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1 Introduction and a conjecture

In recent years the search for general principles restricting the form of any effective theories
that can be consistently coupled to quantum gravity has attracted much attention [1, 2].
These principles have been formulated in a number of quantum gravity or ‘swampland’
conjectures. They aim to discriminate consistent effective theories that are part of the
landscape, from those that are fundamentally flawed and reside in the swampland. One
of such principles is the claim that the number of effective theories that are valid below a
fixed cut-off scale that are consistent with quantum gravity is finite [3–5]. The finiteness of
effective theories implies constraints on the allowed scalar potentials and the scalar field
spaces on which the effective theory is valid, since a new effective theory can arise when
lowering the energy scale and settling in a new vacuum. Despite the fact that this clearly
restricts valid effective theories, it has not been clear how to turn this into a structural
principle. The aim of this work is to introduce a mathematical structure –a tame geometry-
and argue that it provides a concrete way to implement finiteness constraints on the set
of consistent effective theories. Furthermore, we conjecture that it should be used as a
novel general principle to constrain field spaces and coupling functions of UV-completable
effective theories.

In this paper we will give a novel perspective on the set of consistent effective theories
by claiming that the landscape admits a certain well-defined geometric structure. More
precisely, we will propose a Tameness Conjecture that constrains the set of all effective
theories that are valid up to some fixed finite energy cut-off scale and can be consistently
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coupled to quantum gravity. This conjecture states that all such theories are labelled by
a parameter space that is definable in a so-called o-minimal structure. Furthermore, it
claims that also the scalar field spaces and coupling functions, which might depend on these
parameters, are definable in the same o-minimal structure. O-minimal structures implement
finiteness on a fundamental level and are the prime example of a topologie modérée, a
tame topology, envisioned by Grothendieck [6].1 Grothendieck’s vision was to develop
a topology for geometers that excludes pathological situations that can arise in classical
topology. Notably, o-minimal structures can be defined over the real numbers and provide
an extension of real algebraic geometry while keeping some of its powerful results intact.
They thus provide us with a framework to leave the world of complex geometry, which
is often only occurring in effective theories due to the presence of supersymmetry, while
setting a completely new focus on finiteness and tameness. It is interesting to highlight that
the original interest on o-minimal structures arose from model theory, which is a part of
mathematical logic that studies the relationship between formal theories and their models.
By now, however, these structures have found applications in several fields of mathematics
reaching from number theory to geometry.

The basic strategy in defining a tame topology based on o-minimal structures [7] is
to specify the space of allowed subsets of Rn, for every n. On this space of ‘tame sets’,
also called definable sets, one can then define ‘tame functions’, which are termed definable
functions. Hereby one always means that these sets and functions are defined with respect
to a specified o-minimal structure. The fundamental tameness property of each o-minimal
structure is the fact that the only definable sets in one real dimension are the finite union of
points and intervals. This property becomes powerful when combined with the requirement
that all linear projections of higher-dimensional sets eventually reduce to sets of this type
on the real line. Tame topology hereby treats a connected set of infinitely many points,
such as an interval or the full real line, as a single object. While the simplest example of an
o-minimal structure is formed by collecting sets that are defined by polynomial equalities
and inequalities, the existence of much richer o-minimal structures will be central in this
work. Firstly, it is a remarkable mathematical fact that extensions exist in which the sets
can be defined by also using transcendental functions. In particular, an important result
of Wilkie [8], which states that adding the real exponential function does not violate the
tameness axioms, has allowed mathematicians to use o-minimal structures in a wide set
of geometric applications, such as the Hodge theory application that we will exploit in
this work. Secondly, it is apparent that such extensions are needed to describe well-known
physical settings since many effective theories cannot be described by purely algebraic data.
In particular, instanton corrections to coupling functions should be consistent with the
Tameness Conjecture and hence describable within tame geometry. It is interesting that
o-minimal structures are, on the one hand, rich enough for many applications, while on the
other hand they possess strong finiteness constraints.2

1Grothendieck’s original motivation for introducing a new form of topology stems from the study of
moduli spaces of Riemann surfaces and maps between them.

2Note that in [9] a geometric framework, which was called ‘domestic geometry’, was introduced to describe
certain UV-completable effective theories. It would be interesting to investigate the relation of this proposal
to the tame geometry used here.
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To provide evidence for the Tameness Conjecture, we will have a detailed look at some
of the well-understood effective actions derived from string theory. String theory has only
one free parameter, the string length, and the ten-dimensional effective supergravity actions
admit simple scalar field spaces for the arising massless scalars. At the two-derivative
level the Tameness Conjecture is readily shown in these highly supersymmetric settings.
However, if we consider the theories on a compact manifold, it is well-known that a plethora
of effective theories will arise in less than ten dimensions. The scalar field spaces of these
effective theories can be very involved and numerous new parameters arise from the geometry
of the compactification space and possible backgrounds for the other fields of the higher-
dimensional theory, such as background fluxes. It turns out that in theories with more than
8 supercharges, supersymmetry together with some simple-to-state finiteness conditions
already ensures that the Tameness Conjecture holds. We will argue that this conclusion
requires us to use some recent mathematical results about the tameness of double cosets,
i.e. arithmetic quotients of the formMΓ,G,K = Γ\G/K. The Tameness Conjecture is then
satisfied if the free parameter choices, e.g. labelling the allowed groups G and Γ, are finite.
Showing finiteness statements of this type is the aim of much current research [10–22].

When reducing the amount of supersymmetry, the Tameness Conjecture provides a
more independent criterium from this symmetry, since one can find field spaces and coupling
functions that are compatible with supergravity but are not tame. Nevertheless, we will
show that in some of the best understood string compactifications we only encounter field
spaces and coupling functions that are definable in an o-minimal structure. More precisely,
we will look at compactifications of Type II string theory on Calabi-Yau threefolds leading
to four-dimensional effective theories with N = 2 supersymmetry. In these cases the field
spaces are built from the moduli spaces of the compact geometry and we will argue that these
admit a tame geometry. Moreover, we will introduce a recent foundational result of Bakker,
Klingler, Tsimerman [23] that shows that the period mapping is definable in an o-minimal
structure denoted by Ran,exp. We use this result to argue that at least in the vector sector of
N = 2 actions arising from Calabi-Yau compactifications the scalar field space metric and
gauge coupling function are definable. This provides a very non-trivial test of the Tameness
Conjecture if one makes a choice for the topology of the Calabi-Yau manifold. Picking
different topologies should be viewed as picking different discrete parameters of the effective
theory and the Tameness Conjecture asserts that there are only finitely many such choices.

It is a central statement of the Tameness Conjecture that all viable scalar potentials
are definable in an o-minimal structure. This statement ensures finiteness when lowering
the cut-off scale of the theory further. Indeed, if after lowering the cut-off some of the fields
are too heavy and need to be integrated out, tameness of the original scalar potential will
ensure that the resulting new low-energy scalar field space is also definable in an o-minimal
structure. In the last part of this work we will provide evidence for this property of the
scalar potential in flux compactifications of Type IIB string theory and F-theory reviewed
in [24–26]. These compactifications yield a well-understood class of effective theories with
N = 1 supersymmetry that admit a positive definite scalar potential solely induced by
background fluxes. The Minkowski vacua of this potential arise if the fields adjust such
that the fluxes become (imaginary) self-dual. These vacua admit well-defined lifts to higher
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dimensions and we expect the effective theory with N = 1 or N = 0 obtained when
integrating out the massive scalar field to be well-behaved. We will argue that the flux
scalar potential is definable in the o-minimal structure Ran,exp following [23] for fixed fluxes.
In this setting, however, we can go further and treat the fluxes as discrete parameters.
Definability is retained if the fluxes satisfy the tadpole cancellation condition and we
consider the potential sufficiently close to a Minkowski vacuum. This will follow from a
result of Bakker, Schnell, Tsimerman, and the author [27], which states that the locus of
self-dual fluxes is definable in the o-minimal structure Ran,exp. We will briefly summarize
the argument and explain how it shows the finiteness of flux choices. Evidence for such
a finiteness result has appeared previously in [28–34]. The theorem of [27] generalizes a
famous theorem of Cattani, Deligne, Kaplan [35] proving the finiteness of Hodge classes
satisfying a ‘tadpole cancellation condition’.

Let us close by stating the Tameness Conjecture in a weak and a strong form, where the
latter specifies an o-minimal structure that suffices in all considered string theory examples:

- Tameness Conjecture: all effective theories valid below a fixed finite energy cut-off
scale that can be consistently coupled to quantum gravity are labelled by a definable
parameter space and must have scalar field spaces and coupling functions that are
definable in an o-minimal structure.

- Strong Tameness Conjecture: the o-minimal structure that makes the effective
theory definable is Ran,exp.

