0.95 ... 198.83 243.50 340.23
(21.76) (11.14) (8.60) ... (0.27) ... (7.09) (10.22) (21.87)

Hour 12 (𝛼𝑞,12) −390.03 −277.80 −225.16 ... 0.25 ... 196.88 238.05 332.09
(19.21) (10.78) (9.43) ... (0.26) ... (6.86) (9.07) (18.89)

Hour 13 (𝛼𝑞,13) −390.96 −280.82 −222.81 ... −0.52 ... 196.18 237.34 331.54
(19.60) (12.84) (8.34) ... (0.24) ... (6.88) (9.42) (18.88)

Hour 14 (𝛼𝑞,14) −393.08 −283.65 −229.66 ... −1.32 ... 195.28 239.68 335.67
(21.38) (10.99) (8.51) ... (0.26) ... (6.92) (10.16) (21.62)

Hour 15 (𝛼𝑞,15) −388.57 −276.97 −224.68 ... −1.19 ... 194.49 235.37 328.33
(19.03) (10.78) (9.13) ... (0.26) ... (6.64) (9.04) (18.47)

Hour 16 (𝛼𝑞,16) −390.31 −280.14 −222.27 ... −1.43 ... 193.95 235.40 329.17
(19.64) (12.59) (8.20) ... (0.23) ... (6.95) (9.27) (18.78)

Hour 17 (𝛼𝑞,17) −389.92 −280.94 −227.13 ... −0.15 ... 195.99 239.88 336.19
(20.82) (11.12) (8.20) ... (0.26) ... (6.91) (10.41) (21.60)

Hour 18 (𝛼𝑞,18) −386.03 −275.44 −222.16 ... 0.77 ... 195.58 236.65 329.20
(18.60) (10.61) (9.27) ... (0.26) ... (6.74) (9.19) (18.39)

Hour 19 (𝛼𝑞,19) −389.39 −278.83 −220.42 ... 0.60 ... 194.62 236.73 330.71
(19.72) (12.44) (8.13) ... (0.23) ... (7.04) (9.48) (18.61)

Hour 20 (𝛼𝑞,20) −393.84 −284.10 −229.82 ... −1.28 ... 193.55 237.68 333.55
(21.07) (11.08) (8.36) ... (0.26) ... (7.02) (10.30) (20.58)

Hour 21 (𝛼𝑞,21) −392.47 −280.72 −226.65 ... −3.07 ... 190.28 231.69 324.68
(18.87) (10.77) (9.48) ... (0.24) ... (6.79) (9.38) (18.39)

Hour 22 (𝛼𝑞,22) −396.05 −283.56 −224.54 ... −2.82 ... 191.06 233.73 327.97
(19.90) (12.71) (8.29) ... (0.24) ... (7.03) (9.50) (18.74)

Hour 23 (𝛼𝑞,23) −399.07 −288.46 −233.65 ... −4.65 ... 191.80 236.11 333.09
(21.31) (11.21) (8.55) ... (0.25) ... (7.10) (10.24) (20.96)

Model: �̂�𝑞,ℎ,𝑡 = �̂�𝑞,ℎ + 𝛽𝑞 × 𝑚𝑐𝑡 + 𝛾𝑞 ∗ �̂�ℎ,𝑡 + 𝛿𝑞 × 𝑉 𝑅𝐸ℎ,𝑡 + 𝜖𝑞,ℎ,𝑡.
Note: Standard errors in parenthesis–German day-ahead market data used.
f
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to the German day-ahead prices, and, on the low end, always positive
prices.

In this additional analysis on the Spanish day-ahead market we
use the same steps as for the German day-ahead market. The results
for the impact of share of VRES on the Spanish day-ahead quantile
power prices using the model detailed in Eq. (1) are presented in the
appendix Table A.3 and appendix Fig. A.2.13 These results show that
also for a more flexible power market, such as the Spanish one, the
impact of the share of supply from VRES on the day-ahead power prices

13 For space limitations reasons the paper presents only the coefficients for
he VRES share impact. On request, the coefficients for all the other variables
ncluded in the model can be made available.
10

i

is significantly stronger on the extreme low and extreme high day-
ahead price quantiles than in the middle of the power price distribution
function.

At the median price quantile level the share of VRES parameter
value is −54. At the 1st and at the 99th price quantiles the parameters
or the share of VRES are lower being −0.61 and, respectively, −0.59.
he values for 𝛿𝑞 coefficients on the Spanish data at moderate price
uantiles are similar to the ones obtained on the German data. At the
xtreme price quantiles, the Spanish 𝛿𝑞 coefficients are not as low as the
erman ones. This indicates that Spanish conventional producers can
dapt faster their output level to changes in supply from VRES than
erman conventional producers in moments when the power market is
hallenged the most. This confirms the fact that the Spanish day-ahead
arket is indeed more flexible than the German one. Thus, an increase

n the share of supply from VRES at the extreme low and high price
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Table A.2
A selection of quantile regression coefficients estimated using the transformed Eq. (2).

