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1 Introduction

It is widely believed that only a limited subset of quantum field theories can be regarded
as effective field theories (EFTs) arising from a UV-complete quantum gravity theory.
Singling out the criteria that EFTs have to satisfy in order to admit a UV quantum gravity
completion is the core of the Swampland program (see, for example, [1, 2] for reviews on
the program). In recent years several of these criteria have been proposed and collected
within the so-called ‘Swampland conjectures’. The Swampland conjectures put constraints
on many crucial features of the EFTs, such as the gauge sector, the allowed symmetries,
or the spectrum of objects that the EFT can describe. Such conjectures are typically
formulated independently, but several relations have subsequently led to the formation of an
interconnected web. Eventually one might thus hope that the Swampland conjectures can
be reduced to a set of basic principles that the quantum nature of gravity imposes on the
effective descriptions. The aim of this work is to further combine some of the Swampland
conjectures and thereby clarify their statements. In particular, we will investigate how
the constraints set by the Distance Conjecture [3] can be more generically addressed by
employing the recently formulated Tameness Conjecture [4].

The Distance Conjecture [3] poses constraints on the explorable field space of any
effective field theory. Consider an effective field theory with a set of scalar fields, known
as moduli, that are not subjected to any scalar potential. The field space of these moduli
can be highly nontrivial and, in particular, can admit boundaries at which the field space
metric degenerates. In turn, we can distinguish the boundary points by using the length of
the minimal geodesic distance that is required to reach them, which can either be finite or
infinite from a regular field space point. The family of infinite distance points are central in
the Distance Conjecture, which asserts that in any consistent EFT of quantum gravity, an
infinite tower of exponentially light states becomes relevant near the infinite distance point.
In other words, infinite distance limits in an EFT should be viewed as an artifact of the
effective description and cannot be reached within the same EFT due to the emergence of
additional light states.

The obstructions that the Distance Conjecture suggests are path independent: no
matter how the infinite distance locus is reached, the effective description is eventually
rendered invalid close to an infinite distance point. However, it is known from many
examples [5–21] that the details on how this happens precisely generically depend on
the path and that the physical interpretation can change from one path to another. For
example, along different paths leading to the same infinite distance point, the leading tower
of light states invalidating the EFT might well be different. We are thus facing a number of
questions that are crucial in order to understand the physics emerging in the near-boundary
region: (1) Given an infinite tower of states invalidating the EFT along a given path, along
which other paths does this tower remain relevant? (2) How many families of infinite tower
of states are relevant when considering all paths? (3) Is there a special set of paths that
allows us to probe the physics near a given boundary? In particular, we might wonder
if there is only a finite number of towers realizing the Distance Conjecture that can be
systematically explored to characterize the boundary. As is clear from the outset, these
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pivotal questions can be answered only by knowing universal features that the EFTs display
close to any field space boundary.

The recent Tameness Conjecture [4] suggests a novel way to constrain field spaces,
parameter spaces, and coupling functions of any EFT compatible with quantum gravity.
While motivated originally by the finiteness conditions on EFTs arising in string theory, it
proposes to use a general mathematical framework, known as tame or o-minimal geometry,
within which any effective field theory should be formulated and studied. In particular,
the Tameness Conjecture notes that couplings should not be arbitrary functions of the
moduli fields or parameters that enter the EFT, but rather should be sufficiently tame
functions. As will become clearer in section 2.2, this means that the couplings have to
be definable in a so-called o-minimal structure. Such o-minimal structures were originally
introduced in the context of model theory, which is part of mathematical logic, but later
found application in various areas of mathematical research. In particular, we will be
interested in their relation with topology (see [22] for an introductory reference on the
subject). Remarkably, assuming that the couplings are definable in an o-minimal structure
imposes sets of functional constraints and allows us to address path-dependency questions
arising in the Distance Conjecture.

While the tameness of EFT couplings is a general property, it becomes particularly
powerful when considering their functional form in the near-boundary region of the moduli
space. In fact, the definability in an o-minimal structure allows one to infer general properties
about the growth or fall-off of the EFT couplings towards the field space boundary. As
a first step, we need to specify the o-minimal structure in which the EFT couplings are
defined. In [4] it was proposed that the o-minimal structure that is relevant for stringy EFTs
is Ran,exp. This structure appears in many geometric applications and allows for defining
the exponential function and all restricted analytic functions. We will introduce Ran,exp
in more detail below. In this work we will further restrict the structure in which the EFT
couplings are defined, in order to give more precise statements about their growth towards
the field space boundary. In fact, for concrete applications in stringy EFTs, not all functions
definable in the o-minimal structure Ran,exp seem to arise. To constrain the allowed set of
functions further we will be following [23] and introduce special families of tame functions in
Ran,exp, that we name monomially tamed and polynomially tamed. Roughly speaking, given
a subregion U that touches the boundary of moduli space, monomially tamed functions
are those which display a leading monomial behavior in the moduli fields along any path
in U towards the field space boundary. Instead, a polynomially tamed functions in U
are finite sums of such monomials for which one cannot single out a leading monomial
behavior in U ; rather, they exhibit different leading behaviors according to the chosen path
that leads to the field space boundary, as depicted in figure 1. We will propose that in
most of the concrete stringy EFTs, EFT couplings can be ascribed to these two families
of functions. EFTs that stem from Type IIB ten-dimensional string theory compactified
on a Calabi-Yau threefold, eventually supplemented by an orientifold projection, provide
evidence for this claim. For instance, as we will show in section 4, the couplings involving
the vector multiplet sector within 4D N = 2 Type IIB EFTs are fully determined by Hodge
inner products. As demonstrated in [23] that Hodge inner products are polynomially tamed
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Figure 1. A function f may exhibit different leading asymptotic behaviors along different paths
approaching the infinite field distance boundary. Here is depicted a function f that displays the
different leading behaviors f1, f2 and f3 along, respectively, the red, purple and blue paths connecting
a regular point ϕ0 of the moduli space to the near-boundary point ϕ.

near the boundaries of the complex structure moduli space. Consequently, the field space
metric, the gauge coupling functions, the masses and physical charges of D3-particles are
also polynomially or monomially tamed.

The aforementioned restricted notion of tameness of the EFT couplings has a remarkable
implication: important information about the physics emerging towards the field space
boundaries can be understood by only examining what happens along certain special paths
that stretch towards the boundary. To single out such paths we note that this reduction to
one-dimensional slices was central in [23] where it was shown that the relevant curves are
linear paths with rational slopes. Following this work, we will indeed show that, if the EFT
couplings are mutually bounded along these test paths, such bounds can be extended in a
wider region of the moduli space. This feature will allow us to give a recipe to concretely
test the Distance Conjecture: it is enough that the Distance Conjecture is obeyed along
these special curves, and it holds in a wider region of the moduli space path independently.

Thus, such curves serve as test paths and can be employed to diagnose pathologies that
the effective description may develop. Such linear test paths constitute a very restricted
family of all the possible paths that may drive the fields towards the boundary. Can we
get a phenomenological understanding of why such test paths are ‘special’? The curves
that in [23] have been employed to test the behavior of monomially and polynomially
tamed functions can be viewed as the backreactions induced by cosmic string solutions.
As shown in the seminal work [24] and recently explored in [18, 25], along BPS cosmic
string solutions the moduli fields develop a linear backreaction when regions too close to
the singularity are probed. Therefore, it is enough to show that a massless tower of states
emerges along all the allowed string backreactions, and we know that such a pathology is
spread throughout a wider region of the moduli space. These observations fit well with the
Distant Axionic String Conjecture proposed in [18, 25, 26]. This conjecture postulates that,
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in four-dimensional EFTs, any infinite distance limit is characterized by the appearance of
a tensionless axion string, namely a string that is magnetically coupled to an axion. In [25],
such a claim was checked in a large class of minimally supersymmetric examples by showing
that, along the BPS backreactions of axion strings, the emergence of an infinite tower of
states and consequent lowering of the EFT cutoff are always accompanied by an axion
string that becomes tensionless. We will here show that these statements are enough to
prove that axion strings do indeed emerge along any path that drives the moduli towards
infinite distance limits.

This work is articulated as follows. In section 2 we review the Distance Conjecture and
the Tameness Conjecture, and we illustrate how the latter can help addressing some features
of the former. Indeed, therein, special families of tame functions are introduced, namely
the monomially and polynomially tamed functions. We will then show that, assuming that
EFT couplings are described by such special tame functions, the Distance Conjecture can
be rephrased in a path-independent fashion. In section 3 we show that, provided that
EFT couplings are either monomially or polynomially tamed, crucial information about
the near-boundary physics can be obtained by examining how the EFT couplings behave
on certain special curves. We will further show how, at the EFT level, such curves can
be regarded as the backreaction of cosmic strings, which then serve as candidate objects
to test the EFT couplings. In section 4 we provide evidence for the statements made in
the previous sections. Specifically, we prove that monomially and polynomially tamed
functions dictate the couplings entering the vector multiplet sector of the EFTs obtained
after compactifying Type IIB string theory on Calabi-Yau three-folds. The appendices
contain important mathematical results that are used throughout the main text. Indeed,
appendix A collects some properties that the monomially and polynomially tamed functions
exhibit. In appendix B, following [23], we show how polynomially tamed functions can be
bounded by monomially tamed functions by studying their behavior on curves. Finally, in
appendix C we prove that the Hodge inner products, that dictate the couplings of the Type
IIB EFTs studied in section 4, grow as polynomially or monomially tamed functions.

2 The Distance Conjecture and the Tameness Conjecture

In this section we first introduce the Distance Conjecture [3]. As we will see, the Distance
Conjecture predicts how any effective description gets broken when approaching an infinite
distance point in field space due to the emergence of an infinite tower of states that become
light at a certain rate. However, this statement does not make precise assertions about
either the specific path that leads to the infinite distance point or the number different
towers becoming massless towards infinite distance. Here we will introduce a framework,
the one of ‘tame geometry’, within which both issues can be addressed in full generality.
Developing on the recently formulated Tameness Conjecture [4], we will illustrate that, if
the couplings distinguishing the effective field theory are sufficiently ‘tamed’ (in a sense
that will become clear in section 2.2), one can formulate the Distance Conjecture in a path
independent fashion.
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2.1 Distance Conjecture and path dependence

Let us begin by recalling the original statement of the Distance Conjecture [3]. Consider a
D-dimensional effective theory with a number of real scalar fields ϕi spanning a field space
M. The effective field theory under consideration is assumed to include Einstein gravity
coupled to some scalar fields ϕi, i = 1, . . . , n via an action of the form

S(D) = MD−2
P

∫
dDx
√
−g

(1
2R−

1
2Gij∂µϕ

i∂µϕj + . . .

)
, (2.1)

where R denotes the D-dimensional Ricci scalar, Gij is the field space metric onM and the
dots indicate additional couplings that potentially also include the scalars ϕi. Let us denote
the shortest geodesic distance between two points ϕ,ϕ0 ∈M by d(ϕ,ϕ0). The statement
of the Distance Conjecture [3] can be split into two parts:

(1) LetM be a moduli space of dimension at least one, i.e. assume that there are scalar
fields ϕi that are not subjected to a scalar potential. For any point ϕ ∈M and any
positive number C there exists another point ϕ0 ∈M such that d(ϕ,ϕ0) > C. This
implies that the spaceM cannot be compact and that it admits at least one boundary
point ϕb ∈ ∂M which is at infinite distance from any point ofM.

(2) When approaching an infinite distance point ϕb ∈ ∂M with d(ϕ,ϕb) → ∞, there
exists an infinite tower of states that becomes exponentially light. More precisely,
consider a ϕ ∈M for d(ϕ,ϕ0) sufficiently large, the masses of the states at ϕ compared
with the masses at ϕ0 behave as1

Mn(ϕ) ∼Mn(ϕ0)e−λd(ϕ,ϕ0) , (2.2)

with λ an unspecified real parameter. In refined versions of this conjecture it is
claimed that λ is O(1) [27, 28].

Let us stress that the first part of the conjecture solely restricts the geometry of M,
while the second part delivers a more precise statement about what happens to the effective
theory when approaching an infinite distance point ϕb. According to the conjecture, any
effective theory with fixed energy scale Λ eventually breaks down near ϕb, since at this
point an infinite tower of massless degrees of freedom ought to be included. This can be
also stated by noting that there is a quantum gravity cut-off ΛQG associated to the infinite
tower of states that becomes exponentially small compared with Λ when approaching ϕb.
Effective field theories are thus only valid for finite scalar field excursions measured by the
shortest geodesic distance. Instead, the second part of the conjecture asserts that the masses
of the states constituting an infinite tower need to fall-off exponentially in the geodesic
distance. However, no information is provided about the path along which one approaches
the boundary point ϕb. Starting at some point ϕ0 in the field spaceM we can consider any
path γ : [0, 1)→M with one end being at γ(0) = ϕ0 and the other end reaching towards
the point ϕb. The considered points ϕ appearing in (2.2) are, by construction, on the path

1Notice that the masses Mn(ϕ) are assumed to be computed for canonically normalized fields.
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geodesic

non-geodesic

Figure 2. Starting from a point ϕ0, a point ϕ close to the boundary ϕb can be reached via a path
γ that be either a geodesic or non-geodesic.

γ([0, 1)) sufficiently close to ϕb such that d(ϕ,ϕ0) is large, as depicted in figure 2. The path
γ can be very complicated and there is no a priori assertion that it has to be a geodesic.
Nevertheless the distance d(ϕ,ϕ0) appearing in the exponential fall-off in (2.2) is asserted
to be the geodesic distance.

Evidence for the Distance Conjecture has been collected by studying various effective
theories arising from string theory (see, for example, [5–21]). In particular, in the study of
the vector multiplet sector of N = 2 effective theories arising from Type IIA and Type IIB
on Calabi-Yau threefolds, the existence of a whole network of infinite distance points has
been established in [5, 29] and a candidate tower of states has been identified for many of
the associated limits. More precisely, it has been argued in [5, 29] that in many limits a
tower of states with charges qn = Tnq0 can be constructed by acting with an appropriately
chosen monodromy symmetry T on some seed charge q0. It was a crucial aspect of [5, 29] to
show that the tower constructed in this way was actually satisfying the desired behavior for
the Distance Conjecture in whole sectors of near the infinite distance point. This apparent
feature is not predicted by the Distance Conjecture and we will explain in the remainder of
this section what is the underlying reason for this local universality of the towers. It will
turn out that it can be related to the tameness of the masses of the states and hence is
fundamentally linked with the Tameness Conjecture [4] reviewed in subsection 2.2.

Any explicit check of the Distance Conjecture can be generically split into two steps:
(1) identifying an infinite tower of states that become massless towards the infinite distance
point and (2) showing that the masses of said states fall-off as suggested by (2.2). Note
that it can be notoriously difficult to perform these steps along any path ϕ(s) ≡ γ(s) in
M, especially when considering higher-dimensional field spaces M. In order to test the
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conjecture we need to ensure that along each path we retain the behavior

Mn(ϕ)
Mn(ϕ0) ∼ e

−λd(ϕ,ϕ0) , M1(ϕ) < M2(ϕ) < M3(ϕ) < . . . , (2.3)

where Mn, n = 1, 2, . . . denote the masses of the states in the infinite tower. The Distance
Conjecture hereby does not give an answer to the following questions:

• Does one need to find a different tower for each individual path? How far can one
deform a path and still use the same tower to satisfy the conjecture?

• How many different towers of states are becoming massless at an infinite distance point?

It is clear that any restriction on the considered paths might lead to an incomplete picture
and prevent us from answering these questions. As it stands, the Distance Conjecture might
require us to construct a gigantic set of towers of states in a path-dependent way. As we
will argue in section 2.4 the above questions can be answered when additionally enforcing
the Tameness Conjecture. This will open the possibility to only study a special set of paths
and then use the resulting insights to infer information about all paths that leads to the
infinite distance points.

There are various motivations that would lead one to only consider a special set of
paths. Firstly, for practical purposes one could restrict to only geodesics when moving to
the infinite distance point. Then can directly replace d(ϕ0, ϕ) in (2.3) with the length of
the considered curve. Secondly, on a more fundamental level, the proper identification of
the light states can be more apparent along a set of ‘special paths’. In particular, in the
recent study of the Distant Axionic String Conjecture [25, 26] a concrete suggestion for
the tower of states was made when considering certain linear paths as we will review in
more detail in section 3. In a nutshell, the conjecture suggests that each infinite distance
limit can be understood by examining strings in the effective theory that couple to the
axion-like scalar emerging in the limit. Namely, one investigates the backreaction of a string
on the scalar fields of the effective theory. Along the radial coordinate transverse to the
string, some of these fields acquire a nontrivial profile, and they are driven to boundary
in the near-core region of the string. This renders such axion strings powerful tools to
investigate the physics emerging towards any infinite-distance field space boundary. From a
field theoretical viewpoint, as stressed in [18], the string backreaction can be regarded as an
RG flow of the coupling when changing the energy scale. This interpretation allows one to
map the spacetime backreaction onto the fields of the theory as a path within the moduli
space. Concretely, this implies the following. Let us consider a two-dimensional field space
M with complex coordinate z and assume that the infinite distance point is at z = 0 on
∂M. Locally, we can model the near boundary region by considering the punctured disk,
i.e. the unit disk |z| < 1 with the center z = 0 removed. As showed in [25] and further
summarized in section 3.1, axion strings generate a backreaction that can be mapped to the
lines with arg(z) = θ0 in the punctured disk as depicted in figure 3. For each line a tower
of states arises from the oscillation modes of the string. While not necessarily the lightest
tower, it gives a candidate set of states that can be used in the Distance Conjecture. It is
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axion string 
localized at r=0 

Figure 3. On the left is depicted a path with fixed arg(z) = θ0 towards z = 0 in the punctured
unit disk ∆∗ = {0 < |z| < 1}. Such a path is in correspondence with the backreaction of an axion
string, that is depicted on the right: the axion string, whose core is depicted in green, induces a
backreaction on z, depicted in blue, in the (r, θ)-plane transverse to the string; along the radial
coordinate r, Im z → 0, as happens along the red path at fixed arg(z).

then important to show that these states remain relevant away from these special paths. It
will be one of the goals of section 3 to show that this exactly happens if an appropriate
tameness condition is imposed on the couplings of the effective theory.

Let us close this section by noticing that the original form of the conjecture assumes
that M is a moduli space with no scalar potentials for the ϕi. It was subsequently
suggested in [27] to apply this conjecture to theories with scalar potentials and much recent
research [15, 28, 30–34] has focused on clarifying this possibility. Such an application
immediately leads to a puzzle, since then the notion of field spaceM depends on the energy
scale Λ of the effective theory. Lowering the energy scale might require us to integrate out
massive scalars, thereby reducing the original field spaceM to a subspace M̂ ⊂M. The
value dM̂(ϕ,ϕ0) of the shortest geodesic distance between ϕ,ϕ0 ∈ M̂ will in general differ
from dM(ϕ,ϕ0) measured inM and we always have

dM(ϕ,ϕ0) ≤ dM̂(ϕ,ϕ0) , ϕ, ϕ0 ∈ M̂ ⊂M , (2.4)

(see figure 4 for a pictorial representation). This inequality implies that even if we assume
that the Distance Conjecture is satisfied inM, it might well be the case that it is violated in
M̂. To see this, imagine that we have found a tower of states with masses Mn that become
exponentially light with the geodesic distance dM in M with a rate specified by (2.3).
Now, performing the computation in M̂ the fall-off of the tower should be determined by
dM̂. However, generically the masses Mn of the above tower does not generically scale as
Mn ∼ e−λndM̂ , for e−λndM̂ falls off faster than e−λndM . In fact, for the Distance Conjecture
to be satisfied in M̂ we have to find a new tower of states that becomes massless faster
and there is no reason for this tower to coincide with the same tower of state that realizes
the Distance Conjecture inM. In other words, assuming the Distance Conjecture inM
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geodesic
non-geodesic

constraints from 
the potential

Figure 4. On the left is depicted the near-boundary region of a two-dimensional moduli space
M. On the right, the constraints introduced by the scalar potential, depicted as the blue surface,
reduce the moduli space to the one-dimensional space M̂, depicted as the red line, obtained as the
intersection of the moduli spaceM and the potential constraint surface. Consider two points ϕ0
and ϕ in M̂: while they can be linked via a geodesic path inM (depicted in blue on the left picture,
and with a blue, dotted line on the right), in M̂ they can be linked only along the one-dimensional
space M̂, along the dark-red path, and such a path may be non-geodesic inM.

does not imply the Distance Conjecture in M̂, if this smaller field space is obtained by a
general potential.

Therefore, it may then appear that the Distance Conjecture loses its predictability
when the effective description displays a nontrivial potential for the moduli. However, one
can address the issue from another perspective: if a scalar potential is present, the moduli
fields ϕi are constrained to follow given paths in the wider space M, which are here flat
directions of the potential. It is then crucial to have an understanding of whether the
Distance Conjecture holds also for such non-geodesic paths. This issue was explored on
different grounds also in [34], where it was proposed that the Distance Conjecture can be
viewed as a constraint on the scalar potential: namely, the flat directions that the potential
allows need to be such that the Distance Conjecture is realized along those as well. In what
follows, we will see that the general tame structure of any consistent EFT allows us to
investigate the realization of the Distance Conjecture also along such non-geodesic paths.

2.2 Tameness Conjecture

Previously we have explained that the Distance Conjecture alone does not allow us to
develop a very detailed picture of what happens near an infinite distance point. However,
in the following we argue that the situation changes if we invoke another recent conjecture,
the Tameness Conjecture, that implements finiteness constraints into the structure of the
effective theory. In essence, this conjecture states that all effective theories that can be
consistently coupled to quantum gravity can be defined using ‘tame geometry’, which is a
currently very active field of mathematics linking geometry and logic. More precisely, we
recap stating that effective theories that can be consistently coupled to quantum gravity
admit the following properties:
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1) All effective theories valid below a fixed finite energy cut-off scale are labelled by a
definable parameter space and must have scalar field spaces and coupling functions
that are definable in an o-minimal structure.

2) The relevant o-minimal structure is Ran,exp.

Here we note that part (2) gives a strengthening of the conjecture, since it specifies an
o-minimal structure denoted by Ran,exp. Note that the conjecture is very far reaching, since
it asserts the existence of a general parameter space and constrains its properties. As we
will explain momentarily, it thereby excludes that this parameter space can contain infinite
discrete components such as a lattice. It was stressed in [4] that this finiteness condition
is deeply linked to the coupling to gravity. Furthermore, the conjecture restricts valid
field spaces and every coupling function varying over the parameter space and field space.
In particular, we will apply this condition to the masses and distances appearing in the
Distance Conjecture.