This paper is organized as follows. In section 2 we explain in more detail which aspects
of an effective theory we are considering in this work. In particular, we introduce the
relevant notion of parameter space, scalar field space, the coupling functions of an effective
theory. We then comment on various effective theories arising in string compactifications
and highlight additional challenges that need to be faced when a scalar potential is present.
In section 3 we then give a lightning introduction to o-minimal structures and tame topology
with a focus on some of the foundational results. This will help to clarify the statement of
the Tameness Conjecture and provide the background for the more advanced results used
in the third part of this work. In fact, in section 4 we will introduce the evidence for the
Tameness Conjecture, by discussing various string theory compactifications. In particular,
we will also sketch the argument that the flux scalar potential is a tame function and that
there are only finitely many self-dual fluxes.

2 On effective theories and their coupling functions

The Tameness Conjecture claims that the scalar field spaces and coupling functions in any
effective theory that can be consistently coupled to quantum gravity are definable in a tame
geometry introduced in section 3. To make this more concrete let us consider a set of scalar
fields φi and gauge fields AC coupled to Einstein gravity. In addition to these fields, the
effective theory can also contain other fields, such as fermions or higher-form fields, but we
will not display them in the following. Then the Lagrangian of the effective theory then
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schematically takes the form

L = R− gij(φ, λ) Dµφ
iDµφj − fAB(φ, λ) FAµνFB µν − V (φ, λ) + . . . , (2.1)

where V is the scalar potential of the theory. Let us denote byMλ the field space spanned
by the φi with metric gij . In general, the coupling functions gij , fAB, V, . . . will vary over
Mλ. In addition, we will allow for the field spaceMλ and the coupling functions to depend
on a set of parameters λα, which we consider to be part of a parameter space P. These
parameters can be vacuum expectation values of fields that have been integrated out, or they
can be discrete parameters. Hence, the space P does not have to be a smooth manifold, but
rather can be just some general set. The Tameness Conjecture both restricts the geometry
of the set

D =
{(
φi, λα

)
, φ ∈Mλ, λ ∈ P

}
(2.2)

as well as the behavior of the coupling functions, such as gij , fAB, V . The crucial point
is here, that we view these coupling functions as maps valued on D with a set of special
tameness properties introduced in section 3.

In this section we recall some effective theories arising in compactifications of string
theory. This will allow us to highlight some necessary requirements on the geometry of the
Tameness Conjecture that need to be satisfied in order that it is general enough to apply to
well-understood examples. Clearly, our discussion will not be exhaustive and should only be
seen as a motivation for the structures introduced later. In a first step, we will concentrate
on theories without scalar potential in subsection 2.1. We discuss the inclusion of a scalar
potential in subsection 2.2 and point out some additional complications arising in this case.
The reader familiar with string compactifications does not need to spend much time on
this section.

2.1 On scalar field spaces and coupling functions in string compactifications

String theory is originally formulated in ten space-time dimensions. We note that already
in ten dimensions all five string theories have massless scalar fields. In particular, Type
IIB string theory has a complex scalar τ , the dilaton-axion that takes values on a field
space SL(2,Z)\SL(2,R)/SO(2). This space is non-compact, but admits a complex algebraic
structure. While this space has much structure, it turns out that this is not a general feature
of the field spaces arising in string theory, but rather a remnant of supersymmetry. In
particular, the complex algebraic structure is not necessarily present when looking at string
compactifications. To see this, recall that the moduli space of a torus T d is the arithmetic
quotient, sometimes called double coset, SO(d, d; Z)\SO(d, d; R)/SO(d) × SO(d). Purely
for dimensional reasons this space is not always complex. The fact that such arithmetic
quotients arise as field spaces can be tied to the presence of some supersymmetry in the
effective theory. In fact, for more than 8 supercharges, the field spaces take the general form

MΓ,G,K = Γ\G/K , (2.3)
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where Γ is a lattice and K is a maximal compact subgroup of G.3 In these supersymmetric
theories also the coupling functions take a particularly simple form. Roughly speaking these
functions can always expressed as (quotients of) polynomials in a suitable set of coordinates
on the field spaceM. This simple form is compatible with the fact that instanton corrections
are often forbidden by supersymmetry.

More involved examples of field spaces and coupling functions arise when compactifying
string theory on a Calabi-Yau threefold such that the resulting four-dimensional theory
has 8 supercharges or less. If one insists that the Calabi-Yau condition is preserved then
the deformation spaces of these spaces split into complex structure and Kähler structure
deformations. In the following we will review some facts about the complex structure
moduli space Mcs, keeping in mind that the geometry of the Kähler structure moduli
space is a special case of this more general discussion after using mirror symmetry. For
polarized Calabi-Yau threefolds Y3 the moduli spaceMcs is quasi-projective [36] and non-
compact. It has complex dimension h2,1 = dimH2,1(Y3) and we will use local coordinates
zi, i = 1, . . . , h2,1 in the following. The natural metric onMcs that arises in string theory
effective actions is the so-called Weil-Petersson metric gī. This metric is Kähler and can be
derived from a Kähler potential K = − log iΠ̄IηIJΠJ . Here ηIJ = γI ∩ γJ is the intersection
matrix of a basis of three-cycles γI and we have abbreviated

ΠI(z) =
∫
γI

Ω . (2.4)

These integrals are known as period integrals, or periods for short, of the, up to rescaling,
unique (3, 0)-form Ω. The resulting metric takes the form

gī = ∂zi∂z̄jK =
ηIJ

(
DiΠI

) (
DjΠJ

)
ηKLΠKΠ̄L

, (2.5)

where DiΠI = (∂zi + ∂ziK) ΠI .
The periods also determine some of the other couplings of the effective theory. For

example, consider Type IIB string theory on Y3. In the four-dimensional effective theory
arising after compactification also the gauge coupling functions fAB for the R-R U(1)s can
be expressed in terms of the periods Π. To explicitly give fAB , we first need to introduce a
symplectic homology basis γI = (γA, γ̃B , such that γA∩γB = γ̃A∩ γ̃B = 0 and γA∩ γ̃B = δAB .
This allows us to split Π = (ΠA,ΠB) and the N = 2 gauge coupling function is then given by

fAB =
(
ΠA, DjΠA

) (
ΠB, DjΠB

)−1
. (2.6)

Hence, in order that the Tameness Conjecture for coupling functions can possibly be true,
it has to hold at least for the couplings (2.5) and (2.6) derived from the period map.

The periods ΠI are holomorphic but, in general, complicated transcendental functions.
However, it is known from the work of Schmid [37] that in a sufficiently small neighbourhood

3For later purposes, we will require that G = G(R)+ is the real Lie group connected component of the
identity of G(R), where G(R) is the real version of a connected linear semi-simple algebraic Q-group G(Q).
The discrete group Γ ⊂ G(Q)+ is assumed to be a torsion-free arithmetic lattice.
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near every boundary ofMcs they admit an expansion that splits them into a polynomial
plus exponentially suppressed part. Let us pick coordinates tα, ζa, such that the considered
boundary is at tα = i∞ and ζa finite. Then one can expand4

Π = et
iNi

(
a0 +

∑
ri

e2πritiar1,...,rn

)
, (2.7)

where the Ni are nilpotent matrices and the coefficients a• can still vary holomorphically
with ζa. Focusing on the behaviour in the ti, this implies that the metric gij will in
general involve finitely many polynomial terms as well as a host of exponentially suppressed
corrections. This rather constrained behaviour in the asymptotic, non-compact directions,
will reappear in a much more general way in the tame geometry introduced in section 3.
In fact, it will turn out to be one of the hallmarks of tameness that only a certain set of
functions can arise on such non-compact tails. Before explaining this in detail, let us discuss
some further issues that arise when one includes a scalar potential.

2.2 Scalar potentials and the challenges to implement finiteness

An additional challenge in understanding the structure of the landscape of the effective
theories arises when one includes a potential for the fields, since then a cut-off dependence
is apparent. To make this clearer, let us consider an effective theory with a cut-off Λ. For
simplicity, we will only discuss bosonic scalars φi in the following and focus on the scalar
potential V (φ, λ). The scalar potentials varies over D defined in (2.2), where Mλ is the
field space and P is a space of parameters. The notion of effective potential andMλ will
change when lowering the cut-off, say to Λ̂ < Λ. In this case some of the φi might have
masses above this scale and have to be integrated out. Classically, this can be done by
solving the vacuum conditions ∂φkV = 0 for the massive fields. Clearly, there might be
several solutions to this equation and, depending on our choice of solutions, we end up
with a different effective theory. The field spaceM(Λ) can thus reduce toM(Λ̂) = ∪αMα,
whereMα is the field space associated to the αth effective theory. To each of these theories
a parameter space Pα can appear, which now might include the vacuum expectation values
of the fields that have been integrated out. Note that if we continue lowering the cut-off,
eventually only the massless fields with a moduli space will remain and the effective theories
will not have any potential.

