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Abstract
In longitudinal research, the development of some outcome variable(s) over time (or age) is studied. Such relations are not 
necessarily smooth, and piecewise growth models may be used to account for differential growth rates before and after a 
turning point in time. Such models have been well developed, but the literature on power analysis for these models is scarce. 
This study investigates the power needed to detect differential growth for linear–linear piecewise growth models in further 
detail while taking into account the possibility of attrition. Attrition is modeled using the Weibull survival function, which 
allows for increasing, decreasing or constant attrition across time. Furthermore, this work takes into account the realistic situ-
ation where subjects do not necessarily have the same turning point. A multilevel mixed model is used to model the relation 
between time and outcome, and to derive the relation between sample size and power. The required sample size to achieve 
a desired power is smallest when the turning points are located halfway through the study and when all subjects have the 
same turning point. Attrition has a diminishing effect on power, especially when the probability of attrition is largest at the 
beginning of the study. An example on alcohol use during middle and high school shows how to perform a power analysis. 
The methodology has been implemented in a Shiny app to facilitate power calculations for future studies.
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Introduction

In the social and behavioral sciences, subjects are often 
measured at multiple points across time or age in order to 
study changes in abilities, behavior, opinion, attitude and so 
forth. Data that arise from such longitudinal studies are often 
analyzed by means of a multilevel model (Goldstein, 2011; 
Hox et al., 2018; Raudenbush & Bryk, 2002) or a latent 
growth curve model (Duncan et al., 2006).

Most often, smooth growth trajectories, such as those 
modeled by linear, polynomial and nonlinear (e.g., exponen-
tial) relations between time (or age) and response, are fitted. 
However, some longitudinal studies may show non-smooth 
patterns of change. Growth may show a sharp change after 
the occurrence of some important life event, such as first 
criminal offense, entry into parenthood, retirement, or death 

of spouse. One example is a study on the change in alcohol 
use across middle and high school (Li et al., 2001). The 
authors found a higher linear growth rate in high school as 
compared to middle school. Discontinuities in growth may 
also be observed in experimental studies where the begin-
ning or end of an intervention is the turning point. An exam-
ple is a study on the change in bulimia severity, depression 
and self-concept of female patients during and after treat-
ment with guided self-change treatment or cognitive behav-
ioral therapy. Cognitive behavioral therapy showed greater 
improvement during therapy, while guided self-change treat-
ment showed more continued improvement post-treatment. 
Data obtained from such studies are known as interrupted 
time-series data and can be analyzed by means of multilevel 
or latent growth curve models (Duncan et al., 2004; Flora, 
2008; Grimm & Marcoulides, 2016; Harring et al., 2021; 
Muggeo et al., 2014) using one or more turning points to 
distinguish different phases across time and by specifying 
differential growth rates across these phases.

Longitudinal research often requires considerable effort, 
money and time from both the researchers and the partici-
pants. It is therefore important that a longitudinal study is 
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designed carefully. Among other components, the number of 
subjects, number of measurements per subject and the study 
duration must be decided upon, and it has to be determined 
whether sufficient statistical power can be achieved. Over 
the past three decades, a few dozen papers on the design 
of longitudinal studies have appeared (e.g., De Jong et al., 
2010; Fan, 2003; Galbraith & Marschner, 2002; Hedeker 
et al., 1999; Moerbeek, 2008, 2011; Raudenbush & Liu, 
2001; Zhang & Wang, 2009) The focus of these papers is 
on smooth growth trajectories with linear or polynomial 
growth. This implies that these methods cannot be used 
for piecewise growth models, as a power analysis for a cer-
tain model cannot be done on the basis of another model. 
Moreover, design questions for a piecewise growth model 
are different from those of a polynomial growth model. For 
instance, power may be determined not only by the num-
ber of measurements per subject, but also by the number of 
measurements per phase. In addition, the model parameter 
for which a power analysis is to be done depends on what 
type of model is used. In longitudinal studies with smooth 
growth trajectories, it is the growth rate across time and/or 
the interaction of the growth rate with another variable, such 
as treatment condition. In piecewise growth models it is the 
change in growth from one phase to the next.

