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Cyclic voltammetry (CV) is a widespread experimental technique for characterizing electrochemical
devices such as supercapacitors. Despite its wide use, a quantitative relation between CV and
microscopic properties of supercapacitors is still lacking. In this Letter, we use both the microscopic
“stack-electrode” model and its equivalent circuit for predicting the cyclic voltammetry of electric
double-layer formation in porous electrodes. We find that the dimensionless combination ωτn, with ω the
scan frequency of the time-dependent potential and τn the relaxation timescale of the stack-electrode
model, governs the CV curves and capacitance: the capacitance is scan-rate independent for ωτn ≪ 1 and
scan-rate dependent for ωτn ≫ 1. With a single fit parameter and all other model parameters dictated by
experiments, our model reproduces experimental CV curves over a wide range of ω. Meanwhile, the
influence of the pore size distribution on the charging dynamics is investigated to explain the
experimental data.
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Electric double-layer capacitors (EDLCs) based on
carbon electrodes [Fig. 1(a)] have drawn great attention
due to their high power density, safety, and extraordinary
cycle life [1–8]. Experimental analyses of EDLCs are often
based on cyclic voltammetry (CV), which is a powerful
technique in which the charge on such electrochemical
devices is measured in response to an applied periodic
potential [Fig. 1(b)]. CV experiments are widely used to
determine the electric properties of supercapacitors as they
are (relatively) easy to perform and only require equipment
present in almost all electrochemical laboratories [9–16].
Interpreting CV data, however, is not straightforward. On
the one hand, the transmission line (TL) circuit model,
which was pioneered by De Levie [17] and further
developed by Posey and Morozumi [18], can be used to
fit the experimental CV curves of EDLCs [17,19–29]. The
“standard” TL model treats the porous electrode as circular
cylindrical channels, of which the total resistance Rtot and
capacitance Ctot are partitioned over a large number n of
branches containing a capacitor of capacitance 2C and a
resistor of resistance R0. However, the number of branches
n that is used to fit the CV data by the TL model is typically
of order unity, for instance n ¼ 1, n ¼ 5, and n ¼ 8
[19,20,24,25]. Hence, the fitted parameters provide no
direct information about the microscopic characteristics
of the EDLCs [30]. On the other hand, microscopic models
were developed for the time-dependent ionic fluxes and the
electric double layer (EDL) formation near idealized
electrodes during CV experiments [31]. However, the
timescales of the experimental CV measurements are

FIG. 1. (a) Sketch of a charged supercapacitor which contains
an electrolyte and two porous electrodes of thickness H and a
surface-to-surface distance 2L connected to a voltage source with
a potential difference 2ΦðtÞ. (b) The applied sawtooth potential
ΦðtÞ that is used in CV experiments and in the present study.
(c) Sketch of transmission line model, where the nanoporous
cathode (red) and anode (blue) are both modeled by a cylindrical
channel of uniform diameter. (d) Sketch of stack-electrode model,
where the nanoporous cathode (red) and anode (blue) are both
modeled by a stack of n ≥ 1 parallel planar electrode sheets with
a fixed spacing h, all subject to the same dimensionless potential
ΦðtÞ (red) or −ΦðtÞ (blue). (e) The equivalent electronic circuit
for the transmission line model, where the number of circuit
elements n is infinite. (f) The equivalent electronic circuit for the
stack-electrode model, where R ∼ L and R0 ∼ h.
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several orders of magnitude larger than those predicted
by microscopic models, which do not account for
the multiscale dynamics of electrolytes in porous
electrodes.
To remedy these problems, we use the microscopic

stack-electrode (SE) model [Fig. 1(d)] [32] to analyze the
charging-discharging dynamics of supercapacitors and the
influence of the pore size distribution (PSD). Meanwhile,
we calculate the analytical result with equivalent circuit
called the SE circuit. The SE model simply models two
macroscopic electrodes as a “stack” of n planar and
permeable electrode sheets of vanishing thickness. In
our SE model, H is the thickness of the porous electrodes,
h is the average pore size, and n ¼ H=hþ 1 is the number
of the planar and permeable electrodes. These definitions
means that the SE parameters in the SE circuit can be
inferred from the characteristics of an experimental setup,
R ¼ 2L=ðAϵκ2DÞ and C ¼ Aϵκ. As Figs. 1(e) and 1(f)
show, there are small differences between the SE circuit
and the TL circuit, which are discussed in the
Supplemental Material [33]. Although the results calcu-
lated by the SE circuit and the TL circuit are similar, the
results calculated by Poisson–Nernst–Planck (PNP) for
microscope models are different. Most important of all,
the SE model can change the distance between different
planar electrodes. Thus, the influence of the PSD can be
calculated by the SE model. In short, the SE model has
three essential benefits over “standard” TL circuit model-
ing: the SE model correctly reproduces the biexponential
relaxation of porous electrodes [32] (the TL circuit relaxes
with a single late-time relaxation time [35]); the SE
parameters can be inferred from the characteristics of
an experimental setup under consideration; the influence
of the PSD and EDL overlap on the charging dynamics of
electrolytes can be described by numerically solving the
PNP equation of the SE model.
In the SE model analysis, we choose a Cartesian