The Tameness Conjecture claims that there is a constraint on allowed scalar potentials.
It was motivated by the aim to implement finiteness of effective theories below a certain
cut-off. Hence, we can again highlight some of the necessary properties of the tame geometry
such that this is actually achieved. In fact, finiteness is to demand that for every viable
M and V (φ) only finitely many Mα can arise when lowering the cut-off. In particular,
this implies that the scalar potential has only finitely many minima. It is easy to think of
functions that violate such a condition. Clearly, some periodic function such as sin(φ) has
infinitely many vacua distributed over the real line, but we can also accumulate vacua near

4Note that this requires us to work on the universal cover of the local boundary neighbourhood.
Furthermore, we allow so-called base changes tα → (tα)n to reach the general form (2.7).
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φ = 0, by considering

V (φ) = sin
(
φ−1

)
, V (φ) = φ8sin

(
φ−1

)
. (2.8)

As discussed in [4], these functions appear to be not very special and, at first, it seems very
hard to state a principle that excludes these choices as viable scalar potentials.5 However,
the tame geometry introduced in section 3 actually gives precisely such a restriction. This
then implies that potentials of the form (2.8) should not appear in string compactifications.

One of the best understood string theory compactifications that leads to a four-
dimensional effective theory with minimal supersymmetry are Type IIB orientifold compact-
ifications with O3/O7-planes and a flux background [24, 25, 38, 39]. The compactification
space is, up to a conformal factor, a Calabi-Yau threefold Y3 supplemented by an orientifold
involution. Before including background fluxes the complex structure deformations of
Y3 that are compatible with the orientifold involution are flat directions of the effective
theory, i.e. they do not receive a mass through a classical potential. This changes when
including background fluxes H3, F3 ∈ H3

−(Y3,Z), which are non-trivial background values
of the field-strengths of the NS-NS and R-R two-forms of Type IIB string theory that
are compatible with the orientifold involution. These fluxes are constrained by a tadpole
cancellation condition

∫
Y3
F3 ∧ H3 = Nb, where Nb can be derived when studying the

background source terms for D-branes and O-planes that are included in the setting. Nb is
a fixed integer number independent of the fluxes. The resulting scalar potential can then
be given in terms of G3 = F3 − τH3, where τ is the dilaton-axion of Type IIB string theory.
It takes the form

V (z, τ,G3) = c

8 Imτ

∫
Y3

(
Ḡ3 − i ? Ḡ3

)
∧ ? (G3 + i ? G3) , (2.9)

where the coefficient c can depend on the volume of Y3, which will be irrelevant in this section.
This scalar potential non-trivially depends on τ and the complex structure deformation
inMcs compatible with the orientifold involution. We have indicated this dependence by
introducing complex scalar fields zi as local coordinates onMcs. Compared with our general
discussion after (2.1), we thus have a field spaceM containing SL(2,Z)\SL(2,R)/SO(2)×
Mcs and a parameter space containing the flux lattice H3

−(Y3,Z)×H3
−(Y3,Z).

We now note that the scalar potential can be written as a norm-square of the complex
flux iG3 − ?G3 when introducing the Hodge norm

‖ω‖2 =
∫
Y3
ω̄ ∧ ?ω > 0 , (2.10)

which is non-vanishing for a non-trivial element ω ∈ H3(Y3,C). Hence, we find that
V (z, τ,G3) ≥ 0 and global minima of this potential are obtained when6

V (z, τ,G3) = 0 ⇔ ?G3 = iG3 . (2.11)
5A physical proposal was made in [4], where it was suggested that one should revise the notion of vacuum

taking into account tunneling and heights of barriers between vacua.
6Note that the condition ?G3 = iG3 should be read as condition in the cohomology group H3(Y3,C).
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Recalling the aim of establishing finiteness properties, we might thus ask if the number of
‘distinct’ solutions of (2.11) is finite if one is allowed to also chose the fluxes H3, F3 that
satisfy the tadpole bound. Here we count different flux choices and different connected
components Mα ⊂ Mcs, which means that there could be flat directions that are not
stabilized by (2.11). As we will explain below it is, in fact, true that the number of solutions
is finite. In other words, the Hodge star as a function on complex structure moduli space
Mcs must be special and, in particular, potentials that are similar to the ones appearing
in (2.8) should not occur.

Let us note that one might wonder if the restriction to a weakly coupled orientifold
setting is relevant for finiteness. In the above expressions one actually has to assume Imτ � 1,
since the string coupling gs is related to the vacuum expectation value 〈Imτ〉 = g−1

s . In order
to extend to all values of τ it is best to realize the orientifold setting directly in F-theory.
The compactification geometry in this case is an elliptically fibered Calabi-Yau fourfold
Y4 and τ becomes part of the complex structure moduli space of this higher-dimensional
geometry. Furthermore, the fluxes F3, H3 lift to a single four-form flux G4. The scalar
potential in this case takes the form7

V = c‖G4 − ?G4‖2 , (2.12)

where c is independent of G4 and the complex structure moduli of Y4. We again look at the
global minima of this potential and note that G4 is constrained by a tadpole cancellation
condition. To focus on the complex structure moduli dependence of (2.12), we impose the
primitivity condition J ∧G4 = 0, where J is the Kähler form. Restricting to such primitive
G4 ∈ H4

prim(Y4,R), we then look in F-theory at the solutions of the conditions

G4 ∈ H4(Y4,Z) , ?G4 = G4 ,

∫
Y4
G4 ∧G4 = N ′b , (2.13)

where N ′b is again a fixed integer number. The finiteness claim now concerns the solu-
tions to (2.13) and states that this equation is solved only along finitely many connected
componentsMα in the complex structure moduli space of the fourfold Y4 together with
finitely many different fluxes Gα4 . Formulated as a condition on V (z,G4), we would like to
check that this potential has only finitely many zero-loci. As in the orientifold setting this
implies that V is a special function. In the next section we will introduce the mathematical
framework that allows us to make this more precise.

3 A brief introduction to tame geometry

In this section we give a lightning introduction to the theory of o-minimal structures
that define a form of tame topology of Rn. This topology is more constrained, but can
nevertheless be used to introduce manifolds, morphisms, and many other objects familiar
when defined using ‘ordinary’ topology of Rn. The resulting tame geometry is the base of

7We recall here that the computation of this potential is done via M-theory and a subsequent lift to
F-theory [26, 40]. The M-theory solution and three-dimensional effective action has been studied in detail
in [41, 42], which gives much confidence in this setting.
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finite number of points

finite number of intervals

infinitely long intervals

Figure 1. Examples of definable sets of R.

the Tameness Conjecture and implements a general notion of finiteness. An introduction
to the basics of tame topology and o-minimal structures is the book by van den Dries [7].
For a shorter summary including also some of the recent results connecting tame geometry
with Hodge theory the reader may consult the lecture notes of Bakker [43] or the brief
discussion in [27].

3.1 O-minimal structures and definable sets, functions, and manifolds

The rough idea behind the definition of an o-minimal structure S is the following. It will
contain subsets of all Rn, n = 1, 2, . . ., which will be called S-definable, or definable for short,
that give an intermediate notion between sets of solutions to finitely many real algebraic
equations and the general set of subsets of Rn. One demands that the sets contain any finite
union, finite intersection, complements, and Cartesian product of other S-definable sets.
Crucially, we also require that any linear projection of a definable set is still a definable set.
With this requirement at hand, we can implement a finiteness constraint, i.e. ensure the
tameness of the structure, by demanding that any projection to the real line always yields
an union of finitely many points or intervals. The latter can be closed or open and even
infinitely long, see figure 1.

O-minimal structures and definable sets: let us give the full definition of an o-
minimal structure. An o-minimal structure S is given by a collection Sn of subsets of Rn

with n ≥ 1 with the following properties

1. The zero-set of any polynomial P in n variables is in Sn;

2. each Sn is closed under finite intersections, finite unions, and complements;

3. if A ∈ Sn and B ∈ Sm, then A×B ∈ Sn+m;

4. if π : Rn+1 → Rn is a linear projection and A ∈ Sn+1, then π(A) ∈ Sn;

5. the set S1 consists of finite unions of points and intervals.

The elements of Sn are called the S-definable sets of Rn.

Definable maps: having introduced the notion of an o-minimal structure, we can now
define what we mean by a tame map in this setting. A map f : A → B between two
S-definable sets is called a S-definable map if its graph is an S-definable subset of A×B.
The notion of definable maps will be central in the following. For simplicity we will often
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drop the S and call the sets and maps to be definable. Some basic results for definable
maps are: (1) the image and preimage of a definable set under a definable map is definable;
(2) the composition of two definable maps is definable.