Sample size guidelines for piecewise growth models are 
scarce; to the author’s knowledge there exist only two rel-
evant papers. Diallo and Morin (2015) conducted a simula-
tion study with 6, 8 and 10 measurements and a turning point 
at time point 2, 3 or 4. They showed that power increases 
with increasing sample size, number of measurements, 
the difference between the two slopes and the correlation 
between the two slopes. Larger power was observed when 
the turning point was at the third or fourth time point than 
at the second time point. Power decreased when the vari-
ance of the second slope increased. Segalas et al. (2019) 
also conducted a simulation study; they used study duration 
of 21. Each subject was allowed to have their own turning 
point, and attrition was assumed to be absent or to occur 
at a constant rate. Larger power was observed for a larger 
slope difference, a larger sample size and when attrition was 
absent. Power was larger when the turning point was located 
at time point 15 than at time point 10, and when the vari-
ability in turning points was lower.

Although these two studies are very useful, they also have 
their limitations. Diallo and Morin restricted their work to 
scenarios in which each subject had the same turning point, 
which may not always be realistic. For instance, the age at 
which subjects graduate from college or enter parenthood 
varies across subjects. They also ignored the possibility of 
attrition, while in longitudinal studies attrition is the rule 
rather than the exception. Segalas and coauthors did take 
into account the variability in turning points and the possi-
bility of attrition. However, they assumed constant attrition 

rates across time, while attrition rates may very well vary 
across time. Furthermore, both papers based their power 
calculations on simulations, which may be time-consuming 
and require specific software (in their case SAS and Mplus, 
which are not free of charge).

The aim of this contribution is to further investigate the 
power to detect a difference in growth rates in piecewise 
linear–linear growth models. The study investigates how 
power is influenced by the location of turning points; in 
other words, is the highest power achieved when most sub-
jects have a turning point at the beginning, halfway or at 
the end of the study? Furthermore, it investigates whether 
higher power is achieved when all subjects have the same 
turning point or when they have different turning points. In 
addition, the loss in efficiency due to attrition is studied. 
Attrition is modeled using the Weibull survival function, 
which allows for increasing, decreasing and constant attri-
tion rates during the course of the study. The methodology 
has been implemented in a Shiny app to facilitate power 
analysis for future studies.

The remainder of this paper is organized as follows. In 
the next section the multilevel mixed model for piecewise 
growth is presented. In the following section it is shown how 
power to detect differential growth is calculated. This section 
also introduces the Shiny app. The section thereafter shows 
how power is influenced by the location of and variability 
in turning points in studies without attrition. The follow-
ing section quantifies the loss in efficiency due to attrition. 
The final section presents conclusions and a discussion, with 
directions for future research.

Multilevel mixed model

Repeated measurements across time are nested within sub-
jects; hence the data have a multilevel structure and can be 
analyzed using the multilevel mixed model (Goldstein, 2011; 
Hox et al., 2018; Snijders & Bosker, 2012), which is also 
known as the hierarchical (linear) model (Raudenbush & 
Bryk, 2002). An alternative model is the latent growth curve 
model within the general framework of structural equation 
models (Duncan et al., 2006; Flora, 2008).

The duration of the study is denoted as D. The aim is to 
measure each subject i = 1, …, n at equidistant time points 
t = 0, 1, 2, …, D. As a measurement is also taken at baseline 
(t = 0), the aim is to measure each subject at m = D + 1 time 
points. However, subjects may prematurely drop out of the 
study, meaning that the number of measurements may vary 
across subjects. The number of measurements for subject i 
is denoted as mi.

The study is split in two different time phases, with phase 
1 beginning at time point t = 0 and phase 2 beginning at time 
point t = Ti. The latter time point is the turning point, which 
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may be either constant or varying across subjects. When 
all subjects have the same turning point (i.e., Ti = T ∀ i), the 
turning point cannot be located at t = 0 or t = D because that 
would mean the study has only one phase.

In both phases a linear relation between time and response 
is assumed. The multilevel mixed model for subject i at time 
point t is then given by

The variables t1ti and t2ti are time indicators for the first 
and second phase of the study for subject i. They are coded 
as follows:

Consider as an example subject i with mi = 7 time points 
and a turning point Ti = 3. The design matrix for this subject 
is given by

The associated regression weights π0i, π1i and π2i are the 
baseline score and growth rates in phase 1 and 2, respec-
tively. Each of them is assumed to randomly vary across 
subjects:

Here, the regression weights β0, β1 and β2 are the average 
intercept and growth rates, and the random variables u0i, u1i 
and u2i are the deviations of subject i from these averages. 
As each of the three regression coefficients π0i, π1i and π2i 
has a random effect, the design matrix Zi for the random part 
is equal to the design matrix Xi for the fixed part.