To explain the conjecture, we first have to define what we mean by an o-minimal
structure S. The basic idea hereby is to introduce sets of subsets of Rn denoted by Sn, for
all n = 1, 2, . . ., that form a structure and then add a tameness constraint making it into
an o-minimal structure. The collection of all Sn, n = 1, 2, . . . are called S-definable sets, or
definable sets if the o-minimal structure has been specified before. The conditions on the
sets Sn are as follows: (1) Sn contains the zero-set of any polynomial in n variables; (2)
Sn is closed under finite intersections, finite unions, and complements; (3) the Cartesian
product of a set in Sn and a set in Sm is in Sm+n; and (4) linear projections Rn+1 → Rn

applied to a set in Sn+1 give a set in Sn. Finally, the tameness condition is then stated as:

• The S-definable sets in R are the finite unions of points and intervals.2

It is a remarkable fact that this tameness property solely imposed on the subsets of the real
line R constrains the space of allowed sets in all Sn so significantly that strong finiteness
properties can be inferred. This is rooted in the projection property, which implies that
any projection to a real line of a higher-dimensional definable set should lead only finite
unions of points and intervals. We depict a definable and a non-definable set in R2 in
figure 5. It is then natural to introduce S-definable maps ϕ : Rn → Rm by requiring that
their graph, which is a subset of Rn+m, is definable in Sn+m. Using S-definable sets and
definable functions one can then define an S-definable topological space and a definable
manifold by requiring that it admits definable atlas with appropriate definable transition
functions [22]. In fact, one can use this as a starting point for introducing many other
geometric structures by adding the definability criterium as an additional constraint. The
resulting geometry framework is provides that the aforementioned tame geometry.

It is a remarkable fact that there exist multiple examples of o-minimal structures that
extend the simplest structure, denoted by Ralg, generated by polynomial equations only. Ralg
is hereby obtained by collecting all zero-sets P (x1, . . . , xn) = 0 in Rn and completing this
set by including their unions, complements, intersections, and projections. The resulting set

2Note that these intervals can be closed or open and be of finite or infinite length.
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Figure 5. On the left, an example of tamed function with a finite set of zeros. On the right, an
example of non-tamed function, with an infinite number of zeros.

of semi-algebraic sets is the smallest o-minimal structure. The strategy to find non-minimal
examples is to carefully extend the set of functions that is used to define the definable sets.
There are two o-minimal structures that will be of importance in this work and we will
introduce in some detail in the following.

O-minimal structure RRRan: this o-minimal structure is obtained by extending Ralg by
also considering zero-sets of so-called restricted analytic functions. More precisely, we also
include subsets of Rn defined by the equations P (x1, . . . , xn, f1, . . . , fn) = 0, where P is a
polynomial and fi(x1, . . . , xn) are restricted analytic functions. Before defining restricted
analytic functions, let us recall that an analytic function defined on a domain is a function
that coincides with its own Taylor series on that domain. Analytic functions are necessarily
smooth, but the converse is not true. Roughly speaking, restricted analytic functions are
restrictions of analytic functions to smaller domains. More precisely, such functions are all
restrictions f |B(R) of functions f that are analytic on a ball B(R0) of finite radius R0 to a
ball B(R) of strictly smaller radius R < R0. Applying this definition to the punctured disk
∆∗ introduced in figure 3, we realize that a restricted analytic function f is more constrained
than an analytic function when examining its behavior near the puncture, i.e. the point
z = 0. By definition, such an f needs to come from a function that is also analytic at the
puncture and hence implies that f cannot ‘go wild’ when approaching the puncture. As an
example of an analytic but not restricted analytic function consider f(z) = 1/z over the
punctured disk ∆∗. This function is analytic over ∆∗, but its singularity at z = 0 forbids it
being restricted analytic over ∆∗. Note, however, that 1/z is still definable in Ran, since its
graph can be given by an algebraic equation.

O-minimal structure RRRan,exp: this o-minimal structure will be central for the discussion
of the upcoming sections. It is obtained by further extending the former Ran so as to include
real exponentials. Specifically, Ran,exp can be understood as the subsets of Rn described by
the equation P (x1, . . . , xn, f1, . . . , fm, e

x1 , . . . , exn) = 0, where, as above, P is a polynomial
and fi(x1, . . . , xn) are restricted analytic functions.

It is worth stressing that the choice of the domain is crucial in order to correctly tell
whether the function is definable in a given o-minimal structure. The complex exponential ez :
C→ C is not definable in general. In fact, rewriting ez = er+2πiφ = er(cos(2πφ)+i sin(2πφ)),
ez has an infinite, discrete set of zeros for r, φ ∈ R. Only if we further reduce the domain
of φ, ez is definable. In most of the applications below, φ is an axion, whose fundamental
domain is bounded, say 0 + ε < φ < 1− ε, with ε� 1. Under such an assumption, ez is
definable in Ran,exp.
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Let us now explicitly see how the Tameness Conjecture reflects on the couplings that
effective field theories are allowed to display. To this end, let us consider a generic effective
field theory, focusing on the bosonic spectrum only, valid up to the energy cutoff ΛEFT and
coupled to Einstein gravity. We assume that the EFT is endowed with:

• a set of real parameters λκ, κ = 1 . . . , k, spanning a subset of Rk; in concrete
EFT models obtained from compactifying a higher-dimensional string theory, such
parameters may stem either from compactification data, or from the integration of
fields more massive than ΛEFT;

• a set of real scalar fields ϕa, a = 1, . . . ,m, locally parametrizing a (pseudo-)moduli
spaceMλ, fibered over the parameter space; thus, the local field space metric Gab(ϕ, λ)
generically depends not only on the fields ϕa, but also on the parameters λκ;

• a set of abelian p-form gauge fields AIpI , I = 1, . . . , N , with field strengths F IpI+1 =
dAIpI ; the associated gauge kinetic function fIJ (ϕ, λ) is allowed to depend on both
the moduli fields ϕa and the parameters λκ.

A prototypical, generic D-dimensional action built out of these ingredients would include
the following terms3

S(D) =
∫ (1

2M
D−2
P R ∗ 1− 1

2M
D−2
P Gab(ϕ, λ)dϕa ∧ ∗dϕb

−MD−2(pI+1)
P fIJ (ϕ, λ)F IpI+1 ∧ ∗FJpJ+1 − V (ϕ, λ) + . . .

)
.

(2.5)

Here, V (ϕ, λ) denotes the scalar potential which the moduli fields ϕa are subjected to, and
eventually higher-derivatives terms can be included to the action. Moreover, the action (2.5)
is not required to be supersymmetric. Then, the Tameness Conjecture is a restriction on all
the couplings entering (2.5) — i.e. the field space metric Gab(ϕ, λ), the gauge kinetic matrix
fIJ (ϕ, λ), the scalar potential V (ϕ, λ), etc. Concretely, let us consider a generic coupling g.
Here we neglect additional structures dressing the coupling, namely we assume the coupling
g to be a scalar coupling, without any index. Then, the coupling can be regarded as map
g(ϕ, λ), with domain in Rm+k and values in R. As stated above, requiring that the coupling
is definable in a given o-minimal structure implies that the graph of the function g(ϕ, λ),
namely the set of points (ϕ, λ, g(ϕ, λ)), has to be definable in Sm+k+1. According to the
strong version of the Tameness Conjecture, the o-minimal structure in which the EFT
couplings ought to be defined is Ran,exp. Therefore, according to the explanation above, the
coupling g(ϕ, λ) can be understood as originating from a locus built as follows. We first
introduce a set of an arbitrary number of auxiliary variables, xq, q = 1, . . . , l, which do
not enter the EFT either as couplings or fields, and we assume that, at a first stage, the
coupling g is a function of these auxiliary variables as well, g(ϕ, λ, x). Then, the coupling g
originates from the locus:

∃ x1, . . . , xl : Pi(ϕ, λ, x, g, f1, . . . , fm, e
ϕ, eλ, ex, eg) = 0 ,

Qj(ϕ, λ, x, g, f1, . . . , fm, e
ϕ, eλ, ex, eg) > 0 ,

(2.6)

3Notice that, in our conventions, a p-form gauge field Ap has zero mass dimensions.
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where Pi, Qj are polynomials and fi(ϕ, λ, x, g) are restricted analytic functions in the
variables (ϕa, λκ, xq, g(ϕ, λ, x)). The dependence of the coupling g(ϕ, λ, x) on the auxiliary
variables xq, may be necessary in order to identify the locus (2.6). However, by solving the
defining equations of the locus (2.6) for xq, one can eliminate the explicit dependence of g
on xi. We stress that the definition of the locus (2.6) is, in principle, sensitive to change of
parametrizations of the fields ϕa and the parameters λκ. For instance, redefining the fields
as ϕa = et

a , the locus (2.6) is not described by polynomials in ta. Thus, we shall assume
that there exists an appropriate parameterization (ϕ, λ) of a patch withinMλ such that
the coupling g can be computed as the locus (2.6). Moreover, it is worth noticing that the
finiteness of the constraints and the form of (2.6) needed to specify a coupling definable in
Ran,exp is a deep mathematical result that is related to model completeness [35].

Let us motivate the appearance of eg and the auxiliary variable x in (2.6) via two
simple examples. First, take the logarithmic function g(ϕ) = log(ϕ). It is straightforward to
check that the graph of the logarithm is Ran,exp-definable, which can also be written as the
vanishing locus of the polynomial P (ϕ, eg) = ϕ− eg with the help of eg. To see the necessity
of the auxiliary variables, take the double exponential function g(ϕ) = exp(exp(ϕ)). In
order to show the definability of the double exponential, denote Γ(exp) the graph of the
exponential function, and note that the graph of the double exponential function is simply
a coordinate projection of the definable set (R× Γ(exp)) ∩ (Γ(exp)× R), hence the double
exponential is Ran,exp-definable. This fact is expressed in (2.6) by introducing an auxiliary
variable x, and considering the locus of the polynomials P1(g, ex) = g−ex, P2(x, eϕ) = x−eϕ.
It is worth noting that in our first example, the (global) logarithmic function does not belong
to the class of restricted analytic or exponential functions that define the Ran,exp-structure.
In fact, it can be shown [36, Corollary 4.7] that every Ran,exp-definable function can be
written piece-wisely as polynomials of compositions of restricted analytic, exponential,4 and
logarithmic functions.

Examples of couplings that are definable Ran,exp include polynomials in either the ϕa and
the parameters λκ. However, also exponential functions of the form ep(ϕ,λ), where p(ϕ, λ) is
a generic polynomial in (ϕa, λκ), are definable in Ran,exp. Instead, the Tameness Conjecture
hinders the appearance of any periodic coupling defined in Rn. Other notable examples
of functions definable in Ran,exp include the period integrals of Calabi-Yau manifolds.
This important result, proved in [23], allows for delivering nontrivial evidences of the
aforementioned strong version of the Tameness Conjecture, as we will see in section 4.
Therein we will investigate the four-dimensional EFTs obtained after compactifying Type
IIB string theory on a Calabi-Yau manifold, or an orientifold projection thereof. In the
former case, the couplings of the vector multiplet sectors are fully determined by the period
integrals, thus residing in Ran,exp [4]; in the latter case, the couplings of a chiral multiplet
sector are definable in Ran,exp, for they are also specified by the periods only.

2.3 A special class of tame functions

As we have seen, the Tameness Conjecture constrains the form of the couplings that appear
in any effective field theory that is consistent with quantum gravity. However, the constraints

4It is worth mentioning that by [36, (4.9)], the exponential function can be replaced by compositions of
the reciprocal, and n-th roots for all positive integer n.
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imposed appear to be rather mild, and the loci (2.6) lead to a great variety of couplings.
However, in concrete stringy EFTs we typically face couplings of a more restricted form
than the ones delivered by the loci (2.6).

In order to better characterize the couplings, we first need to specify the region of
Mλ in which the EFT is defined. The effective description under investigation is assumed
to be well-controlled: for instance, one can assume that the EFT is defined in regimes of
small string coupling, or large internal volume. Typically, the corners in which the EFT
is well-defined are near-boundary regions ofMλ, for some given values of the parameters
λκ. We will denote E such an asymptotic field space region in (the cover of) M, and we
assume that it can be parametrized by a set of m real local coordinates ϕa. Within E the
real fields ϕa span different domains, and it is convenient to split them accordingly. Thus,
we introduce real local coordinates si > 1 and φα, such that the field space boundary is at
s1, . . . , sn → ∞. The residual m− n fields φα are assumed to stay bounded |φα| < δ. In
other words, we identify the asymptotic region as described by the following

E =
{
|φα| < δ, s1, s2, . . . , sn > 1

}
. (2.7)

Loosely speaking, the fields si spanning a non-compact domain may be assumed to
be those which tell information about the validity of the EFT: as the boundary si →∞
is approached, the corrections that would modify the effective description become more
and more negligible. On the other hand, the fields φα lying in a compact domain are not
expected to make the EFT depart from its regime of validity for any value |φα| < δ. To get
a feeling for this parametrization, let us mention a few well-known examples. The simplest
case is a circle compactification in which we have one real field s parametrizing the radius of
the circle. The decompactification limit s→∞ is in the open interval E = {s > 1}. A more
involved example is provided by the Kähler moduli space of some Calabi-Yau manifold.
In this case si, φα can be identified with the set of Kähler moduli arising by expanding
the Kähler form as J = siωi + φαωα. If one considers the complexified Kähler form with
the NS-NS B-field, the new scalars will be part of the φα. While these examples might be
instructive, we note that the following discussion is general.

Now consider an EFT defined in the domain (2.7), and consider any coupling g(s, φ, λ)
that the EFT is endowed with. The dependence of the coupling g(s, φ, λ) on the fields (s, φ)
is expected to come from two different contributions, namely

g(s, φ, λ) = gpert(s, φ, λ) + gnon-pert
(
s, e−s, φ, λ

)
. (2.8)

Here gpert(s, φ, λ) encapsulates the perturbative contributions to g(s, φ, λ) and, in the chosen
parametrization, gpert(s, φ, λ) is expected to behave as a rational function in the fields si
for large si. Instead, gnon-pert(s, e−s, φ, λ) collects all the non-perturbative corrections to
the coupling and, as such, gnon-pert is exponentially suppressed in the non-compact fields
si. Couplings such as (2.8) are endowed with a crucial property: given the subregion of the
moduli space (2.7) and fixed parameters λκ, any coupling with the structure (2.8) can be
upper bounded by a monomial in the fields si. These special class of tame functions, which
are definable in Ran,exp, are indeed enough to fully characterize the couplings of most of
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the known stringy EFTs. Following [23], these special tame functions can be split into two
families, that we call monomially tamed and polynomially tamed functions.5 Here, we just
limit ourselves to their (loose) definition and main properties, and we refer to appendix A
for additional details:

• Monomially tamed functions: we consider a function g : U → R, with U ⊆ E a
given subset of the asymptotic region (2.7). We require that on U the coupling g can
be written as

g (s, φ) =
∑
m
ρm

(
e−s

i
, φα

) (
s1
)m1 · · · (sn)mn , (2.9)

where ρm are coefficient functions that we require to be restricted analytic on U and
are labelled by a multi-index m = (m1, . . . ,mn) with integer mi. This expansion is
restricted further by requiring that g behaves as

g (s) ∼
(
s1
)k1 · · · (sn)kn on U , (2.10)

for some integers k1, . . . , kn. Here and in the following the symbol ∼ should be read
as a boundedness statement, i.e. we write f ∼ h is there exists C1, C2, such that
C1h < f < C2h, with C1, C2 real numbers having the same sign. In particular,
the condition (2.10) implies that near the infinite distance point there is leading
monomial term in the expansion (2.9) for every path si →∞. Thus, clearly, (2.10)
gives a strong constraint on the functional form of g: in fact, the restricted analytic
functions ρm(e−si , φκ) that appear in the expansion (2.9) need to guarantee that the
double bound C1(s1)k1 · · · (sn)kn < g < C2(s1)k1 · · · (sn)kn , for some C1, C2 has to
hold throughout the region U .

It is worth remarking that one could extend the definition of monomially tamed
function to a tame function obeying the more general

g (s) ∼
(
s1
)α1 · · · (sn)αn on U , (2.11)

with α1, . . . , αn ∈ R. However, (2.11) may be reduced to (2.9) by redefining
si → (si)

ki
αi .

• Polynomially tamed functions: similarly to a monomially tamed function, a
polynomially tamed function f : U → R exhibits the finite expansion

f (s, φ) =
∑
m
ρm

(
e−s

i
, φα

) (
s1
)m1 · · · (sn)mn , (2.12)

with ρm(e−si , φα) restricted analytic. However, in contrast with the monomially
tamed functions, (2.10) does not hold generically in U . Thus, being less constrained,
polynomially tamed functions are more general than the monomially tamed ones.

5Notice that in [23] these families of tame functions are referred to as roughly monomial and roughly
polynomial, respectively.
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Indeed, due to the properties of the restricted analytic functions (see appendix A.3),
one can at most upper bound a polynomially tamed function by a monomial as

f (s, φ) ≺
(
s1
)N1 · · · (sn)Nn , (2.13)

for some set of integers N1, . . . , Nn. Here we have introduced the symbol ‘≺’, that
has to be understood as follows: given two positive definite functions f and g, f ≺ g
if there exists a real, positive constant C such that f < Cg for every point in U . It is
however worth stressing that the bound (2.13) might be too rough, and in section 3.2
we will provide a recipe in order to refine (2.13).

Therefore, the most evident difference between monomially and polynomially tamed
functions is in their growth properties within the subset U . On the one hand, owing to (2.10),
monomially tamed functions display a definite growth in U , fixed by the set of integers
k1, . . . , kn. Said differently, the leading growth of monomially tamed functions on every
path leading to the field space boundary is univocally fixed by the single set of integers
k1, . . . , kn. On the other hand, a polynomially tamed function does not exhibit a clear
leading term in the whole U . Only at most in some subsets of U , one can single out a leading
monomial term in the polynomially tamed expansions, and there are cases where such a
leading monomial term does not exist. Thus, as a result, the growth of a polynomially
tamed function is generically path dependent within U . Moreover, it is worth stressing that
whether a function is monomially tamed may depend on the choice of the domain U : as an
example, considering a smaller subset Û ⊂ U , a polynomially tamed function might become
monomially tamed, as

f (s, φ) ∼
(
s1
)N1 · · · (sn)Nn in Û ⊂ U . (2.14)

Thus, in such a case, the polynomially tamed function exhibit a definite behavior in
the smaller subset Û . It is worth stressing however, that a subset Û ⊂ U such that a
polynomially tamed function reduces to a monomially tamed one may not exist. In fact, if
f ≺ (s1)N1 · · · (sn)Nn holds strictly everywhere in U , its leading growth cannot be monomial.
Therefore, whenever a leading growth can be identified within a subset Û ⊂ U , it has to be
of the form

f (s, φ) ∼ ρ
(
e−s

i
, φα

) (
s1
)N1 · · · (sn)Nn in Û ⊂ U , (2.15)

with ρ(e−si , φα) a restricted analytic function. An example of one-variable polynomially
tamed function that is not monomially tamed is f(s) = e−ss defined over E = {s > 1}:
while f ≺ s in E , f ∼ s does not hold.

Indeed, the behavior of any given polynomially tamed function might be a guiding
principle in order to better characterize the region U . Consider a general polynomially
tamed function f . Here, for the sake of generality, we shall assume that the polynomially
tamed function is defined over the full asymptotic region E defined in (2.7). Our aim is
to partition the asymptotic region in smaller subsets where the function f exhibits simple
behaviors. First, recall that a partition of a set E consists of a collection of disjoint subsets
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partition

Figure 6. An example of moduli spaceM parametrized by two fields s1 and s2. The region close
to the boundary point φb, reached as s1, s2 →∞, can be covered by two sets, Σ̃12 = {s1 > s2 > 1}
and Σ̃21 = {s2 > s1 > 1}, and the locus σ̃ = {s1 = s2 > 1}.

UA ⊂ E , with A = 1, . . . , N , which covers E :⋃
A
UA = E , and UA ∩ UB = ∅ , if A 6= B . (2.16)

As a simple example of partition of the asymptotic region, one can cover the subsets of E
as follows. We define the subsets

Σ̃I =
{
|φα| < δ, s1 > s2 > · · · > sn > 1

}
, (2.17)

where the index I labels all permutations of the si in the hierarchy and we have only
displayed the simplest permutation with I = (1, 2, . . . , n). Picking a region (2.17) singles
out a specific ordering for the sizes of the fields si (see figure 6 for a pictorial, two-dimensional
representation). Then, a partition of E is realized as the union of all the sets (2.17) and the
(2n−1− 1) loci {s1 = s2 > s3 > · · · > sn > 1}, . . . , {s1 = s2 = · · · = sn > 1}. Generally, how
the partition of E is carried is arbitrary. However, we choose to partition E in compliance
with the monotonicity theorem6 (see, for instance, [22, chapter 3]). The theorem states the
following: for each definable function f : E → R, there is a partition of E in finite subsets
UA such that the restriction f |UA , for each si, is either strictly increasing, strictly decreasing
or constant.7

While given a polynomially tamed function one can always find a partition such that,
on each of its subsets, the function behaves as predicted by the monotonicity theorem, it is
however important to stress that this does not solve the path dependence issue that we
raised above. In fact, albeit on each subset UA, a polynomially tamed function has a definite
growth behavior, it does not necessarily display a leading term. We will then assume that,
beyond the partition above, a given polynomially tamed function f may induce a finer

6Strictly speaking, we should be using the regular cell decomposition in [22, Exercise (2.19)]. We abuse
the terminology and call it monotonicity theorem to emphasize the monotonic property of the function f on
each of the subset UA.

7Recall that a function f is strictly increasing (decreasing) for a given field direction si if, for any given
si(1) < si(2), f(si(1)) < f(si(2)) (f(si(1)) > f(si(2))).
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partition {ÛA} such that, on each of these subsets ÛA, f has a definite leading behavior:

f (s, φ) ∼ ρ
(
e−s

i
, φα

) (
s1
)N1 · · · (sn)Nn in ÛA ⊂ U . (2.18)

Clearly, if ρ(e−si , φα) ∼ 1 on ÛA, the restriction f |ÛA
is monomially tamed. The leading

behavior (2.18) can be one of the terms appearing in the general expansion (2.12); as such,
also this finer partition is expected to be composed by a finite number of subsets.