Quantile level 1 2 3 . . . 50 . . . 97 98 99

Marginal cost (𝛽𝑞) 0.78 0.68 0.68 ... 0.65 ... 0.53 0.48 0.51
(0.08) (0.05) (0.04) ... (0.001) ... (0.03) (0.04) (0.08)

Demand (𝛾𝑞) 0.00087 0.00081 0.00079 ... 0.00079 ... 0.00088 0.00093 0.00105
(0.00007) (0.00004) (0.00003) ... (0.00000) ... (0.00003) (0.00003) (0.00007)

VRE share (𝛿𝑞) −37.76 −31.24 −28.94 ... −15.74 ... −19.68 −19.97 −14.72
(9.46) (6.53) (4.94) ... (0.12) ... (4.22) (4.33) (9.23)

Interaction (𝜁𝑞)* −0.00054 −0.00057 −0.00059 ... −0.00074 ... −0.00083 −0.00084 −0.00099
(0.00019) (0.00012) (0.00009) ... (0.00000) ... (0.00008) (0.00008) (0.00017)

Hour 0 (𝛼𝑞,0) −400.23 −297.38 −239.35 ... −14.46 ... 177.16 220.89 309.59
(20.98) (11.25) (8.67) ... (0.26) ... (7.30) (7.49) (18.36)

Hour 1 (𝛼𝑞,1) −405.18 −292.27 −239.68 ... −14.74 ... 179.05 220.45 300.47
(21.12) (12.34) (8.41) ... (0.26) ... (7.38) (8.88) (19.39)

Hour 2 (𝛼𝑞,2) −416.76 −303.95 −245.45 ... −15.07 ... 178.68 229.98 311.17
(19.30) (12.25) (9.63) ... (0.23) ... (6.90) (9.77) (20.49)

Hour 3 (𝛼𝑞,3) −403.00 −299.55 −242.04 ... −16.11 ... 176.40 220.55 310.21
(20.99) (11.17) (8.60) ... (0.27) ... (7.29) (7.54) (18.32)

Hour 4 (𝛼𝑞,4) −409.14 −295.57 −242.85 ... −16.86 ... 178.50 219.94 300.97
(20.95) (12.46) (8.32) ... (0.26) ... (7.38) (9.03) (19.38)

Hour 5 (𝛼𝑞,5) −419.83 −306.86 −248.28 ... −16.68 ... 178.61 229.92 311.54
(18.92) (12.25) (9.66) ... (0.23) ... (6.82) (9.90) (20.49)

Hour 6 (𝛼𝑞,6) −403.29 −299.56 −241.37 ... −14.82 ... 178.01 222.02 310.97
(20.91) (11.38) (8.46) ... (0.28) ... (7.38) (7.45) (17.75)

Hour 7 (𝛼𝑞,7) −404.63 −291.62 −238.74 ... −11.81 ... 182.75 224.05 304.69
(20.62) (12.30) (8.27) ... (0.25) ... (7.46) (9.25) (19.51)

Hour 8 (𝛼𝑞,8) −414.00 −300.27 −242.43 ... −9.72 ... 184.74 236.09 316.47
(19.18) (12.32) (9.65) ... (0.24) ... (6.95) (9.91) (20.52)

Hour 9 (𝛼𝑞,9) −398.07 −294.73 −236.38 ... −9.24 ... 183.99 227.15 315.50
(21.10) (11.37) (8.62) ... (0.28) ... (7.40) (7.58) (18.13)

Hour 10 (𝛼𝑞,10) −402.73 −289.27 −236.28 ... −9.44 ... 184.79 225.46 305.39
(20.90) (12.25) (8.43) ... (0.25) ... (7.35) (9.30) (19.89)

Hour 11 (𝛼𝑞,11) −413.43 −298.52 −240.98 ... −9.39 ... 185.63 236.33 316.28
(19.47) (12.45) (9.77) ... (0.24) ... (6.94) (10.02) (20.94)

Hour 12 (𝛼𝑞,12) −397.40 −294.52 −235.92 ... −9.54 ... 183.73 226.23 315.84
(21.06) (11.35) (8.76) ... (0.26) ... (7.37) (7.53) (18.60)

Hour 13 (𝛼𝑞,13) −400.92 −289.35 −236.62 ... −10.47 ... 183.61 224.46 304.22
(20.81) (12.13) (8.47) ... (0.26) ... (7.33) (9.27) (19.40)

Hour 14 (𝛼𝑞,14) −413.59 −299.28 −242.02 ... −11.70 ... 182.44 232.81 311.70
(19.13) (12.42) (9.68) ... (0.24) ... (6.82) (9.92) (21.07)