The random variables u0i, u1i and u2i are assumed to fol-
low a multivariate normal distribution with means equal to 
zero and covariance matrix

These random variables are assumed to be independ-
ent from the residuals ei0, ei2, …, eiD. These residuals are 
assumed to follow a multivariate normal distribution with 
means equal to zero and covariance matrix �2

e
Ii , where Ii is 

(1)yti = �0i + �1it1ti + �2it2ti + eti.

(2)
t1ti = t if t ≤ Ti and t1ti = Ti if t > Ti,

t2ti = 0 if t ≤ Ti and t2ti = t − Ti if t > Ti

(3)Xi =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0

1 1 0

1 2 0

1 3 0

1 3 1

1 3 2

1 3 3

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

.

(4)
�0i = �0 + u0i,

�1i = �1 + u1i,

�2i = �2 + u2i.

(5)cov
�
ui
�
= cov

⎛⎜⎜⎝

u0i
u1i
u2i

⎞⎟⎟⎠
=

⎛⎜⎜⎝

�2

u0
�01 �02

�01 �2

u1
�12

�02 �12 �2

u2

⎞⎟⎟⎠
.

the (mi + 1) × (mi + 1) identity matrix and �2
e
 is the variance 

of the residual term eti.
The model for subject i can be written in matrix notation:

with yi the vector of responses, Xi the design matrix for the 
fixed part, β = (β0, β1, β2)′ the vector of regression weights, 
Zi the design matrix for the random part, ui = (u0i, u1i, u2i)′ 
the vector of random variables and ei = (ei1, ei2, …, ei(m + 1))′ 
the vector of residuals.

Given the covariance matrices for the random effects, the 
covariance matrix (conditional on the fixed effects) of the 
responses of subject i is

Once the variances and covariances in cov(ui) and the 
variance �2

e
 have been estimated, they can be plugged into 

the equation above to get V̂i . The vector of regression coef-
ficient is then estimated by

This is the maximum likelihood estimator of fixed effects 
of the linear mixed effects model in equation (6). The associ-
ated covariance matrix is estimated as

The variances ̂var
(
𝛽1
)
 and ̂var

(
𝛽2
)
 and covariance 

̂cov
(
𝛽1, 𝛽2

)
 are used to study the relation between sample 

size and power to detect a difference in growth rates across 
the two phases.

Statistical power to detect differential 
growth

The main question is whether the growth rates in the 
two phases are equal to one another. The correspond-
ing null hypothesis is H0 : β1 = β2, which can also be for-
mulated as H0 : β1 − β2 = 0. This difference is estimated 
by plugging in the estimates of the regression coef-
ficients, and the associated variance is estimated as 
̂var
(
𝛽1 − 𝛽2

)
= ̂var

(
𝛽1
)
+ ̂var

(
𝛽2
)
− ̂2cov

(
𝛽1, 𝛽2

)
 . The vari-

ances and covariance at the right side of this equation follow 
from the covariance matrix (9).

If there indeed exists a difference in growth rates across 
the two phases in the population, then one would like to 
detect it with sufficient statistical power. The relation 

(6)yi = Xi� + Ziui + ei

(7)cov
(
yi| Xi�

)
= Vi = Zicov

(
ui
)
Zi

� + �2

e
Ii.
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.
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between the difference in growth rates β1 − β2, the variance 
var(β1 − β2), statistical power 1 − β, and type I error rate α 
is given by

This relation holds for a one-sided alternative 
H1 : β1 − β2 > 0 or H0 : β1 − β2 < 0; for two-sided alternative 
H0 : β1 − β2 ≠ 0, z1 − α is replaced by z1 − α/2.

In the design phase of a study, the difference in means is 
often not known. This causes a vicious cycle: the study is 
to be conducted to gain insight into the difference in growth 
rates, but to design the study such that it has sufficient power, 
the population value of the difference in growth rates needs 
to be known in advance. To escape the vicious cycle, one 
can consult the literature for similar studies in the past to 
gain insight into plausible values for the difference in growth 
rates.