Definable topological spaces and manifolds: given these definitions we can now
proceed by defining an S-definable topological space M . In order to do that one first
introduces a definable atlas as a finite open covering {Ui} ofM and a set of homeomorphisms
φi : Ui → Vi ⊂ Rni . Definability is imposed by requiring that (1) the Vi and the pairwise
intersections φi(Ui∩Uj) are definable sets, and (2) the transition functions are definable. Such
a definable topological space can be upgraded to a S-definable manifoldM by requiring
that the Vi are open subsets of Rn and the transition functions are smooth. Complex
definable manifolds are then obtained by viewing Cn ∼= R2n and requiring the transition
functions to be holomorphic. We can now develop this further and introduce definable
subsets, definable morphisms, definable analytic spaces etc. The reader can consult [7] for
further details. More important for the purpose of this work is to highlight in subsection 3.2
some of the implications that follow from imposing S-definability. Before doing that it is
crucial to give actual examples of o-minimal structures.

Examples of o-minimal structures: note that there is no unique choice of o-minimal
structure S of Rn. The simplest example is the smallest structure that contains all the
algebraic sets. It is given by collecting all semi-algebraic subsets of Rn and will be denoted
by Ralg. These sets can be defined by polynomials P (x1, . . . , xn) = 0 and polynomial
inequalities P (x1, . . . , xn) > 0, in n variables, together with their finite unions. There
are, however, various notable extensions of the smallest o-minimal structure Ralg that are
relevant in the following:

(A): An o-minimal structure, denoted by Rexp, is generated by Ralg and the graph of the real
exponential exp: R→ R as shown in [8]. This implies that this structure is generated
by all sets given by exponential polynomial equations P (x1, . . . , xm, e

x1 , . . . , exm) = 0
and projections thereof.

(B): An o-minimal structure, denoted by Ran, is generated by Ralg extended by the graphs
of all restricted real analytic functions. Such functions are all restrictions f |B(R) of
functions f that are real analytic on a ball B(R′) of finite radius R′ to a ball B(R) of
strictly smaller radius R < R′.

(C): An o-minimal structure, denoted by Ran,exp, is generated by Ralg extended by the
graphs of the exponential function and all restricted real analytic functions.

Let us stress that it is a non-trivial task to find extensions of Ralg that preserve o-minimality
and Wilkie’s deep theorem that Rexp is o-minimal is an example of this fact. However, it
will be clear from the concrete applications to string theory effective actions that these
extensions are crucially needed. In fact, we will see that we will be quickly led to use the
o-minimal structure Ran,exp as soon as exponential corrections, e.g. arising from instantons,
play a role. For this reason the Tameness Conjecture is referring to Ran,exp.8

8Note that there are several other known extensions of Ralg.
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infinite, discrete zero-set
0 a

Figure 2. Graph of cosine function on R is non-definable set, but becomes definable when restricted
to domain 0 ≤ φ ≤ a.

Complex exponential function: to further highlight the relevance of Ran,exp, let us
briefly discuss the complex exponential ez : C → C. Firstly, note that this function with
domain C is never definable. This follows from the general fact that any definable and
holomorphic function f : Cn → C has to be algebraic [7]. A more direct way to see that ez
is never definable on C is to write ez = er+iφ = er(cosφ+ i sinφ). However, the graph of the
sine- and cosine-functions on all of R, cannot be definable, since the projection to the φ-axis
gives an infinite discrete set of zeros (see figure 2). To make ez definable, we first have to
restrict the domain of z, say by demanding 0 ≤ φ ≤ a. This resolves the issue of periodicity
since cos(φ) is definable in Ran, when restricting the domain if φ. er is, however, not in Ran
and we are thus lead to consider Ran,exp to have a definable ez on the domain 0 ≤ φ ≤ a.

Functions not definable in Ran,exp: as shown for the complex exponential, definability
depends on the domain on which one considers a function. In the following we list a number
of functions and domains, which have been shown in [44] to be not definable in Ran,exp.
Firstly, we have the non-definability of the Gamma-function and Zeta-function

Γ(x) =
∫ ∞

0
e−ttx−1dt , ζ(x) =

∞∑
n=1

1
nx

, (3.1)

when restricting the domain to (0,∞) and (1,∞), respectively. Secondly, also the error
function

∫ x
0 e
−t2dt and the logarithmic integral

∫∞
x t−1e−tdt are not definable in Ran,exp for

x ∈ R. It should be noted, however, that there can be cases in which an o-minimal structure
exists that make these functions definable. This has been shown for Γ(x), ζ(x) in [45].

3.2 On definable functions and the cell decomposition

In the following we want to summarize some basic results about S-definable functions
and S-definable sets [7]. As above we will drop the symbol S if the statement is true
for any o-minimal structure, but reintroduce it when making statements concerning a
special structure.

Definable functions in one dimension: let us begin by considering a definable function
f : (a, b)→ R. The open interval (a, b) ⊂ R can be of finite or infinite size, including the
whole R. Definability of f implies [7] that (a, b) admits a finite subdivision, i.e. a split

a =: a0 < a1 < . . . < am−1 < am := b , (3.2)
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a1 a2 a3 a4

Figure 3. Sketch of the graph of a definable function from R→ R and the split of the domain into
finitely many open intervals.

with the property that f on the intervals (ak, ak+1) is either constant or strictly monotonic
and continuous. In particular, this implies that f can only have finitely many discontinuities.
One can even go one step further and show that there always exists a finite (possibly finer)
decomposition of (a, b), such that f is once (or even multiple times) differentiable on the
resulting open intervals. It also follows that f can only admit finitely many minima and
maxima. We depict a definable function in figure 3.

Let us note that the notion of having a definable function has both local as well as
global implications. To highlight one other implication let us now consider the o-minimal
structure Ran,exp. If we consider a definable function in this o-minimal structure f : R→ R,
we realize that for each such function there will be two infinitely long intervals (−∞, a1) and
(am−1,∞) along which the function is either constant or continuous and strictly monotonic.
Since Ran,exp only offers restricted analytic functions, they will actually not be relevant
in some appropriately chosen subintervals (−∞, ã1) and (ãm−1,∞). This implies that
in these ‘asymptotic regions’ of R the definable functions have either an algebraic or an
exponential behavior.

Definable cylindrical cell decomposition: the use of the decomposition (3.2) of the
interval (a, b) hints towards a more general strategy that applies to dealing with definable
sets and functions. More precisely, we will now introduce a definable cylindrical cell
decomposition of Rn. The following discussion might, at first, look rather technical and can
be skipped in first reading. However, eventually the resulting description of definable sets
is the base of many subsequent theorems in the study of o-minimal structures and gives
an intuitive understanding about the properties of higher-dimensional definable sets and
functions. To describe a definable cylindrical cell decomposition, we first note that it is a
partition of Rn = ∪iDi into finitely many pairwise disjoint definable subsets Di, which are
called cells. The crucial part is that these cells have special inductive description:

• For n = 0, i.e. R0, there is a unique cell, which is simply all of R0, i.e. a point.

• For n = 1, i.e. R, the cells are obtained by a decomposition (3.2) of the interval
(−∞,∞). They consist of the points {ak} for 0 < k < m, and the open intervals
(ak, ak+1) for 0 ≤ k < m. We depict such a decomposition in figure 4.

• In general, for n > 0, we write Rn = Rn−1 × R. Now we can assume that we have a
definable cylindrical cell decomposition {Dα} for Rn−1. For each cell Dα we now have
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a1 a2 a3 a4
Figure 4. A definable cylindrical cell decomposition of R.

an integer mα > 0 and definable continuous functions f (α)
k : Dα → R for 0 < k < mα

such that
−∞ =: f (α)

0 < f
(α)
1 < . . . < f

(α)
mα−1 < f (α)

mα :=∞ , (3.3)

where the inequalities are meant to hold on all of Dα. Having such a set of functions
the cells in Rn are:
(1) graphs of the functions, i.e.{(

x, f
(α)
k (x)

)
⊂ Rn : x ∈ Dα

}
for each Dα ;

(2) bands between the functions, i.e.{
(x, y) ⊂ Rn : x ∈ Dα, y in interval

(
f

(α)
k (x), f (α)

k+1(x)
)}

.

Due to its iterative nature, the definition of a definable cylindrical cell decomposition uses
an ordering of the coordinates. The arising cells are thus admitting special directions along
which there is a simple projection to a low-dimensional cell decomposition. We illustrate
this in figure 5, where we depict a definable cylindrical cell decomposition of R2 build from
the decomposition of R depicted in figure 4.

Cell decomposition theorem: the remarkable fact about the cell decomposition is that
they are sufficient to describe any definable set. In fact, one can show the cell decomposition
theorem: (1) Given any finite collection of definable sets A1, . . . , Ak ∈ Rn there is a definable
cylindrical cell decomposition such that each Ai is a finite union of cells; (2) For each
definable function f : A → R, A ⊂ Rn there is a cylindrical cell decomposition of Rn

such that partitions A as in (1) in such a way that f restricted to each cell is continuous.
This theorem can be further refined by replacing the requirement of having continuous
functions in the definition of the cells by having functions that are once (or multiple times)
differentiable. In this case the cells might be smaller, but the cell decomposition theorem
still holds.