coordinate system with an x axis perpendicular to the
electrode stacks and y and z axes in the in plane directions
of the electrode sheets. We choose x ¼ 0 in the midplane
between the two stacks, which are separated by 2L.
Hence, the ith microscopic electrodes are located at
�Xi ¼ �½Lþ ði − 1Þh�, with i ¼ 1; 2;…; n. Notably, the
pores in the SE model have a huge lateral extension, n
represents the effective number of pores rather than the
actual number of pores. In this sense, the index i ¼
1; 2;…; n is a proxy for the depth inside the electrode.
When the electrode sheets have a large surface area, we can
ignore edge effects, and all electrolyte observables only
depend on x. In particular, we model the local electric
potential ðkBT=eÞϕðx; tÞ, the ionic densities ρ�ðx; tÞ, and
the flux densities j�ðx; tÞ for jxj ≤ LþH through the PNP
equations [36],

∂2
xϕðx; tÞ ¼ −κ2

�
zþρþðx; tÞ þ z−ρ−ðx; tÞ

z2þρb;þ þ z2−ρb;−

�
; ð1aÞ

∂tρ�ðx; tÞ ¼ −∂xj�ðx; tÞ; ð1bÞ

j�ðx; tÞ ¼ −D½∂xρ�ðx; tÞ þ z�ρ�ðx; tÞ∂xϕðx; tÞ�; ð1cÞ

with kB the Boltzmann’s constant, T the temperature, e the
elementary charge, and z� the ionic valencies. Moreover,D
is the ionic diffusion coefficient, assumed equal among

cations and anions, and κ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4πλBðz2þρb;þ þ z2−ρb;−Þ

q
is

the inverse Debye length, where ρb;� are the cationic
and anionic bulk number densities and where λB ¼
e2=ð4πεkBTÞ is the Bjerrum length, with ε the electrolyte
permittivity. For a 1∶1 electrolyte, zþ ¼ −z− ¼ 1 and
ρb;� ¼ ρb.
We complement Eq. (1) with three initial and boundary

conditions: First, we consider ionic number densities to be
uniform initially,

ρ�ðx; t ¼ 0Þ ¼ �z�ρb; jxj ≤ LþH: ð2Þ

Second, different from the fully permeable electrodes
i ¼ 1;…; n − 1, the outer electrodes are blocking,

j�ð�Xn; tÞ ¼ 0: ð3Þ

Third, to mimic applying a potential difference over the two
macroscopic electrodes, we apply a time-dependent dimen-
sionless potential ΦðtÞ to all microscopic electrodes,

ϕð�Xi; tÞ ¼ �ΦðtÞ: ð4Þ

Here, we focus on ΦðtÞ of a sawtooth from between zero
and a maximum Φ0 > 0 [cf. Fig. 1(b)], given by

ΦðtÞ
Φ0

¼
�
ωt − 2ðu − 1Þ 2ðu − 1Þ < ωt < ð2u − 1Þ
2u − ωt ð2u − 1Þ < ωt < 2u;

ð5Þ

with ω ¼ 1=t0 the scan rate, 2t0 the oscillation period, and
u ¼ 1; 2;… the cycle number. Focusing on the electrode
stack at x > 0, we find the unit surface charge density σiðtÞ
(m−2) on the ith electrode (i ≠ n) with Gauss’s law,
4πλBσiðtÞ ¼ −∂xϕjXþ

i
þ ∂xϕjX−

i
, with X−

i and Xþ
i the left

and right sides of the ith electrode. As the nth electrode
faces the electrolyte only once, its surface charge density
reads 4πλBσnðtÞ ¼ ∂xϕjX−