The variance var(β1 − β2) depends on the number of 
subjects, the number of measurements per subject and the 
location of the turning point in the case where all subjects 
have the same turning point. In the case of varying turning 
points, the variance depends on the distribution of turning 
points. Furthermore, this variance also depends on the rate 
of attrition across the study. In addition, it is a function of the 
variance and covariance components in Eq. (5) and the vari-
ance �2

e
 . The expression for the variance var(β1 − β2) cannot 

be captured by a simple mathematical expression. For that 
reason, matrix algebra should be used to calculate the value 
of the variance for each specific study at hand. The online 
14 shows the results of a small simulation study. The power 
as calculated using matrix algebra is almost the same as that 
obtained from simulation.

Shiny app

To facilitate the use of the methodology presented herein, a 
Shiny app was developed to study the relation between num-
ber of subjects and power. First, the user has to specify the 
duration of the study and the distribution of turning points: 
the proportion of subjects that have a turning point at each 
of the time points t = 0, 1, …, D. Second, the values of all 
variance and covariance components have to be specified, 
along with the residual variance. Third, the population val-
ues of the growth rates in both phases have to be specified, 
along with the type I error rate and whether a one- or two-
sided alternative is used. Finally, the parameters ω and γ 
of the Weibul attrition function have to be specified (see 
later in this contribution for an explanation of these param-
eters). Once all parameters have been specified, the app 
shows the relation between number of subjects and power 

(10)
�1 − �2√

var
(
�1 − �2

) = z1−� + z1−� .

for the growth rates in phases 1 and 2 and for the difference 
in growth rates. Power levels are shown for the user-selected 
degree of attrition and for zero attrition. By hovering over 
a graph, the power level for a selected number of subjects 
is displayed. The app can be found online at https:// utrec ht- 
unive rsity. shiny apps. io/ Power_ Piece wise_ Growth/

Designing studies without attrition

The aim of this section is to study how the distribution of 
turning points affects the sample size to achieve a power 
1 − β = 0.8 to detect a slope difference in turning points in 
a two-sided test with type I error rate α = 0.05 in a study 
without attrition.

Parameter values

Statistical power depends on the values of the model param-
eters. The population values of the regression coefficients, 
variance and covariance components are taken from Diallo 
and Morin (2015); a rationale for these values can be found 
in that paper.

The average response at t = 0 is β0 = 1. The mean growth 
rate in the first phase is β1 = 0.16, while the average growth 
rate in the second phase is β2 = 0.11, 0.0 or 0.55. Given 
these values, the difference in growth rates is β1 − β2 = 0.05, 
β1 − β2 = 0.16 or β1 − β2 = 0.39, respectively. The mean 
growth curves in the first and second phase of the study are 
presented in Fig. 1.

The variance component for the random intercept is 
var(u0j) = 0.2, the variance component for the growth rate in 
the first phase is var(u1j) = 0.1, and the variance component 
for the growth rate in the second phase is var(u2j) = 0.16. The 
correlation between the random intercept and phase 1 slope 
is cor(u0j, u1j) = 0.1, the correlation between the random 
intercept and phase 2 slope is cor(u0j, u2j) = 0, and the cor-
relation between the two random slopes is cor(u1j, u2j) = 0. 
Finally, the residual variance is var(eij) = 0.2 and does not 
vary across the time points.

Distribution of turning points

Figure 2 gives the nine distributions of turning points Ti that 
will be used in this section and the next. The bars in this 
figure show the proportion of subjects that have a turning 
point at time points t = 0, 1, …, 12 in a study with dura-
tion D = 12. In the top row the turning points are located at 
the beginning of the study, with a mean μT = 3; in the mid-
dle row they are located halfway through the course of the 
study (μT = 6) and in the bottom row at the end of the study 
(μT = 9). In the left column all subjects have the same turn-
ing point, meaning the variance in turning points �2

T
 is zero. 
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In the middle column there is a small variance in turning 
points ( �2

T
= 1.33 ), while in the right column there is large 

variance ( �2

T
= 2.22)

Results

Table 1 shows the required sample size to achieve a power 
1 − β = 0.8 to detect a difference between the two slopes 
as a function of the distribution of turning points and for 
three differences between the two slopes (two-sided test 
with α = 0.05). As is obvious, smaller sample sizes are 
needed for larger slope differences. Furthermore, a larger 
sample size is needed when there is a larger variability 
in turning points. Finally, the location of turning point(s) 
has an effect on sample size. For any difference between 
turning points and for any variability in turning points, 
the smallest sample size is needed if the mean turning 
point is located halfway through the study (μT = 6). In the 
case where all subjects have the same turning point (zero 
�2

T
 ), the required sample size for μT = 3 is equal to that for 

μT = 9. In the case where subjects have different turning 
points, the required sample size for μT = 3 is smaller than 
that for μT = 9.