Dimension and Euler characteristic: the cell decomposition theorem has many ap-
plications. For example, it can be used to show that one can associate a dimension and an
Euler characteristic to each definable set. Let us consider a definable set A and denote by
Di the finite number of cells in which it can be partitioned using the cell decomposition
theorem. The dimension dim(A) of A is simply defined to be maximum found for the
dimensions dim(Di) of the cells Di. The Euler characteristic is defined to be

E(A) =
∑
Di

(−1)dim(Di) = k0 − k1 + . . .+ (−1)dim(A)kdim(A) , (3.4)

where ks is the number of s-dimensional cells in {Di}. Crucially, the values of dim(A) and
E(A) are independent of the chosen cell decomposition and hence can serve as invariants
associated to the definable set A.
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a1 a2 a3 a4

Figure 5. A definable cylindrical cell decomposition of R2 build from the decomposition in figure 4.
The new R2-cells are graphs and bands of definable functions on the R-cells. The new cells over
the open intervals (a1, a2), . . . , (a3, a4) are shown in purple, while the new cells over the points
a1, . . . , a4 are shown in green. We have coloured all cells stretching to ±∞ in grey.

Definable family and uniform boundedness: in the concrete applications to effective
theories, the notion of having a definable family of sets will be useful. To define such a
family we consider a definable set S ⊂ Rm+n = Rm × Rn. We then introduce the subsets
Sλ ⊂ Rn by setting

Sλ = {x ∈ Rn : (λ, x) ∈ S} . (3.5)

The sets Sλ are the fibers of the definable family {Sλ}λ∈Rm .9 Note that the definable
family is defined over all of Rm, but will have empty fibers at points that do not lie in the
projection of S to Rm. The cell decomposition theorem can now be used to prove uniform
boundedness results for definable families. For example, consider a definable family Sλ.
Then there exists a positive integer m, such that Sλ has at most m isolated points. In
particular, each fiber containing only a finite number of points has at most m such points.

Definability in an o-minimal structure has found numerous applications in geometry. In
particular, it is interesting to point out that ‘definability’ has been used in various theorems
as a replacement of stronger properties of geometric spaces in algebraic geometry. To quote
two influential theorems in which definability replaces compactness, let us mention the
definable Chow theorem [46] and the Pila-Wilkie theorem [47].

This ends our brief account on o-minimal structures and tame geometry. It is important
to stress that this is a broad and well-developed field and the preceding summary should be
seen more as an invitation to the field rather than aiming at giving a complete account.

9Note that in tame topology one often calls Rm the parameter space of the definable family. This is in
conflict with what we called parameter space P in (2.2) and we will reserve the name for P.
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4 Tame geometry of the string landscape

In this section we discuss the evidence for the validity of the Tameness Conjecture. Before
doing so, we want to use the mathematical background introduced in section 3 to elaborate
on the statement of the conjecture itself.

The Tameness Conjecture makes the assertion that the allowed parameter spaces, scalar
field spaces, and coupling functions are definable in an o-minimal structure. While at first
this statement deals with very different objects, we now realize from subsection 3.1 that we
should understand the parameter space P, and the field spacesMλ as subsets of Rn and
Rm for sufficiently large n and m, respectively. The coupling functions we then understand
as maps from these subsets into suitable target spaces that are also embedded into some
real Euclidean ambient space. As discussed in the beginning of section 2 the field space
Mλ can depend on the parameters chosen from P and, therefore, should be understood as
being part of the combined set D defined in (2.2), which has fibersMλ. The definability
statement now asserts that the set D, understood as a subset of Rm+n, is a definable set in
some o-minimal structure. We can also use the notion of definable family introduced in
subsection 3.2, see (3.5). The Tameness Conjecture then implies the statement:
Statement 1 The scalar field spaces {Mλ}λ∈Rn form a definable family, where
Mλ = ∅ if λ /∈ P.
If Mλ would be merely a set, a non-trivial consequence of definability is the fact that
there is a well-defined dim(Mλ) with dim(Mλ) ≤ n for all λ. This fits with our assertion
that Mλ has more structure, since it is considered to be the field space of some scalars
φi. In particular, we want to endow Mλ with a metric to define the kinetic terms of
φi. Hence, we require Mλ to be a Riemannian manifold. The definability statement
then amounts to the statement that Mλ is a definable manifold with a definable metric
g : TMλ × TMλ → R. The statement (1) can then be strengthened to: {Mλ}λ∈Rn forms
a definable family of Riemannian manifolds. We similarly proceed for the other coupling
functions in the effective theory. If a coupling function admits some additional property,
the Tameness Conjecture asserts that definability in an o-minimal structure should arise as
an additional and compatible feature.

In the remainder of this section we provide evidence for the Tameness Conjecture by
going through the various compactifications mentioned in section 2 and introduce some
recent mathematical results that confirm definability in the o-minimal structure Ran,exp. In
subsection 4.1 we comment on string theory effective actions with 8 or more supercharges
and exploit the fact that arithmetic quotients are definable manifolds and that period
mappings are definable maps. In subsection 4.2 we sketch the proof that also the Type
IIB/F-theory flux landscape is definable.

4.1 Effective theories with extended supersymmetry

In order to provide evidence for the Tameness Conjecture we will first comment on the
higher-supersymmetric settings and then turn to Calabi-Yau threefold compactifications
with N = 2 supersymmetry. The settings that we are going to discuss have been already
introduced in subsection 2.1.
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Definability in higher-supersymmetric settings. In theories with more than 8 super-
charges we recalled that the moduli spaces are arithmetic quotients (2.3). Fixing the groups
G,K and the lattice Γ, it is a central result of Bakker, Klingler, Tsimerman [23] that the
manifoldsMΓ,G,K = Γ\G/K are definable in the o-minimal structure Ralg. Remarkably, the
definable structure ofMΓ,G,K is inherited from the natural definable structure of G/K.10

This implies that the field spaces for these theories are definable also in Ran,exp containing
Ralg. Furthermore, it should then be not too hard to check that also the coupling functions
varying overMΓ,G,K are definable in Ralg due to the fact that they are given by polynomial
expressions.

More subtle is the question if MΓ,G,K and the coupling functions are also definable
when considered jointly with the parameter space P . Note that in general there are infinitely
many choices for the groups (G,K,Γ). Each choice we consider as being labelled by a
discrete parameter in the space P. Whether or not the allowed set is finite is, at least
in some of the settings, still an open question. For example, consider a six-dimensional
effective theory with N = (1, 0) supersymmetry. This theory has 8 supercharges, but the
scalar field space in the tensor and vector sector of the theory is still an arithmetic quotient
with G = SO(1, T ), where T is the number of tensor multiplets. Bounds on T and general
finiteness statements about such six-dimensional theories were recently discussed in [22].
Evidence in this direction can therefore be directly interpreted as evidence for the Tameness
Conjecture. Conversely, assuming the Tameness Conjecture a finiteness constraint on T is
a necessary criterion, since infinite discrete sets are never definable.

Definability in Calabi-Yau threefold compactifications with N = 2. Let us
now turn to the four-dimensional supergravity theory with N = 2 supersymmetry, i.e. 8
supercharges, that arise when compactifying Type IIB string theory on a Calabi-Yau
threefold. We have introduced some basics on these settings already in subsection 2.1.
Recall that supersymmetry implies that the field space spanned by the complex scalars in
the vector multiplets is a special Kähler manifold Mcs. The relevant local metric gī on
this manifold takes the form (2.5), while the gauge coupling functions fAB for the vector
fields was given in (2.6). Both can be expressed in terms of the periods Π of the (3, 0)-form
Ω introduced in (2.4). Note that supersymmetry already implies that gī and fAB can be
expressed in terms of a holomorphic function Π, but there are no general constraints on
Π that go beyond the special geometry relations (see, e.g. [48], for an introduction to this
subject). In Calabi-Yau compactifications Π is much more constrained, since it arises from
a so-called period mapping. In fact, it is a very remarkable result of Bakker, Klingler, and
Tsimerman [23] that the period mappings are definable in Ran,exp.

