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Abstract
From conception to death, human cells accumulate somatic mutations in their ge-

nomes. These mutations can contribute to the development of cancer and non-malig-

nant diseases and have also been associated with aging. Rapid technological develop-

ments in sequencing approaches in the last few years and their application to normal 

tissues have greatly advanced our knowledge about the accumulation of these mu-

tations during healthy aging. Whole genome sequencing studies have revealed that 

there are significant differences in mutation burden and patterns across tissues, but 

also that the mutation rates within tissues are surprisingly constant during adult life. 

In contrast, recent lineage-tracing studies based on whole-genome sequencing have 

shown that the rate of mutation accumulation is strongly increased early in life be-

fore birth. These early mutations, which can be shared by many cells in the body, may 

have a large impact on development and the origin of somatic diseases. For example, 

cancer driver mutations can arise early in life, decades before the detection of the 

malignancy. Here, we review the recent insights in mutation accumulation and muta-

genic processes in normal tissues. We compare mutagenesis early and later in life and 

discuss how mutation rates and patterns evolve during aging. Additionally, we outline 

the potential impact of these mutations on development, aging and disease, which 

leads to a description of the aims and scope of this thesis

Introduction
Virtually every cell in the body contains a unique set of changes to the genome due 

to the accumulation of somatic mutations during life. Some of the mutations cells ac-

quire during life can contribute to the development of age-associated diseases, such 

as cancer1. Mutations can result from errors made during DNA replication or from 

unrepaired or incorrectly repaired DNA damage. Each mutational process leaves 

characteristic patterns of mutations, or “mutational signatures”, in the genome, which 

can be identified by systematically studying mutation spectra2,3.

Somatic mutations have historically been hard to detect, because they are often 

present in only a tiny fraction of an individual's cells resulting in a low variant allele 

frequency4. As a result, most somatic variants are not detected by regular bulk tissue 

sequencing technologies. Notable exceptions to this are somatic variants in cancer. 

Since cancers grow out from a single cell, all the somatic variants in that original 

cell will be clonally present in the cancer. Somatic mutations in cancer have been 

extensively studied5. However, to better understand which somatic mutations and 

mutational processes contribute to cancer, somatic mutations in cancer need to be 

compared to somatic mutations in normal, pre-cancer tissues for both the nuclear 

and mitochondrial genome.

In the last few years, technological developments in DNA sequencing methods and 

bioinformatic approaches have enabled the detailed study of somatic mutations in 

normal tissues. In vitro expansion of a single stem cell, followed by whole genome 

sequencing of the clone, enables highly accurate characterization of the genome of 

a single cell6. Additionally, somatic variants can be identified by (deep) sequencing of 

natural occurring clonal patches in healthy tissues using low-input sequencing7. A dis-

advantage of these methods is that they are limited to cells with self-renewal capac-

ity. Direct single-cell sequencing after whole genome amplification and single-mol-

ecule duplex sequencing are methods that can also be applied to non-dividing cells. 

Until recently these methods had a relatively low accuracy in mutation detection, 

but new studies using novel technical and bioinformatic innovations claim to have 

significantly reduced their error rates8–10. While novel whole genome amplification 

techniques have reduced error-rates, they still contain a sizeable number of artifacts, 

necessitating the use of stringent bioinformatics analyses to achieve high-quality 

data. For one of these techniques, primary template-directed amplification (PTA), we 

developed a comprehensive bioinformatics analysis pipeline, which we investigated 

in more detail in the work described in chapter 5.
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Fig. 1: The number of substitutions per year for different tissue types. 
When the mutation rate of a tissue has been determined multiple times, they are distinguished by the last 
name of the first author and the publication year. The color indicates the tissue type. The mutation rates 
in this figure may be influenced by technical differences between the studies, which may explain some 

Many studies have recently applied single cell DNA sequencing to characterize 

somatic mutation accumulation in various tissues of healthy human donors across a 

wide range of ages. Here, we provide an overview of the findings of these papers and 

discuss how somatic mutagenesis evolves during life. First, we review how mutations 

accumulate linearly with age. Next, we review how activity of specific mutagenic pro-

cesses can be analyzed using mutation data and how these contribute to the differ-

ences in mutation accumulation observed between different adult tissues. Building 

on this knowledge of mutagenesis in adults, we show how mutagenesis is divergent 

early in life before birth. Additionally, we discuss the impact of somatic mutations and 

how this is different between mutations that occur early and later in life. Finally, we 

discuss the challenges with identifying mutations in mitochondrial DNA, which are 

ignored in many studies, even though they have been associated with diseases like 

aging and cancer11–14.

Adult tissues accumulate mutations linearly with age
 A mutation that is acquired in one cell, will be propagated to all of its progeny. It has 

become clear in recent years that the somatic mutation burden increases remarkably 

linearly with age in single cells in normal tissues15. So far, this linear mutation accu-

mulation is confirmed in stem cells of all studied normal tissues including liver, small 

intestine, large intestine, lung, skin, blood, esophagus, muscle, kidney, adipose tissue, 

endometrium, bile duct, stomach, prostate, pancreas, appendix and bladder15–29. The 

number of mutations that accumulate in different tissues ranged from 9 substitutions 

per year in bile ductular cells to 56 substitutions per year in appendiceal crypts20. 

Mutation rates in other tissues fell within this range, showing that while there are 

differences between tissues, they all fall within a single order of magnitude (Figure 

1). Female and male germ cells acquire only 0.74 and 2.7 mutations per year, showing 

that the mutation rate in somatic cells is much higher than in germline cells20,30,31. The 

average mutation rates within tissues appear to be relatively constant during adult 

life. However, individual cells may have mutation burdens divergent from the average 

burden in the tissue due to different exposures to endogenous or exogenous muta-

genic processes and due to differentiation, as will be discussed in the next sections.

of the small differences between tissues. HSPCs; Hematopoietic stem and progenitor cells. ASCs; adult 
stem cells. Source of mutation rates: Kidney tubules, Subcutaneous visceral adipose tissue (kidney) and 
Visceral adipose tissue (kidney)25. Appendiceal crypts, small intestinal crypts, large intestinal crypts, gas-
tric glands, pancreatic acini, bile ductules and seminiferous tubules20. Colorectal epithelium26. Esophageal 
epithelium27. Small intestine ASCs, liver ASCs and colon ASCs15. Hepatocytes24. Endometrial glands29. Skin 
fibroblasts21. Bronchial epithelium17. Prostatic epithelium18,20. HSPCs8,19,23,55. Satellite cells16. Memory T, 
Naïve T, Memory B, Naïve B55. Smooth muscle, granulocytes, Frontal cortex8. Prefrontal cortex9. Male and 
female germlines31.
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Analyzing mutational processes
Mutational signature analysis can be used to infer past activity of or exposure to 

mutagenic processes3,32. Mutational signatures are generally created using a compu-

tational data reduction method called non-negative matrix factorization (NMF)33,34. 

This approach assumes that the mutational landscape of a single sample has been 

shaped by the activity of multiple mutational processes, making it impossible to 

disentangle the contribution of each individual processes when assessing a single 

sample. However, the contribution of these processes will differ between samples, 

as mutagenic exposure varies across individuals or even single cells, which allows 

for identifying recurrent patterns when assessing large numbers of samples. These 

patterns are based on the contribution of different mutation types to a sample. For 

example, for single base substitution signatures, mutations are divided into the 6 

types of base substitutions and their direct 5’ and 3’ flanking bases resulting in 96 

trinucleotide changes in which the middle base is mutated35,36. We identify only 6 

types of base substitutions, because after DNA replication a G>A on the “-” strand will 

result in a C>T on the “+” strand, making these two mutation types generally undis-

tinguishable, although some mutational processes do result in an observable strand 

asymmetry. Next, a count matrix M is created containing the number of mutations 

per sample per mutation type. This matrix is then factorized into a signature matrix 

S and an exposure matrix E, so that M ≈ S * E34. This is somewhat analogous to PCA, 

where a dataset is factorized into a matrix containing the location of samples within 

the principal components and another matrix containing the directions of the prin-

cipal components. Next to identifying novel mutational signatures, it is also possible 

to determine the contribution of signatures to single samples via a process known 

as “signature refitting” or to determine the similarity of samples to predetermined 

signatures by calculating the “cosine similarity”36,37.

The number of known mutational signatures has grown rapidly over the last few 

years. The earliest work on mutational signatures identified only 5 signatures on 21 

breast cancers35. The following year this was extended to 22 signatures and the latest 

version of the catalogue of somatic mutations in cancer (COSMIC) (v3.2) contains 

78 signatures2,36. While signatures were initially only defined for single base substi-

tutions, COSMIC now also contains signatures for double base substitutions and in-

dels36. Attempts to identify mutational signatures for other mutation types like larger 

structural variants and copy numbers have also been made38–40. Next to identifying 

signatures with NMF in cancer samples, some signatures have also been directly 

identified or confirmed via in vitro treatments41–43. Many mutational processes can be 

active in multiple tissues; however, they can be somewhat different between these 

tissues, possibly because of slight differences in the DNA-repair and the turnover 

rate of the tissue. Similarly, mutational processes also differ between species44.

Mutagenic processes can be investigated using more methods than only mutation-

al signatures. Different types of mutations and their context can for example be 

compared directly between samples. Additionally, kataegis, which is a process of 

localized hypermutation caused by APOBEC, can be detected by identifying small 

regions with a high mutation density35,45. Another example is the strand asymmetry 

that is caused by lesion segregation46. This occurs when a mutational process causes 

many mutations, for example C>T, during a single cell cycle. After DNA replication 

the C>T mutations will be present on the + strand of one copy and the – strand of 

the other copy. After mitosis, a daughter cell will inherit the copies of both alleles in 

a 1:2:1 ratio, which means that there is a 50% change that the mutations in each part 

of the genome are all on the same strand. Lesion segregation can be identified when a 

cell or descendent of a cell in which it has occurred is sequenced and the strand of the 

mutations is visualized.

To perform the types of analyses described above, we developed the second version 

of the MutationalPatterns package, which we describe in chapter 3.

Tissue-specific mutational processes in adult stem cells
Mutational signature analysis has indicated that some mutagenic processes are 

active in all tissues, whereas some are tissue- or exposure-specific. SBS1 and SBS5, 

which reflect life-long activity of “clock-like” mutational processes, which cause mu-

tations at a steady rate, were found in all cell types. SBS1 mutations are thought to be 

caused by spontaneous deamination of methylated cytosine residues into thymine. In 

contrast, the cause for SBS5 mutations is unknown, but likely represents a collective 

of endogenous background mutational processes2,35. REV1 has also been associated 

with this signature47. While most, if not all, tissues gradually accumulate SBS1 and 

SBS5 mutations throughout life, their ratios differ between tissues. Differences in 

cell turnover rate between tissues have been suggested to be one possible cause for 

this15,20,48,49.

Some cells also showed contributions of additional mutational signatures caused by 

both exogenous and endogenous factors, which explain part of the variation in the 

mutation rate and spectra between tissues. Most skin fibroblasts and melanocytes, 

for example, show contribution of SBS7, a signature caused by UV-radiation21,50. 

Similarly, kidney tubule cells with contribution of SBS40, in this case possibly caused 

by formaldehyde and alkylating agents, were found to accumulate 56.6 SNVs per 

year whereas cells lacking this signature only accumulated 11.7 SNVs per year25. 



14 15

Introduction: The dynamics of somatic mutagenesis during life in humansChapter 1

1 1

SBS16, which is associated with alcohol consumption, could be found in cells of the 

esophagus20,27. Colibactin produced by a specific common E. coli strain was found 

to cause SBS88 mutations in some colon crypts20,26,42. SBS2 and SBS13, which are 

associated with activity of endogenous APOBEC cytosine deaminases, have been 

found in multiple cell types including lung, colorectal and small intestinal cells17,20,26. 

These signatures are caused by sporadic bursts of mutagenesis in a subset of cells in 

a tissue51. Overall, it is clear that SBS1 and SBS5 are present in almost all cell types 

and that additional tissue-specific mutational processes can result in an increased 

mutational burden.

Mutagenesis in post-mitotic and differentiated cells
It is likely that there are differences in mutagenesis between stem cells and non-di-

viding, differentiated cells. Stem cells could be expected to be protected from 

mutagenesis, because they are long-lived and can self-renew in order to regenerate 

tissues throughout life, which is not the case for most post-mitotic or fully differen-

tiated cells52. On the other hand, post-mitotic cells will not accumulate errors made 

during DNA replication. So far, somatic mutations have been mostly characterized 

in proliferating stem and progenitor cells due to technical limitations. In the last few 

years, technical innovations have also enabled a more accurate detection of somatic 

variants in non-dividing cells. One study using single-cell whole genome amplification 

found a higher mutation rate in differentiated hepatocytes compared to liver stem 

cells53. Differentiated granulocytes were found to have a slightly, not significantly, 

increased mutational load compared to hematopoietic stem cells8. In contrast, both 

naïve and memory T-lymphocytes showed an increased mutation rate of 22 and 25 

SNVs per year compared to the 16 SNVs per year that this study found in hema-

topoietic stem cells. Additionally, both memory B- and T-lymphocytes showed an 

increased mutation load irrespective of age, likely caused by somatic hypermutation, 

while naïve lymphocytes did not54,55. Interestingly, several studies found that post-mi-

totic brain neurons accumulate mutations with age at a similar rate (14.7-17.1 per 

year) as stem cells of other tissues, even though they do not replicate8,9,56.

Most somatic mutations in short living differentiated cells are likely acquired in the 

stem cell ancestors of these cells. Their relatively short lifespan might prevent differ-

entiated cells from building up a strongly elevated mutation burden after differenti-

ation, even if their mutation rate would be much higher. In addition to an increased 

mutation rate, it is also possible that the process of differentiation itself could lead 

to a single burst of mutation accumulation. Estimating the precise mutation rate in 

in vivo differentiated cells is therefore challenging. Overall, the first single-cell and 

single-molecule sequencing studies on differentiated and post-mitotic cells, suggest 

that the mutation burden in these cells is either not or only modestly increased as 

compared to stem cells in the same tissues.

Somatic mutation rates are strongly elevated in prenatal cells
There are two main technical issues with detecting somatic mutations in prenatal 

cells. First is the low total mutation load of fetal cells. Because false positives in whole 

genome sequencing are generally not dependent on the number of true positives, 

the false positive rate can increase57,58. These factors make it necessary to filter 

very stringently for true mutations and make it more difficult to correctly identify 

mutational processes. Another issue in detecting somatic variants in prenatal cells, 

is that any variant that occurred pre-gastrulation can be (sub)-clonally present in 

bulk tissues59,60. The common method of using a bulk control when performing whole 

genome sequencing will thus not detect these early somatic mutations. This issue can 

be solved by comparing the genomes of multiple single normal cells from an indi-

vidual and reconstruct a phylogenetic tree by assessing mutations that are shared 

in some, but not all cells. With this approach each cell functions as a control for the 

other cells.

We and others have used this approach to study prenatal mutation accumulation in 

stem cells61,62. Interestingly, these analyses showed that the somatic mutation rate 

during fetal development is strongly increased compared to the post-natal rates. For 

example, in hematopoietic stem cells of newborns an average of 40 somatic SNVs 

were found nine months after conception, while only 14-17 SNVs are gained in adult 

stem cells per year19,23. This increased mutation rate before birth was confirmed by 

genomic analyses of various fetal tissues61–64. The mutation rate in fetal liver, intes-

tine and hematopoietic stem cells was shown to be fivefold higher as compared to the 

rate in adult tissues. The mutation rate in fetal mitotic neuronal progenitor cells was 

even suggested to be 50-fold higher than in other postnatal tissues63, although more 

recent studies could not confirm this high mutation rate8,9.

Additional evidence for an elevated prenatal mutation rate was provided by retro-

spective lineage tracing studies of cell lineages in various tissues. Since a mutation 

that arose in one cell will be inherited by all its progeny, somatic mutations can be 

used as genetic barcodes, which enables the reconstruction of phylogenies and the 

identification of early embryonic cell divisions (Figure 2)65. By assessing mutations 

that are shared between different cells of the same individual we and others have 

shown that especially in the first two to three cell divisions (up to the 8-cell stage) the 
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mutation rate is relatively high with roughly 2 to 3 mutations per cell division21,62,66. In 

addition to the high mutation rate in the fi rst embryonic divisions, it was previously 

reported that chromosomal instability, characterized by high levels of chromosomal 

missegregation and abnormalities leading to mosaicism, is common in early (cultured) 

human embryos67.

Several non-exclusive factors contributing to the high mutation rates in early human 

embryos have been proposed. The fi rst cell cycles after fertilization are relatively 

fast, leaving little time for proper DNA repair68. Transcription is not yet active in the 

fi rst cell divisions. This precludes high-fi delity transcription-coupled DNA repair and 

makes DNA repair entirely dependent on maternally inherited factors, which are 

diluted with every cell division69. DNA damage can be caused by chromatin remod-
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Figure 2: Proposed model of the dynamics of somatic mutagenesis during life. 
Schematic overview depicting the distributions and rates of somatic mutations. a Mutations arising early 
in development can be propagated to many cells of multiple tissues, as indicated by the red cell lineage. 
Due to this wide distribution, mutations arising early in life can have a strong potential impact on develop-
ment and disease. Mutations acquired later in life are usually only inherited by a small number of cells (the 
blue- and orange-colored cells). Some early mutations, depicted by the purple lineage here, may also end 
up in extra-embryonic cell lineages not contributing to the embryo proper. bThe somatic mutation rate is 
especially high in the fi rst embryonic cell divisions. After genome activation, the mutation rate decreas-
es. It is unclear if this decrease is gradual (as depicted) or more abrupt, but the mutation rate probably 
remains relatively high compared to the postnatal mutation rate. After birth, the somatic mutation rate 
appears to stay remarkably constant during aging, leading to a gradual linear mutation accumulation. Vari-
ance in the mutation rate between tissues leads to a tissue-specifi c mutation burden. In some tissues (such 
as intestine), the tissue-specifi c mutation patterns already arise early in embryogenesis, whereas in others 
(such as liver) these patterns start to emerge only after birth.

eling after fertilization or may be inherited from the sperm cell70. Cell cycle and DNA 

damage checkpoints are relaxed and apoptosis is prevented, raising tolerance to 

DNA damage and mutagenesis68,71,72. After the 8-cell stage, coinciding with activation 

of transcription, the mutation rate drops to less than 1 mutation on average per cell 

division21,62. The elevated mutation rate, leading to the presence of dozens of somatic 

mutations in each cell at birth, may be the cost of the rapid growth required during 

embryonic development (Figure 2B). The pre-natal mutation rate is increased even 

more in fetuses with Down-syndrome, which we investigated in more detail in the 

work described in chapter 2.

Divergence of tissue-specifi c mutation patterns early in life
The mutation patterns and rates that are specifi c for each tissue in adults must 

emerge at a certain, currently unclear, moment during development. As both cellular 

functions and exposure to exogenous agents are different before and after birth, it 

can be expected that mutation accumulation also differs between those phases in 

life. The earliest embryonic mutations show clock-like mutational signatures that 

are also common in most adult tissues, namely SBS1 and SBS521,62,66. Later during 

development, it has been shown that fetal intestinal cells show the same specifi c 

mutation patterns as in adult intestinal cells already at 13 weeks after fertilization64. 

In contrast, liver stem cells and hematopoietic stem cells show different mutation 

patterns before and after birth61,64. Fetal liver stem cells show a high contribution of 

SBS18, which is linked to oxidative stress-induced mutagenesis and interestingly was 

also found at high levels in fetal neural progenitors43,63,73. These fi ndings show that 

mutation patterns start to diverge between tissues already early in development, but 

the precise moment appears to be tissue specifi c.

The impact of somatic mutations on disease and aging
Somatic mutations can infl uence disease and aging in multiple ways. The most well-

known impact of somatic mutations is their involvement in cancer74. Somatic muta-

tions can also lead to non-cancerous, but potentially harmful clonal outgrowth, with 

clones sometimes replacing entire tissues, for example in clonal hematopoiesis75–77. 

As has been recently reviewed in detail, accumulation of somatic mutations might 

also impact aging for example by affecting the functioning of cells by infl uencing 

tightly controlled gene-regulatory networks and increasing cell-to-cell transcription-

al heterogeneity (transcriptional noise)78. This is further supported by the observa-

tion that the mutation load at the end of life is similar between different mammals 

with wildly different lifespans79. Defects in DNA repair have also been associated 
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with accelerated aging80. However, it has recently been shown that a massively in-

creased somatic mutation rate, in this case due to germline POLE/POLD1 mutations, 

does not necessarily lead to accelerated aging81. Further studies comparing young 

and old tissues are required to elucidate the complicated effects of somatic muta-

tions on normal and aberrant aging.

Early mutations: Small numbers, but large effect
In adults, only a relatively small fraction of all mutations in each cell was acquired 

prenatally during early development. While these early mutations are less numerous, 

they are shared by a high fraction of the individual’s cells (Figure 2A)59,66. As a result, 

some of these mutations might be clinically relevant, as somatic mosaicism can un-

derlie genetic diseases and cancer82–85. For example, somatic mosaicism has been as-

sociated with autism spectrum disorders as well as other neurological disorders86–88. 

As many of these disorders originate early in life, especially mutations arising in the 

earliest phases of development may have a pathogenic impact89.

A cancer driver mutation arising early in development can be propagated to a large 

fraction of cells. As a result, a relatively large population of cells will be vulnerable to 

developing into a malignancy via further hits. Consistent with this, driver mutations 

have been found that originated decades before the development of cancer, some of 

which likely emerged during fetal development or early childhood90,91. In addition to 

adult cancers, pediatric cancers are likely often caused by somatic mutations oc-

curring during development92. It has been shown that 1% of newborns already have 

detectable driver genomic rearrangements in some of their blood cells, but these 

only lead to cancer in a very small minority of cases93.

Early mutations may also impact spontaneous abortions. Less than half of all human 

conceptions are thought to lead to a live birth. This is at least partly due to somatic 

aneuploidies and copy number changes occurring in the first cell divisions, but it is 

not unlikely that in some cases SNVs also play a role94.

Mutations that occur early in development can end up in the germline and thereby 

propagate as de novo germline variants in a person’s offspring. Early mutations oc-

curring during development can likely explain a sizable fraction of de novo germline 

variants, because of the low mutation rate of germline cells95. These de novo germline 

variants can cause (neuro-)developmental disorders and other diseases96–98.

Mitochondria
Compared to samples from children, the mutation load in mitochondria is even lower. 

Mitochondria contain their own 16.6kb-long DNA of which more than ten copies can 

be present per mitochondrion99,100. More than a thousand of these mitochondria can 

be present in a single cell11,101. Unequal replication of mitochondrial genomes and a 

random division of mitochondrial genomes after mitosis can change the variant allele 

frequency of mutations, a phenomenon known as heteroplasmy102. Because of these 

properties, identifying mitochondrial mutations can be challenging. Other issues 

with identifying mitochondrial mutations are the circular nature of the mitochondrial 

genome and nuclear mitochondrial sequences, which are insertions of the mitochon-

drial genome into the nuclear genome. Because of these issues, the mitochondrial 

genome is often ignored when performing whole genome sequencing. However, 

mutations in the mitochondrial DNA have been suspected to be related to the devel-

opment of a variety of neurodegenerative diseases, aging and the onset or progres-

sion of cancer11–14. In the work described in chapter 4 we show that mitochondrial 

genomes of normal cells accumulate mutations with age just like the nuclear genome 

and we show that most mitochondrial mutations in cancer are the result of premalig-

nant normal mutagenesis.

Discussion
Recent studies have revealed that within a healthy tissue the accumulation of somat-

ic mutations in stem cells occurs at a remarkably constant rate during life. Despite 

significant differences in function, cell turnover, exposures to mutagens and cancer 

incidence, but also technical differences between studies, the variation in mutation 

rates and patterns between stem cells of different tissues is surprisingly modest. 

Most somatic mutations in stem cells of normal tissues are characterized by different 

contributions of mutational signatures SBS1 and SBS5, but some cells show contribu-

tions of signatures caused by tissue-specific endogenous and exogenous exposures. 

The mutation burden and in many cases also the clonality of tissues increases with 

aging, but there seem to be no apparent differences in mutation rates and patterns 

between stem cells of old and young individuals. The elevated mutation rate before 

birth forms a notable exception (Figure 2). It appears that the rapid growth during 

fetal development comes at the cost of decreased genomic stability.

Differentiation, which can change the cell’s functions, self-renewal capacity and 

potentially also the exposure to mutagens, could be expected to lead to changes in 

mutation rates and spectra. So far, the first genomic studies of differentiated cells 

suggest that the effect of differentiation on mutagenesis is only modest, possibly due 
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to the relatively short lifespan of differentiated cells. More single-cell studies of both 

in vivo and in vitro differentiated cells of various tissues are required to elucidate the 

precise role of differentiation on mutation accumulation. Intriguingly, post-mitotic 

neurons also accumulate mutations at a linear rate similar to stem cells of other tis-

sues. This shows that cell division and DNA replication do not necessarily have to be 

the main drivers of somatic mutagenesis in all cells. The linear mutation accumulation 

suggests that mutagenesis in these non-dividing cells, likely caused by endogenous 

DNA damage followed by erroneous DNA repair, also occurs at a relatively steady 

rate.

Somatic mutations can result in cancer and play a role in other diseases. They have 

also been associated with aging, though more research is needed to strengthen these 

claims. It seems likely that mutations arising early in life, even though they are less 

numerous than somatic mutations occurring during adulthood, regularly impact 

disease. The rapidly increasing amount of genomics data will help to further elucidate 

the relative impact of these early-life mutations compared to the ones arising later in 

life. Similarly, the impact of mitochondrial mutations will also become clearer.

Thesis scope and outline
In the work described in this thesis, we aimed to improve, develop, and apply new 

methods to investigate mutational processes to better understand the initiation and 

development of cancer, with an emphasis on pediatric cancers.

In this general introduction (chapter 1), we focused on mutation accumulation in 

normal cells.

 

In the work described in chapter 2, we characterized the somatic mutation accumu-

lation in human fetal hematopoietic stem and progenitor cells (HSPCs) and intestinal 

stem cells. We found an increased mutation rate in fetal HSPCs compared to post-na-

tal cells. The mutation load was even higher in fetal trisomy 21 (T21) cells, which 

may contribute to the increased risk for leukemia in children with Down syndrome. 

Mutational signature analysis showed that the same mutational processes explain 

mutation accumulation in karyotypically normal and T21 cells as well as in Down 

syndrome-associated leukemia samples.