The latter finding is further illustrated in Fig. 3, which 
shows the required sample size to detect a slope differ-
ence β1 − β2 = 0.05 as a function of the mean turning point 
and variability in turning points. The curve for the case of 
zero variability is symmetric around μT = 6, while the other 
two curves are not. In the case of between-subject varia-
tion in turning points, a larger sample size is needed for a 

late turning point than for an early turning point (having the 
same time difference from μT = 6).

Designing studies with attrition

Attrition implies that subjects drop out during the course 
of a study. As a result, a larger sample size is needed to 
achieve a desired power level as compared to a study that 
is not hampered by attrition. This section investigates the 
increase in the required sample size due to attrition based 
on the Weibull survival function.

Weibull survival function

It is assumed that the underlying attrition process is continu-
ous, meaning subjects may drop out at any time during the 
course of the study. Furthermore, it is assumed that attrition 
depends on the study time elapsed, but not on the number 
of measurements that are planned to be taken on each sub-
ject during the course of the study. The survival function 
gives the probability of staying in the study up to at least 
time point t: S(t) = P(τ > t), where τ is a continuous random 
variable measuring the elapsed study time. There exist many 
survival functions; in this paper the Weibull survival func-
tion is used. This is a flexible survival function in the sense 
that it allows for increasing, decreasing or constant attrition 
rates over time. The survival function is S(t) = exp(−λtγ). For 
the sake of convenience, time is rescaled by dividing by the 
study duration D, so that t1 = 0 is baseline and tm = 1 is the 
last measurement. Furthermore, the parameter λ is replaced 
by − log(1 − ω), where ω ∈ [0, 1] is the proportion of subjects 
who drop out during the course of the study. The Weibull 
survival function is then formulated as S(t) = (1 − �)

t� . The 
parameter γ ∈ [0, ∞] determines the shape of the survival 
function. For γ < 1, the attrition rate decreases during the 
course of the study, meaning that attrition is concentrated 
at the beginning of the study. The opposite is the case for 
γ > 1, where the attrition rate increases during the course of 
the study, meaning that attrition is concentrated at the end 
of the study. A constant attrition rate is observed when γ = 1. 
Figure 4 shows survival functions for ω = 0.2, 0.5, 0.8 and 
for � =

1

2
, 1, 2.

To calculate the effect of attrition on the power to detect 
a difference in growth rates, the vector N = (n1, n2, …, nm)′, 
with nj the number of subjects having j time points, needs 
to be known beforehand. However, this vector is random, 
with associated probability vector p = (p1, p2, …, pm)′, where 
pj is the probability of having exactly j measurements. For 
each possible vector N, the variance in the estimator of the 
difference in growth rates across the two phases can be cal-
culated. The expected variance is then the weighted variance 
across all possible vectors N, with the weights equal to the 

Fig. 1  Growth curve for mean growth rate equal to β1 = 0.16 in phase 
1 and three mean growth rates β2 in phase 2 (resulting in three differ-
ences in growth rates)
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probability of each vector. This procedure becomes difficult 
to apply in studies where the number of time points, and 
hence the number of vectors N, is large. It is then useful to 
approximate the variance in the estimator of the difference in 
growth rates using a sampling procedure (Verbeke & Lesaf-
fre, 1999). The vector N is sampled a large number of times 
using probability vector p, and for each draw the variance in 
the estimator of the difference in growth rates is calculated. 

The mean of these variances across all draws is then used 
to calculate the effect of attrition. A good approximation 
is made when the number of draws is large, which makes 
this procedure time-consuming. For that reason, a further 
approximation is made in this contribution. The vector N is 
replaced by its expectation E(K) = n × p. This procedure pro-
duces results similar to the sampling procedure (Galbraith 
& Marschner, 2002).