2.4 Taming the Distance Conjecture

In light of the newly introduced terminology and characterization of the asymptotic region,
let us now come back to the original questions that we posed about the Distance Conjecture.
Similarly to the strategy in the Tameness Conjecture, our basic idea is to single out a set of
functions that can occur in the Distance Conjecture and then give us a more complete picture
of the physics in the infinite distance limit. In particular, in this section, we will assume
that the Distance Conjecture holds in the near-boundary region of the field space, and we
will investigate how the EFT obstructions predicted by the Distance Conjecture may occur
in an EFT that is characterized by tame couplings. As discussed in the previous section, it
is natural to reduce the class of functions drawn from the o-minimal structure Ran,exp in the
study of concrete stringy EFTs. Indeed, in relation to the Distance conjecture we will now
make concrete assertions about the functional dependence of the geodesic distance d(s, φ)
(here and below we suppress the initial point s0, φ0) and the masses Mn(s, φ), that make
use of the monomially and polynomially tamed functions only. We will split the discussion
in the three main issues that concur in the realization of the Distance Conjecture. Note
that we will initially not restrict to any supersymmetric setting and therefore the following
discussion might look rather complicated at first.

Reducing path-dependency of the infinite tower of states. The first ingredient
that we need in order to realize the Distance Conjecture is an infinite tower of states,
with masses Mn, that become massless as the infinite distance singularity is approached.
Since the masses Mn are physical couplings we require that they are tame. In particular,
employing the arguments of section 2.3, we require that

Mn(s, φ) is polynomially tamed in E . (2.19)

Indeed, in section 4 we will show that the hypothesis (2.19) holds for a large class of stringy
EFTs. In the following we will limit ourselves to the analysis of the consequences of such
an assertion. As stressed in the previous section, polynomially tamed functions do not
display a definite leading term throughout E . Therefore, the masses Mn might exhibit a
different fall-off or growth according to the chosen path. However, one can partition the set
E into smaller subsets where Mn(s, φ) has a definite growth. As a preliminary step, let us
notice that, if Mn(s, φ) is a proper candidate tower that realizes the Distance Conjecture
in a subset U ⊂ E , it is necessary that Mn(s, φ) is strictly decreasing on U . Thus, such a
set U might be a single subset of the partition induced by the monotonicity theorem, or a
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Figure 7. Schematic depiction of how the field space region around the boundary φb in such a way
that, in any subset U (a), there exists an infinite tower of states with masses M (a)

n obeying (2.21).
Notice that the dimensions of the subsets U (a) do not have to be the same.

union of different subsets thereof. Additionally, combining the requirement that Mn(s, φ) is
polynomially tamed and that the states become massless near the boundary, we demand

Mn (s, φ) ≺
(
s1
)N1 · · · (sn)Nn on U , (2.20)

with N1, . . . , Nn ∈ Z<0. Thus, the condition (2.20) guarantees that the masses Mn(s, φ)
obey Mn(s, φ)→ 0 along any path in U that approaches the infinite distance singularity.

But what happens in the asymptotic regions outside U? If outside U the masses Mn

do not obey (2.20), they may not become massless, and thus the tower Mn cannot serve
as a candidate for realizing the Distance Conjecture in E U . However, different infinite
towers of states may be available, with masses M (a)

n , where the index a labels the tower.
The towers are chosen in such a way that the masses of the constituting states becoming
massless in some near-boundary region are strictly decreasing and

M (a)
n (s, φ) ≺

(
s1
)N(a)

1 · · · (sn)N
(a)
n on U (a) ⊂ E , (2.21)

where N (a)
1 , . . . , N

(a)
n ∈ Z<0. The emergence of any infinite tower of states as the infinite

distance singularity is approached requires that with such sets U (a) we can cover the whole
asymptotic region, namely ⋃

a
U (a) = E (see figure 7 for a representation).

Matching the behavior of masses and the geodesic distance. The Distance Con-
jecture asserts the specific asymptotic behavior (2.3) for the masses of the infinite states
that break the effective description. However, in general, it is hard to estimate the behavior
of the geodesic distance d(s, φ). Still, if the Distance Conjecture has to hold, then the
behavior of the distance d(s, φ) has to be such that the behavior of e−λd(s,φ) is comparable
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with one of the masses Mn of any tower of states. Therefore, it is enough to minimally
assume that

e−λd(s,φ) is polynomially tamed in E . (2.22)

It is interesting to note that this is a tameness condition on the exponential of the distance
rather than the distance itself. In this way the exponential function does not necessarily
need to be definable and the statement of the Distance Conjecture (2.2) can be formulated
even within Ralg, e.g. in highly supersymmetric setting when instanton corrections are
absent [4, 37]. However, if we insist that the distance itself is tame, we conclude that the
statement of the Distance Conjecture (2.2) requires to use, at least, the o-minimal structure
Rexp in which the exponential function is definable. In the following we will stay general
and work with Ran,exp in which, as in Rexp, the definability of the exponential of d(s, φ)
implies the definability of d(s, φ).

Now, in order to satisfy (2.3) throughout the asymptotic region E we proceed as follows.
Since e−λd(s,φ) is polynomially tamed, we can partition E in regions {UA} where the e−λd(s,φ)

is upper bounded by a monomial and has a distinguished leading behavior. Since our
analysis concerns infinite distance singularities, in any of the sets UA that contains the
boundary φb, to which we will refer to as ‘boundary’ subsets, then

e−λd(s,φ) ≺
(
s1
)NA

1 · · · (sn)N
A
n on any boundary UA , (2.23)

with NA
1 , . . . , N

A
n ∈ Z<0. Then, on any of these boundary subsets, e−λd(s,φ) is either

monomially tamed, or strictly upper bounded by a monomially tamed function.
Then, if the Distance Conjecture is satisfied, there must exist some towers of states,

subjected to an appropriate partition of E , such that for each of the subsets e−λd(s,φ) ∼
M

(a)
n (s, φ). For concreteness, take a single subset UA. On UA we introduce an additional,

finer partition that is now induced by the behavior of the masses of the states constituting
the infinite towers. Namely, we construct a partition {U (a,k)

A } of UA such that, on each of
these subsets, the tower M (a)

n displays a definite leading behavior

M (a)
n (s, φ) ∼ ρk

(
e−s, φ

)
(s1)n

(a,k)
1 · · · (sn)n

(a,k)
n on U (a,k)

A (2.24)

with n(a,k)
i ∈ Z<0. Then, on each U (a,k)

A the Distance Conjecture requires that M (a)
n (s, φ) ∼

e−λd(s,φ). This, in turn, guarantees that, on each set U (a,k)
A the Distance Conjecture is

realized path-independently.

Finiteness of the infinite towers of states. As we have illustrated, the realization
of the Distance Conjecture in the full asymptotic region E might require the presence
of different towers of states. But how many towers are required? In general, the answer
depends on how the partition of E is carried over, by applying first the monotonicity theorem,
and then refining such a partition by singling out the subsets where the masses have a
distinguished leading behavior. However, the underlying tame structure of the effective
field theory couplings guarantees that the subsets of E that realize the partition are never
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infinite in number. We can then formulate the following statement:

Finiteness of the infinite towers of states. In order for the Distance Conjecture to
be realized within a tame EFT, only a finite number of infinite tower of states is sufficient.

The Distance Conjecture and partial moduli stabilization. The tameness of the
EFT couplings allows for better addressing the issue raised at the end of section 2.2 about
the realization of the Distance Conjecture within an EFT with sliding cutoff. First, let
us mention that the scalar potential, regarded as an EFT coupling, is also conjectured to
be tame according to the Tameness Conjecture. As a relevant class of examples, in [38]
it was proved that any flux-induced F-theory scalar potential is tame. As stressed in [4],
an important consequence of the tameness of the scalar potential resides in the finiteness
on the number of vacua that it can deliver. Here we are interested in the special case
where a partial moduli stabilization occurs. Concretely, let us consider an EFT endowed
with the (pseudo-)moduli {ϕa}, a = 1, . . . ,m, spanning the spaceM, and assume that a
scalar potential V (ϕ, λ) fixes some of the field directions such that the residual moduli
space M̂λ is spanned by the fields {ϕ̂â}, â = 1, . . . , m̂, m̂ < m. Now, consider any coupling
g(ϕ, λ) whose graph is definable inMλ. However, the graph of the coupling g(ϕ̂, λ) is also
definable is M̂λ: in fact, this is guaranteed by the properties of the definable sets outlined
in section 2.2 and by regarding the graph of g(ϕ̂, λ) as an appropriate projection of the
one of g(ϕ, λ).

Let us now specialize to the case of interest, where the considered coupling g(ϕ, λ) is
one of those entering the Distance Conjecture, namely either e−λd or the masses Mn of
the states constituting the infinite towers. We assume that the Distance Conjecture is
realized over the moduli spaceM and, in particular, that there exists a finite partition of
the near-boundary region of any infinite distance singularity where the Distance Conjecture
is realized in a path independent fashion as explained above, with the masses constituting
the infinite tower of states falling off as M (a)

n ∼ e−λdM . Consider now the subset M̂ ofM
obtained after a partial moduli stabilization. Since the masses are tame on M, they are
also tame on M̂. In particular, the partition of the near-boundary region E in (2.21) also
covers the subset M̂. Consequently, the same towers that are candidates for realizing the
Distance Conjecture in M may also serve as candidates in order to realize the Distance
Conjecture on M̂. Additionally, the number of infinite tower of masses that are necessary
to realize the Distance Conjecture is finite in number, when employing arguments similar to
the ones used forM. However, in general, assuming solely the definability of the couplings
in Ran,exp seems not to be enough to guarantee that the fall-off of the masses obeys (2.3) in
terms of the geodesic distance on M̂. In order to realize (2.3) on M̂ a different partition of
the near-boundary region from the one induced by (2.23)–(2.24) might be needed and it is
tempting to speculate that the Distance Conjecture can inferred for M̂ if the potential is
moreover polynomially tamed.

In order to give evidence for these statements, let us first recall the simplest prototype
example for the Distance Conjecture and consider a Kaluza-Klein compactification of a
D-dimensional theory on a circle with radius s. In the effective (D − 1)-dimensional theory
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the radius is a scalar field with kinetic term

S(D−1) = MD−3
P

∫
dDx
√
−g

(
− 1
s2∂µs∂

µs+ . . .

)
. (2.25)

The limit s → ∞ is an infinite distance limit with a logarithmic growth in the geodesic
length, d(s, s0) =

∫ s
s0

ds′

s′ = log
(
s
s0

)
. Note that the metric 1/s2 is definable in Ran,exp in

accordance with the Tameness Conjecture. The masses of the Kaluza-Klein states arising in
the limit s→∞ are Mn(s) = n

s ∼ n e
−d(s,s0) in accordance with the Distance Conjecture.

In fact, Mn(s) is also definable in Ran,exp and both the metric and the masses have a simple
polynomial growth

Gss ∼
1
s2 , Mn ∼ e−d(s,s0) ∼ 1

s
. (2.26)

This asymptotic polynomial behavior is common to all examples in which the Distance
Conjecture has been tested so far. However, it does not resolve the path-dependence issues
that we have raised in section 2.1. To see that, let us extend the setting to multiple
variables. Concretely, let us consider a four-dimensional model with three moduli si,
i = 1, 2, 3, described by the following action

S(4) = M2
P

∫
d4x
√
−g

(
−

3∑
i=1

1
(si)2∂µs

i∂µsi + · · ·
)
. (2.27)

Such an action stems, for instance, from the compactification of ten-dimensional string
theory on a six-dimensional toroidal orbifold T 6/Γ, with Γ a discrete group; specifically,
in Type IIB EFTs, the fields si parametrize the imaginary part of the complex structure
moduli, or in Type IIA EFTs the fields si parametrize the volume each the volume of an
internal T 2. The geodesic distance between the field space points (si0) and (si) is

d =

√√√√ 3∑
i=1

(
log s

i

si0

)2

. (2.28)

Thus, again, infinite distance points are reached when any of the fields si →∞. A candidate
infinite tower of states realizing the Distance Conjecture is given by the tower of the Kaluza-
Klein modes. The lightest among the Kaluza-Klein states have the following behavior in
terms of the fields si:

M i
n ∼

MP√
si
. (2.29)

Clearly, which tower of state is relevant depends on the specific choice of the path that
leads to infinite distance. For instance, along paths in which only a single field si → ∞,
the distance conjecture is realized by three different tower of states as M i

n ∼ e−
1
2d. More

generally, one can consider three different ‘strict’ asymptotic regimes

(1) s1 � s2, s3 , (2) s2 � s1, s3 (3) s3 � s1, s2 , (2.30)

such that, asymptotically in each sector, M i
n ∼ e−

1
2d. Moreover, provided a redefinition

of fields si → (si)2, the common leading behavior of both M i
n and e−

1
2d is monomially
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tamed. This simple example shows us a general feature that is crucial to consider when
testing the Distance Conjecture: we need to specify the asymptotic regime that we are
investigating. Such regimes can be captured, for instance, by the sets Σ̃I defined in (2.17),
or smaller subsets thereof. Once an appropriate subset is chosen, on the one hand, e−d(s,s0)

may acquire a simple asymptotic behavior; on the other hand, the tower of states that
could realize the Distance Conjecture organize hierarchically, and one can then single out
the lightest tower, namely the one that leads to the breaking of the EFT.

In the above selected examples it is clear how one can choose asymptotic regimes in
order to realize the Distance Conjecture. However, in general, it is hard to determine
whether, and to what extent the Distance Conjecture is realized by any given tower of
states: the towers can change if the path that leads to infinite distance is chosen differently
and, in principle, e−λd(s,s0) may exhibit a complicated fall-off that is hard to match with
the fall-off of the masses of the candidate infinite tower of states. In the following section
we will explore what is the minimal information to tell whether the relation (2.3) can be
realized within a partition of the asymptotic region E in a path independent way.

3 Test strings and tame functions

In this section we propose that one can probe the behavior of four-dimensional EFT
couplings via strings. Indeed, strings backreact on the scalar fields, and the backreaction
solely depends on the charge of the string. Such a backreaction offers a test path on which to
probe the behaviors of EFT couplings. We will show that the behavior of monomially and
polynomially tamed functions on families of these test paths — or, on the allowed string
backreactions — delivers the minimal information required to characterize the behavior of
the function throughout ΣI .

Specifically, as we shall see, the leading behavior of any monomially tamed function is
fully determined by how the monomially tamed function grows or falls off on such test paths.
On the other hand, polynomially tamed functions have a more complicated structure, and
cannot be solely determined by examining their behaviors on string backreactions. However,
we will deliver a recipe to bound polynomially tamed functions by how they behave on
string backreactions.

In the following, to begin with, we will recall how to construct cosmic string solutions
in four-dimensional EFTs, and we will later promote such solutions as test paths to examine
the behavior of monomially and polynomially tamed functions.

3.1 Cosmic and axion strings

Here, we will review the cosmic string solutions first studied in [24, 39] and later generalized
and applied to axion strings in [18, 25]. To begin with, assume that a local patch within
the moduli spaceM is parametrized by N complex coordinates zA.8 Singularities can be
locally described as the loci

zα = 0 , α = 1, . . . , n , (3.1)
8It is worth stressing that, at this stage, zA is any modulus of the EFT.
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Figure 8. The near-boundary region around the boundary point, depicted on the left, can be
described by the polydisk 0 < |zα| < 1, with the boundary located at zα = 0; in turn, via (3.3), this
can be mapped to the upper-half-plane, where the boundary is reached as sα →∞.

for some n ≤ N . It is then convenient to split the coordinates zA as zA = (zα, ζκ), with
κ = 1, . . . , N − n. The domain that will be of interest for us, within which we assume that
the EFT is well defined, is

E = (∆∗)n ×∆N−n , (3.2)

where we have denoted ∆N−n = {|ζκ| < 1}, a product of disks, and (∆∗)n = {0 < |zα| < 1},
a product of punctured disks. However, it is more convenient to redefine

ϕα = 1
2πi log zα , (3.3)

so that the singular locus in (3.1) is reached as ϕα → i∞. Notice that (3.3) relates (∆∗)n
to the upper half plane Hn as:

{0 < |zα| < 1} = (∆∗)n 3 zα ←→ ϕα ∈ Hn = {Imϕα > 0} (3.4)

as depicted in figure 8.
We also split the complex coordinates ϕα as

ϕα = aα + isα , (3.5)

in terms of the real coordinates aα, sα, with sα > 0. As will become clear soon, the real
fields aα can be regarded as axions. We will assume that the axions span a compact domain,
and that they are identified as aα ' aα + 1. Their partners sα > 0, that build the complex
coordinates ϕα alongside aα, will be referred to as saxions.

Let us now introduce the class of EFTs that will be under scrutiny. We will focus
on either N = 2 or N = 1 supersymmetric effective field theories. We will assume that
the moduli ζκ are fixed at a specific point ζκ0 within ∆N−n, and we will regard them as
non-dynamical, ‘spectator’ fields. Then, within the domain E , the sole dynamical complex
fields ϕα, for which we will write down an effective field theory. The fields ϕα parametrize
a local patch of Kähler manifold, and we will denote the associated Kähler potential as K.
The effective action describing the coupling the complex fields ϕα to gravity is:

S = M2
P

∫ (1
2R ∗ 1−Kαβ̄ dϕα ∧ ∗dϕ̄β̄

)
. (3.6)

The contributions appearing in (3.6) are common to both the N = 2 action (see the
following (4.4)) and the N = 1 action (see (4.14)). In the former case, the contributions
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in (3.6) can be obtained from the bosonic components of N = 2 actions describing the
interactions of n vector multiplets and turning off the gauge fields AI . In the case of N = 1
actions, (3.6) correspond to the bosonic components of supergravity actions describing the
interaction of n chiral multiples in the absence of a scalar potential. In this latter case,
setting the scalar potential V (ϕα) = 0 can be either achieved by turning off background
fluxes and neglecting additional corrections to the scalar potential or by stabilizing the
‘spectator’ moduli ζκ in such a way that V (ζκ0 ) = 0.

Cosmic string solutions are solitonic solutions of the equations of motion that preserve
the two-dimensional Poincaré invariance along two spacetime directions. Namely, let us split
the spacetime coordinates as (t, x, ξ, ξ̄), where ξ and ξ̄ are complex coordinates spanning
the space directions orthogonal to (t, x). Indeed, introducing the polar coordinates (r, θ),
one can relate the latter to ξ as ξ = reiθ. Then, a cosmic string solution is a solution to the
equations of motion stemming from (3.6) by imposing the following metric ansatz:

ds2 = −dt2 + dx2 + e2Ddξdξ̄ , (3.7)

where D is a warp factor. For simplicity, we will further assume that both scalar fields ϕα
and the warp factor D depend only on the coordinates (ξ, ξ̄).

It can be shown that the equations of motion for the fields ϕα leads to [25]

Kᾱβ∂∂̄ϕ
β +Kᾱβγ∂ϕ

β ∧ ∂̄ϕγ = 0 , (3.8)

where we have introduced ∂ ≡ dξ ∧ ∂ξ and its complex conjugate ∂̄ ≡ dξ̄ ∧ ∂ξ̄. As shown
in [25, 39], the simplest BPS solutions to (3.8) are either holomorphic profiles obeying

∂̄ϕα = 0 (3.9)

or anti-holomorphic profiles satisfying ∂ϕα = 0, along which half of the bulk supersymmetry
is preserved. Here, we will pick the holomorphic profiles in (3.9) as solutions to (3.8). For
completeness, let us mention that the Einstein equations deliver the following relation
between the warp factor D in (3.7) and the Kähler potential:

e2D = |f(z)|2e−K , (3.10)

with f(z) an arbitrary, non-vanishing holomorphic function.
The cosmic string solution (3.9) is agnostic about the specific profile of the ϕα(ξ) in

terms of the holomorphic coordinate ξ. Here, we are interested in cosmic string solution
exhibiting the following monodromy transformation

ϕα → ϕα + eα , eα ∈ Z , (3.11)

when encircling a loop around r = 0 (i.e. ξ = 0). The integers eα are those that distinguish
the monodromy transformation and — as will become soon clear — can regarded as the
elementary charges of the cosmic string solution. We also stress that, in order for a solitonic
solution with the property (3.11) to be valid, the EFT has to be invariant under the
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monodromies (3.11) [40, 41]. Specifically, in the action (3.6), the Kähler metric has to be
invariant under the monodromies (3.11).

The holomorphic solution that realizes (3.11) is

ϕα = ϕα0 + 1
2πie

α log
(
ξ

ξ0

)
, (3.12)

for some constant ϕα0 and ξ0.9 Indeed, splitting the complex fields ϕα as in (3.5) into the
real fields aα, sα, the solution (3.12) can be recast as

sα = sα0 −
1

2π log
(
r

r0

)
eα , (3.13a)

aα = θ

2π e
α + aα0 . (3.13b)

This clearly exhibits that the real fields aα experience the monodromy aα → aα + eα after
turning around any loop centered at r = 0. On the other hand, the fields sα depend on the
radial distance r = |ξ|; importantly, as r → 0, sα →∞.

Thus, according to the choice of the elementary charges eα, different saxions are driven
towards large vevs as sα → eα ×∞. In order to organize the string solutions, as in [25], we
further distinguish elementary and non-elementary flows. Consider a basis of BPS charges
{eα}. An elementary flow is a solitonic solution of the kind (3.13) generated by a cosmic
string with charge coinciding with a single basis element eα̂. A non-elementary flow is a BPS
solitonic solution generated by an axion string whose electric charge is a linear combination
of the basis elements {eα}.

The solution (3.12) is rather general: it relies only on the action (3.6), with the
assumption that the axion fields ought to experience the monodromy (3.11) once we turn
around a loop centered at ξ = 0. In some cases, however, we can further elaborate about
the phenomenological meaning of the solution (3.12). As is clear from (3.12), the solution
exhibits a singularity at ξ = 0, and assumes that the singularity is not resolved within
the effective field theory.10 Then, the singularity can be understood as accommodating
a codimension-two spacetime defect, which we will identify as an axion string. In order
to see this, preliminarily, let us recall that the cosmic string solution (3.13) exhibits a
nontrivial winding for the axion. A rather simple, but strong assumption that guarantees
the invariance of the action (3.6) under the monodromy (3.13b) is to assume that the Kähler
potential does not depend on the real fields aα, that is K(ϕ, ϕ̄) = K(s), implying that
also the Kähler metric appearing (3.6) is solely saxion-dependent. In other words, (3.6)
enjoys the exact continuous shift symmetry aα → aα + cα, with cα ∈ R, rendering aα proper
‘axions’, namely zero-form gauge fields.11

9One may wonder if the solution (3.12) is a well defined BPS solitonic solution, with finite energy density.
Indeed, it can be checked that the cosmic string solution (3.12) delivers configurations of finite energy
density, saturating the BPS bound [24, 25, 39].

10Notice that we are looking for solutions for which the singularity at ξ = 0 cannot be resolved within the
EFT. Non-singular solutions at ξ = 0 can be built, but they require the presence of additional gauge fields
subjected to Higgsing effect. We refer to [42, 43] for details and concrete examples.