Chapter 3 describes the development of a new version of the MutationalPatterns 

R package, making use of methods developed in the previous chapter, which can be 

used to investigate mutational processes and applied it on several datasets. The new 

version of the package supports more mutation types and can be used to perform 

stricter signature refitting, regional pattern analyses, and lesion segregation anal-

yses. We applied the package on cell-lines with DNA-repair gene knockouts and 

identified the mutational signatures contributing to them.

The investigation described in chapter 4 goes beyond the nuclear genome by investi-

gating mutations in the mitochondrial genomes of normal single cells. We found that 

mitochondrial mutations accumulate with age and that most of the mutations found 

in cancer are the result of healthy regular mutation accumulation in healthy cells. 

Finally, we showed that chemotherapy treatment does not impact the mitochondrial 

mutation load or mitochondrial DNA copy numbers of most cells.

In the work described in chapter 5, we developed a comprehensive analysis pipeline 

for primary template-directed amplification (PTA), allowing us to investigate non-di-

viding cells, instead of only being restricted to stem cells. The pipeline can create 

quality control plots, filter SNVs and indels from artifacts and filter and integrate 

structural and copy number variants. We applied the pipeline on both healthy blood 

cells and AML cells of a pediatric AML patient to time mutational processes and the 

acquisition of driver mutations.

In chapter 6 our findings are summarized and discussed in a broader perspective. 

Recommendations for future research directions are also presented.
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Abstract
Children show a higher incidence of leukemia compared to young adolescents, yet 

their cells have less age-related (oncogenic) somatic mutations. Newborns with 

Down syndrome have an even higher risk of developing leukemia, which is thought 

to be driven by mutations that accumulate during fetal development. To characterize 

mutation accumulation in individual stem and progenitor cells of Down syndrome 

and karyotypically normal fetuses, we clonally expanded single cells and performed 

whole-genome sequencing. We found a higher mutation rate in haematopoietic stem 

and progenitor cells during fetal development compared to the post-infant rate. In fe-

tal trisomy 21 cells the number of somatic mutations is even further increased, which 

was already apparent during the first cell divisions of embryogenesis before gastrula-

tion. The number and types of mutations in fetal trisomy 21 haematopoietic stem and 

progenitor cells were similar to those in Down syndrome-associated myeloid preleu-

kemia and could be attributed to mutational processes that were active during nor-

mal fetal haematopoiesis. Finally, we found that the contribution of early embryonic 

cells to human fetal tissues can vary considerably between individuals. The increased 

mutation rates found in this study, may contribute to the increased risk of leukemia 

early during life and the higher incidence of leukemia in Down syndrome.

       

Introduction
The initiation and progression of cancer is thought to result from somatic clonal 

evolution in human tissues1. DNA mutations promote heritable phenotypic diversity 

in cell populations, which provides the substrate for context-dependent selection 

forces. Oncogenic mutations allow cells to become independent of external growth 

factors, or insensitive to intrinsic inhibitory signals, which in the correct context can 

promote uncontrolled clonal expansion and eventually cancer. For adult cancers, the 

acquisition of oncogenic mutations is thought to be rate limiting for tumor initiation, 

providing an explanation why aging is the biggest risk factor for developing cancer2,3. 

Indeed, somatic mutations accumulate gradually throughout human life4,5. Howev-

er, children can also develop cancer. In fact, for some cancers, such as leukemia, the 

incidence is higher in children compared to adolescents, even though their young 

cells have less age-related (oncogenic) mutations6. The mutations driving pediatric 

leukemia are thought to be acquired during fetal development7; however, the rate 

and patterns of mutation accumulation in haematopoietic stem and progenitor cells 

(HSPCs) during fetal development are currently not known.

Newborns with Down syndrome (DS) provide an opportunity to better understand 

the molecular mechanisms underlying pediatric leukemogenesis, because DS chil-

dren show a substantially elevated risk of developing leukemia during their first years 

of life8. Children with DS have a 500 fold higher risk of developing acute megakaryo-

blastic leukemia (DS-AMKL) compared to the general population8,9. DS-AMKL is 

often preceded by DS-associated myeloid preleukemia, which is observed in 5-10% 

of all DS newborns and usually spontaneously disappears within the first 3-4 months 

after birth9. However, even when spontaneous regression is achieved, approximately 

20-30% of all DS-associated myeloid preleukemia patients will develop DS-AMKL10. 

This suggests that an extra copy of chromosome 21 can act as a genetic driver of 

cancer, but that additional oncogenic driver mutations are required11,12. In line with 

this, DS-associated myeloid preleukemia is characterized by somatic mutations in 

GATA1, which cause a N-terminally truncated protein13. These GATA1 mutations are 

acquired during fetal development and are sufficient for the development of DS-as-

sociated myeloid preleukemia13,14. Remarkably, it has been reported that in some 

DS-associated myeloid preleukemia patients several independent clones exist, which 

are characterized by distinct GATA1 mutations12. This observation suggests that the 

HSPCs in the fetal liver of DS fetuses might be subjected to high levels of mutagene-

sis. Previously, it has been shown that aneuploidy in yeast results in genomic instabil-

ity15. However, it is not known if an aneuploidy of chromosome 21 causes an increase 

in somatic mutation load in cells of human trisomy 21 (T21) fetuses. To compare the 

somatic mutation rates and patterns during normal and T21 fetal development, we 
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studied mutation accumulation in single HSPCs and intestinal stem cells (ISCs) of 

fetuses with a normal karyotype and of fetuses with T21. We found an increased 

somatic mutation rate in fetal HSPCs and even higher somatic mutation numbers in 

cells of T21 fetuses. Moreover, we found that somatic mutations in DS-associated 

preleukemia can be explained by mutational processes, which are normally active in 

normal and T21 fetal haematopoiesis. Second, we showed that the contribution of 

developmental lineage branches to fetal tissues can be symmetric as well as asym-

metric. This observation indicates that the contribution of developmental lineage 

branches to tissues can vary between fetuses, independent of T21. 

Results
Mutation accumulation during human fetal haematopoiesis
Cataloguing somatic mutations in physiologically normal cells is technically challeng-

ing due to the polyclonal nature of healthy tissues and the high error rate of single 

cell sequencing techniques16. Previously, we have developed a method to character-

ize somatic mutations in single cells using clonal cultures of primary human stem cells 

of various tissues17, including adult HSPCs4. Here, we applied a similar approach to 

catalogue somatic mutation in fetal HSPCs as well as donor-matched ISCs (Fig. 1). 

We included 9 independent human fetuses gestational age (GA) week 12-17) (Sup-

plementary Table S1 online). Four of these fetuses had a constitutive T21 and fi ve of 

these fetuses were karyotypically normal (D21) (Supplementary Table S1 online). We 

isolated HSPCs (CD34+, lineage - ) from liver and bone marrow (Supplementary Fig. 

S1 online) and clonally expanded these cells for 3-4 weeks in culture to obtain suffi -

cient DNA for whole-genome sequencing (WGS)18. Moreover, we clonally expanded 

ISCs of the same fetus into organoid cultures for 6-7 weeks and performed WGS. 

From each fetus, we sequenced DNA from bulk skin or intestine to control for germ-

line variants (see Methods). This approach allowed us to obtain all the mutations that 

were present in the originally expanded fetal stem and progenitor cells and which 

were acquired in vivo17,18. Mutations that accumulated during the in vitro expansion 

could be excluded based on their low variant allele frequency (Supplementary Fig. S2 

online), as not all the cells in the clonal culture share these mutations in contrast to 

the in vivo acquired mutations.

In total, we observed 740 base substitutions and 42 indels in 17 clonal D21 HSPCs 

and 11 clonal D21 ISC cultures, which were obtained from 5 independent fetuses 

(Fig 2a, Supplementary Table S2 online). In addition, we found 873 base substitutions 

and 41 indels in 14 clonal T21 HSPCs and 9 clonal T21 ISC cultures obtained from 4 

independent fetuses (Supplementary Table S2 online). We did not observe any larger 

structural variants or chromosomal aberrations (see Methods). Almost all somatic 

mutations were located in introns. In total we found 11 somatic mutations located in 

exons in D21 fetal stem and progenitor cells and 8 in T21 fetal stem and progenitor 

cells, none of which we considered to be drivers (Supplementary table S3 online) (see 

Methods). Moreover, we did not observe a mutation in GATA1 in any of the fetal stem 

and progenitor cells, suggesting that there is no myeloid preleukemia clone present. 

There was no signifi cant difference in the types of somatic exonic mutations between 

D21 and T21 fetal stem and progenitor cells (p = 0.578, chi-squared test) (Fig. 2b). 

In addition, we compared our data to genome-wide mutation catalogues observed 

in D21 post-infant HSPCs and D21 post-infant ISCs obtained from our previous 

studies4,5. We calculated the somatic mutation rate of HSPCs and ISCs during fetal 

development and after birth by dividing the number of somatic mutations by the age 

(in years) of the fetus or donor since conception. We observed an annual somatic 

mutation rate in D21 fetal HSPCs of approximately 100 base substitutions per year 

(95% confi dence interval: 88 – 113), which is 5.8 times higher compared to the rate 

observed in D21 post-infant HSPCs (p = 1.231 x 10-5, linear mixed-effects model) 

(Fig. 2a). We also observed a higher mutation rate in D21 fetal ISCs compared to D21 

post-infant ISCs (p = 0.00153, linear mixed-effects model) (Fig. 2a), which is line with 

a previous study that catalogued somatic mutations in D21 fetal ISCs19.

Increased mutation load during fetal development in Down syndrome
T21 stem and progenitor cells of T21 fetuses accumulated about 34 (95% confi dence 
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Fig. 1: Characterizing somatic mutations in single fetal haematopoietic stem and progenitor cells (HSPCs) 
and fetal intestinal stem cells (ISCs). 
Experimental strategy for characterizing somatic mutations in single cells of disomy 21 (D21) and trisomy 
(T21) fetuses. HSPCs and ISC were clonally expanded to obtain suffi cient DNA for whole-genome se-
quencing (WGS). DNA from bulk skin or intestine was used as reference to control for germline variants. 
After characterizing the somatic mutations in single cells, the somatic mutation load between D21 and 
T21 fetal cells was compared. In addition, signature analysis and phylogenetic lineage tree analyses were 
performed. 
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interval: 6 – 62) extra somatic base pair substitutions mutations per cell compared to 

D21 stem and progenitor cells during fetal development (p = 0.0239, linear mixed-ef-

fects model) (Fig. 2c,d; Supplementary Fig. S3, S4 online). Of note, this increase was 

not restricted to the haematopoietic system. We validated that the difference in 

mutation load between T21 and D21 fetal stem and progenitor cells was not depen-

dent on one or even two single data points (Supplementary Fig. S4 online), under-
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Fig. 2: Accumulation of somatic base pair substitutions in haematopoietic stem and progenitor cells 
(HSPCs) and intestinal stem cells (ISCs) during human fetal development and after birth.
a Comparison of the number of autosomal somatic base substitutions per genome per year between D21 
HSPCs (D21 fetal: 17 clones; 3 donors, Cord blood: 4 clones; 2 donors, Post-infant: 18 clones; 6 donors) 
and D21 ISCs (D21 fetal: 11 clones; 4 donors, Post-infant: 14 clones; 9 donors) of fetuses, cord blood and 
post infant (linear mixed-effects model). Points with the same color indicate single cells from the same sub-
ject. b Pie charts showing the number of somatic mutations for different types of exonic mutations in D21 
and T21 fetal stem and progenitor cells (D21 fetal: 28 clones; 5 donors, T21 fetal: 23 clones; 4 donors). c 
The number of somatic base substitutions per genome plotted against the donor age (D21 fetal: 28 clones; 
5 donors, T21 fetal: 23 clones; 4 donors). Dashed line: ISC, full line: HSPC. p-value shows the difference 
between T21 and D21 fetal stem and progenitor cells. (linear mixed-effects model, two-tailed t-test). d 
Extra somatic base substitutions per genome in T21 fetal stem and progenitor cells. Error bars represent 
95% confidence intervals.

lining the robustness of our finding. Interestingly, T21 fetal stem and progenitor 

cells also showed an increased variance in somatic mutation load compared to D21 

fetal cells (p = 2.1 x 10-8, likelihood-ratio test, LR: 31) with some cells showing 2 – 3 

times higher mutation load than age-matched D21 fetal cells (Fig. 2c). Of these, one 

HSPC of a GA week 14.5 T21 fetus showed a significantly higher number of somatic 

mutations than expected compared to other T21 fetal stem and progenitor cells 

25 13
77

2442136
2821

52
21

33

61

8
7

2
0

10

20

30

40

50

60

80

90

100

120

150

70

130

110

140

T21: GA week 14.5

D21: GA week 16

30
13

36263110831
17

1
3

11
7

2
9

2916

N
um

be
r o

f s
om

at
ic

 m
ut

at
io

ns

A

0

10

20

30

40

50

N
um

be
r o

f s
om

at
ic

 m
ut

at
io

ns

7 9
21 28

18 21 22 25 21 29

2
8

22

1

T21: GA week 12

2

23 25
18

25
19

21

32 24 24 24

1
3 2 2

D21: GA week 14

C D

B

HSPC (Bone marrow)
HSPC (Liver)
ISC9 Number somatic mutations in branch

●● ●

●

●

●

●

●●●

●●

●

●

●

●

●

●

●

● ●●

● ●

●

●

●

●

●

●●

P = 0.0449

0

5

10

15

20

D21 T21

pe
r g

en
om

e 
N

um
be

r o
f e

ar
ly 

em
br

yo
ni

c 
so

m
at

ic 
ba

se
 s

ub
st

itu
tio

ns
 

E

Fig. 3: Phylogenetic lineage trees of disomy 21 (D21) and trisomy 21 (T21) fetuses.
a Lineage trees of a gestational age (GA) week 14 D21 fetus, b gestational age week 14,5 T21 fetus, c ges-
tational age week 16 D21 fetus and d gestational age week 12 T21 fetus. Each tip represents a single clon-
ally expanded cell. The length of the branches indicates the number of somatic mutations in that branch of 
the tree. The number of somatic mutations in each branch are shown in grey boxes. e Comparison of the 
number of somatic base substitutions per genome between D21 and T21 fetal stem and progenitor cells, 
that occurred early in the development of the fetus (D21 fetal: 28 clones; 5 donors, T21 fetal: 23 clones; 4 
donors). Circle: Haematopoietic stem and progenitor cells, Triangle: intestinal stem cells. Points with the 
same color indicate single cells from the same subject. (linear mixed-effects model, two-tailed t-test).
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(linear mixed-effects model, two-sided outlier test, FDR = 0.049) (Fig. 2c). Finally, we 

observed 9 double base pair substitution (DBS) in T21 fetal stem and progenitor cells 

versus only 1 DBS in D21 fetal stem and progenitor cells (p = 0.0017, Wilcoxon test) 

(Supplementary Fig. S5 online). We did not observe a difference in the number of in-

dels between T21 and D21 fetal stem and progenitor cells (p = 0.815, linear mixed-ef-

fects model) (Supplementary Fig. S6 online). Taken together, our results show that 

the presence of a constitutive T21 in T21 fetuses results in an increased number of 

base substitutions as well as an increased variance in mutation load between differ-

ent stem and progenitor cells.

Mutation accumulation during early embryogenesis
To determine when during fetal development the difference in mutation load be-

tween T21 and D21 fetal stem and progenitor cells occurred, we used a phylogenetic 

analysis approach to time the occurrence of somatic mutations during development 

(see Methods). Somatic mutations that are shared between two fetal stem and 

progenitor cells reflect a historical common ancestor. The more mutations two cells 

share, the later during development these two cells separated from a common an-

cestral cells20,21. By assessing all the mutations that are shared between the different 

cells of the same fetus, we constructed developmental lineage trees for 2 D21 and 

2 T21 fetuses (Fig. 3a,b,c,d). Mutations near the trunk of the developmental lineage 

tree are shared between endoderm-derived ISCs and mesoderm-derived HSPCs, 

indicating that these mutations were acquired before gastrulation. In line with this, 

these mutations also showed sub-clonal presence in the matching skin bulk sample, 

which is derived from ectoderm. We used this analysis to compare the mutation rates 

during early embryonic development between T21 and D21 fetuses (see Methods). 

We found about 6 (95% confidence interval: 0.2 – 11.7) extra somatic mutations per 

cell acquired during the first cell divisions in T21 fetal stem and progenitor cells com-

pared to D21 fetal stem and progenitor cells (p = 0.0449, linear mixed-effects model) 

(Fig. 3e). This observation indicates that the mutation load is already increased in T21 

very early after conception, before gastrulation. 

Contribution of developmental lineage branches to D21 and T21 fetal tissues
We used the developmental lineage trees to study the contribution of early embry-

onic branches to bulk skin in each fetus. For this analysis, we compared for each fetus 

the median VAF in bulk skin of the somatic mutations accumulated before gastrula-

tion between the first 2 developmental lineages branches (Fig. 4). Because all somatic 

mutations are accumulated during the same period of fetal development, we were 

able to compare fetuses of different GA. Previous studies using similar mutation-

al analyses in adult HSPCs obtained from human donors revealed an asymmetric 

contribution of developmental branches to the adult haematopoietic system4,21,22. 

Also in adult mice, this asymmetric contribution of developmental branches was 

observed20. These observations indicate that early embryonic cells do not contrib-

ute equally to adult tissues. In line with this, we found that the phylogenetic lineage 

trees of a GA week 16 D21 fetus and a GA week 12 T21 fetus showed an asymmetric 

contribution of the first 2 detectable development lineage branches (p = 2.259 x 

10-13, 1.525 x 10-13, chi-squared test) (Fig. 4c,d). However, we did not observe this 

asymmetric contribution in a GA week 14.5 T21 and a GA week 14 D21 fetus (Fig. 

4a,b). This observation indicates that the contribution of early embryonic cells to 

fetal tissues can vary between fetuses, independent of T21.
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Fig. 4: Relative contribution of the developmental lineage branches to fetal skin tissue.
a Lineage trees of a gestational age (GA) week 14 D21 fetus, b gestational age week 14,5 T21 fetus, c 
gestational age week 16 D21 fetus and d gestational age week 12 T21 fetus. Each tip represents a single 
clonally expanded cell. The pie charts show the median contribution of the contributing mutations in a 
branch to the bulk skin tissue. The grey part of the pie chart indicates the total skin tissue, while the red 
part shows the contribution of a single branch to the skin tissue. The text in the pie charts shows how 
many of the mutations in that branch contributed to the skin tissue. Mutations not contributing to the skin 
tissue at all, are not used to calculate the median. Multiple pie charts in a single branch indicate that the 
mutations in that branch occurred during different cell divisions.
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Activity of mutational processes in post-infant, D21 and T21 fetal haematopoiesis 
To identify the processes underlying somatic mutation accumulation in fetal HSPCs, 

we determined the relative contribution of previously defined mutational signa-

tures to the observed mutation spectra (see Methods)23,24. The mutation spectra 

between D21 fetal HSPCs and D21 post-infant HSPCs were significantly different 

(chi-squared test, p = 5.0 x 10-4) (Fig. 5a; Supplementary Fig. S7 and S8 online), which 

in part can be explained by a higher relative contribution of single base substitution 

signature 1 (SBS1) in fetal compared to D21 post-infant HSPCs (P < 5.0 x 10-3, per-

mutation test) (Fig 5b; Supplementary Fig. S8 online). The underlying mechanism of 

SBS1 is thought to be the spontaneous deamination of methylated cytosines, which 

likely reflects a cell cycle-dependent mutational clock5,25. Moreover, the relative con-

tribution of the recently defined HSPC-specific mutational signature 4,22,24 was less 

present in D21 fetal HSPCs, whereas it is predominant in D21 post-infant HSPCs4 (P 

< 5.0 x 10-3, permutation test) (Fig. 5b; Supplementary Fig. S8 online). In contrast, we 

did not find any difference between the mutation spectra of D21 fetal ISCs and D21 

post-infant ISCs (p = 0.460, chi-squared test) (Supplementary Fig. S9 online), which 

is in line with a previous study19. The mutation spectra and relative contribution 

of mutational signatures between D21 and T21 fetal cells did not differ for HSPCs 

and ISCs. This indicates that the same mutational processes can explain the somatic 

mutations in D21 and T21 fetal stem and progenitor cells (Fig. 5a,b; Supplementary 

Fig. S9 online). Of note, the T21 fetal HSPC with a significantly higher mutation load 

compared to other T21 fetal cells did show contribution of an additional signature 

SBS18 (Fig. 5c), which has previously been associated with oxidative stress-induced 

mutagenesis26. Interestingly, an increase in the generation of radical oxygen spe-

cies has been reported in T21 neurons, suggesting that ROS is preserved in several 

cell types in T2127. Our findings indicate that the increased mutation load in T21 

fetal stem and progenitor cells is mostly caused by processes that are active during 

normal fetal development, suggesting that there is more activity of these mutational 

processes in T21 fetal stem and progenitor cells. However, the increased variance 

in mutation load might be explained by the activity of additional processes, such as 

oxidative stress-induced mutagenesis.

T21 HSPCs display similar mutation load and patterns as DS-associated myeloid preleuke-
mia
We compared the somatic mutation load of preleukemic blast cells from 6 indepen-

dent DS-associated myeloid preleukemia patients11 with those observed in the T21 

fetal HSPCs and found similar numbers of mutations (p = 0.643, linear mixed-effects 

model) (Fig. 6a). As mutation accumulation in normal stem cells acts as a molecular 

clock4,5, our findings suggest that the DS-associated myeloid preleukemias arose 

during the period of fetal development that we assessed. In all preleukemic blast 

cells of DS-associated myeloid preleukemia patients we observed GATA1 mutations 
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Fig. 5: Somatic mutation patterns of disomy 21 (D21) and Trisomy 21 (T21) haematopoietic stem and 
progenitor cells (HSPCs).
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HSPC: n = 10924; 18 clones; 5 donors, D21 fetal HSPC: n = 353; 17 clones; 3 donors, T21 fetal HSPC: n = 
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iterations) signature selection process for the T21 fetal HSPC with extremely high somatic mutation load.
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(Supplementary table S3 online). However, no additional clonal cancer driver muta-

tions were identified (Supplementary table S3). Moreover, we found no difference in 

the mutation spectra between T21 fetal HSPCs and DS-associated myeloid preleuke-

mia, suggesting that SBS1, SBS5 and HSPC can explain the clonal somatic mutations 

in preleukemic blast cells of DS-associated myeloid preleukemia patients (p = 0.164, 

chi-squared test) (Fig. 6b, Supplementary Fig. S10 online). This observation indicates 

that no additional mutational processes are required to explain the somatic muta-

tions in DS-associated myeloid preleukemia, besides those already active during 

normal fetal haematopoiesis. 

Discussion 
In the present study we characterized mutation accumulation in individual HSPCs 

and ISCs of D21 and T21 fetuses. Several reports have demonstrated that T21 per-

turbs fetal haematopoiesis, which is explained by an imbalanced expression of genes 

involved in haematopoietic development28,29,30. Nonetheless, additional cancer driver 

mutations are needed for leukemic development11,12, suggesting that the HSPCs in 

the fetal liver of T21 fetuses are subjected to increased mutagenesis.

Our findings show that the somatic mutation rate in D21 fetal HSPCs is increased 

during normal fetal development compared to the post-infant mutation rate. More-

over, we found that the somatic mutation spectra vary between D21 fetal HSPCs 

and D21 post-infant HSPCs, indicating that HSPCs are exposed to different muta-
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Fig. 6: Somatic mutation patterns of preleukemic bulk blast cells from DS-associated myeloid preleukemia 
patients.
a Comparison of the number of autosomal somatic base substitutions per genome per year for T21 fetal 
haematopoietic stem and progenitor cells (14 clones; 3 donors) and DS-associated myeloid preleukemia 
(6 donors). Points with the same color indicate single cells from the same subject. (linear mixed-effects 
model, two-tailed t-test). b 7-Spectrum of somatic base substitutions. The total number of somatic base 
substitutions is indicated.

tional processes during fetal development. Indeed, we found that the HSPC-specific 

signature is predominant in D21 post-infant HSPCs, while it is less present in D21 

fetal HSPCs. This observation might reflect that HSPCs reside in a different niche 

during fetal development. In line with other studies, we suggest that HSPCs are more 

protected in the adult bone marrow niche31, because HSPCs are highly proliferative 

during fetal development in the liver and become quiescent after they have migrated 

to the bone marrow32. In line with this, D21 post-infant HSPCs have relatively less 

contribution of mutational signature SBS1, which likely reflects a cell cycle-depen-

dent mutational clock25. This mutational process is predominantly active during fetal 

hematopoiesis and can explain the increased somatic mutation rate in D21 fetal 

HSPCs compared to D21 post-infant HSPCs. This suggests that the increased activity 

of SBS1 in D21 fetal HSPCs may contribute to the relatively higher incidence of leu-

kemia in young children compared to young adults, since an increased mutation rate 

increases the chance to acquire a cancer driver mutation. 

Moreover, fetal cells of T21 individuals, who are at risk of developing leukemia, show 

an even higher somatic mutation load, which was apparent before gastrulation. The 

increased mutation load in T21 fetal HSPCs was mostly caused by processes, which 

are active during normal fetal haematopoiesis. In addition, we showed that these 

mutational processes are sufficient to explain the somatic mutations in DS-associat-

ed myeloid preleukemia.

Previously, an association was found between aneuploidy and an increased mutation 

rate in several cancers33. Here, we have shown that an aneuploidy of chromosome 

21 in human cells results in an increased somatic mutation load, indicating that the 

aneuploidy might be the first hit in these cancers. Moreover, it has been shown that 

aneuploid yeast strains show a mutator phenotype, which is suggested to be caused 

by deficient DNA repair in these strains15. Our study shows a similar phenotype in 

T21 stem and progenitor cells of T21 fetuses, independent of cell type. In line with 

this, several studies have reported that T21 cells of DS individuals have a decreased 

expression of various DNA repair genes34,35. This raises the hypothesis that the 

increased mutation load in T21 fetal stem and progenitor cells is caused by deficient 

DNA repair. 

Many clinical features associated with DS are highly variable among individuals, such 

as cognitive impairment, the occurrence of heart defects as well as the development 

of leukemia36. At a molecular level, we also observed a higher variance in somatic 

mutation load between T21 fetal stem and progenitor cells. Intriguingly, enhanced 

cell-cycle and gene expression variability was previously shown in aneuploid yeast 
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strains37, suggesting that also at a molecular level increased variance is a common 

characteristic among aneuploidies.