n
. In turn, we define the normal-

ized dimensionless electric current density into the ith
electrode as

JiðtÞ ¼
2

ð2n − 1Þσ̄ωΦ0

dσiðtÞ
dt

; ð6Þ
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where σ̄ ¼ κ=ð2πλBÞ. Within Gouy-Chapman theory, the
unit surface charge density of a single electrode in semi-
infinite geometry reads, for small applied potentials,
σ ¼ σ̄ sinhΦ=2 ¼ σ̄Φ=2þOðΦ3Þ. Hence, during quasi-
static charging, σiðtÞ ≈ σ̄ΦðtÞ for i ¼ 1;…; n − 1 and Ji
reduces to Ji ¼ 2=ð2n − 1Þ [likewise, Jn ¼ 1=ð2n − 1Þ].
Hence, the prefactor of Eq. (6) causes the total electric
current J ¼ P

n
i¼1 Ji to sum to J ¼ 1 for quasistatic

charging. Note that J is proportional to the electric current
in the external circuit measured in CVexperiments. During
discharging, the same expressions hold with minus signs.
Equations (1)–(5) contain seven parameters:H, L, h, and

κ,D, Φ0, and ω. The above parameters can be grouped into
many different dimensionless combinations. Here, we will
mostly use H=L, κL, n, and ωτRC, with τRC ¼ L=ðκDÞ the
relaxation time of RC circuit which has the same geometry
n ¼ 1 circuit [36,37].

Figure 2 compares the results calculated by PNP
and equivalent circuit; more details are shown in the
Supplemental Material [33]. Clearly, the PNP and equivalent
circuit model’s predictions agree well. Figures 2(a) and 2(b)
present the current vs voltage curves (lines) for two scan
rates ωτRC ¼ 10−4 (left) and 1 (right) for a small potential
Φ0 ¼ 0.001 and κL ¼ 100, H=L ¼ 1, and n ¼ 3. At the
low scan rate of ωτRC ¼ 10−4, J1 ¼ J2 ¼ 2J3, and J ¼ �1.
The currents are dominated by the quasiequilibrated EDL,
which leads for the small applied potential to the scan-rate-
independent rectangular CV curves of Fig. 2(a). Conversely,
for the large scan rate of ωτRC ¼ 1, the EDLs do not reach
quasiequilibrium, and accordingly both the charge adsorbed
to the electrode and the current density decrease, leading to
scan-rate-dependent lens-shaped CV curves.
We further characterize the CV curves of Figs. 2(a) and

2(b) through the dimensionless areal integral capacitance
Cs, defined as the area enclosed in a J −Φ representation
during a cycle [38],

Cs ¼
1

Φ0

I
J
2
dΦ ¼ 1

Φ0

Z
2ut0

2ðu−1Þt0
J
dΦ
dt

dt: ð7Þ

The notation Cs used here refers to the dimensionless
capacitance per surface area as defined in Eqs. (2) and (3)
of Ref. [38]. Note the additional factor 1=ω in the integrand
of their Eq. (2), which, in our case is absorbed into the
definition of Ji in Eq. (6).
Figure 2(c) shows Cs as a function of scan rates ωτRC for

n ¼ 1, 2, 3, 5, 10. We observe two Cs regimes for all n
considered: Cs ≈ 1 for ωτRC ≪ 1 when EDLs are in
quasiequilibrium and Cs ≈ 0 for ωτRC ≫ 1 (see also
Ref. [39]). Figure 2(d) presents the same data, but scan
rates ω are now rescaled by the relaxation time τn of the
stack-electrode model in response to a step potential [32],

τn ¼
��

2þ 0.75
H
L

�
n − 1 − 0.91

H
L

�
τRC: ð8Þ

With this scaling, data forCs for thedifferentn collapse onto a
single curve. The same Cs data are present in Fig. 2(e) on a
log-log scale, which behaves similarly to the maximum
current density Jmax in the Supplemental Material [33].
Figure 2(f) presents CV curves for different n and fixed
ωτn, κL, H=L, and Φ0. The collapse of these curves further
underlines the importance of the dimensionless combination
ωτn to the CVof the stack electrode model.
In CVexperiments with supercapacitors, the scan poten-

tial range is often large. Therefore, we now also determine
CV curves for applied potentials in the nonlinear screening
regime Φ0 ≥ 1. The solid lines in Fig. 3(a) represent CV
curves for Φ0 ¼ 0.1, 1, 2 with κL ¼ 100,H=L ¼ 1, n ¼ 5,
and a low scan rate ωτRC ¼ 0.01. The (scaled) CV curves
almost overlap at low potentials (Φ0 > 0.1), but deviate in
the nonlinear regime of higher potentials, the more so for