11Note that the assumption that K(ϕ, ϕ̄) = K(s) implies that (3.6) exhibits a zero-form global symmetry,
leading to a three-form conserved current. On the other hand, invariance under the monodromies (3.11)
requires invariance only under a discrete gauge group. See, for instance, [44] for details on the subject.
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It was shown in [45–47] that it is then convenient to rephrase the action (3.6) in terms
of dual variables so defined:

`α = −1
2
∂K

∂sα
, H3α = dB2α −M2

P Gαβ ∗ daβ , (3.14)

with
Gαβ ≡

1
2

∂2K

∂sα∂sβ
. (3.15)

Here, the dual saxions `α in (3.14) replace the saxions sα as the real scalar fields enjoying a
non-trivial radial flow. Instead, in (3.14), the axions aα are traded with the gauge two-forms
B2α via a standard electro-magnetic duality. It can be shown that in this dual framework,
the action (3.6) reads

Sdual =
∫ (

M2
P

2 R ∗ 1− M2
P

2 G
αβ d`α ∧ ∗d`β −

1
2M2

P
Gαβ H3α ∧ ∗H3β

)
, (3.16)

with Gαβ the inverse of (3.15). Focusing on the bosonic sector only, the dualization of the
saxionic and axionic fields in (3.14) is general. However, in supersymmetric theories the
complex scalar fields ϕα are accommodated in appropriate multiplets alongside with their
fermionic partners. In N = 1 supergravity such as those examined in section 4.1.2, ϕα
reside in chiral multiplets Φα. It can be shown that the dualization (3.14) can be performed
at levels of multiplets, with the chiral fields Φα traded with linear multiplets Lα, which
accommodate the dual saxions `α and the gauge two-forms B2α in their bosonic components.
We refer to [45–48] for further details.

Since the dual action (3.16) manifestly contains the gauge two-forms B2α, we can
include the fundamental objects electrically coupled to the gauge two-forms. These are
strings, effectively described by the following action:

Sstring = −
∫
S

d2ξ
√
−h Tstr + eα

∫
S
B2α . (3.17)

Here we have introduced the coordinates ξ ı̂, ı̂ = 1, 2, that parametrize the worldsheet S of
the strings spanning the time direction and one space direction, and hı̂̂ the induced metric
on the string. Furthermore, Tstr denotes the (field-dependent) string tension, and eα the
electric charges of the string. In order for the effective description not to be broken by the
inclusion of the strings, we need to require

Tstr ≥ Λ2
EFT , (3.18)

with ΛEFT the cutoff of the effective field theory. The condition (3.18) guarantees that the
strings are described as fundamental objects, whose core is not resolved within the EFT,
allowing us to neglect all the stringy oscillatory modes. For this reason, we will call the
strings described by the action (3.17), equipped with (3.18) fundamental axion strings.

We will be specifically interested in BPS strings. In N = 1 theories it can be shown that
for fundamental axion strings maximally preserving two supercharges over their worldvolume
the string tension Tstr has to be linear in dual saxions `α [46, 47, 49, 50]:

Tstr ≡ Te = M2
Pe

α`α , (3.19)
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supported by the BPS condition
eα`α > 0 . (3.20)

We further recall that, by exploiting the dualization (3.14), one can recast the above string
tension in terms of the saxionic fields sα. It can be shown that (3.16), once coupled
to (3.17) with (3.19), delivers the cosmic string solution (3.13), with the fundamental axion
string (3.17) conveniently capturing the singularity at r = 0.

Before concluding this section, let us remark that the solution (3.13) is not a complete
cosmic string solution covering the full spacetime. In fact, it breaks down when the saxions
sα = 0. For instance, in models with only a single complex field ϕ, this happens at the
radial distance r̄ = r0e

2πs0
e . In [25], in the context of N = 1 EFTs, the distance r̄ was

regarded as an energy scale Λ̄ = 1
r̄ at which the EFT becomes strongly coupled. Indeed,

therein it was shown at the scale Λ̄ the axion string tension (3.19) diverges. This behavior
is typical of codimension-two objects and is ostensibly in contrast with what happens
along the backreactions of objects of codimension strictly greater than two; in fact, for
the latter, the backreaction becomes more and more negligible as the distance from the
object increases. However, it is worth mentioning that, as in [24, 51], one can ‘complete’ the
string solution (3.12) so as to encompass regions of strong coupling. In this work we will
not consider such a continuation of the solution (3.12), for (3.12), with r < r0, is already
enough to explore the near boundary region of the moduli space.

3.2 Strings as probes for polynomially and monomially tamed functions

In this section we illustrate how the cosmic string solutions reviewed in the previous sections
can be used as tools to probe the behavior of monomially and polynomially tamed functions.
However, monomially and polynomially tamed functions are defined over a given patch of
the moduli space, while the cosmic string solution (3.12) is defined in spacetime. Therefore,
as a preliminary step, we need to translate the backreaction (3.13) into a path drawn by
the saxionic fields sα within the local patch E in (3.2). To this end, we preliminarily define
the parameters

σ ≡ − 1
2π log

(
r

r0

)
, ρ ≡ θ

2π + iσ , (3.21)

so that the backreaction (3.12) can be recast as

ϕα(ρ) = ϕα0 + eαρ , (3.22)

that is specified by the choice of string charge e = (eα). Then, we can map each point
ϕα(r, θ) along the cosmic string solution (3.12) to a point ϕα(ρ) that specifies a vacuum
configuration of the effective field theory. In other words, the cosmic string solution (3.13a)
maps to a linear path within the moduli space. Moreover, by further completing the above
path with the non-dynamical fields ζκ = ζκ0 , paths in (3.22) can be promoted to paths in
the full domain (3.2).

The paths (3.22) are suitable to explore the near-boundary region of the moduli space.
As ρ → i∞ (corresponding to r → 0 from the spacetime perspective), the saxions sα
are driven towards ‘distant’ regions in the north of the upper-half plane in figure 8. In
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Figure 9. On the left, the subregion spanned by |z1| and |z2| within the polydisk {0 < |z1| <
1} ∪ {0 < |z2| < 1}; within this region, the string backreaction (3.12) traces curves as depicted
by the dotted lines; on the right, are depicted the paths within the saxionic space (s1, s2), further
partitioned via the sets (3.23).

section 2.3 we have additionally stressed that it is convenient to cover the near-boundary
region via the sets

ΣI =
{

0 < aα < 1, s1 ≥ s2 ≥ · · · ≥ sn ≥ 1
}
, (3.23)

where the index I labels all permutations of the sα in the hierarchy and we have only
displayed the simplest permutation. The paths (3.22) may indeed be tuned in order to
cover only a single among the sets ΣI . For concreteness, let us focus on the set Σ12...n.
Let us assume that the initial values of saxionic and axionic fields are chosen such that
s1

0 > s2
0 > . . . > sn0 > 1 and 0 < aα0 < 1, so that ϕα(0) ∈ Σ12...n. Given ϕα(0), the flow of

the scalar fields is fully determined by the string charges eα, and we need to ensure that
these are chosen such that ϕα(ρ) ∈ Σ12...n for any ρ. To this end we identify the following
lattice of charges12

Ce =
{
e ∈ Nn | e1 ≥ e2 ≥ . . . ≥ en ≥ 0

}
. (3.24)

Then, provided an additional rescaling Reρ → 1
Cmax{eα}Reρ for some C > 0,13 any path

ϕα(ρ) = ϕα0 + eαρ with e ∈ Ce is fully contained in Σ12...n. By choosing the string charge e
and varying the initial values of the saxions sα0 and the fixed values of the axions aα0 , one
can span the full set Σ12...n, as pictorially depicted in figure 9. We collect all such paths in
the set

Pe =
{
ϕα = ϕα0 + eαρ | e ∈ Ce , s

1
0 > . . . > sn0 > 1 , 0 < aα0 < 1

}
∈ Σ12...n . (3.25)

12Notice that, for N = 1 EFTs and when the cosmic string are axion string solutions, the charge
lattice (3.24) can be understood as a sublattice of the EFT charge lattice CEFT

S defined in [25]. Indeed, the
lattice (3.24) can be regarded as the lattice such that the instanton corrections — whose charges lie in ‘dual’
lattice CI = {m ∈ Nn} — are negligible in Σ.

13Such a rescaling can be equivalently understood as a rescaling of the axions aα subjected to the
string backreaction.

– 29 –



J
H
E
P
0
9
(
2
0
2
2
)
1
4
9

In the following it will be convenient to consider special subsets of paths in (3.25) such
that some string charges are zero. To this end, we preliminary define the charge sublattices

C(n̂)
e =

{
e ∈ Nn | e1 ≥ e2 ≥ . . . ≥ en̂ > 0 , en̂+1 = . . . = en = 0

}
⊂ Ce , (3.26)

and the associated families of paths

P(n̂)
e =

{
ϕα = ϕα0 + eαρ | e ∈ C(n̂)

e , s1
0 > . . . > sn0 > 1 , 0 < aα0 < 1

}
∈ Σ12...n . (3.27)

Clearly,
n⋃
i=1
P(i)

e = Pe. In the language of the previous section, paths belonging to P(1)
e ,

with the only non-null string charge e1, will be referred to as ‘elementary’ paths, while the
others, P(n̂)

e with n̂ ≥ 2, will be generically called ‘non-elementary’.
The paths (3.25) play the role of test paths, which carry important information about

the behavior of the EFT couplings. Indeed, below we show how the paths (3.25) can be
employed to determine the behavior of monomially tamed functions and to bound the
behavior of polynomially tamed functions.

The behavior of monomially tamed functions
Monomially tamed functions display the simple structure (2.10). Indeed, their leading
monomial behavior can be inferred solely by how they grow on BPS cosmic string solutions.
Indeed, consider a generic monomially tamed function f ∼ (s1)k1 · · · (sn)kn . In order to
probe the behavior of f , one can consider how f grows along the families of paths in (3.27)
varying n̂. Concretely, consider first the elementary paths P(1)

e , along which only the field
ϕ1 is driven to boundary according to (3.22). Along these elementary paths f ∼ σk1 . Thus,
the growth of f with respect to the saxion s1 is solely determined by how f behaves on the
elementary paths P(1)

e . Let us then consider the non-elementary paths P(2)
e along which

only the saxions s1 and s2 may reach the asymptotic region. Along these paths, f ∼ σk1+k2 .
Thus, having fixed k1 from the behavior on P(1)

e , we can then fix k2 from how f behaves on
P(2)

e . We can then proceed by considering all the remaining non-elementary paths, and the
leading behavior of f would be fully fixed by how it grows along the linear paths. However,
it is worth noticing that, since f is monomially tamed, fixing the exponents ki by using
linear paths gives information about the leading behavior of f throughout ΣI .

We can exploit such observations in order to compare different monomially tamed
functions. In fact, consider two monomially tamed functions

f ∼
(
s1
)k1 · · · (sn)kn , g ∼

(
s1
)m1 · · · (sn)mn , (3.28)

and assume that f ∼ g on curves in ΣI . In particular, this holds on the families of test
paths (3.27). By reasoning as above, it is simple to show that such an ordering is preserved
in Σ, i.e.

f ∼ g ∼
(
s1
)k1 · · · (sn)kn on ΣI . (3.29)

Thus, the growth of monomially tamed functions can be inferred from how they grow
on linear paths only. Of course, inferring the behavior of the restricted analytic functions
that serve as their coefficients would require some finer arguments.
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The behavior of polynomially tamed functions
As displayed in section 2.4, polynomially tamed functions exhibit a more involved structure
than the monomially tamed functions. Indeed, the behavior of a polynomially tamed
function throughout Σ cannot be generically inferred from how it behaves on a small subset
of curve: in fact, the growth of a polynomially tamed function is path dependent, and the
comparison of the behavior of polynomially tamed functions would be path dependent as
well. However, one can rather compare the behavior of a polynomially tamed function with
a monomially tamed one. In order to do that we introduce an order relation f ≺ g among
the polynomially or monomially tamed functions f and g. Recall that writing f ≺ g means
that there exists a positive constant C such that f < Cg on all ΣI . Now, one can bound
a polynomially tamed function using a monomially tamed one. This can be achieved by
exploiting the following lemma formulated in [23] and we reformulate as follows:

Curve-reduction lemma for polynomially tamed functions. Consider a polynomi-
ally tamed function f and a monomially tamed function g. Assume that

|f | ≺ |g| (3.30)

on all the linear paths
β1ϕ1 + γ1 = · · · = βn0ϕn0 + γn0 ,

ϕn0+1 = δn0+1, . . . , ϕn = δn ,
(3.31)

for all choices of 1 ≤ n0 ≤ n, complex numbers δn0+1, . . . , δn with positive imaginary parts,
positive rational numbers β1, . . . , βn0, and real numbers γ1, . . . , γn0. Then

|f | ≺ |g| on all ΣI . (3.32)

We refer to appendix B for the proof of the statement above. Here, instead, we will
give an idea of how the general proof works for the two moduli case. For simplicity, let us
focus on a polynomially tamed function which depends on two saxions only as

f (a, s) =
∑

m1,m2

ρm1m2

(
a1, a2

) (
s1
)m1 (

s2
)m2

. (3.33)

Let us assume that |f(a, s)| ≺ 1 on all the linear paths in (3.31). We want to show that
|f(a, s)| ≺ 1 in all the growth sector Σ2. In order to achieve this, it is enough to show that

|f (a, s) | ≤
∑

m1,m2

|ρm1m2

(
a1, a2

)
|
(
s1
)m1 (

s2
)m2 ≺ 1 . (3.34)

However, since |f(a, s)| ≺ 1 for linear paths, the powers m1, m2 in which the saxionic fields
appear in (2.12) are greatly constrained. In fact, |f(a, s)| ≺ 1 has to hold for both the
path choices

|f(a, s)| ≺ 1 on P(1)
e ⇒ m1 ≤ 0 ,

|f(a, s)| ≺ 1 on P(2)
e ⇒ m1 +m2 ≤ 0 .

(3.35)

Thus, in turn, (3.34) holds over the full sector Σ2.
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It is then immediate to show that the linear paths (3.22) can be identified with the test
paths (3.22). Assume that eα 6= 0 for α ≤ n0, then the paths in (3.22) can be written as

ϕ1 − ϕ1
0

e1 = ϕ2 − ϕ2
0

e2 = · · · = ϕn0 − ϕn0
0

en0
,

ϕα = ϕα0 for n0 + 1 ≤ α ≤ n .
(3.36)

These coincide with the test paths in (3.31), upon identifying βα = 1/eα, and choosing
Imϕα0 = eα for α ≤ n0. Notice that, since eα can be regarded as string charges, eα are
quantized and we may assume that eα ∈ Z. Thus, the coefficients βα are rational numbers.

Therefore, the above statement can be rephrased as a statement for the string flows
as follows:

Curve-reduction lemma using BPS-strings. Consider a polynomially tamed function
f and a monomially tamed function g. Assume that

|f | ≺ |g| on P(i)
e ∀ i , (3.37)

then
|f | ≺ |g| on ΣI . (3.38)

3.3 Test strings and the Distance Conjecture

In section 2.4 we illustrated how the Distance Conjecture can be expressed in a path
independent fashion by employing monomially and polynomially tamed functions. We now
re-investigate the statements made in section 2.4 in light of the findings of the previous
sections. In fact, we will display that, in order to satisfy the Distance Conjecture in a path
independent way in a wide region of the moduli space, it is enough that it satisfied on a
subset of curves in that region.

Preliminarily, let us consider a simpler case than the one examined in section 2.4.
Namely, let us assume that both e−λd(s,s0) and the masses of the candidate infinite tower of
states Mn are both monomially tamed on ΣI , that is:

e−λd(s,s0) ∼ (s1)k1 · · · (s1)kn
Mn ∼ (s1)m1 · · · (s1)mn on ΣI . (3.39)

Thus, we can apply the reasoning of the previous section: if Mn ∼ e−λd along curves, then
such a relation holds throughout ΣI . This guarantees that the distance conjecture holds on
ΣI and the emergence of a tower of states with masses such that Mn ∼ e−λd(s,s0) does not
depend on the path taken towards the field space boundary. Remarkably, as a byproduct
of this analysis, this further shows that a single tower is enough in order to realize the
Distance Conjecture.

Now let us assume the less constraining case in which e−λd is polynomially tamed
on ΣI . We will additionally assume the existence of a finite number of tower of states,
with masses M (a)

n that also behave as polynomially tamed functions. Analogously to the
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reasoning of section 2.4, one can perform an appropriate partition of the set ΣI into a finite
number of subsets {U (a,k)

A }. On each subset U (a,k)
A , both e−λd and the tower M (a)

n exhibit a
leading behavior. If the towers M (a)

n are good candidate towers for realizing the Distance
Conjecture only two cases are allowed:

• on U (a,k)
A both e−λd and the tower M (a)

n are monomially tamed. Then, in U (a,k)
A , we

can apply the same reasoning as above: if the Distance Conjecture is realized along
the one-dimensional curves (3.25), it is then realized everywhere within U (a,k)

A ;

• on U (a,k)
A both e−λd and the tower M (a)

n are strictly polynomially tamed, namely
e−λd ≺ g1 and M

(a)
n ≺ g2 for some monomially tamed functions g1 and g2, but

e−λd 6∼ g1 and M
(a)
n 6∼ g2; in order for the Distance Conjecture to hold on U (a,k)

A ,
we can minimally require that e−λd,M (a)

n ≺ g, for some monomially tamed function
such that g → 0 for any path leading to the boundary. Such a requirement can be
tested via the curve-reduction lemma using BPS-strings: if e−λd,M (a)

n ≺ g hold for
every axion-string-induced path (3.25), then e−λd,M

(a)
n ≺ g everywhere on U (a,k)

A .
This renders the tower M (a)

n a good candidate for realizing the Distance Conjecture;
however, checking that e−λd ∼ M

(a)
n on U (a,k)

A goes beyond the scope of the curve-
reduction lemma; as mentioned in section 2.4 such a check requires to know the
leading behavior (2.18) of e−λd and M (a)

n on the subset U (a,k)
A .

This novel viewpoint strengthens the Distant Axionic String Conjecture proposed
in [25]. The Distant Axionic String Conjecture asserts that any infinite distance point
can be reached as endpoint of an axion string flow. As reviewed in section 3.1, axion
strings generate the backreactions (3.13) on the moduli fields; these are mapped to the
families (3.27) of paths in the moduli space. Moreover, as we move towards the field space
boundaries along the paths (3.27), the axion string generating the flow becomes tensionless.
Thus, the Distant Axionic String Conjecture delivers a bottom-up perspective on the origin
of the EFT breaking at any infinite distance limit: the axion string is the object that, with
its infinite tower of oscillatory modes, generates the infinite tower of states that can be a
candidate to realize the Distance Conjecture. As a signal of such an EFT breaking, in [25],
it was shown that, along the linear backreaction of BPS axion strings (3.27), the axion
string becomes tensionless and the EFT cutoff ΛEFT has to consistently become smaller
and smaller. In [25] it was further proposed that the EFT cutoff ΛEFT is bounded by the
tensionless axion string as(ΛEFT

MP

)2
∼
(
Tstr
M2

P

)w

along (3.13) , (3.40)

for some scaling weight w ∈ N>0 along the paths (3.27). We can now revisit these statements,
generalizing them, in light of the discussion above.

Generically, it is too strong to assume that (3.40) holds along any path that leads to
infinite distance, for the integrality of the scaling weight is too restrictive. However, in order
for the axion string to signal the EFT breaking, it is enough that the EFT cutoff is always
upper bounded by any axion string tension as Λ2

EFT ≤ Tstr. Therefore, we can proceed as

– 33 –



J
H
E
P
0
9
(
2
0
2
2
)
1
4
9

follows. For any ΣI we choose an EFT cutoff Λ(I)
EFT which dictates when the EFT is broken

within the field space subregion ΣI . The region ΣI can be probed via the axion string
flows (3.27); let us denote with T min

str the minimal string tension among all axion strings
that generate the flow. Then, the consistency of the EFT requires that (Λ(I)

EFT)2 ≤ T min
str

everywhere in ΣI . We rephrase this condition as(
Λ(I)

EFT

)2
≺ T min

str in ΣI . (3.41)

Such a condition guarantees that the emergence of an axion-string-induced infinite tower of
states is responsible for the EFT breaking along every path that leads to infinite distance.

However, the more general statement (3.41) follows from the scaling behavior (3.40)
provided that the quantities appearing in (3.40) obey certain tameness conditions. First,
we assume that the EFT cutoff scale ΛEFT is determined by the lightest mass of the infinite
tower of states that emerge at infinite distance. Thus, as in (2.19), we consider ΛEFT a
polynomially tamed function of the scalar fields. The behavior of the string tension can be
inferred from the very expression (3.19)–(3.14). In stringy EFTs — as we will see in the
next section for Type IIB EFTs — eK(φ,φ̄) is monomially tamed. Consequently, as shown in
appendix A, the string tension (3.19), being given by the derivative of the Kähler potential,
is generically polynomially tamed. However, let us assume here the stricter hypothesis that
also the string tension (3.19) is monomially tamed. For instance, in all the concrete EFT
models considered in [25], the string tension (3.40) is monomially tamed in any given set ΣI .
Then, we can straightforwardly apply the conclusions of section 3.2: whenever (3.40) holds
along any string backreaction spanning ΣI , then (3.41) follows. This result thus greatly
expands and generalizes the findings of [25], and shows how the Tameness Conjecture can
be used to refine pre-existing Swampland Conjectures.

4 Tameness in Type IIB EFTs

The findings of the previous sections are general and far-reaching. The aim of this section is
to give evidence to the claims made above by showing how tame couplings appear in concrete
stringy EFTs. Specifically, we will focus on four-dimensional EFTs that are obtained after
compactifying the ten-dimensional Type IIB string theory over a Calabi-Yau three-fold.
After first reviewing some salient features of such a family of EFTs, we will introduce the
central objects of our analysis, namely the Hodge inner products. The Hodge inner products
determine many of the couplings entering the EFT, such as the gauge couplings, the scalar
potential, or the masses and tensions of certain BPS objects. We will then illustrate how
the EFT couplings so determined are not only tame functions of the moduli, but they are
either monomially tamed or polynomially tamed functions.

4.1 Type IIB effective field theories

To set the ground for the forthcoming sections, here we review some features of four-
dimensional effective field theories that originate from the compactification of Type IIB
string theory over Calabi-Yau three-folds or orientifolds thereof.