Hour 15 (𝛼𝑞,15) −395.99 −293.86 −236.21 ... −11.41 ... 180.94 223.03 311.28
(20.92) (11.24) (8.71) ... (0.26) ... (7.23) (7.36) (18.80)

Hour 16 (𝛼𝑞,16) −399.48 −289.16 −236.42 ... −11.90 ... 181.21 221.72 300.93
(20.86) (11.86) (8.51) ... (0.26) ... (7.28) (9.31) (18.70)

Hour 17 (𝛼𝑞,17) −409.98 −297.40 −239.82 ... −11.09 ... 182.64 232.80 310.98
(18.86) (12.36) (9.53) ... (0.21) ... (6.94) (9.77) (20.80)

Hour 18 (𝛼𝑞,18) −393.71 −291.49 −234.10 ... −9.90 ... 181.39 223.70 311.14
(20.50) (11.27) (8.57) ... (0.27) ... (7.29) (7.47) (18.64)

Hour 19 (𝛼𝑞,19) −398.23 −287.15 −234.85 ... −10.14 ... 181.84 222.07 301.06
(20.80) (11.98) (8.35) ... (0.26) ... (7.38) (9.23) (18.89)

Hour 20 (𝛼𝑞,20) −412.93 −300.25 −242.45 ... −12.04 ... 179.54 230.08 308.50
(18.95) (12.31) (9.55) ... (0.21) ... (6.99) (9.79) (20.10)

Hour 21 (𝛼𝑞,21) −399.43 −296.41 −238.27 ... −13.41 ... 176.17 219.16 306.04
(20.78) (11.25) (8.64) ... (0.25) ... (7.27) (7.45) (18.59)

Hour 22 (𝛼𝑞,22) −403.75 −290.93 −238.28 ... −13.31 ... 178.51 219.50 298.28
(21.10) (12.22) (8.46) ... (0.25) ... (7.49) (8.87) (19.26)

Hour 23 (𝛼𝑞,23) −417.21 −303.78 −245.28 ... −14.71 ... 178.01 228.48 308.24
(19.07) (12.37) (9.71) ... (0.22) ... (6.91) (9.73) (20.26)

Model: �̂�𝑞,ℎ,𝑡 = �̂�𝑞,ℎ + 𝛽𝑞 × 𝑚𝑐𝑡 + 𝛾𝑞 ∗ �̂�ℎ,𝑡 + 𝛿𝑞 × 𝑉 𝑅𝐸ℎ,𝑡 + 𝜁𝑞 × ̂𝐼𝑛𝑡𝑒𝑟𝑎𝑐𝑡𝑖𝑜𝑛ℎ,𝑡 + 𝜖𝑞,ℎ,𝑡
Note: Standard errors in parenthesis–German day-ahead market data used.
Note*: Interaction variable = 𝐷ℎ,𝑡 × 𝑉 𝑅𝐸ℎ,𝑡.
Table A.3
Impact of share of VRES supply on selected day-ahead price quantile levels.

Quantile 1 2 3 . . . 50 . . . 97 98 99

𝛿𝑞 −60.91 −57.68 −56.81 ... −53.61 ... −60.48 −60.36 −58.98
𝛿𝑞 − 𝛿50 −7.30 −4.07 −3.20 ... – ... −6.87 −6.75 −5.37
s.e. (2.13) (1.16) (0.94) ... (0.01) ... (0.88) (1.12) (1.74)

Model: �̂�𝑞,ℎ,𝑡 = �̂�𝑞,ℎ + 𝛽𝑞 × 𝑚𝑐𝑡 + 𝛾𝑞 ∗ �̂�ℎ,𝑡 + 𝛿𝑞 × 𝑉 𝑅𝐸ℎ,𝑡 + 𝜖𝑞,ℎ,𝑡.
Data: Spanish day-ahead market data.

quantiles does not induce in the Spanish power market a price shock

as big as in the German power market. The comparison between the
11
flexibility of the German and Spanish day-ahead markets is relevant at
the extreme price quantile levels, since it is in those moments that the
power markets are most challenged. When prices are moderate, most
power markets have enough conventional flexible supply available to
shift their production levels in order to cater changes in supply from
VRES. This result suggests that, as compared to an inflexible power
market, for a more flexible power market, the value of flexibility
offering assets, such as storage facilities, is lower, since the occurrence
of extreme prices is limited.