To introduce the precise statement we first recall some facts about Mcs and then
explain the notion of a period mapping. In preparation for the discussion of the scalar
potential in subsection 4.2 we will present the following discussion for a general Calabi-Yau
manifold of complex dimension D. For a polarized Calabi-Yau D-fold the moduli space

10Let us note that the precise statement requires us to introduce so-called Siegel sets, which takes much
technical effort. These sets can be used to specify a definable atlas of G/K. Given a Siegel set S ⊂ G/K
one can then show [23] that the map π|S : S→ SΓ,G,K is definable in Ralg.
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Mcs is complex quasi-projective [36] and smooth after possibly performing a resolution [49].
We can viewMcs as an Ran,exp-definable manifold by extending its Ralg-definable manifold
structure. To introduce the period mapping, our starting point is the Hodge decomposition
of the middle cohomology of YD. Let us thus consider the decomposition

HC =
⊕

p+q=D
Hp,q , (4.1)

where HC is the primitive part of the middle cohomology HC = HD
prim(YD,C), i.e. we impose

J ∧ ω = 0 for ω ∈ HC and J being a Kähler form on YD. Note that H3
prim(Y3) = H3(Y3),

if we require that H1(Y3) vanishes. Importantly, the decomposition (4.1) depends on the
point in Mcs at which it is evaluated. The period map h, which in turn determines the
period integrals, encodes this dependence by expressing the relation of the Hp,q at some
point z with respect to a reference point Hp,q

ref . Concretely, let us define h as

Hp,q = h(z, z̄)Hp,q
ref , (4.2)

where h can be represented by a matrix acting on fixed basis of HC. This allows us to
identify the period integrals

Π =
∫
γI

hΩref , (4.3)

where Ωref is representing the one-dimensional space HD,0
ref . We note that h becomes

holomorphic when evaluated on a suitable basis F pref = ⊕D
k=pH

k,D−k.
The map h can be understood as maps into arithmetic quotients of the form (2.3).

To see this, we first introduce two real groups V ⊂ G ⊂ Gl(HR). To define G, we first
introduce on HC the bilinear form

(a, b) ≡
∫
YD

a ∧ b , (4.4)

where a, b ∈ HC. The group G consist of all elements in Gl(HR) that preserve this bilinear
form, i.e. obey (ga, gb) = (a, b). A subgroup of G, denoted by V , is the group of elements
that additionally preserve the whole reference (p, q)-splitting, i.e. obey vHp,q

ref = Hp,q
ref . Up to

global symmetries, which we will discuss in a moment, one can use these groups to identify
h as a map h :Mcs → G/V . In order to discuss the global symmetries, note thatMcs is
not simply connected. The monodromy group Γ, being a representation of the fundamental
group of Mcs on HZ = HC ∩HD(M,Z), captures the information about the non-trivial
fibration structure of the Hodge decomposition Hp,q arising due to this fact. Hence, h
should actually be viewed as a map

h : Mcs → Γ\G/V. (4.5)

A foundational result of Bakker, Klingler, Tsimerman [23] is the theorem:

Theorem 1 The period mapping h is definable in the o-minimal structure Ran,exp.

While we will not aim at reviewing the details of the proof of this statement, a few remarks
might help to illuminate the steps that go into the argument. Firstly, as mentioned above,
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h can be viewed as a holomorphic map, just like Π. The essential part of the proof is then
to control the asymptotic behavior near the boundaries ofMcs, since we can ‘discard’ the
compact region making up the interior of the moduli space. This is due to the fact that
Ran,exp-definable functions include any restricted analytic function, which endows us with
a sufficiently large set of choices for this compact region. The fact that the asymptotic
form of h is constrained as shown by Schmid [37], see (2.7) for the analog statement for Π,
suffices to establish that h is compatible with Ran,exp-definability at least before modding
out by Γ. To show that the quotient by Γ does not ruin definability is more involved
and requires to use another important result of asymptotic Hodge theory, namely the
sl(2)-orbit theorem [37, 50].

We are now in the position to discuss the validity of the Tameness Conjecture in these
N = 2 settings using the fact 1. Since the periods Π are given by (4.3) they are also
definable in Ran,exp, at least, up to an irrelevant overall functional rescaling. This fact can
now be used in the expressions (2.5) and (2.6) for the field space metric gī and the gauge
coupling functions fαβ to establish their definability in Ran,exp overMcs. To see this we
use the fact that the derivative of a definable function is also definable and that definability
is preserved in finite sums, forming quotients, and considering inverse matrices.11 Hence,
we have assembled another non-trivial piece of evidence for the Tameness Conjecture. Let
us stress that our analysis only establishes definability over the moduli space Mcs. It is
well-known that the periods Π also depend on parameters that are fixed in terms of the
geometric data of YD. For example, Π near the large complex structure point in Mcs
depends on the topological data of the mirror Calabi-Yau manifold associated to YD, such
as its intersection numbers and Chern classes. The parameter space P therefore contains
a discrete set of data and definability would be lost if this set is infinite. In particular,
it is a consequence of the Tameness Conjecture that the number of topologically distinct
compact Calabi-Yau manifolds is finite (see [51] for a more precise notion of distinguishing
Calabi-Yau manifolds). Establishing this finiteness statement would thus be a central test
of the Tameness Conjecture. While we will not be able to address finiteness of geometries,
the next subsection will be devoted to establishing a non-trivial definability result over
another discrete parameter space, namely a flux lattice.

4.2 Definability of the flux landscape

In this subsection we discuss a definability statement that establishes the Tameness Con-
jecture being satisfied over a discrete parameter space. More precisely, we will study flux
compactifications introduced in subsection 2.2 and show that the scalar potential as a
function of the complex structure deformations and the flux parameters is definable close
to its self-dual vacuum locus (2.13). We will summarize the proof of this statement by
following the work of Bakker, Schnell, Tsimerman, and the author [27]. For simplicity, we

11The definability of derivatives is established, e.g., in [7] chapter 7. In order to see that the inverse of a
matrix A(z) with definable entries is also definable, we consider the sets {(z, x, y) : A(z)~x = ~y}. These sets
are definable since their definition just involves algebraic conditions and definable functions. The projection
axiom guarantees that definability is preserved when solving for ~x.

– 19 –



J
H
E
P
1
1
(
2
0
2
2
)
0
0
3

restrict the following arguments to a study of G4 flux on a Calabi-Yau fourfold that yields
a scalar potential (2.12).12

To begin with, we introduce in addition to (4.4) a second bi-linear form on HC =
H4

prim(Y4,C) which is associated with the Hodge norm by setting

〈a|b〉 ≡ (ā, Cb) =
∫
YD

ā ∧ ?b , (4.6)

and we denote ‖a‖2 = 〈a|a〉 as in (2.10). Here we have introduced the Weil operator C,
which is nothing else than the Hodge star acting on elements of the cohomology. Note that
C acts on elements in Hp,q with an eigenvalue (−1) 1

2 (p−q) and hence satisfies C2 = 1 for
even D and C2 = −1 for odd D. Just as the periods Π and the period mapping h, also C
will vary over the complex structure moduli spaceMcs. To describe this behavior we again
fix a reference Hodge decomposition Hp,q

ref and an associated Weil operator Cref . The Weil
operator at the point z in Mcs can be obtained from Cref by using the period mapping
introduced in the previous section by

C(z, z̄) = h−1Crefh (4.7)

but it turns out to be better to consider C(z, z̄) directly and study its properties as a map
fromMcs into some quotient space. To find this quotient we note that every Weil operator
C ′ can be obtained from Cref by acting with an element g ∈ G as C ′ = gCrefg

−1. For later
use, let us denote this operator by

Cg := gCrefg
−1 . (4.8)

Denoting by K the group elements preserving Cref we thus identify C as a map

C :Mcs → G/K . (4.9)

Here the symmetric space G/K labels all inequivalent Weil operators that can be de-
fined on HC.

Scalar potential for fixed flux. Let us now turn to the analysis of the flux scalar
potential. As a first step, we will fix the flux G4 and only consider the dependence onMcs.
In this case the argument for V being definable in Ran,exp is analog to the analysis of the
field space metric and gauge coupling function outlined in subsection 4.1. Recall that the
Hodge star in (2.12) reduces to C on cohomology classes, and hence we can write in the
notation of this section

V (z, v) = c‖Cv − v‖2 . (4.10)

As we move alongMcs the Hodge decomposition will vary and hence also the associated
Weil operator. It now follows from (4.7) and the definability of the period map 1 that13

12The theorems proved in [27] are much more general and hold for any variation of Hodge structures and
thus, in particular, for any compact Kähler manifold.

13Here one uses that if h is definable, then so is h−1 and any finite product involving these functions.
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Statement 2 The Weil operator C is definable in the o-minimal structure Ran,exp.

Since ‖ · ‖ is built using C, we readily apply 2 to conclude that

V (G4) : Mcs → R is Ran,exp-definable . (4.11)

By a generalization of the statements of subsection 3.2 one sees that it therefore has only
finitely many disconnected sets of zeros and minima. Note that this is also true if we replace
V with any definable function of C.