– 34 –



J
H
E
P
0
9
(
2
0
2
2
)
1
4
9

4.1.1 Type IIB N = 2 effective field theories

We start by outlining some basic features of N = 2 four-dimensional supergravities that are
obtained after compactifying the ten-dimensional Type IIB string theory over a Calabi-Yau
three-fold Y [48, 52]. The resulting N = 2 four-dimensional theory is populated by the
gravity multiplet, whose bosonic components are the graviton gµν and the graviphoton A0,
a set of h2,1 vector multiplets, accommodating h2,1 complex scalar fields φi and h2,1 real
vector fields Ai, and h1,1 +1 hypermultiplets. Throughout this section, we will disregard the
hypermultiplet sector even though we expect our approach can be extended to this sector.

The scalar fields φi, i = 1, . . . , h2,1 within the h2,1 vector multiplets are associated to
the deformations of complex structure of Y as follows. Let us introduce a real, integral basis
of three-forms γI , I = 1, . . . , 2h2,1 + 2 of H3(Y ). The complex structure moduli appear in
the expansion of the holomorphic three-form Ω as

Ω = ΠI(φ)γI = ΠT (φ)γ , ΠI(φ) =
∫

ΓI
Ω , (4.1)

with the periods ΠI(φ) being holomorphic function of the fields φi. Here we have introduced
a basis ΓI of three-cycles such that

∫
ΓI γJ = δIJ . The decomposition (4.1) is general but, in

what follows, it will be useful to be more specific about the choice of basis γI . In particular,
let us introduce a symplectic basis of three-cycles ΓI = (AI , BJ) of Y , and a dual basis of
three-forms γI = (αI , βJ), with I, J = 1, . . . , h2,1 + 1 such that∫

Y
αI ∧ βJ =

∫
BJ

αI = −
∫
AI
βJ = δJI ,

∫
Y
αI ∧ αJ =

∫
Y
βI ∧ βJ = 0 . (4.2)

Then, the holomorphic three-form Ω can be expanded in terms of the symplectic basis as
in (4.1) with the periods

Π(φ) =
( ∫

BI
Ω

−
∫
AI Ω

)
=
(
XI(φ)
−FI(φ)

)
, (4.3)

where XI(φ) and FI(φ) holomorphic functions of the complex structure moduli φi.
The four-dimensional action describing the interactions among the bosonic components

of the N = 2 gravity multiplet and the h2,1 vector fields is

S =
∫ (1

2M
2
PR ∗ 1−M2

PK
cs
ī dφi ∧ ∗dφ̄̄ + 1

4ImNIJF I ∧ ∗F J + 1
4ReNIJF I ∧ F J

)
.

(4.4)
Here R is the Ricci scalar and Kcs

ī = ∂φi∂φ̄̄K
cs is the Kähler metric, with the Kähler

potential Kcs specified by the periods as

Kcs
(
Φ, Φ̄

)
= − log

(
i
∫
Y

Ω ∧ Ω̄
)

= − log i ΠT ηΠ̄ = − log i
(
X̄IFI −XIF̄I

)
, (4.5)

where we have introduced the intersection matrix ηIJ =
∫
Y γI ∧ γJ , computed out of the

symplectic basis (αI , βJ) employing (4.2).
We will assume that there exists a prepotential F(X): this is a homogeneous function

of degree two in the projective coordinates XI , using which the quantities FI appearing
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in (4.3) can be understood as derivatives of the prepotential FI = ∂F
∂XI . The dynamics

of the abelian gauge fields AI = (A0, Ai), with field strengths F I = dAI , is dictated by
the matrix

NIJ = F̄IJ + 2i ImFIKXKImFJLXL

ImFMNXMXN
. (4.6)

As is clear from (4.4), the matrix (4.6) determines both the gauge couplings via its imaginary
part and may deliver a θ-term via its real part.

Four-dimensional Type IIB EFTs can be populated by extended objects that stem
from higher-dimensional branes wrapped on some internal cycles. Here we will focus on
D3-branes wrapped on internal three-cycles Γ. Thus, in the four-dimensional EFT such
D3-branes appear as particles, to which we will refer as ‘D3-particles’. The mass Mq of a
BPS D3-particle is obtained from the central charge Zq as [53, 54]:

Mq = |Zq| = e
Kcs

2

∣∣∣∣∣
∫

Γq
Ω
∣∣∣∣∣ = e

Kcs
2

∣∣∣∣∫
Y
q ∧ Ω

∣∣∣∣ , (4.7)

with q the D3-particle elementary charges and q the three-form Poincaré dual to the three-
cycle Γq. In the following, it will be useful to expand the three-form q in the symplectic
basis as q = αIp

I − qIβI . Accordingly, the elementary charge vector q can be split

q =
(
pI

−qI

)
, qI , p

I ∈ Z , (4.8)

and (4.7) can be recast as
Mq = e

Kcs
2 |qT ηΠ(φ)| . (4.9)

We will refer to qI as the D3 elementary electric charges and pI as the D3 elementary
magnetic charges. The physical charge of a D3-particle can be obtained out of the elementary
charges q as

Q2
q = 1

2

∫
Y
q ∧ ?q = −1

2qTMq , (4.10)

with the matrix M that, in the symplectic basis, can be conveniently rewritten as

M =
(

ImN + ReN (ImN )−1ReN ReN (ImN )−1

(ImN )−1ReN (ImN )−1

)
. (4.11)

It is worth recalling that the above definition of physical charge in (4.10) carries
information about the gauge couplings associated to the U(1) abelian gauge one-forms AI .
In order to exhibit this, let us restrict to electric D3-particles with sole non-null charges
qel = (qI). The physical charge of an electric D3-particle is

Q2
qel = −1

2qTel (ImN )−1 qel . (4.12)

As is clear from the general form of the N = 2 vector multiplet action (4.4), the matrix
(ImN )−1 delivers the gauge coupling functions g2

I (φ). Thus, introducing a basis {q(I)
el } of

electric elementary charges, we identify the gauge couplings

g2
I (φ) = −1

2
(
q(I)

el

)T
(ImN )−1q(I)

el = Q2
q(I)

el
. (4.13)
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4.1.2 Type IIB N = 1 effective field theories

Let us now consider the N = 1 supergravity theories obtained after compactifying Type IIB
string theory over orientifolds Ŷ of Calabi-Yau three-folds. The field content of the four-
dimensional theory is thus an appropriate projection of the one characterizing the N = 2
theories examined in the previous section [48]. In particular, the Calabi-Yau holomorphic
three-form enjoys an expansion similar to (4.1) in terms of odd three-cycles where now
I = 1, . . . , 2h2,1

− + 2, and are holomorphic functions of the complex structure moduli φi,
i = 1, . . . , h2,1

− , embedded within h2,1
− chiral multiplets Φi. Similarly, one can introduce a

symplectic basis (αI , βJ), with I, J = 1, . . . , h2,1
− + 1 so that the periods can be recast as

in (4.3). Furthermore, unlike the previous section, we will keep track of the axio-dilaton
and the Kähler moduli. The former is most readily accommodated in the lowest component
of a chiral multiplet τ = C0 + ie−φ, with C0 the RR zero-form and the ten-dimensional
dilaton φ related to the string coupling as gs = eφ. Instead, the Kähler moduli vλ are
obtained by expanding the Kähler two-form J over a basis of two-forms [Dλ], λ = 1, . . . , h1,1

+ ,
Poincaré dual of a basis of divisors Dλ ∈ H4(Ŷ ,Z), as J = vλ[Dλ]. For simplicity, we will
restrict ourselves to the compactifications over Calabi-Yau three-folds with h1,1

− = 0. Then,
the Kähler moduli vλ, alongside the C4-axions aλ =

∫
Dλ C4, are accommodated within

additional h1,1
+ chiral coordinates uλ = aλ + isλ with sλ = 1

2
∫
Dλ J ∧ J = 1

2κ
λρσvλvσ, with

κλρσ intersection numbers.
Collecting all the complex scalar fields as ϕα = (φi, uλ, τ), the bosonic effective action

describing the interactions among them is

S =
∫ (1

2M
2
PR ∗ 1−M2

PKαβ̄ dϕα ∧ ∗dϕ̄β̄ − V ∗ 1
)
, (4.14)

with the Kähler metric Kαβ̄ ≡ ∂α∂β̄K and V the scalar potential. Under the assumption
that h1,1

− = 0, the Kähler potential entering (4.14) splits as

K = Kcs +Kks − log [−i(τ − τ̄)] , (4.15)

with

Kcs = − log
(

i
∫
Ŷ

Ω ∧ Ω̄
)

= − log i ΠT ηΠ̄ = − log i
(
X̄IFI −XIF̄I

)
, (4.16)

and
Kks = −2 log

∫
Ŷ
J ∧ J ∧ J = −2 log κλρσvλvρvσ , (4.17)

with the latter obeying the no-scale condition Kλρ̄
ks K

ks
λ K

ks
ρ̄ = 3 [48].

We will further focus on cases for which the scalar potential is generated solely by the
Gukov-Vafa-Witten superpotential [55]

W (φ) = M3
P

∫
Ŷ

Ω ∧G3 = M3
P gT ηΠ(φ) , G3 = F3 − τH3 = g γ = (f − τh) γ .

(4.18)
Then, the scalar potential entering (4.14) can be obtained via the usual Cremmer et al.

formula [56]:
Vg = eK

(
Kαβ̄DαWD̄β̄W̄ − 3WW̄

)
= −1

2 gT η T η g , (4.19)
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where we have introduced the Kähler covariant derivative Dα = ∂α + Kα = ∂ϕα + ∂K
∂ϕα .

Furthermore, (4.19) manifestly exhibits the quadratic dependence on the background fluxes,
with positive semi-definite symmetric matrix

TIJ ≡ 2M4
P e

KRe
(
Kī

csDiΠID̄̄Π̄J + ΠIΠ̄J
)
. (4.20)

Let us now consider which objects these effective field theories can be coupled to. In
general, the D3-particles introduced in section 4.1.1 are not a valid option. In fact, due
to the orientifold projection, the D3-particles are here coupled to the gauge one-forms AI1,
with I = 1, . . . , h2,1

+ . Thus, in effective four-dimensional theories obtained from Calabi-Yau
orientifolds characterized by h2,1

+ = 0 the full spectrum of D3 particles is removed.
An alternative is provided by membranes. In four-dimensional effective theories,

membranes appear as codimension-one defects, stretching in the time direction and two
space directions. In the Type IIB EFTs under scrutiny, BPS membranes can be generically
obtained from bound states of D5 and NS5 branes wrapped over internal, special Lagrangian
odd three-cycles. In four-dimensional EFTs, membranes can be included as fundamental,
semiclassical objects via the action [46, 47, 57–62]

Smem = −
∫
W

d3ζ
√
− deth Tmem + qT η

∫
W

A3 + pT η
∫
W

Ã3 , (4.21)

where q,p ∈ Zb
3
− , with b3− = 2h2,1

− + 2 the elementary membrane charges, Tmem the moduli-
dependent membrane tension and A3, Ã3 sets of b3− three-forms. The three-forms A3, Ã3
can be obtained by reducing the ten-dimension gauge six-forms respectively dual to C2 and
B2 [47, 63, 64]. Furthermore, in the first, Nambu-Goto term in (4.21) we have introduced
the coordinates ζ ı̂, ı̂ = 1, 2, 3 parametrizing the membrane worldvolume W, and hı̂̂ is
the pullback of the spacetime metric to the membrane worldvolume. Requiring that the
membranes are BPS objects, maximally preserving a half of the bulk supersymmetry, fixes
the tension to be

Tmem = 2M3
Pe

K
2

∣∣∣∣∫
Ŷ

Ω ∧ n
∣∣∣∣ = 2M3

Pe
K
2 |(q − τp)T ηΠ(φ)| , (4.22)

with n = q − τp, where q, p ∈ H3
−(Z) are Poincaré dual to the three-cycle wrapped by

the D5-NS5-bound state. We also recall that, analogously to the D3 particles in N = 2
supergravity, we can define the physical charge of a membrane as

Q2
mem =

∫
Ŷ
n ∧ ?n̄ = −(q − τp)T η T η (q − τp) , (4.23)

by employing the same matrix T defined in (4.20).
The role of membranes is to induce flux transitions across various spacetime regions.

For instance, consider a single flat BPS membrane, stretching across z = 0. Then, the
membrane separates the spacetime into two regions, distinguished by the values of the
background fluxes: assume that for z < 0 the fluxes g< = f−τh; then, the membrane makes
the background fluxes ‘jump’ so that the region z > 0 is characterized by the background
fluxes g> = f + q − τ(h + p).
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However, as noticed in [46], it is generically not possible to include an arbitrary number
of membranes within the EFT while still guaranteeing (off-shell) N = 1 supersymmetry,
tadpole cancellation condition and consistency of the effective description. For Type IIB
N = 1 EFTs it was shown in [46] that supersymmetry and tadpole condition impose that
the maximal amount of gauge three-forms A3, Ã3 that the EFT may be endowed with
is b3−. Consequently, the maximal number of independent elementary charges q, p that
may appear in the action (4.21) is also b3−. We will define n the maximal b3− independent
elementary charges, and Tn the membrane tension (4.22) associated to such a choice of
elementary charges. Furthermore, enforcing that membranes can be treated semiclassically
requires to further impose Tmem > M3

P and, additionally, that the jump induced by the
membrane in the scalar potential is still described within the same EFT with the cutoff
ΛEFT implies that the membrane charge n has to be picked in the consistent EFT flux lattice

ΓEFT =
{
n ∈ Zb

3
− | Λ3

EFT < Tn < ΛEFTM
2
P

}
. (4.24)

For instance, for small string coupling gs � 1, the D5-membranes, which induce jumps of
RR-fluxes, are parametrically lighter than NS5-membranes, that induce jumps of NS-NS
fluxes. We may then assume that, appropriately choosing the cutoff Λ, the EFT flux lattice
is at most a subset of the RR-flux lattice.

Before concluding this section, it is worth noticing that, by comparing the physical
charges (4.23) with the general expression for the scalar potential (4.19), it becomes clear
that the physical charges of membranes (4.23) can also be thought of as the scalar potential
generated by a flux that is equal to the membrane charge. Namely, given n ∈ ΓEFT

Q2
n = −nT η T η n = 2Vn . (4.25)

Alternatively, (4.25) can be understood as the potential generated by a BPS membrane
that interpolates between an EFT with null scalar potential f = h = 0, and one with a
scalar potential as in (4.19), with g = n. This identification will be useful in order to infer
properties of the scalar potential from the properties of the generating membranes.

4.2 Type IIB complex structure sector and Hodge theory

The Type IIB EFTs reviewed in the previous section can be neatly and generically described
by using Hodge theory. In this section we review some basic facts about Hodge theory so as
to setup the notation, and highlight the main results that we will employ in the following
section. Here we will be brief and we refer to [5, 29, 65] for further details on the subject.

Let us focus on the complex structure moduli space of a Calabi-Yau three-fold Y . Denote
H3(Y,Z) the middle cohomology of the Calabi-Yau with integer coefficients (similarly for
rational and complex coefficients). Let Q be the (anti-symmetric) intersection pairing: for
three-forms u and v,

Q(u, v) =
∫
Y
u ∧ v . (4.26)

The complex cohomology H3(Y,C) carries a Hodge decomposition

H3(Y,C) =
⊕

p+q=k
Hp,q , (4.27)
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such that Hp,q = Hq,p. Equivalently one can define a filtration F p = ⊕
r≥pH

r,s on H3(Y,C)
satisfying F p ⊕ F 4−p ∼= H3(Y,C) for all p. To go back to the Hodge decomposition,
set Hp,q = F p ∩ F q. We will use the Hodge filtration and the Hodge decomposition
interchangeably in the following to denote a Hodge structure and we suppress the superscript
in F p to denote the entire Hodge filtration. With a Hodge structure F , we have the Weil
operator CF acting on H3(Y,C):

CFu = ip−qu , for u ∈ Hp,q . (4.28)

Note that the pairing Q is almost an hermitian inner product. To make it into a genuine
hermitian inner product, we use the Weil operator CF . The Hodge inner product h is
defined as follows. For u, v complex three-forms,

hF (u, v) = Q(u,CF v) . (4.29)

And the Hodge norm of a three-form given by

‖u‖2F := hF (u, u) . (4.30)

On the middle cohomology of Calabi-Yau threefolds, the Weil operator coincides with
the Hodge star operator, so the Hodge inner product can also be written in the usual way

hF (u, v) =
∫
Y
u ∧ ?v . (4.31)

Indeed, some of the quantities that characterize the Type IIB EFTs reviewed in the
previous section can be elegantly recast as Hodge inner products or Hodge norms. Consider
first the N = 2 Type IIB EFTs reviewed in section 4.1.1. By recalling that ?Ω̄ = iΩ̄, it is
immediate to see that the complex structure Kähler potential (4.5) can be written as

e−K
cs = ‖Π‖2F . (4.32)

By comparing with (4.31) and employing the just found (4.32), it can be shown that the
mass of a BPS D3-particle (4.7) can be written as follows

M2
q = M2

P
|〈q,Π〉|2

‖Π‖2
. (4.33)

On the other hand, the physical charge of a D3-particle (4.10) can be most readily recast
as a Hodge norm by using (4.31) as

Q2
q = 1

2‖q‖
2
F . (4.34)

A similar analysis can be carried out for the quantities that distinguish the N = 1
Type IIB EFTs reviewed in section 4.1.2. The complex structure Kähler potential (4.16)
can be written as in (4.32) in terms of the h2,1

− complex structure moduli. Moreover, the
tension of BPS membranes (4.22) can be recast as

T 2
n = 2M6

P
eK

ks

gs

|〈n,Π〉|2

‖Π‖2
, (4.35)
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while its physical charge (4.23) can be expressed as a Hodge norm

Q2
n = M4

P
eK

ks

gs
‖n‖2F . (4.36)

Now let us vary the complex structure moduli of Y . In a local patch of the singularity
in the moduli space, we use ϕi to denote the complex structure moduli. We adopt the
same convention as in section 3.1, so the singularity will be at ϕi → i∞. Locally in the
moduli space, the cohomology H3(Y,Z) can be regarded as fixed, and by varying the
complex structure of the Calabi-Yau, we get a family of Hodge structures labelled by ϕi.
We denote Fϕ the Hodge structure on the middle cohomology H3(Y,C) when the complex
structure moduli take value ϕi. And the variation of the Weil operator, hence the Hodge
inner product, is denoted by adding a subscript hϕ(u, v) = Q(u,CFϕv) (also ‖u‖2ϕ). In this
paper, we are mostly interested in the behavior of the inner product hϕ as ϕ approaches
some singularities in the moduli space. For later convenience, we also recall the nilpotent
orbit theorem: near the singularity ϕi → i∞, the Hodge structure Fϕ has the following
asymptotic form

Fϕ = eϕ
iNiFnil +O

(
e2πiϕi

)
, (4.37)

where, for each i, the nilpotent matrix Ni is the logarithm of the monodromy matrix as
one loops around zi → e2πizi, and Fnil is the so called nilpotent orbit. Equation (4.37)
clearly distinguishes between the contributions that are polynomial in ϕi and those that
are exponential in ϕi.

To study the asymptotic behaviors of the Hodge norm, one can invoke the well-
known growth theorem [65–67]. Namely, there is a decomposition of H3(Y,Q) into
rational subspaces

H3(Y,Q) =
⊕

`1,...,`n

V`1,...,`n , (4.38)

and such decomposition naturally extends to the complex cohomology. Each subspace
V`1,...,`n is characterized by the property that for every three-form u ∈ V`1,...,`n , we have

‖u‖2ϕ ∼
(
s1

s2

)`1
· · ·
(
sn−1

sn

)`n−1

(sn)`n , (4.39)

where we recall that si = Imϕi.
For instance, (4.39) can be exploited in order to estimate the growth of the complex

structure Kähler potential (4.32), or the physical charges of D3-particles (4.34) or of D5-
NS5-bound state membranes (4.36). In the upcoming sections we will also deliver estimates
for the BPS masses (4.33) and tensions (4.35).

4.3 The polynomially tamed behavior of the Hodge inner product

In section 2.3 we have introduced two families of functions: the monomially tamed and the
polynomially tamed functions, the former with definite, path independent growth in the
set (3.23), and the latter with a generic path dependent growth. Indeed, in section 2.3 we
claimed that such special classes of tame functions are enough to study the behavior of
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most of the couplings entering any EFT that ought to be consistent with quantum gravity.
In this section we prove that this is the case for the Type IIB EFTs that we introduced in
section 4.1.

In fact, the Hodge inner product (4.29) and consequently the Hodge norm (4.30) are
quantities for which we can predict their polynomial behavior close to any singularity in
the complex structure moduli space. In [23] the following statements, that are crucial for
the following analysis, have been delivered:

Hodge inner product growth. Let u ∈ V`1,...,`n and v ∈ V`′1,...,`′n, then

1. ‖u‖2ϕ is monomially tamed;

2. hϕ(u, v) is polynomially tamed.

We will refer to these two statements as Hodge inner product growth. Statement 1
implies that any Hodge norm displays a definite growth in the set (3.23). The growth of
the Hodge norm in 1 has been already extensively used in literature: in [5, 14, 29, 68] it
was employed in relation to estimate the growth, or in [15, 69, 70] to explore the structure
of EFTs’ vacua. The statement 1 is related to (4.39), and the monomially tamed behavior
of ‖u‖2ϕ is fixed by the location of u within certain sl2-eigenspaces V`1,...,`n . However, it
is worth stressing that the statement 1 carries more information, for it explains how the
growth of the actual norm may differ from the estimate in (4.39). Indeed, recalling the
meaning of the symbol ∼ from section 3.2, the statement 1 can be recast as

(
s1

s2

)`1
· · ·
(
sn−1

sn

)`n−1

(sn)`n ≺ ‖u‖2ϕ ≺
(
s1

s2

)`1
· · ·
(
sn−1

sn

)`n−1

(sn)`n . (4.40)

Namely, the norm ‖u‖2ϕ is upper and lower bounded by the same monomial, whose coefficient
is a real restricted analytic function ρ = ρ(a1, . . . , an, s1, . . . , sn):

C1ρ

(
s1

s2

)`1
· · ·
(
sn−1

sn

)`n−1

(sn)`n ≤ ‖u‖2ϕ ≤ C2ρ

(
s1

s2

)`1
· · ·
(
sn−1

sn

)`n−1

(sn)`n , (4.41)

where C1 and C2 are positive numbers.
However, the Hodge inner product growth does not only allow for recovering the Hodge

norm estimates of [5, 14, 29, 68], but it additionally provides information about the growth
of the off-diagonal terms of the Hodge inner product in its part 2. Indeed, since h(u, v) is
polynomially tamed, by employing the results of section 3.2, one can further bound h(u, v)
with a monomially tamed function in Σ, provided that such a bound holds for curves (3.31):

|h(u, v)| ≺
(
s1

s2

)`′1
· · ·
(
sn−1

sn

)`′n−1

(sn)`′n (4.42)

for some `′i.
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4.4 Tame EFT couplings and the Distance Conjecture in Type IIB EFTs

Here we are going to apply the results of the previous section to the class of Type IIB EFTs
introduced in section 4.1. We will illustrate that all the couplings that enter either the
N = 2 and the N = 1 Type IIBs EFT reviewed therein are tame, and we will estimate
the polynomially tamed and monomial growth for all of them. We will then illustrate the
implications for the Distance Conjecture.