The results for the Spanish day-ahead market on the second model,
the one estimated on Eq. (2), are similar with the ones presented in
appendix Fig. A.2 for the first model (1). Conditional on a fixed demand
level, at extreme price quantiles VRES share is inducing a stronger
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Fig. A.2. VRES share impact across the Spanish day-ahead price quantiles (𝜏).
Fig. A.3. AIC comparison between models (1) and (2) estimated on the Spanish day-ahead market.
egative impact on Spanish day-ahead power prices than at moderate
rice quantile levels.14

Fig. A.3 compares the relative quality of the two models for the
panish power market. In the upper part of the figure, the dashed
ine and the solid line represent the quantile specific AIC values for
he second model (2) and, respectively for the first model (1). In the
ower part of the figure, the per quantile ratio between the AIC for
odel (2) and model (1) is exhibited. As opposed to the results for

he German day-ahead market, Fig. A.3 shows that for the Spanish
ay-ahead market, the second model (2) does not perform better than
he first model (1). For most quantile levels investigated model (1)
as a lower AIC estimate than model (2). This indicates that for a
lexible power markets, such as the Spanish day-ahead market, adding
term for the interaction between VRES share and demand level does
ot add explanatory value to a panel quantile regression model trying
o explain power prices. While not expected, this result is not totally
urprising. Having increased flexibility, the conventional producers in
panish power market can more easily adapt their production levels
o shifts in VRES share, regardless of demand level, as compared
o conventional producers in an inflexible power market. Thus, the
nterplay between demand and VRES share becomes less relevant for
flexible power market, as opposed to an inflexible power market. For

14 There is one exception from this on the moments when the Spanish day-
head market is in a situation of extreme high demand and extreme high
rices.
12
owners of flexibility offering assets this result suggest once again that
it is in the inflexible power markets that their flexibility offering assets
will be worth the most.

5. Conclusion

With increasing supply from wind and solar sources, the share of
power demand supplied by variable renewable energy sources (VRES)
becomes an important factor that influences power prices. We build
upon the existing literature by presenting a panel quantile regression
approach, showing that the share of demand supplied by VRES has a
varying impact on power prices, with significantly higher impact when
the power prices are in extreme low or high price quantiles ranges. This
result proves that when the flexibility of a power market is challenged
the most (in moments when extreme prices occur) the impact of an
increase in supply from VRES leads to much more drastic downward
adjustments in price than in periods when power markets are more
flexible (when moderate prices occur). We observe this effect in both
the German and Spanish day-ahead markets.

The paper also proves that in periods when power prices are ex-
tremely low or high, in a more inflexible power market, such as the
German day-ahead market, an increase in VRES share decreases the
day-ahead power price more than the same increase in VRES share for
a relatively more flexible power market, such as the Spanish day-ahead
market. This means that the higher the flexibility and capacity of the

conventional producers to adjust their production levels in function of



Energy Economics 105 (2022) 105685R. Huisman and C. Stet
changes in supply from VRES, the lower the variation in the impact that
supply from VRES has on power prices at extreme price quantile levels.
When comparing the results for the two markets investigated, the paper
also indicates that for a relatively inflexible power market (the German
day-ahead power market), the interaction between demand level and
VRES share adds value in understanding day-ahead price movements.
For the relatively more flexible Spanish day-ahead power market, the
interaction between demand level and VRES share does not appear to
add value in understanding day-ahead price movements. This means
that in a flexible power market, conventional producers have enough
flexibility in adjusting their production output to cater for changes in
supply from VRES such that the interplay between demand and VRES
share becomes less relevant. The result suggests that policy makers
should adjust their measures related to further integration of supply
from VRES based also on the pre-existing individual (in)flexibility
conditions of each power market. For example, one policy that could
increase power market flexibility is to stimulate investments in power
storage assets attached to VRES facilities. However, based on our
results, policy makers should keep in mind that the utility of a such
a policy will be higher in an inflexible power market than in a flexible
one. Besides looking at our results, this conclusion can be deduced
also from the concept of cannibalisation of extreme power prices. In
a more flexible power market, because of the increased competition
between flexibility offering assets, extreme prices become rarer. In such
a setting, both the need for flexibility and the profitability of flexibility
offering assets is lower.

The results of this paper are important for investments in assets that
make the power markets more flexible in accommodating fluctuating
supply from variable renewables. Power storage facilities or demand
response applications are such assets and, in effect, they are flexibility
offering assets that give the option to charge/discharge or to adjust
consumption levels. Those options are worth more when the range in
which power prices behave in becomes wider. Our model demonstrates
how one should incorporate (expected) output from renewables in
predicting that price range through understanding the impact of supply
from VRES at different price quantile levels. Furthermore, the panel
framework allows for simultaneous predictions for all hours during
a delivery day, which is more in line with the microstructure of
international power markets.

CRediT authorship contribution statement

Ronald Huisman: Conceptualization, Methodology, Validation, In-
vestigation, Writing – review & editing, Supervision. Cristian Stet:
Conceptualization, Methodology, Software, Validation, Formal analy-
sis, Data curation, Investigation, Writing – original draft, Visualisation.

Appendix A

See Figs. A.1–A.3 and Tables A.1–A.3.

Appendix B. Supplementary data

Supplementary material related to this article can be found online
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