The increased somatic mutation rate in T21 fetal HSPCs will increase the chance to 

acquire an oncogenic driver mutation. However, the 500 times higher incidence of 

AMKL in DS children cannot solely be explained by the differences we observed in 

mutation accumulation between D21 and T21 fetal cells8. One T21 HSPC of a T21 

fetus was an outlier and showed an extremely high somatic mutation load, which can 

partly be explained by SBS18. However, the somatic mutations observed in DS-as-

sociated myeloid preleukemia did not show contribution of SBS18. This observation 

indicates that the T21 HSPCs with extremely high somatic mutation load are not 

necessarily the cells which undergo clonal expansion and give rise to the DS-asso-

ciated myeloid preleukemia. Therefore, other factors, such as cell-cell competition, 

selection and/or composition of the haematopoietic microenvironment are likely to 

also play a role in the development of leukemia in children with DS. These factors 

together with the observed increased somatic mutation load in T21 cells during fetal 

development may explain the increased risk of developing leukemia early in life for 

children with DS.

In addition, we used the somatic base substitutions in fetal HSPCs and ISCs to 

construct developmental lineage trees of four human fetuses. We found that the 

contribution of the developmental lineage branches to fetal tissue can vary be-

tween fetuses, which is independent of T21. Adult tissues predominantly show an 

asymmetric contribution of the developmental lineage branches to tissues, while we 

observed a symmetric as well as an asymmetric contribution of the developmental 

lineage branches to fetal tissues4,21,22. This difference may indicate that the contri-

bution of developmental lineage branches to tissues can change during life, which 

might be explained by a lower death rate and/or a higher proliferation rate of cells of 

a developmental lineage branch later during development. Alternatively, this change 

might be the consequence of a bottleneck, which is also taking place during the early 

blastocyst-stage in the human embryo38. 

Overall, our study provides insights in the mutation accumulation and developmental 

lineages during early embryogenesis and fetal haematopoiesis in normal and T21 

human fetal development. These findings may contribute to the increased risk of 

leukemia early during life and the higher incidence of leukemia in Down syndrome.

Methods
Ethical statement
The Medical Ethical Committee of the Leiden University Medical Center approved 

this study (P08.087). The study was performed in accordance with the guidelines 

and regulations of the Helsinki declaration and its later amendments or comparable 

ethical standards. Signed informed consent was obtained from participating women. 

DS-associated myeloid preleukemia samples were obtained after approval of the 

Biobank commission of the Princess Máxima Center for Pediatric Oncology. Signed 

informed consent was obtained from all parents. 

Collection of human fetal material 
The gestational age (GA) in weeks was determined by the measurement of first-tri-

mester crown-rump length by ultrasonography. In this study we included 9 fetuses 

from GA week 12-17. The age in weeks after conception was determined by sub-

tracting 2 weeks from the GA. Human D21 fetal material without medical indication 

from elective abortion material (vacuum aspiration) was collected in 0.9% NaCl 

(Fresenius Kabi) and stored on ice. Human T21 fetal material was obtained from 

pregnant women who decided to terminate pregnancy after a positive non-invasive 

prenatal testing (NIPT) result for trisomy 21, which was confirmed by cytogenetic 

confirmatory tests after invasive prenatal screening (chorionic villus sampling or an 

amniocentesis).

The fetal intestine, liver and long leg bones were isolated and stored in Advanced 

DMEM/F-12, supplemented with 1% penicillin/streptomycin, 1% GlutaMAX, and 

1% HEPES 10 mM at 4 C overnight and processed next day. A piece of fetal skin was 

frozen down at -20  C.

Fetal liver and small intestine disassociation 
Liver and intestine were disassociated into single cell solutions with collagenase 

digestion as follows: biopsies were minced and incubated with EBSS supplemented 

with 1 mg/ml collagenase type 1A (Sigma-Aldrich) and 0.1 mg/ml DNaseI (Sigma-Al-

drich) for 30 minutes at 37oC, while shaking. The tissue was further digested with 

a pipette if needed and incubated 10 minutes more. Subsequently, cells were fil-

tered through a 70 um Nylon cell strainer. Single cell solutions were frozen down or 

further processed for culturing. Clonal ISCs WGS data from fetus F100916W15 and 

F100916W17 were obtained from Kuijk et al 201919.

Clonal intestinal organoid cultures
Single intestinal cells were plated in Matrigel (Corning) droplets in limited dilution. 
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Cells were cultured in human ISC organoid (CHIO) medium containing: 70% Ad-

vanced DMEM/F-12 supplemented with 1% penicillin/streptomycin, 1% GlutaMAX, 

and 1% HEPES 10 mM, 0.5 nM WNT surrogate (produced in house), 20% RSPOI con-

ditioned medium (produced in house), 1x B27 supplement (Thermo Fisher Scientific), 

1x Primocin (Invivogen), 1 : 1000 hES cell cloning & recovery supplement (Stemgent), 

10μM SB 202190 (Sigma-Aldrich), 10 mM Nicotinamide, 1.25 mM N-acetylcyste-

ine, 0.5 μM A83-01 (Tocris Bioscience), 10 μM Rho kinase inhibitor (Abmole), 10% 

noggin conditioned medium (produced in house) and 50 ng/ml hEGF (PeproTech). 

ISC cultures from fetus E080416, F100916W16 and F100916W17 were cultured in 

CHIO medium with 50% WNT conditioned medium and 100 ng/ml noggin (prepro-

tech) as described before19. After 2-3 days small organoids appeared and medium 

was changed to human CHIO medium without hES cell cloning & recovery supple-

ment. Clonal ISC cultures were derived by picking single organoids. Clonal organoid 

cultures were cultured in human CHIO medium without hES cell cloning & recovery 

and Rho kinase inhibitor. The cultures were expanded for 6-7 weeks until there was 

sufficient material for whole-genome sequencing.

Isolation and culture of haematopoietic stem and progenitor cells 
Mononuclear cells from fetal bone marrow were flushed out with Advanced 

DMEM/F-12, supplemented with 1% penicillin/streptomycin, 1% GlutaMAX, and 

HEPES 10 mM. Single liver cells or mononuclear cells from bone marrow were 

stained with an antibody cocktail to sort HSPCs as described before18. Single HSPCs 

(CD34+,lineage-, index sort) were sorted with the sony SH800S into round-bottom 

384-well plates (Supplementary Fig. S1 online). HSPCs were cultured in StemSpan 

SFEM medium supplemented with growth factors as described before for 3-4 weeks 

before collection of the cells18.

DNA isolation
DNA from skin biopsies, clonal ISC organoids and primary intestinal biopsies was 

extracted using Genomic tip 20/G (Qiagen). DNA from clonal HSPCs cultures, bulk 

preleukemic blast cells and T-cells was extracted using Qiamp DNA Micro Kit (Qia-

gen).

DS-associated myeloid preleukemia samples
Viable frozen peripheral blood samples from 2 DS patients with DS-associated my-

eloid preleukemia were obtained from the biobank commission of the Princess Máx-

ima Center for Pediatric Oncology. Mononuclear cells were stained with a cocktail 

of the following antibodies: CD3-BV650 (Biolegend, Clone UCHT1, 300467, 1:100), 

CD4-PerCP/Cy5.5 (Biolegend, Clone OKT4, 317427, 1:200), CD8-BV785 (Biolegend, 

Clone SK1, 344739, 1:100), CD19-BV421 (Biolegend Clone HCD14, 30224, 1:100) , 

CD14-AF700 (Biolegend, Clone HCD14, 325614, 1:100), CD56-BV711 (Biolegend, 

Clone HCD56, 318335, 1:50), CD34-APC (Biolegend, Clone 561, 343607, 1:50), 

CD38-PE (Biolegend, Clone HIT2, 303505, 1:50) , CD33-PE/Cy7 (Biolegend, Clone 

WM53, 303433, 1:100), CD117-PE-dazzle594 (Biolegend, Clone 104D2, 1:100), 

CD16-FITC (Biolegend, Clone 3G8, 302005, 1:100), CD20-FITC (Biolegend, Clone 

IVB201, 302303, 1:100). Bulk T-cells (CD3+/ CD4+ and CD3+/CD8+) and preleuke-

mic blast cells were sorted with the Astrios-EQ. Preleukemic blast cells were sorted 

according to the diagnostics flow data. Cell pellets were used for DNA isolation. 

Public data was used for the other 4 myeloid preleukemia samples11.

Collection of post-infant data
Vcfs from cord blood and D21 post-infant HSPCs were obtained from Osorio et al 

20184. Vcfs from D21 post-infant ISCs were obtained from Blokzijl et al 20165.

Whole genome sequencing and read alignment 
DNA libraries for Illumina sequencing were generated using standard protocols 

(Illumina) from 20 - 50 ng of genomic DNA isolated from clonally expanded haemato-

poietic blood and progenitor cells, preleukemic blast cells and T-cells. DNA libraries 

for Illumina sequencing from skin biopsies and clonal ISC organoids were generated 

from 500ng DNA. All samples were sequenced (2 x150 bp) using Illumina HiSeq X Ten 

sequencers or Nova sequencers to 30x base coverage.

Version 2.6.0 of the Illumina Analysis Pipeline (https://github.com/UMCUGenetics/

IAP) was used to align the reads and call variants similar to5. Copy numbers and b-al-

lele frequencies were in concordance with the trisomy and sex state of all the bulks 

and clones. Initiation files are available upon request.

The bulk skin biopsies of N01, NR1 and NR2 were sequenced on both the Illumina 

HiSeq X Ten sequencers and the Nova sequencers. The resulting BAM files were 

merged using samtools merge39. The library (LB) and sample (SM) fields of the header 

were unified for each readgroup in the new bamfile.

Base substitution filtering
Unique base substitutions, not present in bulk tissue were filtered similarly as 

described before5. We considered variants that were passed by VariantFiltration 

and had a GATK phred-scaled quality score (QUAL) ≥50 and MQ≥60. Variants with 

multiple alternative alleles were removed. We excluded variant positions that over-

lapped with single-nucleotide polymorphisms (SNPs) in the SNP database (dbSNP) 
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v137.b37, unless that variant had a COSMIC id (v76)40,41. In addition, we removed all 

variants that overlapped with an inhouse blacklist (available upon request). We only 

retained autosomal and X-chromosome variants. We additionally filtered on geno-

type quality (GQ), Depth (DP) and VAF. For bulk tissues we filtered on GQ≥10 and 

VAF=0, while for clones we used GQ≥99 and VAF>0.1. In both the bulk tissue and 

clone we used DP≥20. Bulk skin was used to for all fetuses to control for germline 

variants, except for fetus MH3 and MH2, for these fetuses we used bulk intestine.

We used Dirichlet modeling to check the clonality of the clones. Subsequently, we 

removed all variants with a VAF below 0.3 to retain only the clonal substitutions. For 

T21 samples, we used a VAF ≥ 0.2 on chromosome 21, to account for the different ex-

pected VAF of clonal mutations. For X chromosomal variants in male donors we used 

VAF≥0.99 and GQ≥10 for clones and DP≥10 for both clones and bulk tissues.

To identify variants that were (sub)clonally present in the bulk tissue, we first applied our 

filters as described above, but did not yet filter on QUAL, GQ, DP or VAF to generate a 

“somatic” vcf file. All obtained variants were characterized in the clones. For each variant 

we divided the clones into ‘present’ and ‘absent’ based on their genotype. We filtered the 

‘present’ clones using the GQ, DP and VAF filters, we previously used for the clones, while 

we used the bulk GQ, DP and VAF filters for the ‘absent’ clones. If at least one ‘present’ 

clone and one ‘absent’ clone passed the filtering, the variant was retained. This way vari-

ants are retained that are both confidently present and confidently absent in at least one 

clone. Finally, all variants were manually inspected using IGV (v2.4.15)42.

Indel calling / filtering
Indels were filtered similarly to SNVs, except for the following differences. Variants lying 

within 100b of a called germline indel were removed. We filtered on QUAL≥250. For 

both bulk tissue and clones we filtered on GQ≥99.

Structural variant calling / filtering
We ran Gridss (v2.2.2) with bwa (v0.7.17) to detect structural variants (SVs)43,44. 

The output was filtered using a public pool of normal (3792v1) file from the 

Hartwig medical foundation (HMF) with the structuralvariantannotation (commit: 

d6173c3d9dd1fa314c91092b51920925b22268c6) R package and code modified from 

the HMF pipeline. In addition, we filtered for somatic SVs by only retaining variants in 

which at least one clone had a quality of 0. Next, we calculated VAFs and kept only break-

points for which at least one clone had VAF≥0.3. Then, all breakpoints were removed 

for which the partner was not kept. Finally, all variants were inspected by eye in IGV 

(v2.4.15)42. In the end, no SVs were observed.

Driver mutations
The mutation load per clone could potentially be influenced by somatic driver mu-

tations. We checked for the presence of driver mutations in the identified somatic 

mutations. A mutation was considered as possible driver if it met two requirements. 

First it needed to be annotated with “MODERATE” or “HIGH” effect by snpeff(v4.1) 

and second it needed to either have a COSMIC id (v76) or be located in a gene that 

was annotated as somatic in the Cosmic cancer gene census (v88)41,45. 

The mutation load per clone could also be influenced by germline drivers. To identify 

potential predisposition variants, we started with the “somatic” vcf described before. 

We filtered the bulk tissue on GQ≥50, DP≥10 and VAF≥0.3. Next, we removed all 

variants that had an allele count of more than 10 in either The ExAC (annotated 

via dbNSFPv2.9) or the GoNL (v5) database46,47,48. Furthermore, we only retained 

variants that were annotated with “MODERATE” or “HIGH” effect by snpeff(v4.1). 

Additionally, all variants were removed that did not overlap with a cancer-genes list 

from Zhang et al. 201548. After manual inspection, none of the remaining variants 

were determined to be driver mutations.

Mutation load accumulation
For each clone the total number of somatic mutations was extrapolated to the entire 

called genome, based on the surveyed fraction of the genome similar to5. For the 

comparison against post-infant data, we used only autosomal variants that were 

not present in corresponding bulk tissue in order to equally compare the mutations 

load with the same method. We calculated the lifelong mutation rate by dividing the 

mutation load with the age of the donor since conception. Next, a linear mixed-ef-

fects regression model was fitted to compare the mutation rates between the fetal, 

cord-blood and post-infant clones. A random intercept was modeled for the ‘donor’ 

to resolve the non-independence that results from having multiple measurements 

per donor. Significance values and 95% CI intervals were calculated using a two-

tailed t-test.

To compare the mutation load between D21 and T21 fetal cells, we fitted a linear 

mixed-effects model where the extrapolated mutational load was fitted against the 

age of the donors, the trisomy state and the cell type. The trisomy state and the cell 

type were crossed. We allowed a different variance for D21 and T21 fetal cells. A 

random slope was modeled for the ‘donor’. We did not observe a difference in muta-

tion load between the cell types or an interaction between cell type and trisomy state 

(Supplementary Fig. S3 online).
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To test that the significance of our model was not dependent on its complexity, we 

fitted simplified versions of the model to our data. These also showed significant 

differences in mutation load between D21 and T21 (Supplementary Table S4 online). 

However, our original model had the best performance based on log likelihood, the 

Bayesian information criterion (BIC) and the Akaike information criterion (AIC). 

To test whether the variance between D21 and T21 was different, a log-likelihood 

ratio test was used to compare our main model to a version with a single variance for 

both D21 and T21.

To test that the significance of our model was not dependent on a few single points, 

we performed a leave-n-out analysis. We iteratively removed each combination of 

n points from our data and fitted our model on the remaining data. We determined 

the distribution of p-values we got for each of our fixed variables. The difference 

between D21 and T21 fetal cells always remained significant for both n=1 and n=2 

(Supplementary Fig. S4 online).

Outliers in the models were detected by calculating the odds of the standardized 

absolute residuals occurring under a standard normal distribution. Fdr values were 

calculated to correct for multiple testing.

To compare the number of early mutations between D21 and T21 fetal cells, we used 

mutations that were (sub-)clonally present in the bulk. As these mutations occurred 

before gastrulation, they should not be affected by donor age. Therefore, we fitted 

the same model as described previously on the mutation load of early mutations, but 

without age as an explanatory variable.

The Wilcoxon rank sum test with continuity correction was used to compared the 

number of dbs between D21 and T21 fetal cells. Mutations present in multiple clones 

of a single fetus were only counted in a single cell.

Construction of developmental lineage tree
We created a binary mutation matrix with size CxM, where M is the number of mu-

tations and C the number of clones. One and zero indicate presence and absence of 

a mutation in a clone. A row with only zeros was added to the matrix to root the tree. 

The pairwise distances between the clones where then calculated and a neighbour-

hood tree was generated.

Next, we calculated the VAFs in the bulk samples for all identified somatic mutations. 

For each developmental lineage branch, we took the mutations with a non-zero VAF 

and created a matrix containing the reference and alternative allele counts. Next, we 

performed a chi-square test on this matrix to see if the mutations had significantly 

different VAFs. This was the case for one branch, with three mutations, in which the 

mutations likely occurred in different cell divisions. After, we calculated the median 

VAF of the non-zero VAF mutations in each branch. We multiplied the median VAFs 

with factor 2, to get the contribution of these mutations to the bulk tissue.

To determine if the first two developmental lineage branches had different contribu-

tion to the bulk tissue, we calculated whether their VAFs, were significantly different. 

We summed up the reference and alternative allele counts of the non-zero VAF mu-

tations in a branch. For each pairwise combination of branches we then performed a 

Fisher’s exact test.

Mutational profile and signature analysis
For the comparisons against post-infant data, we used only autosomal variants, be-

cause X-chromosome variants were not called in the post-infant data. Furthermore, 

for the comparisons of D21 with T21 and the comparison of T21 with DS-associat-

ed myeloid preleukemia, we only used unique substitutions not present in the bulk 

tissue, because those mutations are most likely to have originated in the cell type of 

interest. Additionally, mutations subclonally present in bulk T-cells were not called in 

the DS-associated myeloid preleukemia samples. In other comparisons, all mutations 

were used. Because of the low mutational load per sample, mutations were pooled 

per category. Mutations occurring in multiple clones, were only counted once. Each 

mutational signature analysis, was performed by comparing two categories at a time. 

The T21 fetal HSPC with a high mutational load was not included in the T21 catego-

ry, but was instead analyzed separately because it was an outlier. Chi-square tests 

were used to compare base substitution profiles. The mutational profiles were fitted 

to a matrix containing the COSMIC signatures and the recently discovered HSPC 

signature using Mutational Patterns23. To reduce overfitting, we applied an iterative 

reverse selection process. During each iteration the mutational profiles are fitted 

against the signatures. Next, the cosine similarity between the original and the re-

constructed profile was calculated. The signature with the lowest contribution across 

the samples was removed. This process was repeated until the difference in cosine 

similarities between two iterations became more than the cutoff of 0.05.

To provide us with a confidence level of signature contributions, we performed a 

bootstrapped version of our signature refitting method, with 1000 iterations. For the 

bootstrapping we resampled the mutational profiles with replacement. By correlat-

ing the bootstrapped contribution of signatures, we were able to visualize how the 
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selection of one signature influences the selection of another signature. SBS5 and 

SBS40, which have a cosine similarity of 0.83, are negatively correlated (Supplemen-

tary Fig. S8 online). This shows that a small difference in a mutational profile, can 

cause the signature refitting process, to select a different signature. Bootstrapping is 

thus necessary, to determine how confident the signature exposures are.

We used a permutation test to compare the mutational signatures between samples. 

This was done by permuting the mutation matrix 2000 times, while keeping the mar-

gins fixed. Refitting, was then performed on the permuted matrixes, using the signa-

tures that were selected at least 50% of the time in the bootstrapping. This results in 

a distribution of exposures for each used signature. Next, we calculated per category 

and per signature, how often the permuted exposures were more extreme then the 

exposures calculated using the original matrix. This value was then divided by the 

number of permutations and multiplied by two, to generate a two-tailed p-value.

The previously described method to compare the signatures between two groups is 

rather stringent and removes signatures with a small contribution. As a result, SBS1 

and SBS5 could no longer be detected in post-infant HSPCs, even though they were 

present in fetal HSPCs. Since the mutations caused by SBS1 and SBS5 can’t disap-

pear, we decided to use a less stringent refitting method. Since SBS1, SBS5 and the 

HSPC signature were found to be present in HSPCs, we refitted the D21 HSPCs, T21 

HSPCs, DS-associated myeloid preleukemia blasts and the post-infant HSPCs with 

only these signatures using the standard method from MutationalPatterns.

Mutational spectra, using previously defined mutational contexts, for the dbs and 

indel mutations were generated using inhouse R scripts.

We used modified versions of functions from the MutationalPatterns package to test 

whether there was an enrichment of mutations in regulatory regions, exons or genes.

Data availability
Data are available on EGA under accession number EGAS00001003982. Addition-

ally, Vcfs and mutation matrixes are provided via the Github repository described in 

‘Code availability’.

Code availability
Code can be found on github at 

https://github.com/ToolsVanBox/Mutation_accumulation_T21.

Acknowledgements
We would like to thank the participants and the staff of clinic Gynaikon in Rotterdam 

for all the efforts and availability to collect and provide the fetal material; and M. Bi-

alecka, M. Nieveen and V. Torrens Juaneda for technical help. We would like to thank 

P. Lijnzaad for our discussions on the linear mixed-effects models.

Author contributions
K.A.L.H., M.V. and S.M.C.S.L. performed sample isolation. K.A.L.H. and

T.P. performed fluorescence-activated cell sorting (FACS). K.A.L.H., M.V. and E.K. per-

formed clonal expansions and supervised sequencing. K.A.L.H., F.M. and R.B. wrote 

the manuscript. F.M. performed bioinformatic analyses. S.M.C.S.L. and M.L.H. collect-

ed fetal material. R.B. designed and supervised the study.

Additional Information
Competing interests
Authors declare no competing interests

Funding
This study was financially supported by a grant from the Dutch Cancer Society (KWF

no. 11307) to R.B. and S.M.C.S.L. and a VIDI grant from the Netherlands Organisation 

for Scientific Research (NWO no. 016.Vidi.171.023) to R.B.

References
1. Stratton, M. R., Campbell, P. J. & Futreal, P. A. The cancer genome. Nature 458, 719–724 (2009).
2. Tomasetti, C. & Vogelstein, B. Variation in cancer risk among tissues can be explained by the 
number of stem cell divisions. Science (80-. ). 347, 78–81 (2015).
3. Tomasetti, C., Li, L. & Vogelstein, B. Stem cell divisions, somatic mutations, cancer etiology, and 
cancer prevention. Science (80-. ). 355, 1330–1334 (2017).
4. Osorio, F. G. et al. Somatic Mutations Reveal Lineage Relationships and Age-Related Mutagene-
sis in Human Hematopoiesis. Cell Rep. 25, 2308-2316.e4 (2018).
5. Blokzijl, F. et al. Tissue-specific mutation accumulation in human adult stem cells during life. 
Nature 538, 260–264 (2016).
6. Rozhok, A. I., Salstrom, J. L. & DeGregori, J. Stochastic modeling reveals an evolutionary mech-
anism underlying elevated rates of childhood leukemia. Proc. Natl. Acad. Sci. U. S. A. 113, 1050–1055 
(2016).
7. Greaves, M. A causal mechanism for childhood acute lymphoblastic leukaemia. Nat. Rev. Cancer 
18, 471–484 (2018).
8. Hasle, H., Clemmensen, I. H. & Mikkelsen, M. Risks of leukaemia and solid tumours in individuals 
with Down’s syndrome. Lancet 355, 165–169 (2000).



52 53

Mutation accumulation and developmental lineages in normal and Down syndrome human fetal haematopoiesisChapter 2

2 2

9. Khan, I., Malinge, S. & Crispino, J. Myeloid leukemia in Down syndrome. Crit. Rev. Oncog. 16, 
25–36 (2011).
10. Klusmann, J.-H. et al. Treatment and prognostic impact of transient leukemia in neonates with 
Down syndrome. Blood 111, 2991–2998 (2008).
11. Yoshida, K. et al. The landscape of somatic mutations in Down syndrome – related myeloid disor-
ders. 45, (2013).
12. Labuhn, M. et al. Mechanisms of Progression of Myeloid Preleukemia to Transformed Myeloid 
Leukemia in Children with Down Syndrome. Cancer Cell 36, 123-138.e10 (2019).
13. Hitzler, J. K., Cheung, J., Li, Y., Scherer, S. W. & Zipursky, A. GATA1 mutations in transient leuke-
mia and acute megakaryoblastic leukemia of Down syndrome. (2003). doi:10.1182/blood-2003-01-0013
14. Lee-Six, H. et al. The landscape of somatic mutation in normal colorectal epithelial cells. Nature 
574, 532–537 (2019).
15. Sheltzer, J. M. et al. Aneuploidy Drives Genomic Instability in Yeast.
16. Wang, Y. & Navin, N. E. Advances and Applications of Single-Cell Sequencing Technologies. 
Molecular Cell 58, 598–609 (2015).
17. Jager, M. et al. Measuring mutation accumulation in single human adult stem cells by whole-ge-
nome sequencing of organoid cultures. Nat. Protoc. 13, 59–78 (2017).
18. Huber, A. R., Manders, F., Oka, R. & van Boxtel, R. Characterizing Mutational Load and Clonal 
Composition of Human Blood. J. Vis. Exp. (2019). doi:10.3791/59846
19. Kuijk, E. et al. Early divergence of mutational processes in human fetal tissues. Sci. Adv. 5, 
eaaw1271 (2019).
20. Behjati, S. et al. Genome sequencing of normal cells reveals developmental lineages and muta-
tional processes. Nature 513, (2014).
21. Ju, Y. S. et al. Somatic mutations reveal asymmetric cellular dynamics in the early human em-
bryo. Nature 543, 714–718 (2017).
22. Lee-Six, H. et al. Population dynamics of normal human blood inferred from somatic mutations. 
Nature (2018). doi:10.1038/s41586-018-0497-0
23. Alexandrov, L. B. et al. The Repertoire of Mutational Signatures in Human Cancer. bioRxiv 
322859 (2018). doi:10.1101/322859
24. Maura, F. et al. A practical guide for mutational signature analysis in hematological malignancies. 
Nat. Commun. 10, 2969 (2019).
25. Alexandrov, L. B. et al. Clock-like mutational processes in human somatic cells. Nat. Genet. 47, 
1402–1407 (2015).
26. Viel, A. et al. A Specific Mutational Signature Associated with DNA 8-Oxoguanine Persistence in 
MUTYH-defective Colorectal Cancer. EBioMedicine 20, 39–49 (2017).
27. Busciglio, J. & Yankner, B. A. Apoptosis and increased generation of reactive oxygen species in 
down’s syndrome neurons in vitro. Nature 378, 776–779 (1995).
28. Roy, A. et al. Perturbation of fetal liver hematopoietic stem and progenitor cell development by 
trisomy 21. Proc. Natl. Acad. Sci. U. S. A. 109, 17579–84 (2012).
29. Banno, K. et al. Systematic Cellular Disease Models Reveal Synergistic Interaction of Trisomy 21 
and GATA1 Mutations in Hematopoietic Abnormalities. Cell Rep. 15, 1228–1241 (2016).
30. Tunstall-Pedoe, O. et al. Abnormalities in the myeloid progenitor compartment in Down syn-
drome fetal liver precede acquisition of GATA1 mutations. Blood 112, 4507–4511 (2008).
31. Rossi, D. J., Jamieson, C. H. M. & Weissman, I. L. Leading Edge Review Stems Cells and the Path-
ways to Aging and Cancer. doi:10.1016/j.cell.2008.01.036
32. Cheshier, S. H., Morrison, S. J., Liao, X. & Weissman, I. L. In vivo proliferation and cell cycle kinet-
ics of long-term self-renewing hematopoietic stem cells. Proc. Natl. Acad. Sci. 96, 3120–3125 (1999).
33. Taylor, A. M. et al. Genomic and Functional Approaches to Understanding Cancer Aneuploidy. 
Cancer Cell 33, 676-689.e3 (2018).
34. Morawiec, Z. et al. DNA damage and repair in children with Down’s syndrome. Mutat. Res. 637, 
118–123 (2008).