It is important to stress at this point that the statement (4.11) only holds when fixing
the flux G4. Since, G4 takes values on a lattice, definability as a function of the parameter
G4 will be lost if no further constraints are imposed on G4. It is not hard to see that also the
tadpole constraint (G4, G4) = ` still allows for infinitely many choices of G4 and hence does
not suffice to ensure definability. In the next step we will see, however, that V as a function
of G4 is actually definable near self-dual vacua when imposing the tadpole constraint.

Definability and self-dual fluxes. Let us now also take into account that one can
choose the fluxes G4 in the scalar potential from a lattice HZ = H4(Y4,Z) ∩H4

prim(Y4,R)
as long as they satisfy the tadpole constraint. We sketch the proof that definability is
retained in the product ofMcs and the flux lattice when considering the zeros of V (v, z)
given in (4.10). More precisely, let us introduce the Hodge bundle E with fibers HC, which
encodes the variation of the (p, q)-decomposition of HC when moving over the baseMcs.
Note that E is an algebraic bundle and hence is a definable manifold in Ralg ⊂ Ran,exp. Our
aim is to study the subsets of E at which the integral fluxes in the fibers of E satisfy the
self-duality and the tadpole condition. The statement proved in [27] is

Statement 3 The subset {(z,G4) ⊂ E with fluxes G4 s.t. C(z)G4 = G4, (G4, G4) = `} is
definable in the o-minimal structure Ran,exp.

In particular, this includes the observation that a reduction of E to this set has finite fibers.
Using the statements about definable families and uniform boundedness from subsection 3.2
one thus concludes that there are only finitely many fluxes G4 that possibly can satisfy the
self-duality and tadpole conditions.

To elucidate some of the steps that go into showing 3, let us fix a HZ not changing over
Mcs and note the all integral elements in E can be reached from this HZ up to monodromy.
Hence we want to study the sets

(Mα, G
α
4 ) ⊂Mcs ×HZ , α = 1, 2, . . . , (4.12)

by requiring

(1) (Gα4 , Gα4 ) = ` , (4.13)

(2) C (z, z̄)Gα4 = Gα4 ∀z ∈Mα , (4.14)

where no sum over α needs to be performed in (1). To obtain these sets, we pick a flux Gα
satisfying (1) and then determine all points in Mcs that are obeying (2). At first, since
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there infinitely many choices for Gα4 ∈ HZ, the index range of α is infinite. Furthermore,
alsoMα could have infinitely many disconnected components. For the second statement,
however, definability of C as stated in 2 actually ensures thatMα is Ran,exp-definable, and
hence has only finitely many connected components. We now want to show that the index
range of α is actually finite.

Let us introduce the symmetry group ΓH of the lattice HZ preserving the inner product
by setting

ΓH = O(HZ, (·, ·)) . (4.15)

Ann important step in [27] is to use this symmetry group and reduce the lattice into finitely
many orbits of ΓH along which we then are able to show definability. To do that we use a
result of Kneser [52] on lattices and bilinear forms. Let us pick a G4 ∈ HZ and act with all
elements in ΓH on G4 to define the equivalence class [G4]. Kneser now shows that the set
of fluxes G4 with a fixed (G4, G4) = ` is obtained from only finitely many such classes. In
other words, one can select finitely many fluxes

GA4 , A = 1, . . . , n : (GA4 , GA4 ) = ` , (4.16)

and generate the whole set of solutions to (G4, G4) = ` by acting with ΓH. Remarkably,
the tadpole condition thus gives us a reduction to checking definability in finitely many
orbits ΓHGA4 .

Let us fix a reference Weil operator Cref as in (4.7) and pick one flux F ∈ HZ that
obeys (F, F ) = ` and is self-dual with respect to Cref , CrefF = F . Clearly, F can be taken
to be one of the GA4 in (4.16) from which we generate a ΓH-orbit. We now want to consider
all Cg introduced in (4.8) that preserve self-duality of F , i.e. we will look at the set{

(gK,F ) : CgF = F
}
g∈G ⊂ G/K ×HZ , (4.17)

where we recall that each set gK represents a Weil operator via (4.8), since K preserves
Cref . Looking at sets (4.17) is analogous to (4.12), but we now work with sets representing
Weil operators instead of subsets ofMcs. It will be the final key step to ensure that going
from Mcs to Weil operators can be done in an Ran,exp-definable way. We note that the
equations CgF = F and (F, F ) = ` have the symmetry

Cg → kCgk
−1 , F → kF , k ∈ ΓH . (4.18)

Hence, it will suffice the think about the set ΓH(gK,F ), where the action of the group ΓH
is via α(gK, F ) = (αgK,αF ), and work on the quotient

ΓH\(G/K ×HZ) . (4.19)

Let us now consider the orbit ΓHF ⊂ HZ generated when acting with all elements of
ΓH on F . To begin with, we define the real groups GF ,KF ,ΓF as the subgroups preserving
F , i.e. we set

GF = {h ∈ G : hF = F} , KF = K ∩GF , ΓF = ΓH ∩GF . (4.20)
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Since F is self-dual with respect to Cref it is an element in GF /KF . In fact, the symmetric
space GF /KF labels all Weil operators Cg that fix the element F . We now consider a
Fγ = γF ∈ ΓZF that is also self-dual with respect to Cg. This implies that we can write

F = γ−1Fγ = γ−1CgFγ = γ−1CgγF = Cγ−1gF . (4.21)

Since Cγ−1g is a Weil operator fixing F there should be an h ∈ GF such that Ch = Cγ−1g.
Reading this as the condition Cref = Ch−1γ−1g we conclude that h−1γ−1g ∈ K. This
implies that

ΓH(gK, Fγ) = ΓH(hK,F ) . (4.22)

This relation implies that the set of {Fγ}γ∈ΓH with CgFγ = Fγ is actually the image of
a map

i : ΓF \GF /KF → ΓH\(G/K ×HZ) , ΓFhKF 7→ ΓH(hK,F ) . (4.23)

However, by of another result of [23] (see also [27]), such maps between algebraic quotients
are actually Ralg-definable. The locus of Weil operators mod ΓH and self-dual classes in
ΓHF , i.e. {

ΓH(gK,Fγ) : CgFγ = Fγ
}
g∈G,γ∈ΓH

⊂ ΓH\(G/K ×HZ) (4.24)

is therefore an Ralg-definable subset that is isomorphic to the smaller arithmetic quotient
ΓF \GF /KF .

It remains to show that definability of the set (4.24) in ΓH\(G/K ×HZ) can be carried
over to the space Mcs ×HZ. This actually follows from an extension of the definability
property of the Weil operator 2. In fact, in order to show the definability of the period
mapping 1, the authors of [23] actually first prove the definability of C mod ΓH. Let us
define the Weil operator period map

[C] : Mcs → ΓH\G/K , (4.25)

which associates to each point in Mcs its Weil operator modulo ΓH. The definability
statement then reads [23]

Statement 4 The Weil operator period map [C] is definable in the o-minimal
structure Ran,exp.

We stress that this is a stronger statement than the definability of the period mapping
stated in 1, since the latter involves the monodromy group Γ and Γ ⊂ ΓH. Finally, one
has to extend the map (4.25) to an Ran,exp-definable map E → ΓH\(G/K ×HZ). This is
straightforward if one thinks about E being the productMcs×HC, but requires some extra
work to incorporate the bundle structure in a definable way as explained in [27, 53]. Since
the pre-image of the sets (4.24) are precisely the self-dual integral classes satisfying the
tadpole constraint, and a definable set under a definable map is definable, we can conclude
the statement 3.

Let us close this section by stressing that 3 is a statement about the global minima
of V (z,G4), which does not imply definability for every minimum of V (z,G4) when we
allow changes of z and G4. Whether or not a more general statement about all minima
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of V (z,G4) can be proved is an open question. On the one hand, one can try to extend
the approach of [27], maybe restricting attention solely to the Calabi-Yau fourfold case
discussed here. On the other hand, it can very well be the case that such a more general
statement is simply not true. This would indicate that there exist infinitely many vacua
with broken supersymmetry due to non-vanishing F-terms for the complex structure moduli
(see [54] for a study of such settings). If one would be able to trust all the effective theories
arising near these vacua this would be a clear violation of the Tameness Conjecture. While
we cannot make any conclusive statements on this, let us note that the string embedding of
the flux backgrounds that are not self-dual is more obscure and one might argue that these
vacua simply do not yield controllable effective theories. In contrast, recalling (4.11), we
can consider V (z,G4) near its self-dual vacua V (z,G4) = 0 and conclude that the Tameness
Conjecture is satisfied for V as a function of over the accessible field space and the parameter
space of allowed fluxes.