Fig. 2  Distribution of turning points in a study with duration D = 12
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The variance in the treatment effect estimator is calcu-
lated based on Eq. (9). The following algorithm has been 
implemented in the Shiny app. First, given the distribution 
of turning points and sample size, calculate how many sub-
jects there are for each turning point. Second, for each turn-
ing point, calculate the number of subjects with 1, 2, …, D 

measurement occasions. This number follows from the 
Weibull survival function with parameters γ and ω. Third, 
for each combination of turning point and number of meas-
urements, construct the design matrix Xi and covariance 
matrix of the random effects Vi and calculate X�

i

(
V̂i

)−1

Xi . 
Fourth, multiply these terms by their associated sample 
sizes, sum up and take the inverse.

Results

Table 2 shows the percentage increase in the required sample 
size to detect a difference in growth rates of β1 − β2 = 0.05 
with a power level 1 − β = 0.8 in a two-sided test at type 
I error rate α = 0.05 as compared to a study without attri-
tion. In the worst case, sample size needs to be increased 
by 259%, and in the best case by only 4%. As is obvious, a 
larger percentage increase is observed when more subjects 
drop out (i.e., larger ω) and when the risk of dropout is high-
est at the beginning of the study (i.e., larger τ). Furthermore, 
the largest percentage increase in sample size is observed 
when the turning points are located at the end of the study 
(larger μT). This is obvious because, in that case, many sub-
jects may have dropped out before their turning point. The 
variability in turning points, however, has a minor effect on 
the percentage increase in sample size.

Table 1  Sample size to achieve a power level 1 − β = 0.8 for the test on differential slopes

Note: Two-sided test at type I error rate α = 0.05

β1 − β2 = 0.05 β1 − β2 = 0.16 β1 − β2 = 0.39

Zero
�2

T

Small
�2

T

Large
�2

T

Zero
�2

T

Small
�2

T

Large
�2

T

Zero
�2

T

Small
�2

T

Large
�2

T

Early (μT = 3) 929 948 962 91 93 94 16 16 16
Halfway (μT = 6) 871 875 879 86 86 86 15 15 15
Late (μT = 9) 929 970 1003 91 95 98 16 16 17

Fig. 3  Required sample size to detect a difference in growth rates of 
β1 − β2 = 0.05 (1 − β = 0.8, α = 0.05, two-sided test) as a function of 
the distribution of turning points

Fig. 4  Weibull survival functions for various values of the survival probability ω and shape parameter γ 
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Example: alcohol use in middle and high 
school

Li et al. (2001) demonstrated the use of a piecewise growth 
model to study how alcohol use develops during middle 
(grades 6–8) and high school (grades 9–12). They used a 
mixture model to distinguish pupils with high (N = 57) and 
low (N = 122) initial status and developed piecewise models 
for both these groups. All subjects had the same turning 
point.

Suppose a replication of this study is to be conducted 
and an a priori sample size calculation is requested by the 
funding agency. The main research question is whether the 
growth rates during middle and high school differ from one 
another. Here it is illustrated how to calculate the required 
sample size for the high initial status group. Parameter esti-
mates from Li et al. (2001) are used as input for the sam-
ple size calculation: 𝛽0 = 2.594 , 𝛽1 = 0.022 , 𝛽2 = 0.255 , 
�̂�2

u0
= 0.116 ,  �̂�2

u1
= 0.092 ,  �̂�2

u2
= 0.054 ,  �̂�01 = −0.031 , 

�̂�02 = −0.022 and �̂�12 = −0.051 . Note that Li et al. (2001) 
analyzed their data using the latent growth curve model, 
which allows the residual variance eti to vary across the 
measurement occasions. The methodology for power anal-
ysis in this manuscript is based on the multilevel model, 
which is restricted to equal residual variance across time. 
For that reason, the mean of the estimates was used: 
mean

(
�̂�2
e

)
= 0.23.

Figure 5 shows the relation between sample size and 
power in the case where attrition is absent and when attri-
tion is present and modeled by the Weibull survival function 
with ω = 0.25 and γ = 1 (meaning 25% of the students drop 
out during the study, and they do so at a constant rate). In 
the case where attrition is absent, a sample of size N = 60 

should be used to detect a difference in growth rates at power 
1 − β = 0.8, and type I error rate α = 0.05 in a two-sided test. 
This sample size is only slightly larger than the actual sam-
ple size used by Li et al. (2001). If attrition is present, then 
the required sample size increases a little further to N = 66.