35. Cabelof, D. C. et al. MYELOID NEOPLASIA Mutational spectrum at GATA1 provides insights 
into mutagenesis and leukemogenesis in Down syndrome. 114, 2753–2763 (2009).
36. Roper, R. J. & Reeves, R. H. Understanding the Basis for Down Syndrome Phenotypes. 
doi:10.1371/journal.pgen.0020050
37. Beach, R. R. et al. Aneuploidy Causes Non-genetic Individuality. Cell 169, 229-242.e21 (2017).
38. Hardy, K., Handyside, A. H. & Winston, R. M. L. The human blastocyst: Cell number, death and 
allocation during late preimplantation development in vitro. Development 107, 597–604 (1989).
39. Li, H. et al. The Sequence Alignment/Map format and SAMtools. Bioinformatics 25, 2078–2079 
(2009).
40. Sherry, S. T. et al. dbSNP: the NCBI database of genetic variation. Nucleic Acids Res. 29, 
308–311 (2001).
41. Forbes, S. A. et al. COSMIC: somatic cancer genetics at high-resolution. Nucleic Acids Res. 45, 
D777–D783 (2016).
42. Thorvaldsdóttir, H., Robinson, J. T. & Mesirov, J. P. Integrative Genomics Viewer (IGV): high-per-
formance genomics data visualization and exploration. Brief. Bioinform. 14, 178–192 (2012).
43. Cameron, D. L. et al. GRIDSS : sensitive and specific genomic rearrangement detection using 
positional de Bruijn graph assembly. 2050–2060 (2017). doi:10.1101/gr.222109.117.Freely
44. Li, H. & Durbin, R. Fast and accurate long-read alignment with Burrows–Wheeler transform. 
Bioinformatics 26, 589–595 (2010).
45. Cingolani, P. et al. A program for annotating and predicting the effects of single nucleotide 
polymorphisms, SnpEff: SNPs in the genome of Drosophila melanogaster strain w1118; iso-2; iso-3. Fly 
(Austin). 6, 80–92 (2012).
46. Liu, X., Jian, X. & Boerwinkle, E. dbNSFP v2.0: A Database of Human Non-synonymous SNVs and 
Their Functional Predictions and Annotations. Hum. Mutat. 34, E2393–E2402 (2013).
47. Consortium, T. G. of the N. et al. Whole-genome sequence variation, population structure and 
demographic history of the Dutch population. Nat. Genet. 46, 818 (2014).
48. Zhang, J. et al. Germline Mutations in Predisposition Genes in Pediatric Cancer. N. Engl. J. Med. 
373, 2336–2346 (2015).



54 55

Mutation accumulation and developmental lineages in normal and Down syndrome human fetal haematopoiesisChapter 2

2 2

Supplementary material

FSC-A (x 103 )

SS
C

-A

0

200

400

600

800

1000

(x
 1

03
)

live cells

200 800400 600 1000

(x 103)

0

200

400

600

800

1000

(x
 1

03
)

Single cells

200 400 600 800 1000

Lineage- CD34+

CD45RA

10 2 10 3 10 4 10 5 10 6

CD
38

10 2

10 3

10 4

10 5

10 6

MPP

HSPC

CD34

10 2 10 3 10 4 10 5 10 6

C
D

90

10 2

10 3

10 4

10 5

10 6

Lineage- CD34+

Lineage- CD34+ CD90+

Lineage- 

CD45RA

Lineage- CD34+ CD90+ 

10 2 10 3 10 4 10 5 10 6

C
D

38

10 2

10 3

10 4

10 5

10
6 Lineage- CD34+ CD90+ 

HSC

FSC-A (x 103 )

Li
ne

ag
e

10 2

10 3

10 4

10 5

10 6

Lineage-

Single cells

200 400 600 800 1000

MPP

C
D

90

10 3

10 4

10 5

10 6

CD49f

102 10 3 10 4 10 5 10 6
102

HSC

FSC-A

FS
C

--
H

Fig. S1 Haematopoietic stem and progenitor cells isolation strategy.
Representative FACS strategy to sort haematopoietic stem and progenitor cells from fetal liver and bone 
marrow. Example data is from a trisomy 21 (T21) fetal liver



56 57

Mutation accumulation and developmental lineages in normal and Down syndrome human fetal haematopoiesisChapter 2

2 2



58 59

Mutation accumulation and developmental lineages in normal and Down syndrome human fetal haematopoiesisChapter 2

2 2

Fig. S2. Variant allele fractions (VAF) of base substitutions in sequenced clones.
Dirichlet modeling was used to determine the clonality of the cells. Histograms of the variant allele 
frequency of each sequenced sample to detect clonal single base substitutions. Clonal heterozygous muta-
tions peak at VAF = 0.5. A threshold of VAF 0.3 was used to obtain mutations that were clonal and present 
in the original haematopoietic stem and progenitor cells or intestinal stem cells. Clonal mutations in the 
DS-associated myeloid preleukemia samples indicate the mutations present in the cell which underwent 
clonal expansion. Mutations acquired during or after clonal culture have lower VAFs and are therefore 
excluded. Shaded area represents the 95% posterior confidence intervals for the fitted distribution (pink 
area). In most samples, two clusters of mutations can be identified.
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Slope

Celltype
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Trisomy x Celltype

0 250 500 750
Extra somatic base substitutions

Fig. S3. Model parameters to determine somatic mutation load in fetal stem cells.
Model parameters of the linear mixed-effects model comparing the mutation load of disomy 21 (D21) vs 
trisomy 21 (T21). The model estimates of the explanatory variables are shown. Error bars represent 95% 
confidence intervals.
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Fig. S8. Differences in mutational patterns between disomy 21 (D21) fetal haematopoietic stem and pro-
genitor cells (HSPCs) and D21 post-infant HSPCs.
a For each signature the percentage of bootstrap iterations (1000 iterations) in which this signature was 
present is shown. b Violin plot of the bootstrapped (1000 iterations) number of base substitutions that 
each mutational signature contributed to the mutational profiles. Thicker parts of the violin are supported 
by more iterations of the bootstrap. The widths are scaled to the maximum density of each signature. c 
The cosine similarity between the mutational profiles and the mean reconstructed profiles, based on the 
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signature refitting are shown. d Heatmaps depicting the correlation of bootstrapped signature contribu-
tions are shown. e Signature permutation test (2000 permutations) for fetal vs post-infant D21 HSPCs. 
The bars show the mean relative signature contribution of the permutations. The error bars show the 2.5% 
and 97.5% quantiles. The dots show the actual measured relative signature contribution. (D21 Post-infant 
HSPC: n = 10924; 18 clones; 5 donors, D21 fetal HSPC: n = 353; 17 clones; 3 donors).
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Abstract
Background
The collective of somatic mutations in a genome represents a record of mutational 

processes that have been operative in a cell. These processes can be investigated by 

extracting relevant mutational patterns from sequencing data.

Results
Here, we present the next version of MutationalPatterns, an R/Bioconductor pack-

age, which allows in-depth mutational analysis of catalogues of single and double 

base substitutions as well as small insertions and deletions. Major features of the 

package include the possibility to perform regional mutation spectra analyses and 

the possibility to detect strand asymmetry phenomena, such as lesion segregation. 

On top of this, the package also contains functions to determine how likely it is that a 

signature can cause damaging mutations (i.e., mutations that affect protein function). 

This updated package supports stricter signature refitting on known signatures in 

order to prevent overfitting. Using simulated mutation matrices containing varied 

signature contributions, we showed that reliable refitting can be achieved even 

when only 50 mutations are present per signature. Additionally, we incorporated 

bootstrapped signature refitting to assess the robustness of the signature analyses. 

Finally, we applied the package on genome mutation data of cell lines in which we 

deleted specific DNA repair processes and on large cancer datasets, to show how the 

package can be used to generate novel biological insights.

Conclusions
This novel version of MutationalPatterns allows for more comprehensive analyses 

and visualization of mutational patterns in order to study the underlying process-

es. Ultimately, in-depth mutational analyses may contribute to improved biological 

insights in mechanisms of mutation accumulation as well as aid cancer diagnostics. 

MutationalPatterns is freely available at http://bioconductor.org/packages/Muta-

tionalPatterns.

Keywords
R, regional mutation patterns, mutagenic processes, mutational signatures, indels, 

base substitutions, somatic mutations

Background
Mutational landscapes in the genomes of cells are the result of a balance between 

mutagenic and DNA-repair processes1. The somatic mutations that shape these land-

scapes gradually accumulate throughout life in both healthy and malignant cells2,3. As 

a result, the complete collection of somatic mutations in the genome of a cell forms a 

record of the mutational processes that have been active throughout the life of that 

cell. In-depth analyses of somatic mutations can allow us to better understand the 

mutational processes that caused them4.

First, such analyses can provide insight into the etiology of cancer by identifying mu-

tagenic exposures, which ultimately contribute to the accumulation of cancer driving 

mutations. For example, we recently identified a mutational pattern caused by a 

carcinogenic strain of Escherichia coli found in the gut of ~20% of healthy individu-

als5. This pattern matched mutations found in colorectal cancer driver genes, indi-

cating a direct role in tumorigenesis. Mutational patterns have been systematically 

determined in vitro for many environmental mutagenic agents, which can be used to 

deduce cancer causes6. The effects of such agents can also be found in vivo. For ex-

ample, we recently found mutations caused by exposure to the antiviral drug ganci-

clovir, which patients received to treat a viral infection after a hematopoietic stem 

cell transplant7. Second, studying mutational processes can be useful for improved 

cancer diagnostics. For example, the presence of certain mutational signatures can be 

used as a functional readout for deficiency of  homologous recombination (HR)-me-

diated double strand break repair8,9. Cancers with a defect in this repair pathway are 

selectively sensitive to poly(ADP-ribose) polymerase (PARP) inhibitors, providing a 

targeted therapy for the patients10,11.

One of the most popular tools to analyze somatic mutation profiles is the R/Biocon-

ductor package MutationalPatterns (v1.4.3), which can be used to easily investigate 

mutation spectra12–19. It can also be used to identify new signatures in mutation data 

using Nonnegative Matrix Factorization (NMF) and to determine the contribution 

of previously defined signatures to a sample using a method known as “signature 

refitting”4. However, the original version of this package has several limitations. 

First, the package is limited to single base substitutions (SBSs) and cannot be used 

for small insertions and deletions (indels) or double base substitutions (DBSs) even 

though signatures for these mutation types have recently been identified in large 

pan-cancer sequencing efforts13. The package also suffers from signature overfitting 

when determining the contribution of known patterns to a sample, which can result 

in too many signatures being attributed20. Additionally, the package only allows for 

analyzing spectra for mutations in the entire genome, making it difficult to study the 
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involvement of specific genomic elements, such as enhancers or secondary hairpin 

structures. The ability to investigate the role of such elements in mutation accumu-

lation is important, because this allows for identifying the molecular mechanisms by 

which certain processes induce mutagenesis21–23.

Here we present a novel, almost completely rewritten version of MutationalPatterns 

(v3.4.0) for the analysis of mutational processes, which is easy-to-use and contains 

many new features, such as DNA lesion segregation24. Existing features have also 

been improved, resulting in a very comprehensive package that can be used for both 

basic and more advanced mutational pattern analyses. MutationalPatterns (v3.4.0) 

supports DBSs, multi base substitutions (MBSs) and indels, and can automatically ex-

tract all these mutation types from a single variant call format (VCF) file. The package 

can generate region specific spectra and signature contributions to study the varying 

activities of mutational processes across the genome. The package also generates 

more accurate results by supporting stricter signature refitting. This refitting can also 

be bootstrapped to determine the confidence of the results. Additionally, a process 

known as lesion segregation can be investigated.

The MutationalPatterns package (v3.4.0) can be used to generate novel biological 

insights, which we demonstrate by applying it to whole genome sequencing (WGS) 

data obtained from a lymphoblastoid cell line, in which specific DNA repair processes 

were deleted using CRISPR-Cas9 genome editing, as well as by applying the package 

on large cancer datasets. Additionally, we demonstrate that the package scales well 

on these large datasets. Finally, we show the improved accuracy of the stricter signa-

ture refitting using simulated data.

Implementation
Mutation profiles
MutationalPatterns uses mutations as its input data, which can be loaded into R 

from VCF files with the “read_vcfs_as_granges” function. MutationalPatterns (v3.4.0) 

supports SBSs, DBSs, MBSs and indels, whereas the original version only supported 

SBSs. Multiple mutation types are allowed to be present in a single VCF file so that 

users do not have to split them beforehand. A specific mutation type can be selected 

as an argument of the “read_vcfs_as_granges” function when reading in the VCF files. 

Alternatively, the “get_mut_type” function can be used on data that is already loaded 

in memory.

DBS and MBS variants can be called by various variant callers, such as the Genome 

Analysis ToolKit (GATK) Mutect2, in two different ways25. The variants can be called 

explicitly as DBS and MBS variants or as neighboring SBSs. A downside of the first 

approach is that neighboring germline and somatic mutations can be called as a single 

combined DBS or MBS, because the variants are compared to the reference instead 

of the control sample. MutationalPatterns (v3.4.0) supports both approaches. When 

the second approach is used, neighboring SBSs will be merged into somatic DBS or 

MBS variants.

Because they get merged, DBS and MBS variants are no longer incorrectly identified 

as separate SBSs by MutationalPatterns (v3.4.0). This improves the quality of the SBS 

profiles, as DBS and MBS mutations often have a very different context on account of 

them being caused by different processes13 (Additional file 1: Figure S1).

The contexts of SBS, indel and DBS variants, as defined by the Catalogue of Somat-

ic Mutations in Cancer (COSMIC) can be retrieved with fast vectorized functions, 

namely “mut_context”, “get_indel_context” and “get_dbs_context”. The context of SBS 

variants consisted of its direct 5’ and 3’ bases in the original package. These contexts 

were chosen because they are generally the most informative and adding more bases 

drastically increases the feature space, leading to sparsity4. Indeed, adding only one 

extra base to both the upstream and downstream context increases the number of 

features from 96 to 1536. However, with the increasing availability of large sequenc-

ing cohorts such large feature spaces have become more manageable, making it eas-

ier to examine nucleotide preference more upstream or downstream of the mutated 

base. Therefore, MutationalPatterns’ users can now choose any context size for SBSs.

The mutation contexts can be used for custom analyses. Alternatively, the number of 

mutations per context can be counted, resulting in a count matrix, where each row is 

a context and each column a sample. These matrices are created with the “mut_ma-

trix”, “mut_matrix_stranded”, “count_indel_contexts”, “count_dbs_contexts” and 

“count_mbs_contexts” functions. The “count_mbs_contexts” function uses the length 

of the MBSs, because to date no COSMIC consensus has been defined. 

The count matrices can be plotted as spectra or profiles for all the mutation types 

(Fig. 1a, b, c). The SBS spectra can be displayed for the individual samples. Addition-

ally, the error bars can be displayed as standard deviation, 95% confidence interval 

(CI) and the standard error of the mean. A count matrix with a larger context can be 

visualized using the new “plot_profile_heatmap” or “plot_river” functions (Fig. 1d, 

Additional file 1: Figure S2). This last function can be especially helpful to provide a 

quick overview of a mutation spectrum with a wider context. Mutation profiles can 
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Fig. 1 Mutation profiles can be made for multiple mutation types. 
a Relative contribution of the indicated mutation types to the point mutation spectrum. Bars depict the 
mean relative contribution of each mutation type over all the samples and error bars indicate the 95% 
confidence interval. The dots show the relative contributions of the individual samples. The total number 
of somatic point mutations per tissue is indicated. b Absolute contribution of the indicated mutation types 
to the indel spectrum for the wild-type (WT) and MSH2 knockout. The total number of indels per sample is 

be compared using the “cos_sim_matrix” function, which calculates the cosine simi-

larities between samples. The cosine similarity is a similarity score, that has a value 

between 0 and 1 and can be used to compare profiles with different amounts of mu-

tations4. Next to visualizing or comparing them, a count matrix can also be used for 

downstream analyses, such as a de novo extraction of mutational signatures. In some 

cases, it can be useful to pool multiple samples within a count matrix to increase sta-

tistical power. This can be done using the new “pool_mut_mat” function.

Region specific analyses
Mutational processes can be influenced by regional genomic features at multiple 

scales, such as chromatin landscape, secondary hairpin structures as well as the 

major and minor groove of the DNA21–23. With the original version of MutationalPat-

terns (v1.4.3), it was possible to test for enrichment and/or depletion of the mutation 

load in such regions, using a Poisson test. However, the package lacked the possibility 

to automatically correct for multiple testing. In addition, mutational profiles in ge-

nomic regions could not be easily assessed. In MutationalPatterns (v3.4.0), multiple 

testing correction is now automatically performed by calculating the false discovery 

rate, when testing for enrichment and depletion26. In addition, multiple significance 

levels are now supported, which can be visualized using one or multiple asterisks. 

Furthermore, regional mutation profiles can be determined in detail. This is done by 

first splitting mutations based on pre-defined genomic regions, with the new “split_

muts_region” function, which requires a GRanges or GRangesList object containing 

chromosome coordinates as its input. These coordinates can be read into R from file 

types like “.txt” or “.bed” files or they can be directly read from databases, such as 

Ensembl27. This analysis can be performed for multiple samples and multiple types 

of regions at once. A user could, for example, split a set of mutations into “promoter”, 

“enhancer” and “other” mutations.

Splitting the mutations according to different genomic regions results in a GRangesList 

containing sample/region combinations. These combinations can be treated as sepa-

rate samples by, for example, performing de novo signature analysis to identify pro-

cesses that are specifically active in certain genomic regions. Knowing in which regions 

a signature is predominantly present, can lead to a better understanding of its etiology. 

Instead of treating the sample/region combinations as separate samples, the genomic 

regions can also be incorporated into the mutational contexts, using the new “length-

en_mut_matrix” function. This means that a mutational context like “A[C>A]A” could 

indicated. c Absolute contribution of the indicated mutation types to the DBS spectrum for the wild-type 
(WT) and XPC knockout. The total number of DBSs per sample is indicated. d Heatmap depicting the rel-
ative contribution of the indicated mutation types and the surrounding bases to the point mutation spec-
trum for the WT and MSH2 knockout. The total number of somatic point mutations per tissue is indicated.
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be split into “A[C>A]A-promoter” and “A[C>A]A-enhancer”. This analysis allows users 

to generate signatures that contain different mutation contexts in different genomic 

regions. Such signatures could be more specifi c than the regular COSMIC signatures.
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Fig. 2 Regional spectra show differences between genomic regions. 
a Relative contribution of the indicated mutation types to the point mutation spectrum split between 

Region-specifi c mutation spectra can be visualized with the new “plot_spectrum_re-

gion” function, which contains the same arguments as the “plot_spectrum” function 

(Fig. 2a, b). In addition, region-specifi c 96-channel mutation profi les can be visualized 

with the new “plot_profi le_region” function, which contains the same arguments as 

the “plot_96_profi le” function (Fig. 2c). Both the “plot_spectrum_region” and “plot_

profi le_region” functions contain a “mode” argument, which allows users to normalize 

for the occurrence of the different mutation types per sample/region combination, 

per sample, or not at all.

Instead of using pre-determined genomic regions, it is also possible to compare the 

mutation spectra of regions with different mutation densities. These regions can be 

identifi ed using the new “bin_mutation_density” function.

Regional mutational patterns can also be investigated using an unsupervised ap-

proach, which is unique to MutationalPatterns (v3.4.0), with the new “determine_re-

gional_similarity” function. This function uses a sliding window approach to calculate 

the cosine similarity between the global mutation profi le and the mutation profi le of 

smaller genomic windows, allowing for the unbiased identifi cation of regions with 

a mutation profi le, that differs from the rest of the genome. Users can correct for 

the oligonucleotide frequency of the genomic windows using the “oligo_correction” 

argument. The function returns an S4 object, containing the genomic windows with 

their associated cosine similarities and the settings used to run the function. Because 

of the unbiased approach of this function, it works best on a large dataset containing 

at least 100,000 substitutions. The result of this analysis can be visualized using the 

new “plot_regional_similarity” function.

Lesion segregation
Mutation spectra sometimes contain Watson versus Crick strand asymmetries24. 

These asymmetries can be the result of many DNA lesions occurring during a single 

cell cycle. If these lesions are not properly repaired before the next genome dupli-

exons and the rest of the genome for each sample. The number of substitutions in each sample is indicat-
ed at the top of the fi gure. b Relative contribution of the indicated mutation types to the point mutation 
spectrum split between early-, intermediate-, and late-replicating DNA for each sample. The number of 
substitutions in each sample is indicated at the top of the fi gure. c Relative contribution of each trinucle-
otide change to the point mutation spectrum split between early- intermediate and late-replicating DNA 
for each sample. d A jitter plot depicting the presence of lesion segregation for each sample per chromo-
some. Each dot depicts a single base substitution. Any C>N or T>N is shown as a “+” strand mutation, while 
G>N and A>N mutations are shown on the “-“ strand. The x-axis shows the position of the mutations. The 
horizontal lines are calculated as the mean of the "+" and "-" strand, where "+" equals 1 and "-" equals 0. 
They indicate per chromosome on which strand most of the mutations are located. The mutations were 
downsampled to 33% to reduce the fi le size.
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cation, then the resulting sister chromatids will segregate into different daughter 

cells, which will each inherit the lesions on opposite strands. This process is known 

as lesion segregation24. The presence of lesion segregation in mutation data can be 

calculated with the new “calculate_lesion_segregation” function. This calculation can 

be done for all mutations together or separately for the different mutation contexts. 

The results can be visualized using the “plot_lesion_segregation” function (Fig. 2d, 

Additional file 1: Figure S3).

Mutational signature analysis
When performing signature analyses, it is possible to either extract novel signatures 

using NMF, which is a type of dimensionality reduction4, or to fit previously defined 

signatures to a mutation count matrix (signature refitting), using a non-negative 

least-squares optimization approach28. Both approaches could be applied on SBSs 

using the original MutationalPatterns (v1.4.3). With MutationalPatterns (v3.4.0), 

these approaches can be applied on all mutation types. By combining count matrices 

of different types, it is even possible to create a composite signature.

MutationalPatterns (v3.4.0) supports a variational Bayesian (Bayes) NMF algo-

rithm from the ccfindR package to help choose the optimal number of signatures, in 

addition to the regular NMF algorithm29 (Additional file 1: Figure S4). One challenge 

with de novo signature extraction is that extracted signatures can be very similar to 

previously defined signatures with known etiology. With the new “rename_nmf_sig-

natures” function, these extracted signatures can be identified using cosine similarity 

scores and their names can be changed from an arbitrary naming to a custom naming 

that reflects their similarity to these previously defined signatures.

The original MutationalPatterns package already contained the “fit_to_signatures” 

function, which finds the optimal combination of signatures to reconstruct a pro-

file and calculates a reconstructed profile based on this combination of signatures.  

However, this approach could lead to too many signatures being used to explain the 

data20. One simple method to reduce this overfitting, which was used in the vignette 

of the previous version of MutationalPatterns (v1.4.3), is to remove all signatures 

with less than 10 mutations. However, this method, which we will call “regular_10+”, 

only reduced overfitting slightly. To reduce overfitting, we introduce the new “fit_to_

signatures_strict” function. The default backwards selection method of this function 

iteratively refits a set of signatures to the data, each time removing the signature 

with the lowest contribution. During each iteration the cosine similarity between the 

original and reconstructed profile is calculated. The iteration process stops when the 

change in cosine similarity between two iterations is bigger than the user-specified 
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Fig. 3 Signature refitting is improved. 
a Absolute contribution of each mutational signature for each sample using “regular” signature refitting 
and b “strict” signature refitting. c Dot plot showing the contribution of each mutational signature for 
each sample using bootstrapped signature refitting. The colour of a dot indicates the fraction of bootstrap 
iterations in which a signature contributed to a sample. The size indicates the mean number of contrib-
uting mutations across bootstrap iterations in which the contribution was not zero. d Heatmap depicting 
the Pearson correlation between signature contributions across the bootstrap iterations. e Bar graph 
depicting the cosine similarity between the original and reconstructed profiles of each sample based on 
signature refitting.
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“max_delta” cutoff (Additional file 1: Figure S5). Users can set the “max_delta” cutoff 

based on their desired sensitivity and specificity. Stricter refitting, with this method, 

is comparable to a previously described approach and results in less signatures being 

chosen when tested on mutation data obtained from cell lines that lack specific DNA 

repair pathways (Fig. 3a, b; see Additional file 2)13. The “fit_to_signatures_strict” func-

tion also has a best subset selection approach. This method works similarly to the 

backwards selection approach. However, instead of removing the signature with the 

lowest contribution, each combination of x signatures is tried. This includes signa-

tures that were not included in a previous iteration. Here, x is the number of signa-

tures used during refitting, which is reduced by one in each iteration step. By default, 

“fit_to_signatures_strict” uses the backwards selection method, because the best 

subset method becomes very slow when fitting against more than 10-15 signatures. 