(a) (b)

(c) (d)

(e) (f)

FIG. 2. (a),(b) The cyclic voltammetric curves for n ¼ 3,
κL ¼ 100, H=L ¼ 1, and Φ0 ¼ 0.001, in (a) for low scan rate
ωτRC ¼ 10−4, and in (d) for high scan rate ωτRC ¼ 1. The
symbols and lines in (a) and (b) correspond to PNP and circuit
model calculations. Cs as a function of ωτRC (c) and as a function
of ωτn (d) and (e), for κL ¼ 100, H=L ¼ 1, n ¼ 1, 2, 3, 5, 10,
and Φ0 ¼ 0.001. Data reflect PNP calculations in the stack-
electrode geometry (symbols) and its equivalent circuit (lines).
(f) The CV curves for κL ¼ 100,H=L ¼ 1,Φ0 ¼ 0.001, different
n ¼ 1, 2, 3, 5, 10, and ωτn ¼ 0.01, 0.1, 1. In (f) the symbols are
calculated by PNP, and the lines are guides to the eye.
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larger Φ0. The dashed lines in Fig. 3(a) present the CV
curves for the same parameters as the solid lines, except
now for ωτRC ¼ 1. At this high scan rate, the (scaled) CV
curves for different Φ0 in the linear and the nonlinear
screening regime actually all collapse onto the single linear-
screening curve.
This scan-rate dependency of the (scaled) CV curves is

further illustrated by Fig. 3(b), which shows the capaci-
tance Cs as a function of scaled scan rate ωτn for Φ0 ¼ 0.1,
1, 2 and n ¼ 1, 2, 3. The scaling of Cs by coshðΦ0=4Þ
stems from Gouy-Chapman theory, whose static (low-
frequency) EDL capacitance reads C ¼ ϵκA coshðΦ=2Þ
per surface area A, and the average potential during a
cycle is Φ0=2. For all n and Φ0 considered, the data of
Fig. 3(b) collapse onto a single curve. Within the range of
validity of our PNP framework, we thus conclude that the
CVof our stack-electrode model is fully captured by ωτn, n,
and Φ0, at least for the system parameters we considered,
the most stringent of which is probably h ≫ κ−1 such that
EDLs do not overlap.
To determine the merits of our stack-electrode model, we

compare its predictions to the experimental data of
Refs. [40]; more details are shown in the Supplemental
Material [33]. Reference [40] reports experiments with
thickness of electrodes H ¼ 40 μm, surface-to-surface
distance 2L ¼ 150 μm, average pore size h ¼ 7.3 nm,
various scan rates ω ¼ 0.01–5 s−1, and the bulk diffusivity
D ¼ 1.23 × 10−9 m2 s−1. The maximal applied potential
was Ψ0 ¼ 0.5 V, which corresponds to Φ0 ≃ 20 in our
dimensionless units. The electrodes were immersed in
0.5 M Na2SO4 at room temperature, for which
κ−1 ¼ 0.25 nm, which is much smaller than the pore size
h. The SE equivalent electronic circuit is used to fit the
experimental data [40] with the sole fit parameter n. We
find the fitted value n1 ¼ 2107, the fitted average pore size
h1 ¼ H=ðn1 − 1Þ ¼ 19 nm, and the fitted relaxation time
τn ¼ 7.65 × 10−2. Notably, the fitted h1 ¼ 19 nm is 2.5
times larger than expected, and the fitted relaxation time
τn ¼ 7.65 × 10−1 is 3 orders of magnitude larger than
predicted by two plate electrode model τRC ¼ 1.51 × 10−5.
In Fig. 4, we find good agreement between the SE model

(lines) and experiment (dots) with the fit parameter τn.
However, our oversimplified geometry may cause the
overestimate of n previously. The regular microscope SE
model considers a uniform spacing h between each
successive electrode sheet. However, the PSD function
of porous electrodes is often closely approximated by a
(continuous) lognormal distribution [41,42]. To discuss the
influence of a nontrivial PSD, here, we consider the
locations of the n sheets in the stack-electrode model to
be set by a (discrete) geometric distribution,

�Xi ¼ �
�
Lþ H

n − 1

nðqi−1 − 1Þ
qn − 1

�
; ð9Þ

with q the common ratio of the geometric distribution. With
this choice, the spacing of the electrodes becomes narrower
toward x ¼ �ðLþHÞ. Repeating our numerical CV