4.4.1 Tameness in N = 2 Type IIB EFTs

We start by revisiting the four-dimensional N = 2 Type IIB EFTs reviewed in section 4.1.1.
The field space metric Kcs

ī appearing in the effective action (4.4) is determined by the
Kähler potential (4.5). However, the Kähler potential (4.5) can be written as an Hodge
norm as in (4.32). As such, the statement 1 of the Hodge inner product growth implies that
e−K

cs is a monomially tamed function; its behavior close to the singularity si →∞ is then

e−K
cs ∼

(
s1

s2

)d1

· · ·
(
sn−1

sn

)dn−1

(sn)dn , (4.43)

for some di ∈ Z, i = 1, . . . , h2,1. In turn, the Kähler metric can be computed as

Kcs
ī = e2Kcs (

∂ie
−Kcs

∂̄e
−Kcs − e−Kcs

∂i∂̄e
−Kcs)

. (4.44)

As proved in appendix A.4, the derivative of a monomially tamed function is a polynomially
tamed function. Thus, the Kähler metric Kcs

ī is tame, and specifically polynomially tamed.
The Kähler potential is not the sole quantity introduced in section 4.1.1 that stems

from the Hodge inner product, for also the couplings of the gauge sector are related to
Hodge inner products. Indeed, the matrix M that appears in (4.10) can be regarded as a
Hodge inner product. According to the second Hodge inner product growth statement 2,
then the elements of the matrix M are tame, and exhibit a polynomially tamed behavior.
Therefore, also the elements of the matrices ImNIJ and ReNIJ may be generically assumed
to behave polynomially tamed. This proves that also the dynamics of the gauge fields AI is
regulated by polynomially tamed couplings.

These features in turn influences the physical properties of the D3-particles. In fact, as
reviewed in section 4.2, the physical charge (4.10) can be most readily recast as a Hodge
norm as in (4.34). Therefore, the physical charge exhibits a monomially tamed behavior

Q2
q ∼

(
s1

s2

)`1
· · ·
(
sn−1

sn

)`n−1

(sn)`n , (4.45)

for some `i ∈ Z that depends on the elementary charges q. The behavior of the mass of
BPS D3-particles (4.7) is slightly more subtle. In the language introduced in section 4.2,
the mass (4.7) of such BPS D3-particles can be written as in (4.33). Thus, stemming from
a general inner product, the mass (4.7) is generically polynomially tamed, as predicted by
the statement 2.
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In turn, by recalling that the behaviors of the gauge couplings can be inferred from the
growth of the physical charges of electric D3-particles as in (4.12), we conclude that gauge
couplings share a similar monomially tamed behavior:

g2
I =

∥∥∥q(I)
el

∥∥∥2
∼
(
s1

s2

)`1
· · ·
(
sn−1

sn

)`n−1

(sn)`n . (4.46)

The monomial tameness of the gauge couplings has profound phenomenological implications.
In fact, within any given set ΣI as defined in (3.23), it is always possible to single out a
set of gauge couplings that falls off faster than any other and in a path-independent way.
Thus, as the field space boundary is approached, such a set of gauge couplings may ungauge
some of the zero-form gauge symmetries associated to the gauge fields A(I), signalling the
appearance of zero-form global symmetries in these limits. However, in any consistent
theory of quantum gravity, such corners of the moduli space in which global symmetries
emerge ought to be obstructed. Indeed, limits of vanishing gauge couplings are related to
the emerge of an infinite tower of states.

In fact, in [5, 17, 29, 71] it was proposed that in the N = 2 EFTs Type IIB under
examination the Distance Conjecture is realized by infinite towers of BPS D3-particles. We
here revisit and expand these results. Let us preliminarily recall some basic features of the
construction of the infinite towers proposed in [5, 29], and we refer to the original works for
a detailed discussion. Consider an infinite tower of D3-particles specified by elementary
charges q(k). In order for this tower to be a candidate for realizing the Distance Conjecture,
its constituting BPS D3-particles have to be exhibit the following features:

Weak Coupling. The D3-particles constituting the infinite tower are weakly coupled.
Namely, Q2

q(k) → 0 as the singularity si →∞ is reached;

Stability. The tower is stable under decays.

The weak coupling condition is enough to guarantee that the D3-particles in the tower
become massless as the singularity is reached. In fact, by exploiting the Cauchy-Schwarz
inequality, the D3-particle masses (4.7) can be generically bounded by their physical
charge as

M2
q(k) = M2

P
|〈q(k),Π〉|2

‖Π‖2
≤M2

PQ2
q(k) . (4.47)

Thus, requiring that Q2
q(k) → 0 asymptotically, it is enough to guarantee that also the

masses Mq(k) fall down asymptotically, rendering the tower massless towards the boundary.
As in [5, 17, 29, 71], one can show that the infinite towers are constituted by electric
particles. Moreover, their stability can be guaranteed as follows. Consider a seed charge qs.
We assume such a seed charge to be of electric type such that its physical charge Q2

qs → 0
towards the field space boundary. Then, a tower of states can be built out of the seed
charge by exploiting the infinite-order monodromy matrix T = eN(n) as

q(0) = qs , q(1) = Tqs , . . . , q(k) = T kqs , . . . (4.48)
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An infinite tower so constructed is stable against decays into constituents, for no walls of
marginal stability is crossed.

But does the tower so built remain relevant by approaching the singularity along any
path in any set ΣI defined in (3.23)? This question can be addressed by exploiting the
same arguments introduced in section 2.4. In fact, since the physical charges Q2

q(k) of the
D3-particles constituting the infinite tower of states are monomially tamed in the saxions,
then their behavior is path independent in any given set ΣI . Thus, the tower of D3-particles
so built remains weakly coupled, with Q2

q(k) → 0, along any path in ΣI . Then, using
the inequality (4.47), we infer that the states become massless along any path in ΣI that
approaches the infinite distance boundaries.

4.4.2 Tameness in N = 1 Type IIB EFTs

Let us show how tameness reflects on the couplings that characterize the N = 1 Type
IIB EFT action (4.14). Due to the similarities to the N = 2 Type IIB investigated in the
previous section, here we will much briefer. Indeed, since the Kähler potential has the same
structure as in the N = 2 EFTs for the h2,1

− complex structure moduli, also in N = 1 Type
IIB EFTs e−Kcs has a monomially tamed behavior as in (4.43). Therefore, the field space
metric for the complex structure moduli, which can be computed as in (4.44), has tame,
polynomially tamed behavior. Moreover, under the assumptions made in section 4.1.2,
it is simple to show that the other moduli sectors display terms with tame behavior. In
fact, the field space metric for the axio-dilaton τ is trivially monomially tamed. Moreover,
given (4.17), also e−Kks is monomially tamed; thus, the metric for the Kähler moduli is
tame and polynomially tamed.

Moreover, also the charge of D5-NS5-membranes (4.23) is an Hodge norm and thus
exhibits a monomially tamed behavior as for the D3-charges (4.45):

Q2
n ∼

(
s1

s2

)`1
· · ·
(
sn−1

sn

)`n−1

(sn)`n , (4.49)

for some `i ∈ Z related to the choice of the elementary charges n = q − τp. On the other
hand, the tension of BPS membranes (4.22) can be recast as in (4.35), which rather exhibits
a polynomially tamed behavior.

The Distance Conjecture can be here realized by considering, for instance, infinite
towers of membranes as in [10, 18]. For simplicity, we will assume that the EFT is defined
within regions of weak string coupling, so that the spectrum of EFT membranes determined
by (4.24) is composed by D5-membranes only, with membrane tension and physical charges
given by (4.35) and (4.36) with n = q. First, introduce a basis {q(I)}, I = 1, . . . , b3

− for the
elementary membrane charges within the maximal EFT lattice, namely the RR-fluxes. Then,
one can construct towers of stable, weakly coupled BPS D5-membranes as for D3-particles
in (4.48). As for D3-particles, the tameness of the EFT couplings guarantees that such
infinite towers of membranes remains relevant along any path in the set ΣI .

However, the membrane picture allows one to infer crucial information about the N = 1
F-term scalar potential. In fact, recall that the physical charge Q2

n of a membrane with
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elementary charge n ∈ ΓEFT is related to the scalar potential generated by the n background
fluxes as in (4.25). Therefore the scalar potential must obey Statement 1 of the Hodge
inner product growth:

V 2
n ∼

(
s1

s2

)`1
· · ·
(
sn−1

sn

)`n−1

(sn)`n . (4.50)

This implies that within any F-term scalar potential of an EFT consistent with quantum
gravity it is always possible to single out a term that grows or fall-off faster than any other
in a given set (3.23).

5 Conclusions

In this work we have expanded on the Tameness Conjecture recently proposed in [4]. In
its strong version, it asserts that any EFT coupling, field space, and parameter space
ought to be definable in the o-minimal structure Ran,exp. Here we have taken a step
forward, by refining the focus of the Tameness Conjecture for studying stringy EFTs.
Indeed, we observed that the o-minimal structure Ran,exp may be too vast for specifying
the couplings in most of the known string theory-originated effective field theory: it is
enough to concentrate on a subset of functions definable in Ran,exp that are asymptotically
bounded by polynomials. We discussed such functions in detail in section 2.3 and termed
them monomially and polynomially tamed functions. In prominent cases of stringy EFTs,
one can indeed prove that the EFT couplings do belong to such families. As an important
example, in section 4, we have shown that the couplings involving the complex structure
sectors of the four-dimensional EFTs obtained compactifying Type IIB over a Calabi-Yau
three-fold are polynomially or monomially tamed following from a mathematical result
of [23]. Albeit in these EFTs the tameness of the field spaces and couplings are a consequence
of the underlying Calabi-Yau geometry, the Tameness Conjecture is more general and does
neither rely on holomorphicity properties encountered in these settings nor the fact that
Calabi-Yau moduli spaces admit a complex structure. Indeed, the polynomial tameness
of the couplings can be proved in other contexts and we plan to investigate more general
settings in the future.

The proposed refinement of the Tameness Conjecture offered us a novel possibility on
how to test the behavior of the couplings near any field space boundary. In fact, one can
probe the leading behavior of any polynomially tamed function by focusing on a smaller set
of paths leading to the boundary. As illustrated in section 3.2, assuming that the field space
boundary is reached as the saxionic fields si →∞, the leading behavior of any monomially
tamed function is fully determined by how these functions behave on linear paths that the
saxions draw towards the boundary; polynomially tamed functions are instead bounded by
monomially tamed functions provided that they are bounded by said functions on linear
paths spanning the field space region of interest.

The tameness of the EFT couplings is crucial to fully comprehend the physics that
emerge in the near-boundary region of the moduli space. In particular, by knowing the
generic behavior of the couplings towards the field space boundary one can grasp pathologies
that the EFT might exhibit, such as those predicted by the Distance Conjecture. For
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instance, as explained in section 2.4, by assuming that the EFT couplings are sufficiently
tame — i.e. they are either monomially tamed or polynomially tamed — we were able
to illustrate how the Distance Conjecture can be realized in a path independent fashion.
Namely, if along a given set of paths that leads toward the boundary an infinite tower of states
become massless, the tameness properties of the masses of the states constituting the tower
guarantees that such a tower becomes massless along any other path reaching the boundary,
at least, within a certain sector. Indeed, without assuming that the EFT couplings are
tamed it would have been very hard to deliver such path independent statements. Moreover,
the tameness of the EFT couplings can be employed to make additional statements on how
the Distance Conjecture is realized. Indeed we shown that, within a definable EFT, each
boundary region can be partitioned into only finitely many sectors and hence that only a
finite number of different towers is needed in order to realize the Distance Conjecture. In
turn, following [6–8, 11, 13, 19], such a statement can be rephrased by asserting that only a
finite number of dual theories is required to fully grasp the physics emerging towards any
infinite field distance boundary.

Let us note that, to our current understanding, tameness alone is not enough in order
to guarantee that the Distance Conjecture holds. First, knowledge of the UV completion is
required in order to show the existence of the infinite tower of states that should invalidate
the EFT at infinite field distance. Additionally, albeit tameness is helpful to identify the
subsets where the relation (2.3) can be enforced path-independently, it is hard to generically
single out the behavior of e−λd in a given asymptotic regime. In fact, it is not clear how
the tameness of the field space metric is reflected onto the shape of the geodesic paths
and, consequently, on the functional form of geodesic distance. In turn, the knowledge of
the specific functional form of the geodesic distance is indeed crucial in order to compute
the parameter λ in (2.3) that appears in the Distance Conjecture. Nevertheless, it is
worth remarking that the predictions of the Tameness Conjecture for the realization of the
Distance Conjecture can be ameliorated if one renounces the feature that the fall-off of
the masses is dictated by the geodesic distance as in (2.3), rather replacing it with some
simpler notion of field distance. We leave such an investigation for future work.

Furthermore, the picture we delivered ties in nicely with the Distant Axionic String
Conjecture proposed in [18, 25]. In fact, the linear paths that serve as test paths for the
behavior of monomially and polynomially tamed functions may be regarded as induced by
the backreaction of axion strings. On the one hand, our findings deliver a mathematical
motivation of why the axion strings proposed in [18, 25] are good candidates to study the
near-boundary physics. On the other hand, we have been able to vastly generalize the
implications of the Distant Axionic String Conjecture. In fact, in [25] it was shown that
infinite towers of state emerge along the linear backreaction of axion strings; the tameness
of the EFT couplings guarantees that such infinite towers remain relevant for any arbitrary
path that leads to the field space boundary.

This work has revolved around the interconnection between the Distance Conjecture
and tameness, with the latter helping inquiring how the EFT breaks down towards infinite
distance limits in full generality. However, the implications of the Tameness Conjecture are
not limited to the study of the near-boundary physics. The tameness of the EFT couplings
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can deliver important information about other phenomenological properties that any EFT
consistent with quantum gravity is endowed with. For instance, the Tameness Conjecture
can be useful to better and more generally address other Swampland Conjectures, and we
leave such this exploration for future work.
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A A primer on monomially and polynomially tamed functions

In this appendix, we examine some useful properties of monomially and polynomially tamed
functions in detail. We will first elaborate on restricted analytic functions defined over a
polydisk ∆n, and then move into the definition of monomially and polynomially tamed
functions defined over the sets defined in (3.23). In order to lighten the presentation we
will show typical examples and non-examples of the corresponding types of functions. Then
we derive some properties of monomially and polynomially tamed functions that are useful
in their application in physics.

As this appendix is very general, we would like to adopt a set of notations that is
slightly different from the main text, but more suitable for a mathematical discussion. We
denote a disk in R2 by

∆ = {z = u+ iv | |z| < 1} , (A.1)

and a polydisk is ∆n with coordinates (z1, . . . , zn). A punctured disk is defined via

∆∗ = {0 < |z| < 1} , (A.2)

and a punctured polydisk is denoted by (∆∗)n. The punctured polydisk (∆∗)n is not simply
connected. Its universal covering space is the n-dimensional upper half plane

Hn =
{
ϕk = xk + iyk | yk > 0

}
, (A.3)

and the covering map p : Hn → (∆∗)n is given by

p
(
ϕk
)

= e2πiϕk . (A.4)

A.1 Restricted analytic functions

In order to analyze the monomially and polynomially tamed functions, let us first clarify the
definition of restricted analytic functions. Let us recall that an analytic function defined on
a domain is a function that coincides with its own Taylor series on that domain. Analytic
functions are necessarily smooth, but the converse is not true.14 A restricted analytic

14Let ρ be a smooth function defined on an open set U ⊂ Rn. Then ρ is analytic on U if for every x ∈ U ,
there is an open ball V satisfying x ∈ V ⊂ U , and positive constants C,R, such that, over the entire V ,∣∣∣∣∂µ1 . . . ∂µnρ

µ1! · · ·µn!

∣∣∣∣ ≤ C

Rµ1+···+µn
.
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function f : B(R) → R is a real analytic function defined on an open ball of radius R
inside some Rn that can be extended to an analytic function on a strictly larger B(R′)
with R′ > R.

An example of a restricted analytic function is the sine function restricted to the interval
(−1, 1). The corresponding non-example would be the sine function defined on the whole R.
Another non-example is given by the series

f(x) =
∞∑
n=0

xn , (A.5)

which converges on (−1, 1) to 1
1−x . When regarded as an analytic function defined on

(−1, 1), the function f is not restricted analytic, since there is no strictly larger domain in
R over which the series converges. However, its restriction f |(−a,a) is a restricted analytic
function whenever 0 < a < 1.

It turns out that the precise shape of the domain of convergence B(R) is not really
important in defining the Ran,exp-structure. The crucial point is that the functions are
required to be ‘over-convergent’ in the sense that they converge in open sets that are strictly
larger than their defining domain. This intuition is implicitly assumed in the following
discussions. The readers will find that B(R) is replaced by the multi-cube [0, 1]n in much
of the literature on tame geometry. Their definition using [0, 1]n and ours using B(R),
following [23], all generate the same class of Ran,exp-definable subsets.

Let us also comment on restricted analytic functions with defining domains contained
in Cn. In fact, in our applications, the domain of a restricted analytic function is always in
Cn. However, it is in general non-trivial to directly work with notions like ‘Can,exp’ [73] and
the way to bypass this issue is to identify Cn with R2n by the usual decomposition into
real and imaginary parts, when we talk about the Ran,exp-structure on Cn. Then, for any
z ∈ Cn, we decompose

zk = uk + ivk ∈ C , (A.6)

and a real restricted analytic function f is defined as a power series over some open ball
B(R) that converges on a strictly larger ball B(R′) with R′ > R

f (u, v) =
∑

i,j∈Nn
aij
(
u1
)i1 · · · (un)in

(
v1
)j1 · · · (vn)jn , (A.7)

where N is the set of non-negative integers, and we have used the multi-index notation
i = (i1, . . . , in).

To be more concrete, we use the notion of real restricted analytic functions over the
punctured polydisk (∆∗)n ⊂ R2n in the following discussion. According to the above
discussion, these are the functions that are real analytic on (∆∗)n and are actually also
analytic on some larger domain containing (∆∗)n inside R2n. What is especially important
is that such functions have good behavior at the puncture z = 0 as they come from functions
that are analytic at z = 0. As an example of an analytic but not restricted analytic function

For more information, see [72].
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on ∆∗, take n = 1, and consider f(z) = 1/z over the punctured disk ∆∗. This function is
analytic over ∆∗, but its singularity at z = 0 forbids it being restricted analytic over ∆∗.

Later we will frequently use the coordinates on the covering space Hn as arguments in
a restricted analytic function f defined over ∆n. Let us be clear about what we actually
mean using n = 1 as an example. Decomposing the covering map z = e2πiϕ, for ϕ ∈ H, into
real and imaginary parts, we have

u = e−2πy cos(2πx) , v = e−2πy sin(2πx) . (A.8)

For a restricted analytic function f(u, v) defined over ∆, we write f(x, y) for the function

f
(
e−2πy cos(2πx), e−2πy sin(2πx)

)
, (A.9)

and such a function is sometimes also written as f(z, z̄) or f(ϕ, ϕ̄) to stress that f is
real-analytic instead of holomorphic.

A.2 Generalities of monomially and polynomially tamed functions

Monomially and polynomially tamed functions have been recently introduced in [23],
where they were called roughly monomial and roughly polynomial functions. As stressed
throughout this work, these special kinds of functions are ubiquitous in effective field
theories emerging from string theory. Indeed, couplings and physical quantities — that are
Ran,exp-definable — typically belong to these special families of functions. Thus, due to
their importance, we here systematically discuss the monomially and polynomially tamed
functions, and we collect some of their properties.

Our aim is inquiring the growth of physical quantities within the region E in (3.2)
close to the boundary ϕα = i∞. Within E we identify the subregion, in terms of the
ϕα-coordinates,

Σn =
{

0 < xk < 1, y1 ≥ y2 ≥ · · · ≥ yn > 1
}
, (A.10)

to which we will oftentimes refer as growth sector — see figure 6 for a pictorial representation.
The region (A.10) singles out a specific ordering for the yk and dictates the allowed hierarchies
among their values. However, we can consider analogous regions with different orderings
just by reshuffling the indices in (A.10).

Given a general, real-analytic function f defined over the growth sector (A.10). we
would like to classify such functions according to their growth or fall-off within the region
Σn. For the sake of clarity, we will start with some simple examples. Let us first focus
on the case for which the boundary is a codimension-one locus z = 0, so that the region
in (A.10) is (real) two-dimensional. Let us then consider the following polynomial function:

f(x, y) =
m̂∑

m=m0

ρm(x)ym , (A.11)

with m0, m̂ being integers and ρm(x) real-analytic functions of x. Since x parametrizes
only the open unit interval, we can safely assume that |ρm| is upper bounded for any
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m. Consequently, exploiting the fact that y > 1 in Σ1, also |f | can be minimally upper
bounded as

|f | ≤ Cym̂ in Σ1 , (A.12)

for some positive number C. It is worth stressing that (A.12) is true for any value of y,
and thus also true for any path y(σ) within Σ1. Furthermore, defining an upper bound as
in (A.12) is possible because of the simple structure of (A.11), which unequivocally allows
to single out a monomial with maximal growth within Σ1.

However, let us now consider a codimension-two singularity, the region around which is
described by a four-dimensional growth sector Σ2. In analogy to (A.11), let us investigate
the possible behaviors of the following class of functions

f (x, y) =
∑

m1,m2

ρm1m2

(
x1, x2

) (
y1
)m1 (

y1
)m2

, (A.13)

where we understand that the sum runs over finitely many integers m1 and m2. Albeit the
definition of Σ2 constrains y1 and y2 to be mutually bounded as y1 ≥ y2 > 1, this is not
enough to single out a leading monomial in (A.13). In order to better illustrate the issue,
consider the function:

f(y1, y2) = 1
y1 +

(
y2

y1

)2

, (A.14)

and let us investigate the behavior of |f(y1, y2)| along the following paths:

P1 (σ) =
(
y1 = Cσ , y2 = y2

0

)
, C , y2

0 > 1 ,

P2 (σ) =
(
y1 = C1σ , y

2 = C2σ
)
, C1 > C2 > 1 ,

(A.15)

specified by σ > 1 and in which the parameters have been chosen in compatibility with
the definition of Σ2 in (A.10). Along these paths, the function (A.14) can be differently
bounded as

|f
(
y1, y2

)
| ≤ C

y1 along P1(σ) ,

|f
(
y1, y2

)
| ≤ C ′

(
y2

y1

)2

along P2(σ) .
(A.16)

with positive numbers C and C ′. In other words, the identification of the leading monomial
in (A.14) is path-dependent. Similar obstructions in identifying a leading monomial also
appear for generic functions defined on a multi-dimensional Σn.