Therefore, we used the backwards selection method for all “strict” signature refitting 

analyses in the rest of this manuscript. Another way to reduce overfitting is to only 

use signatures that are known to be potentially active in your tissue/cells of interest. 

We recommend using this method in combination with “fit_to_signatures_strict” for 

optimal results.

In addition to estimating contributions of signatures to mutation spectra, it is also 

vital to know how confident these contributions are. The confidence of signature 

contributions can be determined using a bootstrapping approach with the new “fit_

to_signatures_bootstrapped” function, which can use both the strict and the regular 

refitting methods. Its output can be visualized in multiple ways using the “plot_boot-

strapped_contribution” function (Fig. 3c, Additional file 1: Figure S6). The signature 

contributions can be correlated between signatures across the different bootstrap 

iterations. This correlation can be visualized using the “plot_correlation_bootstrap” 

function (Fig. 3d). A negative correlation between two signatures means that each 

signature had a high contribution in iterations in which the other had a low contribu-

tion, which can occur when the refitting process has difficulty distinguishing between 

two similar signatures. One simple way to deal with highly similar signatures is to 

merge them. This can be done using the new “merge_signatures” function.

To test the accuracy of signature analysis, the cosine similarity between the recon-

structed and original mutation profile needs to be determined. A high cosine similar-

ity between the reconstructed and original profile indicates that the used signatures 

can explain the original spectrum well. This comparison between reconstructed and 

original mutation profiles can be visualized with the new “plot_original_vs_recon-

structed" function (Fig. 3e).

In order to perform refitting, a matrix is required of the predefined signatures 

Signature matrices of COSMIC (v3.1 + v3.2), SIGNAL (v1) and SparseSignatures 

(v1) are now included in MutationalPatterns6,13,15,30. These matrices include general, 

tissue-specific and drug exposure signatures. The COSMIC matrices also include 

DBS and indel signatures, next to the standard SBS signatures. Signature matrices 

can be easily loaded using the new “get_known_signatures” function. By default, this 

function excludes several signatures from COSMIC and SIGNAL, because they are 

possible sequencing artefacts13. Users can choose to include these signatures, for 

example to check the quality of their data.

Signature-specific damaging potential analysis
Some signatures are more likely than others to have functional effects by causing 

premature stop codons (“stop gain”), splice site mutations or missense mutations, 

because of sequence specificity underlying these changes. With MutationalPatterns 

(v3.4.0) it is now possible to analyze how likely it is for a signature to either cause 

"stop gain", "missense", "synonymous" or "splice site" mutations for a set of genes of 

interest. For this analysis to be performed, the potential damage first needs to be 

calculated per mutational context, with the “context_potential_damage_analysis” 

function. Next, the potential damage per context is combined using a weighted sum 

to calculate the potential damage per signature using the “signature_potential_dam-

age_analysis” function. The potential damage per signature is also normalized using 

a “hypothetical” flat signature, which contains the same weight for each mutation 

context.

This analysis will only take mutational contexts into account. Other features, such 

as open/closed chromatin, are not considered, because they vary per tissue type. 

However, this analysis can still give an indication of how damaging a signature might 

be, which could be supplemented by further custom analyses.

This new version of MutationalPatterns (v.3.4.0) also comes with many smaller up-

dates and bugfixes. A comprehensive list can be found in Additional file 3: Table S1.

Results
Extended mutation context analysis and regional mutational patterns
To demonstrate the importance of analyzing extended mutation contexts, regional 

mutational patterns and lesion segregation for characterizing the underlying mu-

tagenic processes, we applied MutationalPatterns (v3.4.0) to three published mu-

tation datasets. First, we ran MutationalPatterns on 276 melanoma samples from 
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the Hartwig Medical Foundation (HMF) database. After pooling these samples, we 

observed that TT[C>T]CT mutations are the most common type of substitution (Fig. 

4a, Additional fi le 1: Figure S7). This substitution type is more common than other 

C>T (n = 20447973)
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Fig. 4 Large cancer datasets show extended and regional mutation patterns. 
a Heatmap depicting the relative contribution of the indicated mutation types and the surrounding bases 
to the point mutation spectrum for metastatic melanomas. The total number of somatic point mutations is 
indicated. Only C>T substitutions are shown, because other substitution types are much less common. b
Relative contribution of each C>T trinucleotide change to the point mutation spectrum split between dif-
ferent genomic regions. c Graph depicting the similarity in the mutation profi le between genomic windows 
and the rest of the genome. Each dot shows the cosine similarity between the mutation profi les of a single 
window and the rest of the genome. The dots are colored based on the sizes in mega bases of the windows. 
The IGK (chr2), IGH (chr14) and IGL (chr22) loci are visualized with vertical orange lines (46). The width of 
the lines is set at 1pt, because using the actual widths of these loci results in lines that are too small to be 
visible. 

T[C>T]C substitutions, showing that the extended context has a large effect. Next, 

we compared the mutation patterns of the melanoma samples between the different 

genomic regions classifi ed by the Ensembl regulatory build31. Interestingly, these pat-

terns are very similar, suggesting that the epigenetic state of melanoma samples does 

not have a large effect on the types of mutations that occur in them (Fig. 4b).

Next, to show how MutationalPatterns (v3.4.0) can be used to identify regional activ-

ity of specifi c mutation processes in an unsupervised manner, we applied the package 

on 217 pooled pediatric B-cell Acute lymphoblastic leukemia (B-ALL) WGS sam-

ples32. These B-cell-derived leukemias have undergone VDJ recombination, which 

is associated with somatic hypermutation at loci encoding for immunoglobulin33,34. 

As somatic hypermutation is associated with a specifi c signature, these sites were 

expected to have a mutation spectrum that is different from the rest of the genome. 

Indeed, MutationalPatterns (v3.4.0) was able to detect a different spectrum for the 

two VDJ regions, located on chromosomes 2 and 14 (Fig. 4c). Some other regions also 

seem to have a different mutational pattern, several of which contain PCDH genes. 

However, further research is needed to explain these results. This example shows 

how MutationalPatterns (v3.4.0) can identify region-specifi c mutational processes in 

an unsupervised manner.

Finally, to show how MutationalPatterns (v3.4.0) can identify lesion segregation, we ap-

plied it on a dataset known to contain this phenomenon. We found signifi cant lesion seg-

regation (fdr = 4.41*10-116, 3.51*10-59 and 8.83*10-99, respectively) in data obtained 

from 3 samples of induced pluripotent stem cells treated with 0.109 uM of dibenz[a,h]

anthracene diol-epoxide6,24, using the “plot_lesion_segregation” function of Mutational-

Patterns (Fig. 2d). The rl20, which is a measure of lesion segregation, of these three sam-

ples was 22, 10 and 23, respectively. A value larger than 5 indicates the presence of lesion 

segregation24. It was even possible to spot sister-chromatid-exchange events, such as on 

chromosome 2 of sample MSM0.103_s6 (Fig. 2d, lower panel). To reduce the fi le size of 

the fi gure, 66% of the mutations of each sample were removed using the “downsample” 

argument of this function.  Using MutationalPatterns (v3.4.0), we also found lesion segre-

gation in patients that received the antiviral drug ganciclovir7.

MutationalPatterns offers more functionality than other mutation analysis tools
An overview of the functions of MutationalPatterns (v3.4.0) and related tools is shown in 

Table 1. The original version of MutationalPatterns (v1.4.3) is also included in this table. 

An important advantage of the original package was that it combined many mutational 

analyses into a single package. This new version improves many of these features and 

adds many new and unique features.
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Table 1: Feature comparison with other packages

Group Feature Mutation-
alPatterns 
v3.4.0

Muta-
tional-
Patterns 
v1.4.3 
(12)

Sigprofil-
er (13)

Signature-
Analyzer 
(13)

decon-
struct-
Sigs 
(14)

sparse-
Signa-
tures 
(15)

signeR 
(16)

somat-
icSig-
natures 
(17)

Maft
ools 
(18)

decomp-
Tumor-
2Sig (19)

Language Language/platform R (biocon-
ductor)

R 
(biocon-
ductor)

Python 
(+ R 
wrap-
per)

Python R (cran) R 
(biocon-
ductor)

R (bio-
conduc-
tor)

R (bio-
conduc-
tor)

R (bio-
con-
ductor)

R 
(biocon-
ductor)

Genome Supported genomes Genome 
agnostic

Genome 
agnostic

Human, 
Mice, 
Rat, 
Yeast

- Human Genome 
agnostic

Ge-
nome 
agnos-
tic

Ge-
nome 
agnos-
tic

Ge-
nome 
agnos-
tic

Genome 
agnostic

Mutation 
profile

96 SNV profile X X X - X - X X X X

extended SNV profile X - X - - - - X - X

Indel profile X - X - - - - - - -

DBS profile X - X - - - - - - -

MBS profile X - - - - - - - - -

Transcriptional strand 
bias profile

X X X - - - - - - -

Replicative strand bias 
profile

X X X - - - - - - -

Pool samples X - - - - - - - - -

Signature 
extraction

Signature extraction 
(NMF)

X X X - - - - X X -

Signature extraction 
(Bayes NMF)

X - - X - - X - - -

Signature extraction 
(Lasso NMF)

- - - - - X - - - -

Update signature 
names

X - - - - - - - - -

Signature 
refitting

Signature refitting X X X X X - - - - X

Strict signature refitting X - X X X - - - - X

Strict signature refitting 
(best subset)

X - - - - - - - - X

Bootstrapped signature 
refitting

X - - - - - - - - -

Correlation boot-
strapped refitting

X - - - - - - - - -

Signature 
damage 
analysis

Signature potential 
damage analysis

X - - - - - - - - -

Signature 
other

Plot supported profiles 
/ signatures

X X X X X X X X X X

Plot and compare 
supported profiles

X X - - - - - - - -

Signature contribution 
heatmap

X X - - - - X X - -

Signature contribution 
barplot

X X - - - - X X - -

Signature/profile 
similarity heatmap

X X - - - - - - X -

Similarity with 
reconstructed profile 
barplot

X - - - - - - - - -

Genomic 
distribu-
tion

Rainfall plot X X - - - - - X X -

Enrichment/depletion 
in genomic region

X X - - - - - - - -

Region specific profiles X - - - - - - - - -

Region specific 
signatures

X - - - - - - - - -

Unsupervised regional 
similarity

X - - - - - - - - -

Lesion 
segrega-
tion

Lesion segregation X - - - - - - - - -

Mutation matrices can be generated faster
To make MutationalPatterns (v3.4.0) scalable to large cancer datasets and suitable 

for interactive analysis we improved the runtime of the “mut_matrix” and “mut_ma-

trix_stranded” functions by vectorizing them. The new functions for retrieving the 

mutation contexts and generating the mutation matrices have also been written in a 

vectorized way. As a result, these functions have O(n) or better scaling as tested on a 

large WGS database from the HMF (Additional file 1: Figure S8)35.

To test their improved performance, we benchmarked the “mut_matrix” and “mut_

matrix_stranded” functions on the example data provided in the previous version of 

MutationalPatterns (Additional file 1: Figure S9). These functions are now respec-

tively 3.4 and 2.6 times as fast on average. In other words, a mutation matrix for 1 

million SBSs can now be made in only 135 seconds on a laptop, which makes these 

functions suitable for large cancer datasets.

Strict signature refitting improves performance
To determine how well the strict refitting method of MutationalPatterns (v3.4.0) 

performs as compared to the regular method which was introduced in the original 

version of the package (v1.4.3), we used simulated mutation matrices. These matrices 

were generated by sampling trinucleotide changes of 4 different randomly selected 

signatures. This process was repeated 300 times per matrix, to generate 300 “sam-

ples”. Each of the samples in a matrix contained the same number of mutations per 

signature but was composed of different signatures. The signatures were selected 

from the first 30 signatures of the COSMIC signature matrix. We limited our analysis 

to the first 30, because these are the signatures that are most often observed in can-

cers and therefore more accurately resemble real-life scenarios. In addition, this ap-

proach better resembles how the package is used, because users will often fit against 

a limited number of signatures associated with a specific tissue. By limiting ourselves 

to the first 30 COSMIC signatures we also reduced overfitting. Any overfitting we 

observed was thus not caused by us using an unusually large signature matrix. In total 

we generated 4 matrices, each containing 300 samples. The number of mutations per 

sample was respectively 200, 400, 2000 and 4000 for the 4 different matrices.

The fraction of correctly attributed mutations to the specific signatures was in-

creased with the strict refitting approach of MutationalPatterns (v3.4.0) as compared 
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to “regular” or “regular_10+” refitting (Additional file 1: Figure S10a). All the tested 

refitting methods work better when there are more mutations per signature. Instead 

of using the number of correctly attributed mutations as a readout for performance, 

we determined whether the presence and absence of specific signatures was cor-

rectly classified. This readout might be more informative for mutational signature 

analysis because the presence of a signature can be a clinically relevant finding. The 

strict refitting method achieved a much higher precision than the original methods, 

while retaining a high correct recall rate (sensitivity) (Additional file 1: Figure S10b). 

The strict method obtained an area under the curve (AUC) of 0.925, even when only 

50 mutations were present per signature, indicating that refitting can be performed 

on relatively small amounts of mutations.

SBS10a and SBS18 have a high damage potential
We applied the “signature_potential_damage_analysis” function on the COSMIC 

signatures. This analysis showed that SBS10a and SBS18 are respectively 3.6 and 2.0 

times as likely to cause a “stop gain” mutation compared to a completely flat signa-

ture, containing the same weight for each mutation context, on a set of genes associ-

ated with cancer (Additional file 3: Table S2, Table S3). SBS18 is related to oxidative 

stress, suggesting that this type of stress has a high potency of generating premature 

stop codons in genes that are recurrently associated with tumorigenesis13. In con-

trast, the clock-like signature SBS1, which also occurs in healthy cells, was 0.81 and 

0.40 times as likely to cause “stop gain” and “splice site” mutations, respectively, as 

compared to a completely flat hypothetical signature2,36 (Additional file 3: Table S2). 

The damaging potential of this ageing-related mutational process is thus relatively 

low. Overall, C>A heavy signatures, like the recently identified ganciclovir signature, 

have more damage potential, because they are most likely to introduce a prema-

ture stop codon in an open reading frame7. Being able to quickly assess the damage 

potential of existing and novel signatures can be very useful to prioritize samples and 

mutagenic exposures for further investigation.

Applying MutationalPatterns on mutation data of DNA repair-deficiencies
To illustrate the functionality of MutationalPatterns (v3.4.0) on real-life data and 

to obtain novel biological insights, we applied it to mutation data obtained from cell 

lines in which we deleted specific DNA repair pathways using CRISPR-Cas9 genome 

editing technology (Additional file 1: Figure S11, Figure S12, Additional file 2). In 

AHH-1 cells, a lymphoblastoid cell line, we generated bi-allelic knockout lines of 

MSH2, UNG and XPC by transfecting the cells with a plasmid containing Cas9 and a 

single gRNA against the gene of interest. By co-transfection with a HPRT-targeting 

plasmid, we were able to select the transfected cells using 6-thioguanine, to which 

only HPRT-sufficient cells are sensitive. Using this protocol, no targeting vectors for 

each gene of interest were required. We analyzed somatic mutations in HPRT-only 

knockout lines as well as the combination of HPRT with MSH2, UNG and XPC (Addi-

tional file 2). To catalogue mutations that were acquired specifically in the absence 

of the targeted DNA repair gene, we used a previously developed method37. In brief, 

whole genome sequencing was performed on generated clones and subclones. By 

subtracting variants present in the clones from those in the subclones, the somatic 

mutations, that accumulated in between the clonal steps, were determined.

The SBS profiles are shown in Additional file 1: Figure S13. Interestingly, the pro-

file observed in the MSH2 knockout cell line displayed a large C[C>A]T peak. When 

extending the sequence context surrounding the mutated base, the MSH2 deficien-

cy profile showed a large TT[T>C]TT peak, suggesting that this extended context 

surrounding mutated thymine residues is important for the underlying mutagenic 

process (Fig. 1d). 
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Fig. 5 Indel signatures can explain the MSH2 profile.
a Relative contribution of each mutational signature for the wild-type (WT) and MSH2 samples using 
strict signature refitting. b Dot plot showing the contribution of each mutational signature for the WT and 
MSH2 samples using bootstrapped signature refitting. The color of a dot indicates the fraction of bootstrap 
iterations in which a signature contributed to a sample. The size indicates the mean number of contribut-
ing mutations across bootstrap iterations in which the contribution was not zero. c Bar graph depicting the 
cosine similarity between the original and reconstructed profiles of the WT and MSH2 samples based on 
signature refitting.
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Next, we examined regional mutation patterns. The spectra of the MSH2- and UNG- 

deficient cells varied between the exonic regions and the rest of the genome, which 

for each sample was calculated by performing a chi-squared test using Monte Carlo 

simulation on a mutation spectrum matrix in which we compare the spectra of the 

two different regions (Fig. 2a)(fdr = 0.0012 and 0.0012, respectively). Their exons 

contained more C>T and less T>C mutations. The other samples did not show a 

significant difference in regional mutation spectra. However, when we downsampled 

all the samples to 227 mutations, which is the number of mutations in the HPRT only 

knockout, no significant regional mutation patterns were observed in MSH2 and UNG 

knockout cells. This suggests that with this number of mutations insufficient statisti-

cal power was obtained for these analyses. Next to examining mutation profiles in ex-

onic regions, we also analyzed regions with different replication timing dynamics, us-

ing the median replication timing data from 5 B-lymphocyte cell lines from ENCODE 

(Fig. 2b, Additional file 3: Table S4)38. The spectra of MSH2 and UNG knockouts were 

different between early-, intermediate- and late-replicating DNA, which we calculat-

ed as described above (fdr = 0.0012 and fdr = 0.0012, respectively). Early replicating 

DNA has more C>T and less C>A than late replicating DNA. These differences were 

still present when downsampling was applied (fdr = 0.0025, fdr = 0.010; chi-squared 

test). Based on these region-specific analyses, we can conclude that the mutational 

processes active in the MSH2 and UNG knockouts show varying activities in different 

regions of the genome, a result that cannot easily be obtained with other tools. 

We also tested if any of the DNA repair knockout cells displayed lesion segregation, 

which would indicate that most of the mutations occurred during a single cell-cycle; 

however, this was not the case (Additional file 1: Figure S6). 

Finally, we looked at the mutational signatures in the knockout samples. We per-

formed strict signature refitting with a max_delta of 0.015 using version 3.1 of the 

COSMIC signatures. Signatures that were possible sequencing artefacts were ex-

cluded. Based on signature refitting, the MSH2 knockout contained contributions of 

SBS5, SBS20, SBS26 and SBS44 (Fig. 3b, c). Because of the bootstrapping we can be 

more confident in these results. SBS5 is a clock-like signature, with unknown etiolo-

gy. SBS20, SBS26 and SBS44 are all associated with defective DNA mismatch repair 

in cancer mutation data13. The UNG knockout contained contributions from SBS30, 

which has previously been attributed to deficiency of the base excision repair gene 

NTHL113. The glycosylase encoded by NTHL1 is involved in the removal of oxidized 

pyrimidines from the DNA and therefore SBS30 likely reflects an alternative conse-

quence of oxidative stress-induced mutagenesis as compared to SBS18. However, 

UNG is a glycosylase that is believed to remove uracil residues from the DNA39,40. 

Therefore, our data suggests that SBS30 can be caused, besides oxidized pyrimi-

dines, by unremoved uracil residues. Alternatively, UNG may also, to a certain extent, 

be involved in the removal of oxidized pyrimidines from the DNA. Even though the 

contribution of SBS30 was relatively modest in the UNG knockout, it was consistently 

picked up by the bootstrapping algorithm. This observation indicated that the num-

ber of mutations attributed to a signature is not necessarily related to the confidence 

of its presence, which further demonstrates the importance of our bootstrapping 

approach. Unexpectedly, the contribution of SBS30 in UNG knockout cells was 

negatively correlated with SBS2, even though their cosine similarity is only 0.46 (Fig. 

3d). This indicates that the refitting algorithm has difficulty choosing between SBS2 

and SBS30. Such difficulties in signature selection could lead to different and possi-

bly incorrect signatures being attributed to similar sample types. Understanding the 

correlation of estimated signature contributions between different signatures, which 

can be achieved with bootstrapping, is important to prevent incorrect interpretation 

of the data. The XPC knockout contained contributions from SBS8. The etiology of 

this signature is not yet known. However, this finding further confirms the associ-

ation of SBS8 with nucleotide excision repair deficiency41,42. Overall, the COSMIC 

signatures could explain the mutation profiles of most samples quite well, even when 

strict refitting was used (Fig. 3e).

Next, we studied the indel signatures in these knockout lines. Deletion of MSH2 re-

sulted in an increased number of indels as compared to wild-type cells (Fig. 1b). Most 

of these indels were single thymine deletions in thymine mononucleotide repeat 

regions. Signature analysis indicated that ID1, ID2 and ID7 contributed to the indel 

pattern in the MSH2-deficient cells (Fig. 5a, b). Of these, ID1 and ID2 are associated 

with polymerase slippage during DNA replication and found in large numbers in 

cancers with mismatch repair deficiency. ID7 is also associated with defective DNA 

mismatch repair, but not attributed to polymerase slippage13. Together these signa-

tures could explain the mutational indel profile of MSH2 knockout cells very well (Fig. 

5c), showing that MutationalPatterns can perform indel signature refitting. None of 

the knockout cells displayed a strongly increased number of DBSs as compared to the 

wild-type cells (Fig. 1c). 

Discussion
The novel version of MutationalPatterns (v3.4.0) has been designed to be easy-to-

use in such a way that both experienced bioinformaticians and wet-lab scientists with 

a limited computational background can use it. The code is written in the tidyverse 

style, which makes it more similar to natural English and therefore easier to under-
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stand for non-programmers. MutationalPatterns (v3.4.0) gives clear error messages 

with tips on how to solve them, in contrast to the default error messages in R, which 

can sometimes be cryptic. The updated vignette, accompanying the package, not only 

explains how the functions in the package can be used, but also informs users on the 

pros and cons of the different analysis strategies.

Similar to the previous version of the package, plots are all generated using ggplot243. 

This allows users to visualize their data in highly customizable plots that can be 

easily modified. Because this feature was not readily apparent for many users of the 

original MutationalPatterns package (v1.4.3), we have now explicitly showed how to 

modify the elements of a plot, such as the axis and theme, in the vignette.

We have adopted unit testing for this version of the package, resulting in more than 

90% code coverage. This will improve the stability of the package and makes it easier 

to maintain. 

The results obtained with MutationalPatterns are influenced by the quality of the 

variant calls that are used as its input. Since sequencing artefacts are generally 

not random, they can result in the detection of non-existent mutation patterns13,44. 

Therefore, users should ensure that their variant calls are stringently filtered for 

high-confidence variants. Additionally, since artefacts can vary based on the used 

sequencing techniques and bioinformatics analyses, care should be taken when com-

paring variant calls from different sources45.

The novel version of MutationalPatterns (v3.4.0) is already available on Bioconduc-

tor as an update of the previous version. MutationalPatterns (v3.4.0) does not break 

existing scripts and pipelines, because backwards incompatible changes have been 

kept to a minimum.

Conclusions
MutationalPatterns (v3.4.0) is an easy-to-use R/Bioconductor package that allows 

in-depth analysis of a broad range of patterns in somatic mutation catalogues, sup-

porting single and double base substitutions as well as small insertions and deletions. 

Here, we have described the new and improved features of the package and shown 

how the package performs on existing cancer data sets and on mutation data ob-

tained from cell lines in which specific DNA repair genes are deleted. These analyses 

demonstrate how the package can be used to generate novel biological insights.

Mutational pattern analyses have proven to be a powerful approach to dissect 

mutational processes that have operated in cancer and to support treatment deci-

sion making in personalized medicine. Therefore, mutational patterns hold a great 

promise for improved future cancer diagnosis. The MutationalPatterns package can 

be used to fulfill this promise and we are confident that it will be embraced by the 

community.
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Fig. S3 Lesion segregation can be visualized.
A jitter plot depicting the presence of lesion segregation for each sample per chromosome. Each dot 
depicts a single base substitution. Any C>N or T>N is shown as a “+” strand mutation, while G>N and A>N 
mutations are shown on the “-“ strand. The x-axis shows the position of the mutations. The horizontal lines 
are calculated as the mean of the "+" and "-" strand, where "+" equals 1 and "-" equals 0. They indicate per 
chromosome on which strand most of the mutations are located. In this example no lesion segregation was 
present.
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removed and the cosine similarity is calculated. This is depicted from left to right. Removing SBS20 de-
creased the cosine similarity more than the cutoff, so it was retained, and the algorithm stopped.

N
r. 

co
nt

rib
ut

ed
 m

ut
at

io
ns

M
S

H
2

Fig. S6 Bootstrapped signature refi tting can be visualized with a jitter plot.
A jitter plot depicting the bootstrapped signature refi tting for each sample. Each dot shows the number of 
mutations contributed by a signature according to one bootstrap iteration.
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Fig. S8 The matrix generating functions have O(n) or better scaling.
The y-axis shows the time it takes to generate a mutation matrix for the number of mutations on the x-axis 
for a SBSs, b indels and c DBSs. The mutations are always split over 100 samples. The dashed red line indi-
cates O(n) scaling. The SBS and indel functions approach O(n) scaling on large mutations sets. The runtime 
of the DBS function is independent of the number of mutations.
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Fig. S9 Benchmark of the “mut_matrix” function.
Violin plot depicting the run-times of the new and the old versions of the a “mut_matrix” and b “mut_ma-
trix_stranded” functions. The benchmark was run on a 2019 MacBook Pro (2.4 GHz Quad-Core, 16GB 
RAM).
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Fig. S10 Recall-precision plot of different refi tting methods in MutationalPatterns.
a Bar graph depicting the mean fraction of correctly attributed mutations for “regular”, “regular_10+” and 
“strict” refi tting. This is shown for 4 experiments. Per experiment a mutation matrix with 300 simulated 
samples, each containing 4 signatures, was generated. The number of mutations per sample was respec-
tively 200, 400, 2000 and 4000 for the 4 different experiments. The error bars show the 95% confi dence 
interval. The fraction of correctly attributed mutations is calculated as 1 minus the absolute difference 
between the real and estimated contribution divided by the sum of the real and estimated contribution.  b
Recall-precision plot showing the recall (sensitivity) and precision of the “strict” method when different 
“max_delta” cutoffs are used for signature refi tting. The recall and precision of the “regular” and “reg-
ular_10+” methods are also shown with respectively triangles and squares. Since these methods don’t 
have a “max_delta” cutoff only a single point can be shown for them. This is shown for 4 experiments. Per 
experiment a mutation matrix with 300 simulated samples, each containing 4 signatures, was generated. 
The number of mutations per sample was respectively 200, 400, 2000 and 4000 for the 4 different experi-
ments. The area under the curve (AUC) is shown per experiment.