Conclusions and discussion

This study investigated the power to detect differential 
growth in linear–linear piecewise growth models. The rela-
tion between sample size and power was calculated for the 

Table 2  Percentage increase in sample size to achieve a power level 1 − β = 0.8 for the test on differential slopes as compared to a study without 
attrition

Note: Two-sided test at type I error rate α = 0.05 and a difference in slopes of β1 − β2 = 0.05

Zero �2

T
Small �2

T
Large �2

T

� =
1

2
τ = 1 τ = 2 � =

1

2
τ = 1 τ = 2 � =

1

2
τ = 1 τ = 2

ω = 0.2
Early (μT = 3) 14 9 4 14 9 4 14 9 4
Halfway (μT = 6) 16 12 7 16 12 7 16 11 7
Late (μT = 9) 18 16 13 18 15 13 18 15 12

ω = 0.5
Early (μT = 3) 49 29 13 49 28 13 48 28 13
Halfway (μT = 6) 59 42 25 59 42 25 58 41 25
Late (μT = 9) 70 59 48 70 59 46 70 58 46

ω = 0.8
Early (μT = 3) 152 78 31 150 77 31 149 76 31
Halfway (μT = 6) 201 132 70 200 130 69 199 128 68
Late (μT = 9) 259 214 166 258 210 157 256 206 150

Fig. 5  Power levels for the alcohol use example
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multilevel mixed model. In a study without attrition, the 
required sample size is smallest when all subjects have the 
same turning point, which is located halfway through the 
study. Attrition increases the required sample size, especially 
when many subjects drop out and most of them do so at the 
beginning of the study.

A Shiny app was developed to facilitate the performance 
of a power analysis for future studies. To use the app, a priori 
estimates of the (co)variance components, residual variance 
and growth rates in both phases need to be specified. These 
can be obtained from the literature. In the example on alco-
hol use in middle and high school, parameter estimates from 
the literature were used. The required sample size turned 
out to be only slightly larger than that actually used by Li 
et al. (2001). However, that will not always be the case, and 
a power analysis is always preferred to basing the sample 
size for a future study on that of similar studies in the past. 
For that reason, it is important that estimates of (co)vari-
ance components, residual variance and growth rates in both 
phases are clearly reported in the literature, so that these can 
be used to calculate sample size for future studies.

Furthermore, the distribution of turning points needs 
to be specified a priori, along with the parameters ω and 
γ of the Weibull attrition function. In some studies the dis-
tribution of the turning points is under the control of the 
researcher. For instance, in psychotherapy trials, the therapy 
and follow-up phases may be of fixed duration, meaning that 
all participants have the same turning point and the location 
of the turning point is known beforehand. In trials in which a 
stepped-wedge design is used (Mdege et al., 2011), subjects 
move from the control to the intervention condition at preset 
points in time. In such trials there is variability in turning 
points but the number of turning points and the number of 
subjects that switch to the intervention at each turning point 
are under control of the experimenter and hence known 
beforehand. In observational studies, on the other hand, the 
distribution of turning points is often not known before-
hand. In studies on developmental psychology, for instance, 
the turning point may be the transition from childhood to 
adolescence, and this turning point varies across subjects. 
However, the literature may provide good insight into the 
distribution of such a turning point. For studies in which no 
prior information about the distribution of turning points is 
available, the Shiny app may be used to explore the effects of 
various realistic distributions. The same applies, of course, 
to the parameters ω and γ of the Weibull attrition function.

This study extends previous work on power for piecewise 
growth models (Diallo & Morin, 2015; Segalas et al., 2019) 
by allowing for variability in turning points and non-con-
stant attrition. Future extensions may focus on studies with 
more than one turning point (Cudeck & Harring, 2007; Har-
ring et al., 2021; Marcoulides, 2018), studies with nonlinear 
growth in one or more phases (Flora, 2008; Harring et al., 

2021; Zvoch, 2016), and studies with individually varying 
times of observation (Liu et al., 2015). It is also of interest 
to focus on models for discontinuous growth, meaning that 
there is not only a change in growth rate at the turning point, 
but also a change in level (Grimm & Marcoulides, 2016). 
Finally, it is worthwhile to focus on power analysis in the 
case of non-continuous outcome variables and to explore the 
effects of covariates on power.

In conclusion, this contribution presents power analy-
sis for linear–linear piecewise growth models, taking into 
account the possibility of variability in turning points and 
non-constant attrition rates. I hope the results presented in 
this contribution, along with the Shiny app, will be helpful 
in calculating sample sizes for future research.
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