(a)                                                                  (b)        
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FIG. 3. (a) CV curves for κL ¼ 100, H=L ¼ 1, n ¼ 5,
Φ0 ¼ 0.1, 1, 2, ωτRC ¼ 0.01 (solid lines), and ωτRC ¼ 0.1
(dashed lines). (b) ωτn dependence of Cs= cosh ðΦ0=4Þ for
n ¼ 1, 2, 3 and Φ0 ¼ 0.1, 1, 2 (symbols). The lines in (b) for
different n are calculated with the electronic circuit model.
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FIG. 4. Comparison of experimental data (symbols) in Ref. [40]
and the circuit model (lines) for ω ¼ 0.01; 0.02; 0.05; 0.1;
0.2; 0.5; 1; 2; 5 s−1 corresponding to 0.01 Vs−1 to 5 V s−1, with
Ψ0 ¼ 0.5 V corresponding toΦ0 ≃ 20. The direction of the arrow
indicates an increase in scanning rate.

(a) (b)

J(
t)

/J
m

ax

n

0.0 0.2 0.4 0.6 0.8 1.0
-1.0

-0.5

0.0

0.5

1.0 q=1 n=32
q=0.8 n=50
q=1.1 n=43

10-3 10-2 10-1 100 101 102

0.0

0.2

0.4

0.6

0.8

1.0
q=1
q=0.8
q=1.1

J m
ax

0

FIG. 5. (a) Predicted Jmax as a function of ωτn for Φ0 ¼ 0.001,
κL ¼ 1000, H=L ¼ 1, n ¼ 50, and q ¼ 1, 0.8, and 1.1.
(b) JðtÞ=Jmax vs Φ=Φ0 for Φ0 ¼ 0.001, κL ¼ 1000, H=L ¼ 1,
q ¼ 1, 0.8, 1.1, and ωτRC ¼ 7.375 × 10−3. Here, we determined
Jmax at ωτn ¼ 10−3 from the data in panel (a). Conversely, JðtÞ
and ΦðtÞ for the different n were evaluated at ωτRC ¼
7.375 × 10−3. This treatment ensures that all the scaled currents
in (b) vary between −1 and 1, similar to Fig. S8 [33].
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experiments for this amended stack-electrode model, we
first determine Jmax forΦ0 ¼ 0.001, κL ¼ 1000,H=L ¼ 1,
n¼50, and q¼0.8, 1, 1.1. Figure 5(a) shows that Jmax < 1
if q ≠ 1. Next, Fig. 5(b) shows JðtÞ=Jmax vs Φ=Φ0 for
ωτRC ¼ 7.375 × 10−3, q ¼ 1, n ¼ 32 (black line), and
other parameters as in Fig. 5(a). For q ¼ 0.8 and q ¼
1.1 (symbols) we tune n such that their CV curves coincide
with the data for q ¼ 1. Both for q smaller and larger than
1, one needs a larger n to accomplish such overlap. This
suggests that the larger-than-expected fitted h1 ¼ 19 nm
(smaller-than-expected fitted n1 ¼ 2107 by approximately
80–50%) may be (partially) caused by our neglect of
nontrivial PSD in the regular SE model [Note that the
scale factor Jmax in Fig. 5(b) was determined from the data
in Fig. 5(a) at ωτn ¼ 10−3. This treatment ensures that all
the scaled currents in (b) vary between −1 and 1.]. To
predict the effective pore size even better, further models
could include effects of finite ion sizes, concentration-
dependent diffusivity, intricate pore network structure, etc.
In summary, we calculate CV curves of electrolyte-

immersed porous electrodes through the stack-electrode
model. It is comforting that the good agreement of the
equivalent electronic circuit to model the response to a
stepwise potential [32] is now found to be extendable to the
response to the sawtooth potential for cyclic voltammetry.
Contrary to the circuit models often used to fit experimental
CV curves, the (number of) capacitors and resistors in our
circuit model are one-to-one related to the parameters of the
stack-electrode model. We identify the dimensionless
combination ωτn to be the key parameter that governs
the CV curves of the stack-electrode model with n and
relaxation time τn [Eq. (8)]. Our model can reproduce
recent experimental data over a large range of scan rates
and be used to estimate the pore size of an electrode.
However, a quantitative connection to experimental mea-
surements of the pore size, such as Brunauer Emmett Teller
test, is beyond the SE model and requires a better account
of the 3D structure of an actual porous electrode.
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