Fig. S11 Western blot analysis of AHH-1 CRISPR-Cas9 edited clonal lines.
a Western blot of total protein lysate of bulk AHH-1 (WT) or single cell clones generated after trans-
fection with CRISPR-Cas9 plasmids targeting MSH2 and HPRT. All clones are HPRT knockout, and 5/7 
clones are also knockout for MSH2. α-Tubulin staining was done on the same membrane as the indicated 
protein above. b Western blot of total protein lysate of bulk AHH-1 (WT) or single cell clones generated 
after transfection with CRISPR-Cas9 plasmids targeting UNG and HPRT. All clones are knockout for UNG 
and HPRT (HPRT blot not shown). ß-actin staining was done on the same membrane as UNG staining. c
Western blot of total protein lysate of bulk AHH-1 (WT) or single cell clones generated after transfection 
with CRISPR-Cas9 plasmids targeting XPC and HPRT. All clones are HPRT and MSH2 knockout. α-Tubulin 
staining was done on the same membrane as the indicated protein above. Arrows indicate clones selected 
for a second clonal step and whole genome sequencing. Full-length blots/gels are presented in Additional 
fi le 1: Figure S12.
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Fig. S12 Uncropped original version of the western blots in Fig. S11.
The vertical and horizontal dashed lines indicate the crop marks. Standard protein size markers have been 
labeled with the expected molecular weight in kDa. a Corresponds to Fig. S11a. b, c and d correspond 
to Fig. S11b. The UNG image was developed using ECL (b), whereas the b-actin and protein ladder were 
imaged using fluorescent antibodies (c). A composite image of (b) is shown in (d), which includes the bright-
field image of the same membrane that contains the protein ladder. e Corresponds to Fig. S11c. PageRuler 
Prestained Protein Ladder was used for (a), (b), (c), and (d). Precision Plus Protein WesternC Standards was 
used for (e).
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Fig. S13 SBS profiles of knockout samples.
Relative contribution of each trinucleotide change to the point mutation spectrum for each sample.

For Table S1-S4 see: https://doi.org/10.1186/s12864-022-08357-3

Additional methods
Cell lines
AHH-1 cells, a human B lymphoblastoid cell line, were obtained from ATCC. Cells 

were cultured in RPMI 1640 medium (Gibco) with 2 mM L-glutamine, 1.5 g/L sodium 

bicarbonate, 4.5 g/L glucose, 10 mM HEPES, 1.0 mM sodium pyruvate, 10% heat-in-

activated horse serum and penicillin/streptomycin. Low-passage cells were used for 

transfection experiments.

CRISPR-Cas9 gene editing
The human codon-optimized Cas9 expression plasmid was obtained from Addgene 

(px330-U6-Chimeric_BB-CBh-hSpCas9). The gRNA sequences were inserted by 

BbsI digestion and T4 ligation as described1. sgRNA target sequences: hHPRT-sgR-

NA 5’-GGCTTATATCCAACACTTCG-3’, hMSH2-sgRNA 5’-ACAAAGACTTGT-

TAACCAG-3’, hUNG-sgRNA 5’-TCGGCACTCAGCGGCGAGGA-3’, hXPC-sgRNA 

5’-AAAGATTGACTGCGGATCC-3’. To generate DNA repair gene knockout lines, 

single cell suspensions of AHH-1 cells were co-transfected with Cas9- and sgRNA-ex-

pressing px330 plasmids, targeting HPRT and either MSH2, UNG or XPC. Plasmid 

DNA was mixed in an equal ratio and combined with Lipofectamine 2000. Transfec-
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tion was performed according to manufacturer’s instructions in AHH-1 medium with 

1% horse serum. After 3 hours, complete AHH-1 medium (10% horse serum) was 

added to the cells and cells were cultured for 6 days. On day 6, 0.5 μg/mL 6-thiogua-

nine (6-TG) was added to the cells after making single cell suspensions to select for 

HPRT knockout cells. On day 19, cells growing on 6-TG were plated in limiting dilu-

tions to obtain single cell clones. Growing clones were analyzed by PCR and Western 

blot for knockout of HPRT and MSH2, UNG or XPC. Selected clones were subjected 

to another round of limiting dilutions to obtain subclones of the selected clones.

Western blot
Cell pellets were directly lysed in sample buffer (62.5 mM Tris-HCl, 2.5% SDS, 10% 

glycerol, 0.002% bromophenol blue, 100 mM DTT). Total protein lysates were loaded 

on SDS-PAGE gels (XPC + MSH2: 8%, UNG + HPRT: 12%) and transferred to nitrocel-

lulose membranes (BioRad). Membranes were blocked and probed with antibodies 

directed against HPRT (ab10479, Abcam), MSH2 (D24B5, Cell Signaling Technology), 

UNG (OTI1A11, ThermoFisher Scientific), XPC (12701, Cell Signaling Technology), 

ß-actin (RM112, Sigma-Aldrich) and α-tubulin (B-5-1-2, Sigma-Aldrich). PageRuler 

Prestained Protein Ladder (26617, Thermo Scientific) and  Precision Plus Protein 

WesternC Standards (5561, Bio-Rad) were used as protein standards, where indicat-

ed. Membranes stained by fluorescent antibodies were scanned using the Odyssey 

CLx (LI-COR). Images were exported using Image Studio 5.2 (LI-COR). Membranes 

stained by ECL antibodies were developed using Pierce™ ECL Western Blotting Sub-

strate (32106, Thermo Scientific) and scanned using the ChemiDoc™ Touch Imaging 

System (Bio-Rad). ECL images were processed using the on-board Image Lab. All im-

age processing was restricted to linear adjustments (brightness, contrast) to visualize 

the bands. Subsequently, colored images were converted to greyscale using ImageJ 

2.0.0-rc-69/1.52i.

Whole genome sequencing and read alignment
DNA libraries for Illumina sequencing were generated by using standard protocols 

(Illumina) from 500  ng of genomic DNA isolated from the clonally expanded AHH-1 

cells using QIAamp DNA Blood & Tissue Kit (QIAGEN) according to manufacturers’ 

instructions. All samples were sequenced (2 × 150 bp) by using Illumina HiSeq X Ten 

or NovaSeq 6000 sequencers to 30X base coverage. Whole genome sequencing data 

was mapped against human reference genome GRCh38 by using Burrows-Wheeler 

Aligner v0.7.5a mapping tool2 with settings 'bwa mem -c 100 -M'. Sequence reads 

were marked for duplicates by using Sambamba v0.6.8 markdup. Full pipeline de-

scription and settings also available at: https://github.com/UMCUGenetics/IAP.

Mutation calling and filtering

Raw variants were multisample-called by using the GATK HaplotypeCaller 

v3.8-1-03 and GATK-Queue v3.8-1-0 with default settings and additional option 

'EMIT_ALL_CONFIDENT_SITES'. The quality of variant and reference positions was 

evaluated by using GATK VariantFiltration v3.8-1-0 with options -snpFilterName 

SNP_LowQualityDepth -snpFilterExpression "QD < 2.0" -snpFilterName SNP_Map-

pingQuality -snpFilterExpression "MQ < 40.0" -snpFilterName SNP_StrandBias 

-snpFilterExpression "FS > 60.0" -snpFilterName SNP_HaplotypeScoreHigh -sn-

pFilterExpression "HaplotypeScore > 13.0" -snpFilterName SNP_MQRankSum-

Low -snpFilterExpression "MQRankSum < -12.5" -snpFilterName SNP_ReadPos-

RankSumLow -snpFilterExpression "ReadPosRankSum < -8.0" -snpFilterName 

SNP_HardToValidate -snpFilterExpression "MQ0 >= 4 && ((MQ0 / (1.0 * DP)) > 0.1)" 

-snpFilterName SNP_LowCoverage -snpFilterExpression "DP < 5" -snpFilterName 

SNP_VeryLowQual -snpFilterExpression "QUAL < 30" -snpFilterName SNP_LowQual 

-snpFilterExpression "QUAL >= 30.0 && QUAL < 50.0 " -snpFilterName SNP_SOR 

-snpFilterExpression "SOR > 4.0" -cluster 3 -window 10 -indelType INDEL -indelType 

MIXED -indelFilterName INDEL_LowQualityDepth -indelFilterExpression "QD < 

2.0" -indelFilterName INDEL_StrandBias -indelFilterExpression "FS > 200.0" -indel-

FilterName INDEL_ReadPosRankSumLow -indelFilterExpression "ReadPosRankSum 

< -20.0" -indelFilterName INDEL_HardToValidate -indelFilterExpression "MQ0 >= 

4 && ((MQ0 / (1.0 * DP)) > 0.1)" -indelFilterName INDEL_LowCoverage -indelFilter-

Expression "DP < 5" -indelFilterName INDEL_VeryLowQual -indelFilterExpression 

"QUAL < 30.0" -indelFilterName INDEL_LowQual -indelFilterExpression "QUAL >= 

30.0 && QUAL < 50.0" -indelFilterName INDEL_SOR -indelFilterExpression "SOR > 

10.0". To obtain high-quality somatic mutation catalogs, we applied postprocessing 

filters as described4. Briefly, we considered variants at autosomal chromosomes 

without any evidence from a paired control sample (the original bulk culture used to 

generate the mutant lines); passed by VariantFiltration with a GATK phred-scaled 

quality score R 100; a base coverage of at least 10X in the clonal and subclonal cul-

tures, and paired control sample; mapping quality (MQ) of 60; no overlap with single 

nucleotide polymorphisms (SNPs) in the Single Nucleotide Polymorphism Database 

v146; and absence of the variant in a panel of unmatched normal human genomes 

(BED-file available upon request). We additionally filtered heterozygous base sub-

stitutions with a GATK genotype score (GQ) lower than 99 in clonal or paired control 

samples. A GQ score of 10 was used for homozygous variants. For indels, we filtered 

variants with a GQ score lower than 99 in both clonal or subclonal culture, or paired 

control sample. A GQ of 20 was used for homozygous reference variants4,5. Finally, 

we only considered variants with a variant allele frequency of ≥0.3 in the sub-clones 

and a variant allele frequency lower than 0.3 in the original paired clones. These 

variants specifically accumulated between the two clonal expansion steps. The script 

is available at: https://github.com/ToolsVanBox/SMuRF.



104 105

MutationalPatterns: The one stop shop for the analysis of mutational processesChapter 3

3 3

Additional references
1. Ran, F.A., Hsu, P.D., Wright, J., Agarwala, V., Scott, D.A., and Zhang, F. (2013). Genome engineer-
ing using the CRISPR-Cas9 system. Nat. Protoc. 8, 2281–2308.
2. Li, H., and Durbin, R. (2010). Fast and accurate long-read alignment with Burrows-Wheeler 
transform. Bioinformatics 26, 589–595.
3. Depristo, M.A., Banks, E., Poplin, R., Garimella, K. V., Maguire, J.R., Hartl, C., Philippakis, A.A., Del 
Angel, G., Rivas, M.A., Hanna, M., et al. (2011). A framework for variation discovery and genotyping using 
next-generation DNA sequencing data. Nat. Genet. 43, 491–501.
4. Blokzijl, F., de Ligt, J., Jager, M., Sasselli, V., Roerink, S., Sasaki, N., Huch, M., Boymans, S., Kuijk, E., 
Prins, P., et al. (2016). Tissue-specific mutation accumulation in human adult stem cells during life. Nature 
538, 260–264.
5. Jager, M., Blokzijl, F., Sasselli, V., Boymans, S., Janssen, R., Besselink, N., Clevers, H., van Boxtel, 
R., and Cuppen, E. (2018). Measuring mutation accumulation in single human adult stem cells by whole-ge-
nome  sequencing of organoid cultures. Nat. Protoc. 13, 59–78.



Chapter 4

Mutation accumulation in mitochondrial DNA of can-

cers resembles mutagenesis in normal stem cells

Freek Manders1, Jip van Dinter1,  and Ruben van Boxtel1

1Princess Máxima Center for Pediatric Oncology and Oncode Institute, Heidelberglaan 25, 

3584CS Utrecht, The Netherlands

iScience,  2022



108 109

Mutation accumulation in mitochondrial DNA of cancers resembles mutagenesis in normal stem cellsChapter 4

4 4

Summary
Mitochondria are small organelles that play an essential role in the energy produc-

tion of eukaryotic cells. Defects in their genomes are associated with diseases such as 

cancer, as well as aging. Here we analyzed the mitochondrial genomes of 532 whole 

genome sequencing samples from cancers and normal clonally expanded single cells. 

We show that the mitochondria of normal cells accumulate mutations with age and 

that most of the mitochondrial mutations found in cancer are the result of healthy 

mutation accumulation. We also show that the normal HSPCs of leukemia patients 

have an increased mitochondrial mutation load. Finally, we show that secondary 

pediatric cancers and chemotherapy treatments do not impact the mitochondrial 

mutation load and mitochondrial DNA copy numbers of most cells, suggesting that 

damage to the mitochondrial genome is not a major driver for carcinogenesis. Over-

all, these findings may contribute to our understanding of mitochondrial genomes 

and their role in cancer.

Keywords
Mitochondria, Whole genome sequencing, somatic mutations, copy numbers, muta-

tional processes, Hematopoietic stem cells, leukemia, single cells

Introduction
Mitochondria, known as “the powerhouses of the cell”, are small organelles that play 

an essential role in the energy production of eukaryotic cells. They also play a role in 

many other cellular processes, such as apoptosis, biosynthesis and cellular differen-

tiation1–3. A single cell harbors many mitochondria, ranging from a couple dozen to 

more than a thousand depending on the cell type4,5. Mitochondria contain their own 

mitochondrial DNA (mtDNA), of which up to 15 copies can be present per mitochon-

drion6. The mtDNA is circular and, even though it is only 16.6kb, contains 37 genes 

of which 13 are protein coding. The remaining 24 genes, consisting of 22 tRNAs and 

2 ribosomal RNAs, are used for translation of the 13 protein coding genes. Unlike in 

nuclear DNA, mitochondrial genes lack introns or non-coding intergenic sequences7. 

Genetic variation in the mtDNA of a cell is often present in only a subset of its mito-

chondria, a phenomenon known as heteroplasmy8.

Defects in the mitochondrial genome have been associated with the development 

of a variety of neurodegenerative diseases as well as aging4,9–11. In addition, muta-

tions in mtDNA have also been suspected to play a role in the onset or progression 

of cancer12,13. A better understanding of mitochondrial mutations and their role in 

mitochondrial dysfunction is thus important to better understand cancer and other 

diseases. However, even though their relevance to disease is clear, mitochondrial 

genomes have been studied less than their nuclear counterparts and mitochondrial 

reads are often discarded in whole genome sequencing (WGS) studies. 

Recently, the Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium aggre-

gated WGS data from 2,658 cancers, characterized mutation patterns in the mtDNA 

and found that the copy number of the mitochondrial genome varied greatly within and 

across 38 tumor types12. However, it remains unclear if these mutations and copy num-

ber differences precede carcinogenesis and are already present in normal tissues or if 

they are a consequence of malignant transformation. We and others have previously 

shown that normal stem cells of various tissues accumulate mutations in their nuclear 

genome in a linear fashion with age14–17. Additionally, several studies have found cor-

relations between age and mitochondrial mutation burden in cancer, brain and colon 

samples, however these studies focused on bulk tissues or also included germline vari-

ants12,18–23. Single stem cells of normal tissues have not yet received as much attention.

Characterizing the mitochondrial genomes of single cells or clonally expanded cells is 

necessary to identify mutations in normal tissues. Additionally, it allows for the direct 

comparison of normal tissues against cancers, which are also clonal expansions of a 

parental malignant cell.
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Here, we analyzed the mitochondrial genomes of 532 WGS samples from 88 do-

nors15,17,24–27. We show that the mitochondria of normal stem cells, across different 

tissue types, gradually accumulate mutations with age and that most of the mtDNA 

mutations present in cancer occurred before transformation. Surprisingly, mitochon-

drial genomes are relatively insensitive to disease conditions, such as cancer, and/or 

treatment perturbations, such as chemotherapy. Overall, our study provides insight 

into mitochondrial mutation accumulation and its perturbation by cancer and cancer 

treatments.

Results
Cataloguing somatic mitochondrial mutations
A mitochondria specifi c sequencing analysis pipeline was recently developed as a 

part of the genome analysis toolkit (GATK)28,29. We applied this pipeline on samples 

from clonally expanded stem cells (hereafter named “clones”) of normal human tis-

sues as well as cancer samples and bulk control samples (Methods).

After removing 4 samples because of their low quality (Methods), we were left with 

532 samples, originating from 88 different donors ranging in age from 0 to 87 years 

(Fig. 1). The average sequencing depth of the mitochondrial genome was 7250x 

(3788-9569 Interquartile range (IQR)), allowing for the detection of variants with 

a very low variant allele frequency (VAF). Almost the entire mitochondrial genome 

had a high read coverage allowing for the detection of somatic variants across the 

mitochondrial genome (Fig. S1a). The distribution of reads across the genome was 

also highly similar between samples with a median cosine similarity of 0.998 [range: 

0.981-1.000].

In total, we identifi ed 370 somatic mitochondrial substitutions and 33 indels with a 

median VAF of respectively 0.0522 (0.0240-0.1356 IQR) and 0.0295 (0.0201-0.0809 

IQR) (Fig. S1b, c). Even though the median VAF was very low, the median number of 

reads supporting a variant was respectively 342 (150-838 IQR) and 171 (119-432 

IQR). This observation indicates that these variants are unlikely to be stochastic 

sequencing artifacts or false positives caused by Nuclear Mitochondrial sequences 

(NuMTs), which are parts of the mitochondrial genome that have been inserted into 

the nuclear genome30 (Fig. S1d, e). Since we identifi ed only a limited number of indels, 

we focused our subsequent analyses on the base substitutions.

MT-ND5 was the most commonly mutated gene, in line with previous observations12

however, after correcting for gene length it was no longer enriched (Fig. S1f). Most of 

the genic substitutions were predicted to have a low to moderate effect, suggesting 

that they are unlikely to have a large physiological effect (Fig. S1g).

Mutation accumulation in mitochondria of normal cells
To determine the relation between mtDNA mutation burden and age, we regressed 

the number of base substitutions per stem cell clone against the age of the donor. In 

hematopoietic stem and progenitor cells (HSPCs) from healthy donors, we observed 

a mutation rate of 0.0196 substitutions per stem cell per year (95% confi dence 

interval: 0.0093-0.0299; p = 0.0002; generalized linear model; Fig. 1b). The mutation 
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Figure 1 Accumulation of mitochondrial substitutions in normal stem cells with age.
a The mitochondrial read coverage is shown per donor, with each dot showing a single sample (536 
samples; 89 donors). The color of the dots indicates the sample group. Samples below the dashed red line 
were removed for having a low mitochondrial read coverage. Donors were ordered on the x-axis based on 
the sample groups of their samples. b, c, and d The number of mitochondrial base substitutions per clone 
is plotted against the donor age for normal HSPCS (blood stem cells) (b) (33 mutations; 62 samples; 14 
donors), normal colon stem cells (SCs) (c) (26 mutations; 19 samples; 5 donors), and normal intestinal stem 
cells (d) (20 mutations; 22 samples; 10 donors). Each clone is a clonally expanded single-cell. p-values show 
the signifi cance of the age of the donor on the number of substitutions (generalized linear model). The red 
line indicates the mean fi tted number of mutations at that age. The dark grey background shows the 95% 
confi dence interval of the model, whereas the light grey background shows the 95% prediction interval. 
The prediction intervals show the predicted intervals that contain the mutation load of 95% of all cells in 
the population. A small amount of jitter was added to the dots to prevent them from completely overlap-
ping. The color of the dots indicates the donor.
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load of HSPCs did have a weak correlation between mtDNA copy numbers and age 

(p = 0.0451; generalized linear model; Fig. S1h), similar to previous fi ndings12. Sam-

ples with a higher-than-average mutation burden in their mitochondrial genome, did 

not have a higher-than-average burden in their nuclear genome, suggesting that for 

normal cells, the mutational load in the mitochondria is independent of the mutation 

load in the nucleus (p = 0.726; X2 = 0.313; Chi-squared test; Fig. S1i). In normal colon 

and intestinal stem cells, we observed mutation rates of 0.0240 and 0.0278 substitu-

tions per year, confi rming previous results in colon (95% confi dence interval: 0.0068-

0.0413, 0.0075-0.0480; p = 0.0063, p = 0.0072; generalized linear model; Fig. 1c, d)21. 

The rates in colon and intestinal stem cells are not signifi cantly different from HSPCs 

(p = 0.7834; p = 0.1138; generalized linear model). Additionally, the rates we found 

are similar to the rate of 0.0067 previously observed in human putamen, which is a 

part of the brain18. Overall, our data shows that mitochondria in stem cells gradually 

accumulate mutations with age in multiple tissues at comparable rates.

Mitochondrial DNA copy numbers differ between tissues
We did not observe a signifi cant relation between mtDNA copy numbers and age in 

any of the studied tissues (Blood: p = 0.3466, Colon: p = 0.3099, Intestine: p = 0.0883; 

linear mixed-effects model; Fig. 2). Merging the data of these tissues to maximize 

statistical power did not change this result (p = 0.3108; linear mixed-effects model). 

This observation is surprising because correlations between mtDNA copy number 

and age of diagnosis of the patient were previously reported in several tumor types 

and bulk blood in cancer patients12. The depth of sequencing did not infl uence our re-

sults, as WGS samples sequenced at 15X and 30X had comparable copy numbers (Fig. 

S2). However, the mitochondrial copy numbers did differ between the various cell 

types (Fig. 2). HSPCs displayed a mean mtDNA copy number of 481 (95% confi dence 

interval: 396-566), whereas stem cells of the colon and intestine had a mean mtD-

NA copy number of 1213 (95% confi dence interval: 1061-1367; p < 0.0001, linear 

mixed-effects model) and 958 (95% confi dence interval: 856-1060; p < 0.0001, linear 

mixed-effects model), respectively. There was also a difference between colon and 

intestine (p = 0.0013). These differences likely refl ect changes in mitochondrial activ-

ity between tissues31,32. The differences in mtDNA copy number between cell-types 

are consistent with contrasts found between various cancer types12. The high level of 

mtDNA copy numbers in intestinal stem cells is also consistent with the importance 

of mitochondria in these cells for proper stem cell functioning33. This observation 

indicates that the variation in mtDNA copy numbers between these cancers are not 

necessarily caused by mitochondrial dysfunction due to the malignant phenotype, 

but likely refl ect the differences already found between healthy tissues from which 

these cancers arise.

The mtDNA mutation burden in blood cancer is similar to normal stem cells
After investigating the mutation burden in mtDNA of normal cells, we compared how 

mutation accumulation was perturbed in mtDNA of cancers of the same tissue. First, 

we compared normal blood HSPCs to hematological cancers. We identifi ed muta-

tions in WGS data from our own lab and from samples of 15 patients from the Thera-

peutically Applicable Research to Generate Effective Treatments (TARGET) program 

that were sampled at diagnosis from patients with either acute myeloid leukemia or 

acute lymphoblastic leukemia17,26,27. Additionally, we analyzed the mtDNA mutation 

burden of patients with different hematological cancers (i.e., Lymph-BNHL, Lymph-

CLL, Lymph-NOS, Myeloid-AML, Myeloid-MDS and Myeloid-MPN) whose data was 

included in the PCAWG consortium12. After combining this data, we found that the 

blood cancers had on average 0.5662 (95% confi dence interval: 0.2933-0.8391) more 

base substitutions per sample than normal HSPCs from healthy donors after correct-

ing for age (p < 0.0001; generalized linear model; Fig. 3a). This observation indicates 

that the mutation burden of blood cancer is only slightly higher than that of normal 

blood. However, this increased mutation burden was only present in a subset of cells. 

Most blood cancer samples harbored a similar number of mitochondrial substitutions 

as age-matched normal HSPCs, suggesting that the majority of mtDNA mutations 

in blood cancers are a consequence of normal age-related mutagenesis instead of a 

cancer-related mutator phenotype. Only one mutation in the blood cancers , which 
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Figure 2 Effect of age and cell-type on mtDNA copy number.
a, b, and cThe mtDNA copy number is plotted against the donor age for normal HSPCs (a) (62 samples; 
14 donors), normal colon stem cells (b) (19 samples; 5 donors), and normal intestinal stem cells (c) (22 
samples; 10 donors). p-values show the signifi cance of the age of the donor on the mtDNA copy number 
(linear mixed-effects model). The red line indicates the mean fi tted number of mutations at that age. The 
dark grey background shows the 95% confi dence interval of the model, whereas the light grey background 
shows the 95% prediction interval. The prediction intervals show the predicted intervals that contain 
the mutation load of 95% of all cells in the population. A small amount of jitter was added to the dots to 
prevent them from completely overlapping. The color of the dots indicates the donor.
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Figure 3 Comparison of mitochondrial substitutions between normal stem cells and cancers.
a The number of mitochondrial base substitutions per clone is plotted against the donor age for normal 
HSPCs from healthy donors (33 mutations; 62 samples; 14 donors) and blood cancers (418 mutations; 264 
samples; 264 donors). The p-value shows the signifi cance of the difference in the number of substitutions 
between normal HSPCs and blood cancer (generalized linear model). The color of the dots and lines indi-
cates the sample type. The trend lines indicate the mean fi tted number of mutations at that age and sample 
type. The shaded backgrounds show the 95% confi dence intervals of the model. A small amount of jitter 
was added to the dots to prevent them from completely overlapping. b and c 7-Spectrum of mitochondrial 
base substitutions for HSPCs from healthy donors (33 mutations; 62 samples; 14 donors) (b) and blood 
cancers (418 mutations; 264 samples; 264 donors) (c). A spectrum separated into light and heavy strands is 
also shown. The total number of base substitutions is indicated.  d The number of mitochondrial base sub-
stitutions per clone is plotted against the donor age for normal colon stem cells (26 mutations; 19 samples; 
5 donors) and colon cancers (224 mutations; 59 samples; 59 donors). The p-value shows the signifi cance of 
the difference in the number of substitutions between normal colon and colon cancer (generalized linear 
model). The color of the dots and lines indicates the sample type. The trend lines indicate the mean fi tted 
number of mutations at that age and sample type. The shaded backgrounds show the 95% confi dence 
intervals of the model. A small amount of jitter was added to the dots to prevent them from completely 
overlapping.  e and f 7-Spectrum of mitochondrial base substitutions for normal colon stem cells (24 muta-
tions; 19 samples; 5 donors) (e) and colon cancers (224 mutations; 59 samples; 59 donors) (f). A spectrum 
separated into light and heavy strands is also shown. The total number of base substitutions is indicated.

was a synonymous base substitution, was present in both a normal HSPCs and blood 

cancer sample, indicating that the mutations we observed are random passengers 

and not recurrent drivers. The spectra of the mtDNA mutations in normal HSPCs 

consisted of mostly C>T substitutions on the heavy strand and T>C substitutions on 

the light strand (Fig. 3b). This spectrum is very similar to the spectrum of the PCAWG 

data, with a cosine similarity of 0.937 for the entire spectrum and cosine similarities 

of 0.984 and 0.920 for the light and heavy strands, respectively (Fig. 3c). Additionally, 

mutations in both the normal HSPCs and the blood cancers were distributed across 

the mitochondrial genome (Fig. S3a). These observations suggest that the mtDNA 

substitutions found in blood cancer samples are caused by the same mutational 

processes, likely related to mtDNA replication, as the substitutions found in normal 

blood, which further underlines the idea that most mtDNA mutations in blood cancer 

are the result of normal age-related mutagenesis34. Interestingly, we observed a 

slightly higher ratio of missense substitutions in the normal HSPCs compared to the 

blood cancers (p = 0.048; X2 = 4.7; Chi-squared test; Fig. S3b). However, since this 

effect is small, it could be caused by differences in mutation calling or random chance.