The above example illustrates that it is in general not possible to identify a leading
term that determines the growth or the fall-off of even simple functions throughout the
full growth sector Σn. It might then seem that minimal bounds such as those above are
path-dependent statements. However, we will now show that, under certain conditions,
bounds can indeed be formulated throughout Σn, and we will provide a recipe to identify
when this is attainable.

However, we first need to be more specific about the family of functions on which
our investigation will be focused. For instance, in the one- and two-moduli cases, the

– 51 –



J
H
E
P
0
9
(
2
0
2
2
)
1
4
9

function (A.11) and (A.13) are definitely not general: on the one hand, the non-singular
ρ-functions appearing in both (A.11) and (A.13) are only x-dependent; secondly, if we allow
such ρ-functions to acquire a y-dependence, then we need to be sure that this inclusion does
not deliver new singularities spoiling the polynomial growth. The appropriate generalization
of the ρ-functions in (A.11), (A.13) and in general multi-moduli cases is given by restricted
analytic functions. Furthermore, let us note that a main inspiration for our constructions
arise from the study of the growth of physical quantities determined in terms of the Hodge
inner product. As argued in section 4.3 and appendix C, elements of the Hodge inner product
are special types of Laurent polynomials with restricted analytic functions as coefficients.

We denote O the space of real restricted analytic functions on (∆∗)n expressed in the
ϕk-coordinates:

O =
{
ρ
(
ϕk, ϕ̄k

)
, with ρ

(
zk, z̄k

)
real restricted analytic over (∆∗)n

}
, (A.17)

where we have used equation (A.4) to transform zk = e2πiϕk . In other words, the functions
in O are obtained in two steps: take all restricted analytic functions ρ(zk, z̄k) defined on
(∆∗)n, which are functions of uk = Re zk and vk = Im zk, and then transform back to the
variables ϕk. The point is that, over suitable domains, functions in O can be expanded
in Taylor series in terms of uk and vk. Such functions encode exponentially corrected
quantities in ϕk.

We further denote the space of polynomials O[x, y, y−1] with coefficients in O and
indeterminate xk, yk, (yk)−1. A typical element of this space looks like a finite sum

g (x, y) =
∑
k,m

ρk,m
(
u1, v1; · · · ;un, vn

) (
a1
)k1 · · · (an)kn

(
s1
)m1 · · · (sn)mn , (A.18)

where ρk,m ∈ O are functions defined in (A.17), k = (k1, . . . , kn) are non-negative integers,
and m = (m1, . . . ,mn) are integers. We remind the reader that uk and vk are related
to xk and yk via (A.8). For simplicity we will omit the long list of arguments appearing
in (A.18) in the following discussion, and whenever we write g ∈ O[x, y, y−1], the function
g is assumed to be of the form displayed in (A.18).

We will be mostly interested in ratios between polynomials of the form (A.18), so we
define a space O(x, y) containing all fractions

f = g

h
, with g, h ∈ O

[
x, y, y−1

]
and h 6= 0 . (A.19)

The growth of the functions in O(x, y), as one approaches the singularity ϕα → i∞, can be
compared, and it is convenient to recollect the definition of the order relation used in the
main text: for any f, g ∈ O(x, y), we write f ≺ g if there is a positive constant C such that
f < Cg over the entire Σn. We write f ∼ g, if f ≺ g and g ≺ f .

We are now in the position to introduce the functions defined over Σn with which we
will work in the remainder of the paper. A function f ∈ O(x, y) is monomially tamed if

f ∼ (y1)m1 · · · (yn)mn over Σn , (A.20)
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for some integers mα. In other words, a monomially tamed function is a function in which
we can single out a definite leading monomial throughout the region (A.10).

A function f ∈ O(x, y) is polynomially tamed if it can be written as a ratio

f = g

h
, (A.21)

where h ∈ O(x, y) is a monomially tamed function, and f ∈ O[x, y, y−1]. Intuitively
speaking, in contrast with the monomially tamed function, a function being polynomially
tamed indicates that there could be several competing leading terms. Namely, a polynomially
tamed function is such that

f ∼
∑
i

(
y1
)m(i)

1 · · · (yn)m
(i)
n over Σn , (A.22)

for some sets of integers m(i)
α .

A.3 Characterization of monomially and polynomially tamed functions

From the previous discussion we see that the form of monomially and polynomially tamed
functions are rather constrained. The constraints can be utilized to write down these
functions more explicitly. This is the goal of this section. The organizing principle is to
distinguish the units and non-units in O[x, y, y−1]. Recall that a unit15 in a ring is an
element with a multiplicative inverse.

Firstly let us examine the coefficient ring O. From the general theory of power series, it
can be shown that an element a ∈ O, regarded as an analytic function over a strictly larger
domain containing ∆n in R2n, is a unit if and only if a(z = 0) 6= 0, i.e. a has non-vanishing
constant term. The units in O have nice growth property over Σn, namely

a ≺ 1 , (A.23)

for any invertible a. To see this, note that for n = 1, in coordinates (x, y) ∈ Σ1,

a(x, y) = a0 +
∑
i+j>0

aije
−2π(i+j)y cosi(2πx) sinj(2πx) ≺ 1 over Σ1 , (A.24)

where a0 6= 0 and aij are complex coefficients. The cases for n > 1 follow inductively.
Note that a general unit a in O is not necessarily asymptotic to a constant, because

its absolute value may not be bounded by any positive constant from below. For a simple
example of such phenomena, take n = 1, and a(u, v) = 1 − 2v. This function is clearly
restricted analytic on the disk u2 + v2 < 1. And it is a unit in O because a(0, 0) = 1 is
non-zero. Over the disk, the function satisfies |a| < 3, so a ≺ 1 as expected. However, we
have a(u, 1

2) = 0 for all u. Hence the function a is not bounded by any positive constant
from below, and we cannot say that a ∼ 1.

15We avoid using the term ‘invertible element’ to distinguish multiplicatively invertible elements from
invertible mappings.
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Now we focus on the polynomial ring O[x, y, y−1]. From the general theory of Laurent
polynomials, it can be shown that any unit of O[x, y, y−1] must be of the form

a
(
y1
)j1 · · · (yn)jn , (A.25)

where a is a unit in O and j = (j1, . . . , jn) ∈ Zn. Thus, units in O[x, y, y−1] are almost
monomially tamed functions in the sense that a(y1)j1 · · · (yn)jn ≺ yj . The converse is
obviously not true.

With the above preparation, we can classify each term in a function in O[x, y, y−1] into
three classes. More precisely, the general form of each term looks like

aij
(
x1
)i1 · · · (xn)in

(
y1
)j1 · · · (yn)jn , (A.26)

where aij ∈ O. Then we distinguish each term according to the behavior of aij and the
exponents i = (i1, . . . , in). We write i = 0 to denote i1 = · · · = in = 0, and i 6= 0 means
that one of the ik 6= 0. The asymptotics of each term can be divided into the following
three classes

aijx
iyj ≺


or ∼ yj , if aij is unit, and i = 0 ,

yj , if aij is unit, and i 6= 0 ,

e−2πynyj , if aij is non-unit.

(A.27)

From equation (A.27), we see that if a polynomial f ∈ O[x, y, y−1] has a definite leading
term, then this term comes from the units, i.e. terms that look like ayj for a ∈ O unit.

We will see later that analyzing monomially tamed functions as fractions in O(x, y)
can be reduced to studying monomially tamed functions in O[x, y, y−1]. So let us elaborate
on the forms of monomially tamed functions in O[x, y, y−1]. Using equation (A.27), we
can fix the forms of such functions rather explicitly. Namely, the most general polynomial
f ∈ O[x, y, y−1] can be split into three parts according to (A.27)

f = f1 + f2 + f3 , (A.28)

where f1 consists of the terms that are of the form ayj , a(0) 6= 0, f2 consists of axiyj where
i 6= 0, and f3 consists of bxiyj where b(0) = 0. Of these three parts, only the f1 can impose
a non-vanishing lower bound on |f |, while f2 and f3 fail to do so. Indeed, |f2| and |f3| are
bounded by yj from above, but there is no positive lower bound on these terms. So they
do not restrict |f | from below. In order to have f ∼ ys for some s ∈ Zn, part f1 must be
present. Moreover, one of the terms in f1 has to be asymptotic to ys.

We can spell out the general form of a function f ∈ O[x, y, y−1] satisfying f ∼ ys using
the above reasoning. Write f = f1 + f2 + f3, with sums over finitely many terms

f1 = asy
s +

∑
j1

aj1
yj1 , f2 =

∑
i2,j2

ai2,j2
xi2yj2 , f3 =

∑
i3,j3

bi3,j3
xi3yj3 , (A.29)

where aj1 and ai2,j2 are units in O, and bi3,j3 are non-units. Moreover, as ∼ 1 because we
assume f ∼ ys, implying that there must be a term in f1 providing this leading behavior.
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Let us restrict further the sums in f1, f2 and f3. Before doing so, we need to present
a simple fact. Namely, assume that ys ≺ 1 over Σn, we ask what possible values that the
exponents s = (s1, . . . , sn) can take. Since we can rewrite

ys =
(
y1

y2

)−m1 (
y2

y3

)−m2

· · ·
(
yn−1

yn

)−mn−1

(yn)−mn , (A.30)

where −m1 = s1 ,

−m2 = s1 + s2 ,
...

−mn = s1 + · · ·+ sn .

(A.31)

We deduce that the expression ys must take the form in (A.30) with exponents

m1, . . . ,mn ≥ 0 , (A.32)

so that ys ≺ 1.
Focusing on f1, and applying the above fact, we require that aj1y

j1 ≺ ys for all j1.
Since aj1 ≺ 1, this translates to a condition on j1 = (j1,1, . . . , j1,n) that yj1−s ≺ 1, we can
factor out globally asys in f1, and then f1 takes the following form

f1 = asy
s

1 +
∑
m≥0

am

(
y1

y2

)−m1

· · ·
(
yn−1

yn

)−mn−1

(yn)−mn
 , (A.33)

where am are units in O.
Similarly, we factor out asys in part f2, and it needs to be of the following form

f2 = asy
s
∑
k,m≥0

ak,mx
k

(
y1

y2

)−m1

· · ·
(
yn−1

yn

)−mn−1

(yn)−mn , (A.34)

where ak,m are units in O.
There is a minor difference in f3. Note that bi3,j3 are non-units, meaning that bi3,j3(0) =

0. For n = 1, such a function looks like

b =
∑
i+j>0

bije
−2π(i+j)y cosi(2πx) sinj(2πx) , (A.35)

and we can pull out an overall factor of e−2πy from a non-unit b. A similar conclusion holds
for n > 1, so we can factor out a e−2πyn in bi3,j3 . Part f3 then takes the form

f3 =
∑
i3,j3

b̃i3,j3
e−2πynxi3yj3 , (A.36)

for some b̃i3,j3 . Then requiring f3 ≺ ys amounts to requiring that

(y1)j3,1−s1 · · · (yn)j3,n−1−sn−1 ≺ 1 . (A.37)
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So we only need to apply (A.30) up to index n− 1. With this in mind, pulling out a factor
of asys, part f3 can be written as

f3 = asy
s

∑
m1,...,mn−1≥0
mn∈Z ,k≥0

bk,mx
k

(
y1

y2

)−m1

· · ·
(
yn−1

yn

)−mn−1

(yn)−mn , (A.38)

where bk,m are non-units in O. Note that in f3 there is no restriction on mn because of the
overall factor e−2πyn suppressing all powers of yn.

In summary, if f ∈ O[x, y, y−1] is monomially tamed with f ∼ ys on Σn, then f has
the following form

f = ρ0y
s

1 +
∑
k,m≥0

ρkmx
k

(
y1

y2

)−m1

· · ·
(
yn−1

yn

)−mn−1 [
(yn)−mn + bkm(yn)mn

] ,

(A.39)
where ρ0, ρkm are units in O, with ρ0 ∼ 1, and bkm are non-units in O satisfying bkm(0) = 0.
The sum contains finitely many non-zero terms. Note that in the above expression we have
combined the conditions (A.33), (A.34), and (A.38) into a summation over non-negative
multi-indices k and m. We have also used the fact that the sum of a unit and a non-unit is
again a unit in O, as can be seen by evaluating the sum at z = 0.

With the above preparation on the form of monomially tamed functions in O[x, y, y−1],
we are now ready to provide a concrete characterization of monomially tamed functions.
Recall that a monomially tamed function f ∈ O(x, y) can be written as a ratio

f = g

h
, (A.40)

where g, h ∈ O[x, y, y−1], h 6= 0, and

f ∼ (y1)s1 · · · (yn)sn , (A.41)

for some (s1, . . . , sn) ∈ Zn. The observation is that, when the polynomials g and h have no
common factor, they must be separately monomially tamed, namely

h ∼ 1 , and g ∼ (y1)s1 · · · (yn)sn . (A.42)

To see this, note that any function f ∈ O[x, y, y−1] can be decomposed into three parts
as in (A.29) (set as = 0 for generality). If in g and h, the corresponding parts g1 and h1
are vanishing, then the fraction f = g/h cannot be monomially tamed; the coefficients are
unbounded. Hence, both g and h must contain parts g1 and h1. Moreover, there must
be unit coefficients a in g1 and h1 that satisfy a ∼ 1, otherwise the fraction f is still not
monomially tamed. It then follows that g and h must be separately monomially tamed over
Σn. If this is not true, then we can partition Σn into subsectors, over each of which the
functions g and h asymptote to different monomials. Since we assume that g and h have no
common factors, this means that over these partitions the fraction f also asymptotes to
different monomials, contradicting the monomially tamed condition of f .
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A.4 Properties of monomially and polynomially tamed functions

We conclude this section with two basic properties of monomially and polynomially tamed
functions. The first one is that the derivative of a monomially tamed function is poly-
nomially tamed. To see this, suppose f = g/h is a monomially tamed function, where
g, h ∈ O[x, y, y−1] and g, h have no common factors. Then we can assume that g and
h are separately monomially tamed in O[x, y, y−1]. Any derivative f ′ of f then has the
following form

f ′ = g′h− gh′

h2 . (A.43)

Since both g′ and h′ are functions in O[x, y, y−1], and h is monomially tamed, by definition,
we conclude that f ′ is a polynomially tamed function.

The second one is that the sum of two polynomially tamed functions is again poly-
nomially tamed. Let f1 = g1/h1 and f2 = g2/h2 be two polynomially tamed functions,
where h1, h2 ∈ O(x, y) are monomially tamed and g1, g2 ∈ O[x, y, y−1]. We further write
h1 = p1/q1 and h2 = p2/q2, with the assumption that p1, q1 have no common factors and
are separately monomially tamed in O[x, y, y−1]. The same applies to p2, q2. Then

f1 + f2 = g1q1p2 + g2q2p1
p1p2

(A.44)

is polynomially tamed, as the numerator is in O[x, y, y−1] and the denominator is monomially
tamed. The last conclusion implies that the set of polynomially tamed functions form
a ring.

B Monomial bounds for polynomially tamed functions

In section 3.2 we stated that polynomially tamed functions can be bounded by a monomial
in a wide region of the moduli space, provided that they are bounded only on a given set of
curves by said monomial. In this section we deliver a proof for this statement, following
closely [23]. Since the statement is very general, we will use slightly different notation than
in the main text. We denote ϕα ∈ Σ a point in the set Σ, and decompose it as

ϕα = xα + iyα , (B.1)

so that
Σ =

{
0 < xα < 1, y1 ≥ y2 ≥ · · · ≥ yn > 1

}
. (B.2)

Moreover, we write zα = e2πiφα ∈ ∆∗ as usual. Since we are going to deal with polynomials
that depend on many variables, we use the following abbreviations

f (x) := f
(
x1, . . . , xn

)
, and xi :=

(
x1
)i1 · · · (xn)in ,

for i = (i1, . . . , in) integer powers. With i > 0, we indicate that the inequality holds
component-wise.
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For convenience, let us first repeat here the statement with the mathematical lan-
guage of [23]:
Lemma 1. Let f, g ∈ O(x, y) with f polynomially tamed and g monomially tamed. Assume
that |f | ≺ |g| when restricted to any set of the form

Σ ∩
{
α1ϕ1 + β1 = · · · = αn0ϕn0 + βn0 , ϕn0+1 = ζn0+1, . . . , ϕn = ζn

}
(B.3)

for some 1 ≤ n0 ≤ n, ζn0+1, . . . , ζn ∈ H, α1, . . . , αn0 ∈ Q+, and β1, . . . , βn0 ∈ R. Then
|f | ≺ |g| on all of Σ.

We would like to stress that the significance of Lemma 1 is that it allows to establish a
uniform bound of a polynomially tamed function by a monomially tamed one. Reading this
lemma without caution could lead to confusion, as setting n0 = 1 in the test path (B.3)
seems enough to conclude (incorrectly) that |f | ≺ |g| over the entire Σ. However, one should
be careful, as setting n0 = 1 really gives a point-wise condition: unrolling the definition of
the ‘≺’ notation, we see that condition (B.3) with n0 = 1 is equivalent to that, for every
ϕ = (ϕ1, . . . , ϕn) ∈ Σ, one has

|f(ϕ)| < C(ϕ)|g(ϕ)| , (B.4)
where C(ϕ) > 0 is positive and depends on ϕ. Thus, condition (B.3) does not imply |f | ≺ |g|
over Σ, as the latter requires that the prefactor C does not depend on ϕ.

We now go into its proof. The first step is to notice that it suffices to prove Lemma 1
for g = 1. Indeed, since g is monomially tamed, so is |g|. By the definition of polynomially
tamed functions, f being polynomially tamed implies that f/g is polynomially tamed. The
condition |f | ≺ |g| is then equivalent to the condition |f |/|g| ≺ 1. Lemma 1 can then be
proved by induction on n.

The initial case is n = 1. Lemma 1 holds trivially in this case since for n = 1 the
condition in Lemma 1 does not restrict y1, and the statement is vacuous. We now assume
that Lemma 1 is true up to n− 1 and deduce Lemma 1 for n.

Since f is polynomially tamed, the idea is to analyze each term in the function f . Let
us first examine the form of f . Recall that, as a polynomially tamed function, f lives in
O(x, y). Rolling out the definition, we have

f(x, y) =
∑

(i,j)∈Z2n

fi,j(z)xiyj , (B.5)

where each fi,j is a restricted analytic function on (∆∗)n. Note that the sum is finite as
f is polynomially tamed. In particular, this means that fi,j has a power series expansion
in (∆∗)n

fi,j (z) =
∑
k≥0

fi,j;kz
k

=
∑

k2,...,kn≥0

(
fi,j;0,k2,...,kn + fi,j;1,k2,...,knz

1 + · · ·
) (
z2
)k2 · · · (zn)kn

=
∑

k2,...,kn≥0

(
fi,j;0,k2,...,kn + fi,j;1,k2,...,kne

−2πy1
e2πix1 + · · ·

) (
z2
)k2 · · · (zn)kn ,

(B.6)
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where each coefficient fi,j;k is real, and we have written the sum over k1 explicitly for later
use. From this discussion we see that the form of f is already strongly constrained. This
makes the proof viable.

To proceed, we organize f around x1 and y1:

f(x, y) =
∑

(i1,j1)∈Z2

ai1,j1(x1)i1(y1)j1 .

Again, the sum contains finitely many terms. The coefficients ai1,j1 contain the coefficients
fi,j;k in (B.6), as well as the (Laurent) polynomial-dependency on all other x’s and y’s. The
following two observations will help simplifying the analysis further. First, from (B.6), we
safely assume that ai1,j1 does not depend on z1, as those terms depending on z1 will fall-off
quicker than e−2πy1 , thus will not interfere with our estimates. Second, we also assume
that the power of x1 is non-negative i1 ≥ 0. Indeed, if the function f contains negative
powers of x1, we can just multiply the entire f with sufficiently many x1’s to eliminate
all negative powers of x1. Note that within Σ, one has 0 < x1 < 1, so multiplying f by
x1 does not alter the ‘≺’ relation, either. In summary, the coefficients aii,j1 depend on
(x2, y2, z2; · · · ;xn, yn, zn), so we have

f(x, y) =
∑

i1≥0,j1
ai1,j1(x2, y2, z2; · · · ;xn, yn, zn)(x1)i1(y1)j1 . (B.7)

Now we examine the consequence of the condition |f | ≺ 1. Immediately, we see that
j1 cannot be positive, otherwise it violates the condition |f | ≺ 1 on the linear path where
z2, . . . , zn are fixed. Since 0 < x1 < 1 is bounded, showing that |f | ≺ 1 on Σ amounts to
examining the coefficients ai1,j1 closer. This motivates the following claim, which implies
Lemma 1.

Claim 1. For every (i1, j1), one has |ai1,j1 |(y1)j1 ≺ 1 on Σ.

The remaining task is to prove Claim 1. First, we have a crucial observation. Since
y1 ≥ y2 and j1 ≤ 0, we have

|ai1,j1 |
(
y1
)j1 ≤ |ai1,j1 | (y2

)j1
. (B.8)

Hence, if one can show that
|ai1,j1 |

(
y2
)j1 ≺ 1 , (B.9)

for all (i1, j1) then the claim is proven. Condition (B.9) can be rephrased in a nicer form.
Spelling out the definition of the symbol ‘≺’, there is a positive constant C ′ such that

|ai1,j1 |
(
y2
)j1

< C ′ . (B.10)

Let C be any positive constant, then the above condition is further equivalent to

|ai1,j1 |
(
Cy2

)j1
< C ′Cj1 ⇐⇒ |ai1,j1 |

(
Cy2

)j1 ≺ 1 . (B.11)
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And this condition is exactly Claim 1 realized for the linear path y1 = Cy2. So, to prove
Claim 1, it suffices to prove (B.9), which is equivalent to proving Claim 1 along a linear
path y1 = Cy2 with C > 0. Note that the reasoning also shows that if Claim 1 is true for a
linear path with a particular choice of C, then it is true for all linear paths.