5 Conclusions and discussions

In this work we have proposed a Tameness Conjecture, which states all effective theories
compatible with quantum gravity are labelled by a definable parameter space and must
have scalar field spaces and coupling functions that are definable in an o-minimal structure.
Here one considers the set of all effective theories valid below a fixed finite cut-off scale.
The weak version of this conjecture asserts that any o-minimal structure can be used, while
the stronger version fixes the underlying o-minimal structure to be Ran,exp. This choice
of o-minimal structure was supported by all examples of string theory effective actions.
Independent of the precise choice of o-minimal structure, the resulting tame geometry has
strong finiteness properties and thus imposes structural constraints on attainable parameter
spaces, field spaces, and coupling functions. Accordingly, our initial motivation for these
condition is the conjectured finiteness of the set of effective theories arising from string
theory [3–5]. The Tameness Conjecture implements this in an intriguing way. On the one
hand, the definability of the parameter space imposes that there are only finitely many
‘disconnected’ choices to obtain a scalar field space and coupling functions. On the other
hand, definability of the scalar field space and coupling functions then ensures that an
initial effective theory admits only finitely many effective theories when lowering the cut-off.
While finiteness was the central motivation, tame geometry actually provides us with a set
of local and global constraints that go beyond finiteness restrictions that we expect are
relevant to further connect some of the swampland conjectures.

To provide evidence for the Tameness Conjecture we have analyzed various effective
theories that arise after compactifying string theory. While for ten-dimensional supergravity
theories the conjecture is readily checked at the level of the two-derivative effective action,
it becomes increasingly hard to test it in full generality when going to lower dimensions.
This can be traced back to the facts that (1) supersymmetry does not necessarily strongly
constrain the form of the field space and the coupling functions, and (2) there is an increasing
number of parameters in the theory. For more than 8 supercharges, one still finds that
definability of the field spaces with fixed parameters follows from supersymmetry. We have
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argued that this is due to the fact that they are given as arithmetic quotients Γ\G/K that
are definable in Ralg for a fixed choice of G,Γ,K. String theory then has to ensure that
there are only finitely many choices of parameters, e.g. only finitely many allowed groups
G,Γ,K. For settings with 8 or less supercharges also field spaces with fixed parameters
can be non-definable, since supersymmetry is not strong enough to ensure the presence
of the tameness properties. We have shown, however, that in string compactifications, in
particular on Calabi-Yau manifolds, the non-trivial constraints of the allowed deformations
of the compactification geometry ensure definability. More concretely, we have seen that the
complex structure and Kähler structure moduli space of Calabi-Yau manifolds are definable
and admit a physical metric that is definable. This latter fact is a consequence of the
non-trivial fact that the period mapping is definable in Ran,exp as recently shown in [23]. By
using the definability of the period mapping we also concluded the definability of the gauge
coupling functions in four-dimensional Type II compactifications on Calabi-Yau threefolds.

As the most involved test of the Tameness Conjecture we studied Type IIB and F-theory
flux compactifications yielding to a four-dimensional theory with N = 1 supersymmetry.
A non-trivial background flux induces a scalar potential and we investigated in detail its
tameness properties. We have found that for fixed fluxes, this scalar potential is definable as
a consequence of the definability of the Hodge star operator. When allowing to also change
the flux, definability appears to be lost, since the flux takes values on an infinite discrete
set even after imposing the tadpole constraint. However, we have shown that definability is
restored when constraining the attention to effective theories near self-dual flux vacua. To
see this, we have sketched the proof of [27] that the locus of self-dual flux vacua is definable
in Ran,exp even if one collects all possible flux choices consistent with the tadpole constraint.
In other words, the Tameness Conjecture for the scalar potential is even satisfied over the
discrete parameter space set by the fluxes, if we take into account the required existence of
a self-dual flux vacuum. We have discussed that the latter constraint might be necessary
since only in the self-dual cases one has V (zvac) = 0 and there is a clean higher-dimensional
description of the vacuum in Type IIB or F-theory. These facts might be needed to justify
the notion of working in a well-defined effective theory. Alternatively, if one aims to extend
this result to other vacua of V one might have to impose additional conditions on V (zvac)
or the masses of the scalars to retain definability for a theory at fixed cut-off. This example
already highlights many of the issues that arise in any theory with a scalar potential. In
particular, we assert that the Tameness Conjecture remains satisfied when lowering the
cut-off and integrating out fields. Our results show that for self-dual flux vacua one can send
the cut-off to zero and obtain a new effective theory with only massless complex structure
moduli that is definable in the considered sector.

Let us now turn to a more general discussion of the statement and the implications of
the Tameness Conjecture. We will collect some thoughts on our findings and indicate some
future directions for research:

Tameness and gravity. The Tameness Conjecture has been formulated as a requirement
on effective theories that can be consistently coupled to quantum gravity. However, from
its formulation it is not apparent which role gravity plays in its statements. From the
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study of examples we note that gravity genuinely appears to constrain the parameter
space of the effective theory. The Tameness Conjecture states that the parameter space
should never include infinite discrete sets. However, without considering a UV-completion
it is not hard to find infinite sets of supersymmetric theories with field spaces that are
individually definable but have no bound on the parameter labelling the dimension of
these spaces. It is believed that gravity will eventually provide us with a bound on the
maximal dimensionality of allowed field spaces and hence restrict the associated discrete
parameter space to a definable set. We have seen something analogous happening in our
flux compactification example, where the tadpole constraint, which is a crucial consistency
condition on compact internal manifolds, was needed as a key element to reduce to finitely
many flux orbits. It remains to provide more tests of the reduction to finite discrete sets
when it comes to geometry. The Tameness Conjecture implies, in particular, that there
should be only finitely many topologically distinct manifolds that one can choose to obtain
valid effective theories. In Calabi-Yau compactifications this seems to require the finiteness
of topologically distinct compact Calabi-Yau manifolds. Moreover, validity of the effective
theory can impose constraints on curvatures and volumes of the compactification space, and
it has been discussed in [4] that these can lead to a reduction to finitely many topological
types by a theorem of Cheeger [55]. While these arguments support definability of the
parameter space, it would be interesting to provide a more in-depth study of the necessary
minimal conditions on the compactification spaces.

Tameness and other swampland conjectures. It is an interesting open question to
investigate connections between the Tameness Conjecture and other well-known swampland
conjectures beyond the ones mentioned above. Note that tame geometry is a rather flexible
framework, which allowed us to suggest that any effective theory, in particular also without
supersymmetry, can be covered by the Tameness Conjecture. Hence, due to the novel nature
of the constraints imposed by the Tameness Conjecture, we would not expect that it directly
implies any of the other conjectures. In fact, one may expect that this conjecture becomes
really powerful when combined with additional constraints that have been suggested before.
In particular, the Tameness Conjecture suggests some interesting interrelation with the
Distance Conjecture [56] and the Emergence Proposal [1, 57–61]. We have explained that
every definable function has a more constrained ‘tame’ behavior in non-compact directions.
It would be interesting to see if this fact can be linked with the Distance Conjecture when
considering infinite distance directions in field space. Furthermore, it might be that the
existence of tame non-compact directions in field space is only an emergent phenomenon
that arises when integrating out states of an underlying quantum gravity theory. If this
were true it would imply that the Tameness Conjecture actually imposes general constraints
on the degrees of freedom and their interaction in the underlying fundamental theory. It is
an exciting task to test this idea for simple examples and we hope to return to this in a
future work.

Tameness replacing compactness. Let us point out that the Tameness Conjecture
for field spaces also offers a more general perspective on the properties of brane moduli
space. While for lower-dimensional branes these moduli spaces were conjectured to be
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compact [21, 62], it is well-known that for higher-dimensional branes, such as 7-branes in
Type IIB string theory compactness is not a suitable criterion. However, it is known from the
geometric realization of 7-branes in an elliptically fibered Calabi-Yau manifold in F-theory
that the moduli space of these extended objects is definable in an o-minimal structure. In
other words, while colliding 7-branes can admit a non-compact moduli space, the geometry
of this space is tame in the asymptotic direction. It would thus be interesting to investigate
whether one finds direct arguments for the Tameness Conjecture by analyzing the physics
of 7-branes in non-compact directions. Conversely, we have mentioned already that tame
geometry provides strong theorems that replace compactness with tameness and we expect
that they can be used to prove general results about the behavior of 7-branes in F-theory.

Tameness and the classification of effective theories. Another remarkable impli-
cation of the Tameness Conjecture is that it allows for a novel way to classify effective
theories. The triangulation theorem in tame geometry states that any definable set is
definably homeomorphic to a polyhedron [7]. This identification occurs if and only if the
sets and the polyhedron have the same dimension and Euler characteristic introduced in
subsection 3.2. The triangulation theorem states that the topological information in the set
can be described in finite combinatorial terms. Hence, it provides a new way to compare
the information defining two effective theories by comparing their parameter spaces, field
spaces, and coupling functions as definable sets. It would be very interesting to explore
this for simple quantum field theories or conformal field theories. The definability in an
o-minimal structure hereby can serve as an additional structure on the space of theories
that could allow to further extend the ideas put forward in [63].
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