The blood cancer samples with an elevated mutation load, here defi ned as samples 

with 4 or more substitutions, did not show an enrichment for any specifi c histologi-

cal subtype (p = 0.0545; X2 = 13.8; Chi-squared test). The mutation pattern of blood 

cancers with an increased mutation load was very similar to blood cancers with a 

lower mutation load, with a cosine similarity of 0.999 for the entire spectrum and 

cosine similarities of 0.997 and 0.999 for the light and heavy strands, respectively. 

The ratio of missense mutations was also similar between cancers with a higher and 

lower mutation load (p = 0.311; X2 = 1.2; Chi-squared test), as was the distribution 

of mutations across the mitochondrial genome (Fig. S3c). These observations sug-

gest that the increased mutation load found in some blood cancers is caused by an 

increased activity of the normal mutational processes found in mitochondria and not 

by a cancer specifi c mutational process.

Colon cancer has an increased mtDNA mutation burden
To test if these results generalize to more types of cancer, we compared colon 

cancers to normal colon stem cells. After correcting for age, colon cancers had on 

average 2.0661 (95% confi dence interval: 1.2498-2.8824) more base substitutions 

per clone than normal colon (P < 0.0001; generalized linear model; Fig. 3d). The 

larger mean difference between normal and cancer samples in colon compared to 

blood was likely caused by a larger fraction of cancer samples having an elevated 

mutation load. The increased mitochondrial mutation load in cancer thus seems to be 

cancer type specifi c. There were no mutations that were present in both the normal 
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colon stem cells and the colon cancers. The mutational spectra found in colon cancer 

showed an increased contribution of C>T mutations on the light strand, resulting in 

a decreased cosine similarity with normal colon (Fig. 3e, f; cosine similarity: 0.793). 

In contrast, the heavy strand had a high cosine similarity of 0.995. Since the normal 

colon samples did not contain many mutations, we also compared the mutation 

spectrum of the light strand of the colon cancer samples with that of the blood can-

cer samples. These spectra had a cosine similarity of 0.8970 and were significantly 

different from each other with p = 0.0005 (X2 = 23.477; Chi-squared test). However, 

the trinucleotide profiles of the C>T mutations on the light strand are quite similar 

(Fig. S3d). This suggests that these C>T mutations are caused by the same process, 

which is, however, more active on the light strand of colon cancer samples compared 

to normal colon stem cells and blood cancers34. In line with this, the ratio of missense 

mutations was similar between colon cancer and normal colon stem cells (p = 0.518; 

X2 = 0.6; Chi-squared test; Fig. S3e), and mutations in both groups were distributed 

across the mitochondrial genome (Fig. S3f).

The colon cancers with a mutation load of at least 4 substitutions had a similar mu-

tation pattern as those with a lower mutation load with a cosine similarity of 0.929 

on the light strand and 0.998 on the heavy strand. The ratio of missense mutations 

was also similar (p = 0.464; X2 = 0.6; Chi-squared test) as was the distribution of 

mutations across the mitochondrial genome (Fig. S3g). This further supports our 

conclusion that the increased mutation load found in some cancers is the result of the 

normal mutational processes found in mitochondria.

Both blood and colon cancer had a lower mtDNA copy number than the correspond-

ing normal stem cells (p < 0.0000; p = 0.0001; linear mixed-effects model; Fig. S3h, i). 

However, this is caused by technical differences in sequencing or sample preparation, 

since in-house pediatric AML samples had higher copy-numbers than pediatric AML 

samples from TARGET (p < 0.0000; W = 149; Wilcoxon rank sum test; Fig. S3j). There-

fore, subsequent copy number analyses only included samples from our own lab.

Normal HSPCs of patients with cancer show an increased mutation accumulation
Since pediatric cancers are often characterized by an elevated mutation burden, 

which is caused by the presence of a mutational signature associated with oxidative 

stress17, we hypothesized that the normal HSPCs of children with cancer could also 

have an increased mutation load in the mitochondria. To maximize our statistical 

power, we pooled together normal HSPCs at diagnosis, follow-up during remission, 

and the diagnosis of a secondary cancer, as we did not observe any differences be-

tween them (Methods). After correcting for age, normal HSPCs from children with 

leukemia had on average 0.3228 (95% confidence interval: 0.1429-0.5027) more 

substitutions per clone (p = 0.0004; generalized linear model; Fig. 4a). Similar to can-

cer cells, only a fraction of samples shows an increased mutation load. This observa-

tion was validated by an outlier test, which showed that the five samples out of 264 

with 4 or more substitutions were all statistical outliers with p<0.001. The mutations 

in these samples had a median VAF of 0.0787, which is in a similar range as the me-

dian VAF of 0.0590 in HSPCs from leukemia patients with a lower mutational load (p 

= 0.0719; W=1610; Wilcoxon rank sum test). The presence of leukemic blasts in the 

bone marrow thus seems to result in an increased mutation load in the mitochondria 

of normal HSPCs.

Normal HSPCs from leukemia patients did not have a significantly different mtDNA 

copy number than HSPCs from healthy donors (Fig. S4a). However, one sample was a 

statistical outlier, with a mtDNA copy number of over 2000.

To further validate that the difference in mutation load between blood cancers and 

normal blood stem cells is small, we compared the mutation load of leukemias with 

the mutation load of normal HSPCs from the same patients. We did not observe a 

significant difference (p = 0.5310; generalized linear model; Fig. S4b); however, our 

statistical power was limited by the small number of patients for which both primary 

tumor samples and clonally expanded single-cell HSPCs were available.

Treatment does not result in an increased mutation load
The treatment of cancers can cause somatic mutations in the nuclei of normal cells, 

which has been associated with second primary cancers, which are cancers occurring 

in patients that have previously had a different primary cancer16,27,35,36. To investi-

gate whether this also holds true for mtDNA, we analyzed mitochondrial mutations 

samples from children who received chemotherapy to treat pediatric cancer. The 

leukemia of patients with a secondary cancer did not contain an increased number 

of mitochondrial substitutions per clone compared to the normal HSPCs of healthy 

donors (p = 0.6893; generalized linear model; Fig. 4b). Secondary leukemias also did 

not contain an increased number of mitochondrial substitutions compared to prima-

ry leukemias from the same patient (Fig. S4c). One interesting hypothesis is that the 

lack of difference between HSPCs from healthy donors and patients with a second-

ary leukemia could be the result of damaged mitochondria having been cleared in 

patients with a second cancer37.

Secondary leukemias did not have a significantly different mtDNA copy number than 

HSPCs from healthy donors (Fig. S4a). However, similar to the normal HSPCs, one 
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Figure 4 The effects of cancer and treatment on mitochondrial genomes.
a The number of mitochondrial base substitutions per clone is plotted against the donor age for HSPCs 
from healthy donors (33 mutations; 62 samples; 14 donors) and HSPCs at either diagnosis, follow-up 
during remission, or a diagnosis of a genetically unrelated secondary cancer (144 mutations; 202 samples; 
28 donors). The p-values show the signifi cance of the difference in the number of substitutions between 
HSPCs from healthy donors and HSPCs from leukemia patients (generalized linear model). The color of 
the dots and lines indicates the sample type. The trend lines indicate the mean fi tted number of mutations 
at that age and sample type. The shaded backgrounds show the 95% confi dence intervals of the model. A 
small amount of jitter was added to the dots to prevent them from completely overlapping. b The number 
of mitochondrial base substitutions per clone is plotted against the donor age for HSPCs from healthy do-
nors (33 mutations; 62 samples; 14 donors) and secondary pediatric leukemias (8 mutations;16 samples; 
16 donors). The p-values show the signifi cance of the difference in the number of substitutions between 
HSPCs from healthy donors and secondary leukemias that are genetically unrelated from the original 
cancer (generalized linear model). A small amount of jitter was added to the dots to prevent them from 
completely overlapping. c The number of mitochondrial base substitutions per clone is shown for clonally 
expanded cord blood cells from healthy donors treated with different chemotherapies and X-ray. The color 
of the dots indicates the donor. CTRL = Control (2 mutations; 19 samples; 6 donors), CAR = carboplatin 
(0 mutations; 3 samples; 1 donor), CIS = cisplatin (3 mutations; 4 samples; 2 donors), CYTA = Cytarabine 
(3 mutations; 6 samples; 2 donors), DOX = Doxorubucin (2 mutations; 5 samples; 2 donors), MAPH = Ma-
phosphamide (0 mutations; 3 samples; 1 donor), RAD = X-ray (2 mutations; 9 samples; 4 donors), VINCRIS 
= Vincristine (0 mutations; 6 samples; 2 donors), GCV = Ganciclovir (0 mutations; 3 samples; 2 donors), FC 
= Foscarnet (0 mutations; 2 samples; 1 donor), GCV+FC (0 mutations; 3 samples; 1 donor). d Comparison 

sample was a statistical outlier with a mtDNA copy number of over 2000. Interest-

ingly, these outlier samples did not have high mutation loads.

To validate that treatment does not result in an increased mutation load in mito-

chondria we analyzed the WGS data of single CD34+ cord blood cells from healthy 

donors that were treated with chemotherapy, antiviral drugs, or X-ray in vitro for 3 

days, after which they were clonally expanded25,27,38. While some of these treatments 

resulted in an increased mutation load in the nucleus, this was not the case for the 

mitochondrial genomes (p =0.2038; one-way ANOVA; Fig. 4c). This could be because 

mitochondrial genomes are not damaged by these treatments, damaged mitochon-

dria are cleared, or mutations caused by treatment have a heteroplasmy level that is 

below the detection limit. Similar to the mutation load, we observed no differences in 

mtDNA copy numbers between samples that had been treated with different chemo-

therapies, antiviral drugs, or X-ray (p = 0.4637; one-way ANOVA; Fig. 4d).

Discussion
Here, we investigated the speed with which mitochondria in normal tissues accumu-

late somatic mutations with age and found that this was similar between different 

tissues. By comparing normal cells with cancer from the same tissue, we have also 

shown that most mitochondrial mutations in cancer are the result of normal muta-

genesis and that treatment perturbations do not strongly impact the mitochondrial 

mutation load.

In general, cancers and treatment did not have a large effect on the mitochondrial 

genomes. Chemotherapy, for example, did not result in large observable increases in 

mitochondrial mutation loads both in vivo and in vitro, even though it can lead to large 

increases in nuclear mutation loads25,27,35,39. This suggests that the relation between 

cancer and mitochondria is not dependent on damage to the mitochondrial ge-

nome3,12. One possible explanation for the limited effect of cancer and its treatments 

is that the mitochondrial DNA damage they cause, might be resolved by cells clear-

ing their damaged mitochondria. The increased mutation loads in pediatric cancer 

patients was present in only a subset of cells. This observation would not have been 

possible with bulk data and shows the advancement provided by single cell data. 

of the mtDNA copy numbers between clonally expanded cord blood cells from healthy donors treated 
with different chemotherapies and X-ray. The color of the dots indicates the donor. CTRL = Control (19 
samples; 6 donors), CAR = carboplatin (3 samples; 1 donor), CIS = cisplatin (4 samples; 2 donors), CYTA = 
Cytarabine (6 samples; 2 donors), DOX = Doxorubucin (5 samples; 2 donors), MAPH = Maphosphamide (3 
samples; 1 donor), RAD = X-ray (9 samples; 4 donors), VINCRIS = Vincristine (6 samples; 2 donors), GCV = 
Ganciclovir (3 samples; 2 donors), FC = Foscarnet (2 samples; 1 donor), GCV+FC (3 samples; 1 donor).
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Overall, our data suggests that damage to the mitochondrial genome is not a major 

driver for carcinogenesis.

Limitations of the study
Our approach for detecting mitochondrial variants could run into two issues. First, 

it can be difficult to distinguish in vitro and in vivo somatic mutations. Normally, this 

distinction is based on clonality, however mitochondrial somatic mutations that were 

present in the original single cell are unlikely to be clonal. In practice, these in vitro 

variants are unlikely to be an issue, because most of them are expected to have a 

very low VAF. This low VAF is the result of the high mtDNA copy number per clone 

and the lack of time for genetic drift to increase the VAF of these variants. Since we 

filter out all variants with a VAF below 0.1, most in vitro variants are likely removed. A 

consequence of this filtering is that we have likely missed some mutations with a very 

low level of heteroplasmy and underestimated the real mitochondrial mutation load. 

However, the low heteroplasmy level of these variants also makes it unlikely that 

they have a real biological effect8. 

A second issue is that selection or genetic drift can cause an inherited heteroplasmic 

variant to be lost or for its VAF to go below the detection limit in some or most cells. 

We have attempted to alleviate this issue by removing all variants for which there 

was any evidence in a matching bulk tissue, which should remove most germline vari-

ants. Additionally, since we filter out variants with a VAF below 0.01, small changes in 

the VAF of a heteroplasmic variant are insufficient to make it pass all filtering criteria 

in one sample, while being entirely undetectable in another sample. However, even 

with these controls, it is still possible that some somatic mutations were actually in-

herited, because somatic mutations are impossible to distinguish from heteroplasmic 

inherited variants with absolute certainty.

Overall, our study provides insights in the mitochondrial mutation accumulation and 

mtDNA copy numbers of normal cells and how this is perturbed by both cancer and 

treatment. These findings may contribute to our understanding of mitochondrial 

genomes and their role in disease.

STAR Methods

Lead contact
Further information and requests for resources should be directed to and will be fulfilled 

by the Lead Contact, Ruben van Boxtel ( R.vanBoxtel@prinsesmaximacentrum.nl ).

Materials availability
This study did not generate new unique reagents.

Data availability
Data are available on EGA under accession numbers EGAS00001001682, 

EGAS00001000881, EGAS00001003068, EGAS00001003982, 

EGAS00001004593, EGAS00001004926, EGAS00001005141. The TARGET data 

are available on the database of Genotypes and Phenotypes (dbGaP) with accession 

number phs000218. The PCAWG mutation frequencies were provided by Young 

Seok.

Code availability
The NF-IAP can be found at https://github.com/UMCUGenetics/IAP. All original code 

can be found at: https://github.com/ProjectsVanBox/mitochondria_mutation_accu-

mulation

Any additional information required to reanalyze the data reported in this paper is 

available from the lead contact upon request.

Sample information
All 532 samples used in this study are available on EGA as described in the Data 

availability statement. The samples consist of clonally expanded single-cells and bulk 

samples that were sequenced using whole genome sequencing. In brief, the 19 nor-

mal colon, 22 healthy intestine, and 6 normal liver samples were clonally expanded 

from adult stem cells using organoid cultures14. Mitochondrial mutation accumula-

tion was not investigated for the liver samples, because of a lack of statistical power. 

The 62 clonally expanded HSPC samples in the healthy blood group were generated 

by multiple studies. The samples from donors AC41, AC63, ACC55, AC33, BCH, and 

CB112 were generated using adult donors and cord blood15. The samples from do-

nors MH2, NR1, and NR2 were generated from fetal blood24. The samples from SIB1, 

SIB2, SIB3, HAP1, and HAP2 were generated from hematopoietic stem cell trans-

plant donors25. The 107 normal HSPCs in the diagnosis group and the 31 primary 

leukemia samples were generated from pediatric cancer donors. The samples from 

donors UPN025 to UPN033 were from AML patients17, whereas the samples from 

UPN001 to UPN023 came from patients with a variety of primary cancers27. The 

samples from the donors PAMXZY, PAMYMA, PANZLR, PARBTV, PARXYR, PASDKZ, 

PASDXR, PASFHK, PASFJJ, PASLZE, PASSLT, PASVJS, PASYWA, PATISD, and PATKKJ 

were from TARGET26. The 36 normal HSPCs in the follow-up group, the 59 normal 

HSPCs in the diagnosis 2 group, and the 16 secondary leukemias were sampled at ei-

ther the time of primary cancer remission, or during the diagnosis of a second cancer 



122 123

Mutation accumulation in mitochondrial DNA of cancers resembles mutagenesis in normal stem cellsChapter 4

4 4

that is genetically distinct from the original27. The 36 HSPC samples in the hemato-

poietic stem cell transplant (HSCT) recipient group were generated from donors that 

had received a hematopoietic stem cell transplant25. Since these HSPCs were mostly 

extracted from peripheral blood instead of bone marrow, they could not be directly 

compared to the HSPC samples in the healthy blood group. However, their inclusion 

could still aid in the filtering of somatic mutations because any variants present in 

both these HSPCs and the HSPCs of matching donors is likely to be an inherited 

variant and not a somatic mutation. The 63 HSPC samples in the in vitro chemother-

apy group were generated from cord blood25,27,38. Bulk cord blood was treated with 

the relevant treatment for 3 days, after which a single HSPC was clonally expanded 

and sequenced38. The samples that we analyzed with the mitochondrial pipeline were 

compared to previously identified substitutions in adult cancers from PCAWG12.

Read alignment and variant calling
Some samples were originally aligned to hg19. These samples were re-aligned to 

hg38 by first converting them to the FASTQ format using Picard SamToFastq with 

the “RG_TAD=ID” and “OUTPUT_PER_RG=true” arguments (v2.24.1)40. The samples 

were then compressed using bgzip (v1.0)41. Finally, read alignment was performed 

using the Nextflow Illumina Analysis Pipeline (NF-IAP, v1.2).

The bulk skin biopsies of N01, NR1 and NR2 were sequenced on both Illumina HiSeq 

X Ten sequencers and Nova sequencers. The resulting BAM files were subsequently 

merged using samtools merge (v1.3) and the library (LB) and sample (SM) fields were 

unified for each readgroup in the new bamfile, as previously described24. After con-

verting these samples to hg38, this merging step was repeated.

Samples were analyzed using a modified version of the Broad Institute’s GATK 

(v4.1.3.0) Mitochondria pipeline (https://github.com/broadinstitute/gatk/tree/mas-

ter/scripts/mitochondria_m2_wdl)28. This pipeline is written in WDL and was run on 

a high-performance compute facility using the Cromwell execution engine. In short, 

this pipeline takes hg38 BAM files as its input and subsets them to only the mitochon-

drial reads, which includes removing reads mapping to the NuMTs42. The pipeline also 

takes mean nuclear coverage as its input, which was calculated by the NF-IAP using 

GATKs CollectWGSMetrics tool. The mitochondrial reads are then aligned twice 

to both the regular and a shifted version of the mitochondrial genome to overcome 

the problem of linear mapping to a circular genome. After this, the haplochecker 

command from mitolib (v0.1.2; https://github.com/haansi/mitolib) is used to identify 

the haplotype of a sample and detect any contamination. Next, variants are called 

for both alignments using the mitochondria mode of Mutect2. The variants called 

on the shifted version of the mitochondrial genome are then lifted over using Picard 

LiftoverVcf (v2.20.1) and merged with the variants called on the regular mitochon-

drial genome using Picard MergeVcfs (v2.20.1). The “.stats” files from Mutect2 are 

merged using GATKs MergeMutectStats. Next, artifacts are flagged using GATKs 

FilterMutectCalls using the “mitochondria-mode” argument, which includes the 

“ChimericOriginalAlignmentFilter” and “PolymorphicNuMTFilter” filters. Addi-

tionally, the “autosomal-coverage” argument was supplied with the mean nuclear 

coverage, the “stats” argument was supplied with the merged “.stats” file, and the 

“contatmination-estimate” argument was supplied with the estimated contamination 

from mitolib. This step also ensures that false positive variants caused by NuMTs are 

flagged by using a Poisson distribution based on the mean nuclear coverage29,43,44. We 

modified the pipeline to also flag common variants using haplotype specific blacklists 

from MITOMAP (v102) with the “blacklisted_site” flag using GATKs VariantFiltra-

tion45. Next, the NF-IAP was used to annotate the identified variants. These annota-

tions include a prediction of the effect of the variants by SnpEff (v4.3t)46.

Three samples (MH2LIMPPCL13, PMC21636MPP6, and PAKIYWBMPC) were re-

moved, because their mean mitochondrial read coverage was lower than a thousand, 

indicating potential technical issues and making it more likely for low VAF variants 

to be missed. As a result, there was only a bulk sample (PAKIYWBMNF) left for one 

donor, which was therefore also removed.

Somatic variant filtering
The R language (v3.6.3) was used to filter for somatic variants and also perform all 

subsequent analyses47. We only considered heterozygous variants that had passed all 

quality filters of the mitochondria GATK pipeline and did not have multiple alter-

native alleles. This meant that variants with any of the following filtering flags were 

removed: “blacklisted_site”, “strand_bias”, “base_qual”, “weak_evidence”, “numt_novel”, 

“position”, and “contamination”. Next, we compared the genotypes of these variants 

across all samples. Variants that were present in a subset, but not all samples of a do-

nor were considered to be somatic. Furthermore, variants that were called in a sam-

ple and a matching bulk sample were removed to prevent inherited heteroplasmic 

variants from being incorrectly identified as somatic mutations. Since the cord blood 

samples treated with either chemotherapy, anti-viral drugs, or X-rays did not have 

matching bulk samples, any shared variants in them were removed. Next, variants 

present in more than one donor were filtered out, because they could be sequencing 

artifacts or recurrent false positives caused by NuMTs12. Variants that were previ-

ously filtered out were included in the preceding comparisons between samples as a 

control. This prevents germline variants and sequencing artifacts from being called as 
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true somatic mutations when they were flagged in some samples. Additionally, vari-

ants with a VAF below 0.01 were removed. This step removes false positives caused 

by NuMTs, as they are expected to have a low VAF42. Next, any variants that were 

previously found to be likely false positives caused by NuMTs were removed42,44. For 

this step we used variants in the RHO94 database that were found in capture-en-

richment data from Li et al., 2012 and variants that were likely false positives caused 

by more recent NuMT insertions from Dayama et al., 2014. Finally, variants that 

occurred in more than one sample were manually inspected. Variants in bulk samples 

were identified, but not used for subsequent analyses.

Mutation load accumulation
Since mutations can already accumulate before birth, the age of all samples was cal-

culated from conception. A Poisson generalized linear model with an “identity” link 

function was fitted to the determine the effect of age on the number of base substitu-

tions in normal clonal blood samples, using the following command: “glm(freq ~ age, 

data = healthy_freq, family = poisson(link = "identity"))”. A Poisson distribution was 

used, because mutation accumulation is expected to be a Poisson process, as muta-

tions are discrete and generally independent events. Additionally, linear models are 

not well suited for the small and discrete numbers of mutations found in mitochon-

dria. A mixed-effects Poisson model with an “identity” link function was also attempt-

ed, however this failed to converge. This model was called with the following com-

mand: “glm_mixed_log_m <- glmer(freq ~ age + (0 + age | patient), data = healthy_freq, 

family = poisson(link = "identity"))”. To validate our modeling choices, we also fitted 

several other models. These included, a zero-inflated Poisson model (command: 

“zeroinfl(freq ~ age, data = healthy_freq, dist="poisson")"), a linear model (command: 

“lm(freq ~ age, data = healthy_freq)”), a linear mixed-effects model with a random 

slope (command: " lme(freq ~ age, random = ~-1 + age | patient, data = healthy_freq)”) 

and three Poisson models with a “log” identity link (commands: “glmer(freq ~ age + (0 

+ age | patient), data = healthy_freq, family = poisson(link = "log"))”; “glmer(freq ~ age 

+ (1 | patient), data = healthy_freq, family = poisson(link = "log"))”; “glm(freq ~ age, 

data = healthy_freq, family = poisson(link = "log"))”;). The first two of these Poisson 

models were mixed-effects models with respectively a random slope and a random 

intercept. Our main model was superior to these alternative models based on both 

the Bayesian information criterion and the Akaike information criterion. We would 

like to note that the age variable was significant not just in the main model, but also in 

all other models, except for the zero-inflated one. Models with the same form as the 

main normal blood model were fitted for normal colon and normal intestine samples.

To determine the effects of cell-type, treatment, and disease, relevant samples were 

compared with the normal clonal HSPC samples. For each analysis of cell-type, 

treatment, or disease a model was fitted that is similar to the base model, but with an 

extra explanatory variable for cell-type or for the treatment or disease of interest. 

The commands to calculate these models had the following structure: “glm(freq ~ 

cell-type/treatment/disease + age, data = data_set, family = poisson(link = "identi-

ty"))”. To compare the mutation loads of leukemia with HSPCs at diagnosis from the 

same patient we generated a model without the age variable, using the following 

command: “glm(freq ~ state_name + patient, family = poisson(link = "identity"), data = 

dx1_vs_leukemia_freq)”. Mixed-effects models were fitted using a combination of the 

nlme (v3.1-148) and lme4 (v1.1-23) R packages48,49.