Next we would like to show (B.9) by induction. Since |ai1,j1 |(y2)j1 is a polynomially
tamed function in z2, . . . , zn, it would be nice to apply the induction hypothesis on it. So
we will check if |ai1,j1 |(y2)j1 satisfies the condition in Lemma 1. The idea is to extract
the term |ai1,j1 |(y2)j1 from f by substitution of a series of properly chosen z1’s. Taking a
linear combination of these will yield the term |ai1,j1 |(y2)j1 . In this process, the hypothesis
of Lemma 1 is never violated, and the number of variables is reduced by one. Hence by
induction, Claim 1 will be proven for n.

To this end, define

fm,c
(
z2, . . . , zn

)
:= f

(
z1 = mz2 + c, z2, . . . , zn

)
, (B.12)

where m and c are integers. Such particular assumptions on m and c will be used later.
Since f satisfies the condition in Lemma 1, fm,c also satisfies the condition for n−1 variables.
It then follows by induction that

|fm,c| =

∣∣∣∣∣∣
∑
i1,j1

ai1,j1

(
mx2 + c

)i1 (
my2

)j1 ∣∣∣∣∣∣ ≺ 1 , on the entire Σn−1 . (B.13)

To proceed, we need a small technical result.

Fact 1. For natural numbers 0 ≤ k ≤ n,

n∑
j=0

(−1)j
(
n

j

)
jk =

 0 , for 0 ≤ k < n ,

(−1)n n! , for k = n .
(B.14)

There is a generalization to the cases where k > n, but these are irrelevant to our
application. This fact can be computed by induction on k and n.

Now we focus on the factor (mx2 + c)i1 in (B.13). By Fact 1, a straightforward
computation shows that

ı̂∑
k=0

(−1)k
(
ı̂

k

)
(mx2 + k)i1 =

 0 , for i1 < ı̂ ,

(−1)ı̂ ı̂! , for i1 = ı̂ .
(B.15)

This computation gives a clue to proceed: we start with the highest i1 power, and form a
linear combination of the above form. This kills all terms with a lower i1, while keeping all
terms with the same highest i1. These terms are further accompanied with (my2)j1 with
different j1, and by plugging in different values of m, each single term of the form ai1,j1y

j1

can be obtained.
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More precisely, let (̂ı1, ̂1) be the lexicographically maximal (i1, j1) that is present
in (B.7), with aı̂1,̂1 6= 0. Define

Fm := (−1)ı̂1
ı̂1!

ı̂1∑
i=0

(−1)i
(
ı̂1
i

)
fm,i (B.16)

=
∑
j1

aı̂1,j1

(
my2

)j1
,

where the second equality follows from Fact 1. Note that, by induction, each |fm,i| ≺ 1,
implying that |Fm| ≺ 1. Finally, by taking a linear combination of Fm’s with different
m’s, we can solve for aı̂1,j1(y2)̂1 . This implies that |aı̂1,̂1 |(y2)̂1 ≺ 1. Subtracting this term
multiplied by (mx2 + c)ı̂1m̂1 from fm,c and continue inductively, we have thus shown (B.9)
for all (i1, j1), hence Claim 1. This completes the proof of Lemma 1.

C The Hodge inner product growth

In this appendix, we discuss the proof of the Hodge inner product growth stated in section 4.3.
We will again follow [23], and display the proof of a broader theorem as follows. Let us
recall here the statements in [23] that determine the growth of the Hodge inner products:

Theorem 1. Let u ∈ Ip,q1,...,qn and v ∈ Ip′,q′1,...,q′n.

1. ‖u‖2 is monomially tamed;

2. ‖γ(z)u‖2 is monomially tamed;

3. h(u, v) is polynomially tamed.

The particular subspaces Ip,q1,...,qn will be defined later. For the moment, the reader
can regard Ip,q1,...,qn as a subspace of the Vq1,...,qn space discussed in (4.38).

The statement and the proof of Theorem 1 requires a deeper understanding of asymptotic
Hodge theory. Let us first review the necessary ingredients of asymptotic Hodge theory.
We will use the same notation as in appendix B, with the modification that we denote the
indices in the moduli space by i instead of α for prettier presentation. So a singular point
is at zi = 0, which is equivalent to ϕi = xi + iyi → i∞. We also denote the cohomology
vector space as VQ, VR, VC, where the subscripts distinguishes the fields of coefficients.

C.1 Lightning review of asymptotic Hodge theory

The first theorem that we need is the nilpotent orbit theorem [65, 66]. Around each zi = 0,
there is a monodromy operator, and its logarithm is denoted by Ni. Then the nilpotent
orbit theorem says that there is a normal form of the period mapping around the singularity

Φ(ϕ) = eϕ
iNieΓ(z)F , (C.1)
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where F is called the limiting Hodge filtration,16 and Γ is a holomorphic function such that
Γ(z = 0) = 1. We will not use the function Γ so we refer interested reader to [33, 65, 74] for
more information. In the following, we write

γ(ϕ) = eϕ
iNieΓ(z) , (C.2)

so that
Φ(ϕ) = γ(ϕ)F . (C.3)

To define the limiting mixed Hodge structure, we need the monodromy weight filtration.
For every nilpotent operator N , there is a unique increasing filtration 0 ⊂W (N)0 ⊂ · · · ⊂
W (N)2k = VC such that

N(W (N)p) ⊂W (N)p−2 , and N s : GrW (N)
k+p

∼−→ GrW (N)
k−p , (C.4)

where GrW (N)
p := W (N)p/W (N)p−1.

From the operators Ni, we define n different monodromy weight filtrations. Let

N(j) :=
j∑
i=1

Ni , (C.5)

and we define
W (j) := W (N(j)) . (C.6)

The sl(2)-orbit theorem [65, 66] then implies that (F,W (n)) is a mixed Hodge structure.
For a mixed Hodge structure, say (F,W (n)), we have the well-known Deligne splitting

VC =
⊕
p,q

Ip,q , (C.7)

such that
F s =

⊕
p≥s

Ip,q , and W (n)
s =

⊕
p+q≤s

Ip,q , (C.8)

and a conjugation condition [65] that is not important for our discussion. In the above
expressions, the omitted indices are implicitly summed over their possible ranges. What
we need in the following is a generalization of the Deligne splitting for not only a single
monodromy weight filtration W (n), but all of them. Such a splitting is given in [67] and let
us now review its definition.

According to Lemma 2.4.1 and Corollary 1.8.3 in [67], the family of filtrations(
F,W (1), . . . ,W (n)

)
(C.9)

admits a common splitting17

VC =
⊕

p,q1,...,qn

Ip,q1,...,qn , (C.10)

16This filtration is not necessarily Hodge, i.e. it is not necessarily k-opposed.
17Our convention on the indices aligns with the convention in [23], which is different from the original [67].

Denote the splitting in [67] by Hp,q1,...,qn , then our Ip,q1,...,qn = Hp,p+q1,...,p+qn .
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such that
F s =

⊕
p≥s

Ip,q1,...,qn , and W (j)
s =

⊕
p+qj≤s

Ip,q1,...,qn , (C.11)

where again the omitted indices are implicitly summed over their possible ranges. This
decomposition generalizes the Deligne splitting of a mixed Hodge structure: if we put just
W (n) in, then one immediately reads out the properties of Deligne splitting.

On the other hand, recall that there is also a rational splitting

VQ =
⊕

`1,...,`n

V`1,...,`n , (C.12)

satisfying
W (j)
s =

⊕
`j≤`

V`1,...,`n . (C.13)

This splitting is characterized by its relation to the growth of the Hodge norm [65, 67],
namely, for every u ∈ V`1,...,`n , one has

‖u‖2 ∼
(
s1

s2

)`1
· · ·
(
sn−1

sn

)`n−1

(sn)`n . (C.14)

We will revisit this property in Theorem 2 in the following section.
Using properties (C.11) and (C.13), we see that

V`1,...,`n
∼= GrW (1)

`1 · · ·GrW (n)
`n (VC) ∼=

⊕
p

Ip,`1−p,...,`n−p , (C.15)

meaning that each element in `1, . . . , `n can be decomposed into finitely many components
living in different I-subspaces. Technically speaking, if we use the sl(2)-orbit theorem
in [65, 66], we can actually obtain a nice expression characterizing and relating the I- and
V -splittings. For simplicity, we assume that the nilpotent orbit (F,N1, . . . , Nn) is R-split.
By the multi-variable sl(2)-orbit theorem in [65], there exists a series of R-split sl(2)-orbits(

F(1),W
(1)
)
, . . . ,

(
F(n),W

(n)
)
, (C.16)

constructed out of the original nilpotent orbit (F,N1, . . . , Nn). Let Ip1,q1
(1) , . . . , Ipn,qn(n) be their

corresponding Deligne splittings. Then we can define

V`1,...,`n =
n⋂
i=1

⊕
pi+qi=`i

Ipi,qi(i) . (C.17)

Moreover, we define

Ip,`1,...,`n = Ip,`n(n) ∩
n−1⋂
i=1

⊕
pi+qi=`i

Ipi,qi(i) , (C.18)

so that we have
V`1,...,`n =

⊕
p

Ip,`1−p,...,`n−p , (C.19)

a genuine equality realizing the isomorphism (C.15) between the two splittings I and V .
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C.2 Proof of theorem 1

For later convenience, let us repeat here the well-known theorem on the growth of Hodge
norm [65–67].

Theorem 2. Let u ∈ Vs1,...,sn. Then on Σ we have

1. ‖u‖2 ∼
(
y1

y2

)s1 · · · (yn−1

yn

)sn−1 (yn)sn ;

2.
∥∥∥e∑ ziNiu

∥∥∥2
∼
(
y1

y2

)s1 · · · (yn−1

yn

)sn−1 (yn)sn ;

3. ‖γ(z)u‖2 ∼
(
y1

y2

)s1 · · · (yn−1

yn

)sn−1 (yn)sn .

Before we dive into the proof of Theorem 1, let us note that the conclusion of Theorem 1
also holds for vectors living in Vs1,...,sn . To show this, we use the relation (C.19). For any
u ∈ Vs1,...,sn , there is a decomposition

u =
∑
p

up , up ∈ Ip,s1−p,...,sn−p , (C.20)

where the sum is finite. For each up, Theorem 1 holds. Particularly, ‖up‖2 ∈ O(x, y). This
implies that ‖u‖2 ∈ O(x, y). Using the growth Theorem 2, we see that ‖u‖2 is monomially
tamed. The same reasoning applies to

∥∥∥e∑ ziNiu
∥∥∥2

and ‖γ(z)u‖2.
Now we would like to address the proof of Theorem 1. It turns out that to show

Theorem 1 for all weights k, one needs to separate the cases between even k = 2m and
odd k = 2m− 1 weights. This is mainly because, later in the proof, we will crucially use
Lemma 2, which is only applicable to the case of even weights, whose polarization form is
symmetric. Fortunately, one can transform any odd-weight VHS to an even one, preserving
the Hodge inner product, without too much effort. So let us first describe how to reduce
the proof for odd weights to even weights.

The idea [38] is to define a good auxiliary Hodge structure Ĥ of weight 1. Then by
tensoring our odd-weight VHS with this auxiliary Hodge structure, the weight is raised
by one, and the problem is neatly transformed into an even weight problem where the
original and new Hodge inner products are related by a constant factor. The auxiliary
Hodge structure is given by the Hodge structure on the middle cohomology of a special
elliptic curve. We will not bother with the geometry and only discuss the algebraic data.
Its underlying integral module is

ĤZ = Z⊕ Z . (C.21)

We pick the canonical integral basis of ĤZ and denote any element in ĤZ by a pair of
integers (â, b̂). This choice of integral basis extends to the complexification ĤC = ĤZ ⊗Z C,
so we also denote (â, b̂) ∈ ĤC, where for the complex case â, b̂ are complex numbers. Then
the Hodge structure is defined as

ĤC = Ĥ1,0 ⊕ Ĥ0,1 , with Ĥ1,0 := C(1, i) , and Ĥ0,1 := C(1,−i) . (C.22)
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Obviously, Ĥ0,1 = H1,0. It is straightforward to verify that the associated Weil operator
Ĉ : ĤC → ĤC acts as

Ĉ
(
â, b̂
)

=
(
b̂,−â

)
. (C.23)

Finally, the Hodge structure Ĥ is polarized by the anti-symmetric bilinear form Q̂ : Ĥ×Ĥ →
Z defined as

Q̂
((
â, b̂
)
,
(
ĉ, d̂
))

= âd̂− b̂ĉ , (C.24)

which also extends to a bilinear form on ĤC. Combine these together, we have the Hodge
inner product ĥ on Ĥ

ĥ
((
â, b̂
)
,
(
ĉ, d̂
))

= Q̂
(
C
(
â, b̂
)
,
(
ĉ, d̂
))

= âĉ+ b̂d̂ . (C.25)

Turning back to the odd-weight case, let H be any pure Hodge structure with odd
weight k = 2m − 1. The tensor product H̃ = H ⊗ Ĥ is a pure Hodge structure of even
weight k + 1 = 2m. Its underlying integral module is given by

H̃Z = HZ ⊗Z ĤZ ∼= HZ ⊕HZ , (C.26)

and we denote (a, b) ∈ H̃Z an element, with a, b ∈ HZ. The Hodge decomposition is
given by18

H̃ =
⊕

p+q=k+1
H̃p,q , with H̃p,q := Hp−1,q ⊕Hp,q−1 . (C.27)

It is straightforward to check that the Weil operator C̃ : H̃C → H̃C acts as C̃ = C ⊗ Ĉ,
where C is the Weil operator of H. More explicitly, we have

C̃(a, b) = (Cb,−Ca) . (C.28)

And similarly, the polarization form is now Q̃ = −Q⊗ Q̂, with Q the polarization form of
H. The minus sign accompanying Q is to make sure that the positivity in the polarization
condition is satisfied. We have

Q̃((a, b), (c, d)) = −Q(a, d) +Q(b, c) . (C.29)

Assemble everything together, we have the new Hodge inner product h̃ on H̃ given by

h̃ ((a, b) , (c, d)) = Q̃
(
C̃ (a, b) ,

(
c, d
))

= −Q (Ca, c)−Q
(
Cb, d

)
= h (a, c) + h(b, d) .

(C.30)
In particular, choosing (a, b) = (u, u) and (c, d) = (v, v) with u, v ∈ HC yields

h̃((u, u), (v, v)) = 2h(u, v) . (C.31)

This relates the Hodge inner product in the even-weight structure H̃ to the one in the
original odd-weight structure H.

18In general, H̃p,q =
⊕

r+t=p
s+u=q

Hr,s ⊗ Ĥt,u. Recall that Ĥ1,0 ∼= Ĥ0,1 ∼= C as complex vector spaces, and
V ⊗ C ∼= VC for any complex vector space VC.
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Starting with an odd-weight VHS, we tensor it with the constant VHS with Hodge
structure Ĥ and arrive at an even-weight VHS. Moreover, their Hodge inner products
are related by (C.31). So if Theorem 1 is proven for even weights, then it is also true for
odd weights.

Now let us turn to the proof of Theorem 1 for even weights k = 2m. We first show
part 1. By part 1 of Theorem 2, it suffices to show that ‖u‖2 ∈ O(x, y). Namely, we are
going to show that ‖u‖2 can be written as a ratio between two functions in O[x, y, y−1],
polynomials with restricted analytic functions as coefficients.

The idea is to compute the norm ‖u‖2 by decomposing u with respect to a nice basis.
This basis is constructed as follows. Firstly, we choose a basis that is adapted to the limiting
Hodge filtration F . Namely, we choose a basis wi of VC such that each wi ∈ Ipi,q

i
1,...,q

i
n , and

we order them such that pi is non-increasing. For any ϕ ∈ Σ, recall from equation (C.3)
that we have Φ(ϕ) = γ(ϕ)F . We define

wi(ϕ) := γ(ϕ)wi ∈ Φi(ϕ) . (C.32)

Then, because of the ordering of pi and taking property (C.11) into account, we have

wi(ϕ) ∈ Hpi,k−pi
ϕ =⇒ Cϕ(wi(ϕ)) = i2pi−kwi(ϕ) . (C.33)

Because of the above property (C.33), the evaluation of the Hodge inner product h on
the basis wi is eventually reduced to a constant multiple of Q. To simplify notation, we define
B(u, v) := Q(u, v) and B2(u) := B(u, u). The next step is to construct a B-orthogonal
basis out of wi(ϕ) ∈ Φi(ϕ). This is done by the Gram-Schmid process. We actually need
an extended version of it, so let us present the process in the following technical Lemma 2.

Lemma 2. (Gram-Schmidt) Let VC be a complex finite dimensional vector space equipped
with an hermitian inner product B. Let {vi} be a basis of VC. Define inductively

ṽi :=

 v1 , for i = 1 ,
vi −

∑
j<i

B(vi,ṽj)
B(ṽj ,ṽj) ṽj , for i ≥ 2 ,

(C.34)

then {ṽi} is also a basis of VC satisfying, for any v ∈ VC and all i,

B (v, ṽi) = B(v1 ∧ · · · ∧ vi−1 ∧ v, v1 ∧ · · · ∧ vi)
B2(v1 ∧ · · · ∧ vi−1) , (C.35)

where19

B(u1 ∧ · · · ∧ un, w1 ∧ · · · ∧ wn) := det(B(ui, wj)) , for all n, and ui, wj ∈ VC . (C.36)

Moreover, property (C.35) implies

B(ṽi, ṽj) =

 0 , if i 6= j ,
B2(v1∧···∧vi)
B2(v1∧···∧vi−1) , if i = j .

(C.37)

So {ṽi} is an orthogonal basis with respect to B.
19This is the extension of the inner product B to the n-th tensor power of VC for any n.
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This lemma can be shown by induction, with the use of determinant identities relating
a matrix, its minors, and its cofactor.

Now we turn back to the proof of part 1 of Theorem 1. Apply the Gram-Schmidt process
to the basis wi(ϕ), we obtain a new basis w̃i(ϕ). It is easy to check by induction that,

hz (w̃i (ϕ) , w̃j (ϕ)) = B (Cϕw̃i (ϕ) , w̃j (ϕ)) =

 i2pi−kB (w̃i (ϕ) , w̃j (ϕ)) , if i ≤ j ,
i−2pj+kB (w̃i (ϕ) , w̃j (ϕ)) , if i > j .

(C.38)
In particular, this implies that the Hodge norm of w̃i(ϕ) satisfies, for all i,

‖w̃i(ϕ)‖2 = i2pi−kB2(w̃i(ϕ)) . (C.39)

So although, in general, w̃i(ϕ) does not belong to a single Ipi,qi1,...,qin , when computing the
Hodge norm ‖w̃i(ϕ)‖, the Weil operator Cϕ still factorizes out of the bilinear form. Note that
to show this fact, one must use the orthogonality relation (C.37) of the Gram-Schmidt basis.

Next, expanding our u ∈ Ip,qi,...,qn with respect to the basis w̃i(ϕ), we get

u =
∑
i

ũi(ϕ) , (C.40)

where each ũi(ϕ) is a multiple of w̃i(ϕ). We can actually compute the multiplication factor,
due to property (C.37) of the basis w̃i(ϕ). We have

ũi (ϕ) = B (u, w̃i (ϕ))
B2 (w̃i (ϕ)) w̃i (ϕ) . (C.41)

We do the same for any v ∈ Ip′,q′1,...,q′n to get ṽi(ϕ). And the Hodge inner product between
ũi(ϕ) and ṽj(ϕ) can be computed (for i ≤ j)

h (ũi (ϕ) , ṽi (ϕ)) = Q
(
Cϕũi (ϕ) , ṽi (ϕ)

)
= i2pi−kB (ũi (ϕ) , ṽi (ϕ))

= i2pi−kB (u, w̃i (ϕ))B (w̃i (ϕ) , v)
B2 (w̃i (ϕ)) , (C.42)

where in the second equality we have used (C.39).
On the other hand, by Lemma 2, we have

B(u, w̃i(ϕ)) = B(w1(ϕ) ∧ · · · ∧ wi−1(ϕ) ∧ u,w1(ϕ) ∧ · · · ∧ wi(ϕ))
B2(w1(ϕ) ∧ · · · ∧ wi−1(ϕ)) ; (C.43)

B2(w̃i(ϕ)) = B2(w1(ϕ) ∧ · · · ∧ wi(ϕ))
B2(w1(ϕ) ∧ · · · ∧ wi−1(ϕ)) . (C.44)

Now from the expression (C.2) for γ(ϕ) and the definition (C.32) of wi(ϕ), we conclude
that both the numerator and the denominator in (C.43) and (C.44) are in O[x, y, y−1].
Hence we conclude that the Hodge norm of u

‖u‖2ϕ =
∑
i,j

hϕ(ũi(ϕ), ũj(ϕ)) ∈ O(x, y) . (C.45)

– 67 –



J
H
E
P
0
9
(
2
0
2
2
)
1
4
9

Combine with part 1 of Theorem 2, part 1 of Theorem 1 is proven. The proof of part 2
is similar.

To prove part 3, it remains to show that the denominator of (C.42) is a monomially
tamed function. This follows from part 2 of Theorem 1. Let us consider B2(w1(ϕ) ∧ · · · ∧
wn(ϕ)). Using the definition (C.36), we have

B2(w1(ϕ) ∧ · · · ∧ wn(ϕ)) = det(B(wi(ϕ), wj(ϕ))) . (C.46)

Let the angle between wi(ϕ) and wj(ϕ) be θij , and it satisfies the usual relation to the
inner product

B(wi(ϕ), wj(ϕ))2 = B2(wi(ϕ))B2(wj(ϕ)) cos2 θij . (C.47)

Note that 0 ≤ cos2 θij < 1 is always true as wi(ϕ) form a basis of VC. Next we expand the
determinant in (C.46) and plug (C.47) into it. We get

det(B(wi(ϕ), wj(ϕ))) =
∑
σ

(−1)σB(w1(ϕ), wσ(1)(ϕ)) · · ·B(wi(ϕ), wσ(i)(ϕ)) (C.48)

=
(
B2 (w1 (ϕ)) · · ·B2 (wi (ϕ))

)
(1 + · · · ) , (C.49)

where σ runs over all permutations of (1, 2, . . . , i), and the omitted part in the second line
consists of a summation of various | cos θij |, and is always bounded by a positive constant.
The second equality is based on the observation that each index appears exactly twice in
each term. In summary, we have shown that, using (C.39) and (C.32),

B2(w1(ϕ) ∧ · · · ∧ wn(ϕ)) ∝ B2(w1(ϕ)) · · ·B2(wi(ϕ)) ∝ ‖γ(ϕ)w1‖2z · · · ‖γ(ϕ)wi‖2z . (C.50)

And using part 2 of Theorem 1, this quantity is monomially tamed. Finally, by (C.42),
part 3 of Theorem 1 is proven.

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited. SCOAP3 supports
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