To calculate the confidence and prediction intervals of a Poisson model, a grid was 

made of possible input variables. For the confidence intervals, the fit and standard er-

ror (se) were then calculated on the scale of the linear predictors for each point in the 

grid, using the command: “predict(model, type = "link", se = T, newdata = x_grid)”. The 

confidence interval was then defined as the fit +- 1.96 * se. Since the “identity” link 

was used the confidence interval did not need to be converted back to the response 

variable scale. To calculate the prediction interval of a Poisson model the underlying 

data was bootstrapped 10,000 times, using the sample function with the “replace 

= TRUE” argument. In each bootstrap iteration the model is updated with the boot-

strapped data using the update function and the fit is calculated for each point in the 

grid. These estimated values were then used as the lambda to generate a random 

number from a Poisson distribution for each point in the grid, using the “rpois” func-

tion. The generated numbers across all bootstrap iterations were then combined and 

the 2.5% and 97.5% quantiles were then used as the prediction interval.

To identify any differences in the mutational load of the HSPCs from patients at diag-

nosis compared to patients at follow-up during remission, or patients at the diagnosis 

of a secondary cancer, we fit two Poisson models using only these HSPCs, regressing 

the mutation load against the donors age as described above. In the second model we 

included a variable, describing the patient’s disease state at sampling. This model was 

inferior compared to the model without this variable based on the Bayesian Informa-

tion Criterion and the Akaike Information Criterion.

Comparison mitochondrial and nuclear mutation load
The predicted number of mitochondrial mutations was calculated using the Poisson 

model trained on HSPCs from healthy donors. The predicted number of nuclear mito-

chondrial mutations was calculated using a linear mixed-effects model, using the fol-



126 127

Mutation accumulation in mitochondrial DNA of cancers resembles mutagenesis in normal stem cellsChapter 4

4 4

lowing command: lme(norm_muts ~ age, random = ~ -1 + age | patient, data = nucle-

ar_mito_muts). Samples were then classified as having either more or less mutations 

than predicted by these models. A Pearson’s Chi-squared test was then performed to 

see if the mitochondrial and nuclear classifications were independent. Chi-squared 

tests were calculated using Monte Carlo simulations with 2000 replicates, using the 

chisq.test function with the “simulate.p.value” argument.

Copy number analysis
The number of mitochondrial genomes per clone was calculated by dividing the mean 

read coverage in the mitochondrial genome by the mean read coverage in the nuclear 

genome and multiplying by two. A linear mixed-effects model with a random slope 

was fitted to determine the effect of age on the mitochondrial copy number, using 

the following command: “lme(cnv_mean ~ age, random = ~ 0 + age | patient, data = 

healthy_cnv)”. A model combining the blood, colon and intestine was fitted using: 

“lme(cnv_mean ~ age * state, random = ~ 0 + age | patient, data = tissue_cnv)”. This 

model included an interaction between the cell type and age, to allow for differences 

in the slopes between the cell types. Because the age variable was not significant, it 

was not used in subsequent copy number models. To determine the effects of treat-

ment and disease, relevant samples were compared with the healthy clonal samples. 

For each analysis of a treatment or disease a linear mixed-effects model was fitted 

with the treatment or disease included as an explanatory variable. The ggeffects 

(v0.15.0) package was used to calculate the confidence and prediction intervals of 

linear mixed-effects models50.

Outliers in the models were detected by calculating the odds of the standardized 

absolute residuals occurring under a standard normal distribution for both the muta-

tion load and copy number models. The command for this was: “multiply_by(pnorm(-

multiply_by(abs(resid(model, type = “pearson”)), -1)), 2)”.

Mutation spectra
Mutation spectra and their cosine similarities were calculated and visualized using 

the MutationalPatterns (v3.3.4) R package51. Spectra were calculated separately for 

substitutions with a “C” or “T” reference base and substitutions with a “G” or “A” ref-

erence base. The "type_context” function from MutationalPatterns was used to iden-

tify for each C>T mutation, whether it occurred within a CpG context. Variants that 

were shared between multiple samples of a single donor were only counted once.

Missense mutations were identified based on SnpEff annotations. “start_lost”, “stop_

gained”, and “stop_lost” mutations were also considered as missense mutations. For 

the variants identified by PCAWG, the supplied PCAWG annotations were used. The 

ratios of missense and other mutations, consisting of both synonymous and non-cod-

ing variants, were compared between groups using Pearson’s Chi-squared tests as 

described above. 

Comparisons to PCAWG
To determine the effect of adult cancer on mitochondrial mutation accumulation, 

normal clonally expanded HSPCs from healthy donors were compared to blood 

cancer mutations from the PCAWG consortium. Lymph-BNHL, Lymph-CLL, Lymph-

NOS, Myeloid-AML, Myeloid-MDS, and Myeloid-MPN cancers samples were pooled 

together in a single blood cancer category. Normal clonally expanded colon stem 

cells were compared to mutations in ColoRect-AdenoCA cancer samples, which were 

referred to as colon cancer. Mutation accumulation, copy numbers and mutation 

spectra were analyzed as described above. Comparisons were also made between 

blood and colon cancer samples with at least 4 substitutions and cancer samples with 

a lower mutation load. 

Gene mutations
The number of mutations per gene was calculated per sample category. For each cat-

egory only clonal samples were included. The mutation counts were normalized by 

dividing the number of mutations per gene by the gene lengths, which, together with 

the gene strands, were obtained via Ensembl (v104)52.

Quantification and statistical analysis
The numbers of samples and donors per analysis are indicated in the figure legends. 

p-values are indicated in the figures and explained in the figure legends and main text. 

To assess the significance of mitochondrial mutation accumulation, generalized linear 

models with a Poisson distribution and a “identity” link function were used. Linear 

mixed-effects models were used to assess the significance of mtDNA copy number 

differences between groups and to assess the effect of age on this variable. Cosine 

similarities were used to compare mutation spectra and read distributions. One-way 

ANOVAs were used to assess the significance of differences between cord-blood 

clones treated with different chemotherapies and X-ray. To assess if the nuclear and 

mitochondrial mutation loads were significantly related a Pearson’s Chi-squared was 

used. A Chi-squared test was also used to compare the histology between blood can-

cers with 4 or more substitutions and blood cancers with a lower mutation load. Fur-

thermore, Chi-squared tests were performed to compare the ratio of missense ver-

sus other mutations between groups. Chi-squared tests were calculated using Monte 

Carlo simulations with 2000 replicates. To assess the significance of the correlation 
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between the maximum VAF of a donor and the donors’ age a linear regression was 

used. To assess the significance of the difference between mtDNA copy numbers of 

in-house samples and samples from TARGET a Wilcoxon rank sum test with continui-

ty correction was used. A Wilcoxon rank sum test with continuity correction was also 

used to compare the VAFs of mutations in HSPC samples with a high mutation load of 

4 or more substitutions with HSPC samples with a lower mutation load.
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Figure S1. Detection of mitochondrial variants. Related to Figure 1.
a The mean mitochondrial read coverage is plotted in 20bp windows across the genome for 3 samples of 
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donor AC63. Each dot represents a single 20bp window. The colors of the dots indicate the samples. b The 
variant allele frequency of substitutions from all samples (370 mutations; 532 samples; 88 donors) is plot-
ted against their position on the mitochondrial genome. The color of the dots indicates the base substitu-
tion type.  cThe variant allele frequency of indels from all samples (33 mutations; 532 samples; 88 donors) 
is plotted against their position on the mitochondrial genome. The color of the dots indicates whether a 
variant is an insertion or a deletion. d The number of alternative reads of substitutions from all samples 
(370 mutations; 532 samples; 88 donors) is plotted against their position on the mitochondrial genome. 
The color of the dots indicates the base substitution type. e The number of alternative reads of indels from 
all samples (33 mutations; 532 samples; 88 donors) is plotted against their position on the mitochondrial 
genome. The color of the dots indicates whether a variant is an insertion or a deletion. f Heatmap depicting 
the number of substitutions divided by the gene length in kilobases per gene and for each of the following 
sample groups: Healthy blood (33 mutations; 62 samples; 14 donors), Normal colon (24 mutations; 19 
samples; 5 donors), Healthy intestine (20 mutations; 22 samples; 10 donors), Normal liver, (6 mutations; 6 
samples; 2 donors), Diagnosis (67 mutations; 107 samples; 17 donors), Leukemia (24 mutations; 31 sam-
ples; 31 donors), Follow-up (31 mutations; 36 samples; 8 donors), Diagnosis 2 (44 mutations; 59 samples; 
11 donors), In vitro Chemotherapy (8 mutations; 63 samples; 9 donors), HSCT recipient (23 mutations; 
36 samples; 9 donors). Substitutions within a group are pooled. Genes with a “+” behind their name are 
located on the light strand, whereas genes with a “-“ are located on the heavy strand. g The effect of genic 
substitutions predicted by SnpEff for each of the following sample groups: Healthy blood (33 mutations; 
62 samples; 14 donors), Normal colon (24 mutations; 19 samples; 5 donors), Healthy intestine (20 muta-
tions; 22 samples; 10 donors), Normal liver, (6 mutations; 6 samples; 2 donors), Diagnosis (67 mutations; 
107 samples; 17 donors), Leukemia (24 mutations; 31 samples; 31 donors), Follow-up (31 mutations; 36 
samples; 8 donors), Diagnosis 2 (44 mutations; 59 samples; 11 donors), In vitro Chemotherapy (8 muta-
tions; 63 samples; 9 donors), HSCT recipient (23 mutations; 36 samples; 9 donors). h The number of base 
substitutions per clone is plotted against the mtDNA copy number for HSPCs from healthy donors (33 
mutations; 62 samples; 14 donors). A small amount of jitter was added to the dots to prevent them from 
completely overlapping. The color of the dots indicates the donor. The p-value shows the significance of 
the mtDNA copy number on the number of substitutions per clone (generalized linear model). i Heatmap 
depicting the number of HSPCs from healthy donors (samples = 31; donors = 9) whose mutation load is 
above or below the predicted mutation load in the mitochondrial and nuclear genomes. The predictions 
are based on regression models. Only samples for which both the mitochondrial and nuclear mutation 
loads had been determined were used.
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Figure S3. Mutation profiles and difference in mtDNA copy number between normal and cancer cells. 
Related to Figure 3.
a The total number of base substitutions across the genome is shown in 1kb bins for both HSPCs from 
healthy donors (33 mutations; 62 samples; 14 donors) and blood cancers (418 mutations; 264 samples; 
264 donors). b The total number of missense and other base substitutions is shown for both HSPCs from 
healthy donors (33 mutations; 62 samples; 14 donors) and blood cancers (418 mutations; 264 samples; 
264 donors). The color indicates whether substitutions are missense or other (synonymous/non-coding). 
c The total number of base substitutions across the genome is shown in 1kb bins for both blood cancers 
with a high mutation load of at least 4 substitutions (148 mutations; 29 samples; 29 donors) and blood 
cancers with a lower mutation load (270 mutations; 235 samples; 235 donors). d 96-Profile of mitochon-
drial base substitutions on the light strand for blood cancers (194 mutations; 264 samples; 264 donors) 
and colon cancers (80 mutations; 59 samples; 59 donors). e The total number of missense and other base 
substitutions is shown for both normal colon stem cells (26 mutations; 19 samples; 5 donors) and colon 
cancers (224 mutations; 59 samples; 59 donors). The color indicates whether substitutions are missense 
or other (synonymous/non-coding). f The total number of base substitutions across the genome is shown 
in 1kb bins for both normal colon stem cells (26 mutations; 19 samples; 5 donors) and colon cancers (224 
mutations; 59 samples; 59 donors). g The total number of base substitutions across the genome is shown 
in 1kb bins for both colon cancers with a high mutation load of 4 or more substitutions (151 mutations; 25 
samples; 25 donors) and colon cancers with a lower mutation load (73 mutations; 34 samples; 34 donors). 
h Comparison of the mtDNA copy numbers between HSPCs from healthy donors (62 samples; 14 donors) 
and blood cancers (229 samples; 229 donors). i Comparison of the mtDNA copy numbers between normal 
colon stem cells (19 samples; 5 donors) and colon cancers (58 samples; 58 donors). The p-values show 
the significance of the difference between normal and cancer cells (linear mixed-effects model). A small 
amount of jitter was added to the dots to prevent them from completely overlapping. j Comparison of the 
mtDNA copy numbers between AMLs from our own lab (10 samples; 10 donors) and AMLs from TARGET 
(15 samples; 15 donors). The color of the dots indicates the donor. A small amount of jitter was added to 
the dots to prevent them from completely overlapping. The p-value shows the significance of the differ-
ence between the two groups (Wilcoxon rank sum test).
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Figure S4. The effects of disease and treatment on mtDNA copy numbers. Related to Figure 4.
a Comparison of the mtDNA copy numbers between HSPCs from healthy donors (62 samples; 14 donors), 
HSPCs at diagnosis (107 samples; 17 donors), pediatric leukemias (16 samples; 16 donors), HSPCs from 
follow-up samples of patients in remission (36 samples; 8 donors), HSPCs at a secondary diagnosis (59 
samples; 11 donors) and secondary pediatric leukemias (16 samples; 16 donors). The color of the dots 
indicates the donor. A small amount of jitter was added to the dots to prevent them from completely over-
lapping. b Comparison of the number of base substitutions between the primary leukemias and the normal 
HSPCs at diagnosis from the same patients. The patients are indicated at the top. The following patients 
were included: UPN017 (2 mutations; 4 samples), UPN018 (4 mutations; 4 samples), UPN023 (2 muta-
tions; 4 samples), UPN025 (9 mutations; 11 samples), UPN026 (11 mutations; 11 samples), UPN027 (5 
mutations; 6 samples), UPN028 (10 mutations; 15 samples), UPN029 (10 mutations; 15 samples), UPN30 
(7 mutations; 14 samples), UPN031 (4 mutations; 6 samples), UPN032 (3 mutations; 9 samples). For each 
patient one leukemia sample was included and the rest are normal HSPCs. c The number of base substi-
tutions between primary leukemias and secondary leukemias from the same patients is plotted against 
the age of the patients in years. The color indicates the patient and lines match samples from the same 
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Abstract
Single-cell whole genome sequencing allows for the detection of rare somatic 

mutations that are missed by conventional bulk sequencing. Single-cell sequencing 

has historically had a low accuracy and sensitivity but combined with the recently 

developed primary template-directed amplification (PTA) technology some of these 

issues have been alleviated. Nonetheless, while this technique reduces amplifica-

tion biases and allelic dropout rates in the sequencing data, it still introduces many 

artifacts due to the DNA amplification. Here, we present the PTA analysis toolkit 

(PTATO), which integrates multiple modes of evidence to accurately distinguish 

naturally acquired somatic mutations from artifacts. The toolkit can identify not only 

single base substitutions (SBSs), but also small insertions and deletions (indels), and 

structural variants (SVs). We validated PTATO on internal data from multiple donors 

as well as on external data. Finally, we illustrate how our toolkit can be used to gain 

novel biological insights by applying it on blood cells from an acute myeloid leukemia 

(AML) patient. We demonstrate that leukemic drivers can be timed in the lifetime of 

a patient, which occurred years before the diagnosis of the AML, and that AML blasts 

are still able to differentiate.

Introduction
Somatic mutations play an important role in several diseases, such as neurogene-

rative disorders and cancer1,2. Detecting somatic mutations using single-cell whole 

genome sequencing (WGS) can provide several advances over bulk sequencing of a 

sample containing many cells3–5. With regular bulk sequencing only (sub)clonal mu-

tations can be detected. Therefore, any mutation present in a particular cell, which 

has not substantially clonally expanded, will be missed by bulk sequencing. As a 

result, most of the somatic mutations in healthy bulk samples are missed1,6. Addition-

ally, while the (sub)clonal mutations in a cancer sample can be identified with bulk 

sequencing, many of the mutations that occurred after the malignant transforma-

tion or last clonal sweep, which could have occurred much earlier, will be missed7–11. 

Although these mutations occur in only a limited number of cells, they can repre-

sent small subclones that may ultimately contribute to chemotherapy resistance or 

metastases12,13. Furthermore, because somatic mutations are inherited by a cells’ 

progeny, they can be used to determine the phylogenetic relationships between cells. 

By performing single-cell WGS on different cells of the same individual, phylogenetic 

trees can be constructed14–16. On top of this, determining the mutation burden of 

normal cells allows for a direct comparison to the clonal mutations in a bulk cancer 

sample, which are the mutations present in the cancer cell-of-origin or the last cancer 

cell that performed a clonal sweep1,17–21.

There are currently several techniques, which allow for studying genome-wide muta-

tion profiles at the single-cell level2,22. One approach is to clonally expand adult stem 

and progenitor cells in vitro to obtain sufficient DNA for WGS analysis14,15,17,20,23–27. A 

conceptually similar approach is to sequence naturally occurring clonal patches in 

healthy tissues using low-input sequencing1,21,28,29. By subsequently selecting only the 

clonal variants, the mutations present in the parental cell that gave rise to the clonal 

expansion can be studied. A disadvantage of these methods is that they can only be 

used on cells with sufficient self-renewal capacity in vitro and/or vivo.

Another approach to obtain sufficient DNA of a single cell for WGS analysis, without 

the necessity for clonal expansion, is to artificially amplify the genome using multiple 

displacement amplification (MDA)30,31. However, this method suffers from amplifi-

cation biases across different regions of the genome as well as allelic dropouts and 

therefore the accuracy in mutation detection is low4,5. A recent modification of the 

MDA protocol is primary template-directed amplification (PTA)5. This technique 

incorporates exonuclease-resistant terminators next to regular nucleotides, which 

results in amplification products that undergo limited subsequent quasi-linear am-

plification5. Consequently, a larger fraction of the initial products of the original DNA 
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molecule is amplified, which results in a more even read coverage across the genome. 

The benefit of this approach is that it can be applied to differentiated and single can-

cer cells, which otherwise could not be assessed. PTA can help us understand tumor 

heterogeneity in cancer, but also other diseases as illustrated by a recent paper, 

which showed that the neurons of Alzheimer’s patients have an increased mutation 

load compared to the neurons of neurotypical patients32.

While PTA generates less artifacts than MDA and has a much more even genome 

coverage resulting in a higher sensitivity, there is still a substantial number (hundreds 

to thousands) of artifacts left across different types of mutations like SBSs, indels, 

and SVs5,33. Copy number profiles generated from PTA-based WGS data are also 

relatively noisy compared to regular bulk WGS of clonally expanded cells5. Because 

of the substantial number of PTA artifacts combined with noisy copy number pro-

files, regular post-calling variant filtration is insufficient to remove these artifacts, 

especially when investigating cells with a relatively small mutation burden, such as 

noncancerous cells.

Several approaches could potentially be used to distinguish true somatic mutations 

from PTA artifacts. First, the mutation type and sequence context surrounding arti-

facts is not random33. False positive SBSs, for example, show a clear mutation pattern 

of C>T substitutions outside of CpG islands. Furthermore, in a diploid locus, the vari-

ant allele frequency (VAF) of a somatic variant should match that of the surrounding 

constitutive variants. When both alleles are equally amplified this VAF should be 0.5 

in a diploid region, but when this is not the case, then the VAF of a somatic variant 

should change similarly to that of the surrounding germline variants33. Finally, if a 

true somatic mutation is located closely to a germline variant, then read-backed 

phasing can be used34. This analysis takes into account that if the somatic and germ-

line variant are located on the same allele, then any read overlapping both their posi-

tions should contain both variants. In contrast, if they are on different alleles, then no 

single read should contain both variants. Current tools are limited by only using some 

of the approaches described above, instead of integrating them to distinguish true 

variants from artifacts with maximum precision and sensitivity.

PTA-based WGS might also enable structural variant detection in single cells. The 

relative uniform sequencing coverage of PTA data and ability to identify germline 

SBSs give opportunities to analyze read depth, B-allele frequencies, split reads, and 

concordant read pairs. However, currently no specific SV filtering tools exist for PTA-

based WGS data, while commonly used structural variants analysis workflows for 

general WGS data are not optimized for PTA, leading to suboptimal results.

Here, we created a comprehensive PTA Analysis Toolkit, which integrates multiple 

complementary lines of evidence, using a machine-learning model, to distinguish true 

somatic SBSs, indels, and SVs from artifacts with an unprecedented precision and 

sensitivity for single-cell data. By applying PTATO to both novel and previously pub-

lished PTA-based WGS datasets, we showed that it can accurately distinguish true 

variants from artifacts. Furthermore, we applied PTATO on single hematopoietic cells 

of a pediatric AML patient to show that oncogenic drivers occurred years before the 

diagnosis of the disease and that the leukemic stem cells in the NUP98–NSD1 AML 

were still able to differentiate.

Results
PTATO has several main workflows, which separately filter SBSs and indels, create 

quality control plots, and determine SVs and copy numbers (Fig. 1). To filter poten-

tial somatic SBS and indels, PTATO uses machine-learning to integrate read-backed 

phasing, with allelic imbalance, and a wide genomic context. First, PTATO performs 

read-backed phasing of somatic variants with nearby heterozygous germline variants 

and generates a score indicating whether the variant is likely to be true. Additionally, 

PTATO analyzes the allelic imbalance, by checking if the VAF of a potential variant 

is similar to the surrounding heterozygous germline variants. Next, PTATO uses a 

random forest model to calculate for each detected variant the probability that it is 

an artifact. This model uses several features, such as the 10 bases sequence context 

around a variant, the distance to the nearest gene body, and the allelic imbalance (Fig. 

1) (Methods).

Finally, for each sample, the optimal cutoff for the random forest score is calculated. 

This calculation is done using variants that are highly likely to be artifacts or true 

variants based on read-backed phasing of somatic variants with nearby heterozygous 

germline variants. This approach ensures that the cutoff score is well calibrated for dif-

ferent samples with varying amplification qualities. Next to the calculated cutoff score, 

users can also use a custom cutoff score if a higher sensitivity or precision is required. 

PTATO makes it easy to choose a custom cutoff by calculating several statistics, such as 

the precision, and sensitivity for different possible custom cutoff scores.

Most PTA-based WGS runs lead to uniform genome coverage, but some samples may 

have a suboptimal genome amplification, leading to noisy copy number plots and many 

artificial variants. Therefore, PTATO first collects and visualizes a variety of sequencing 

quality control metrics that can aid in correct interpretation of PTA-based WGS data 

(Fig. S1).
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Figure 1: Schematic overview of the PTATO tool.
The steps taken by the PTATO tool are shown separately for the quality control steps, the SBSs/indels, and 
the SVs.

PTA-based WGS samples have a relatively uniform genome coverage
To optimally train the SBS and indel random forests, we needed a balanced set of true 

positive and false positive variants for both variant types. Any somatic variant that 

is shared between a bulk cancer sample and a single cell of the same cancer is likely 

to be true. Therefore, we sequenced single leukemic cells using PTA as well as a bulk 

AML sample and a germline control sample (mesenchymal stromal cells) from three 

AML patients, two of which had Fanconi anemia and one with a NUP98-NSD1 translo-

cation (Table. S1). Variants shared between the PTA-based samples and the bulk AML 

sample, but absent in the germline control, were considered high-confidence somatic 

variants and used as true positives in the training set. To increase the variety of our 

training data we created a FANCC knockout cell line using CRISPR/Cas9 gene editing 

and sequenced both a clone and a subclone, using a previously described method35. 

The subclone was sequenced twice. Once using regular bulk sequencing and once 

using PTA. Any variants that were present in both subclone samples, but not in the 

clone are somatic mutations that were acquired after the FANCC gene was knocked-

out and were used as true positives in the training set.

Unique variants that were likely artifacts based on read-backed phasing were used 

as false positives (Methods). To increase our set of false positive variants, we clonally 

expanded a cord-blood hematopoietic stem cell (HSC), and sequenced three daugh-

ter cells. We detected 41 shared and 1278 unique variants. Since cord blood cells 

only contain around 40 true mutations18, most of the unique mutations are artifacts. 

Therefore, all unique variants in these sample were used as false positives.

PTA-based WGS samples had an average mean read depth of 17.3 (+-1.62 s.d.), with 

on average 90.2% (+-2.24 s.d.) of the genome having a read coverage of at least 5x, 

showing that the reads were well distributed across the genome.

PTATO performs well on SBSs and indels
To validate that a low read-backed phasing score is indeed indicative for a PTA-ar-

tifact, we compared the phasing scores of variants shared between the PTA-based 

and the bulk WGS samples (true variants) and the mutations unique for each PTA-

based sample (mix of true and false positives). The shared variants had a higher 

median phasing score compared to unique variants for SBSs (P < 2.2*10-16, Wilcoxon 

test), indicating that the phasing score can accurately distinguish true variants from 

artifacts (Fig. 2a). For indels the difference was similar but not significant (p = 0.252, 

Wilcoxon test), since only 11 shared indels were phased (Fig. S2a). As expected, the 

sets of unique calls also contain variants with high walker scores, because, in addition 

to the PTA artifacts, these sets also contain true mutations. The presence of true mu-
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tations in the set of unique variants is exemplified by the relatively high walker scores 

of unique SBSs of the FANCC knockout, which was expected to have a high fraction of 

true mutations, because of defective DNA repair.

To train the random forest model, we used 756 artifact and 756 true positive SBSs. 

For the indel random forest we used 758 artifact and 55 true positive indels. The 

out-of-bag error rate of the random forest was 26.39% for the SBSs, which showed 

that the random forest model can filter out artifacts relatively well (Fig. S2b). We also 

determined how the precision and recall of the random forest model changes with 

the cutoff and observed an area-under-the-curve of 0.79 (Fig. 2b), showing that the 

model is relatively accurate. The indel random forest model performed better with 

an out-of-bag error rate of 3.57% and an area-under-the-curve of 0.848 (Fig. S2c, d). 

Because of the large class imbalance, the standard non-optimized cutoff results in 

almost 50% of true positive variants being filtered, however a higher specificity can 

be obtained with a less stringent cutoff, as can be seen in the receiver-operator curve 

(Fig. 2b). To further validate the performance of the random forest models, we exam-

ined the mutational patterns of the artifact and true positive datasets. The artifact 

SBS spectrum shows a very strong enrichment for C>T mutations at non-CpG sites, 

as previously described (Fig. 2c)33, while the artifact indel spectrum predominantly 

showed single C and T insertions within C and T mononucleotide repeats (Fig. S2e). 

The 96-trinucleotide patterns of the variants predicted to be false or true by the 

random forest model were very similar to the artifact and true positive input variants 

with cosine similarities of respectively, 0.986 and 0.966 for SBSs and respectively 1 

and 0.772 for indels, showing that the random forest model accurately recapitulates 

the mutational patterns of their input samples (Fig. 2d; Fig. S2f). Next, we fitted the 

PTA-artifact and HSPC mutational signatures to the input data before and after 

filtering with the SBS random forest. The HSPC signature is a signature present in he-

matopoietic stem and progenitor cells18, while the PTA signature is a previously pub-

lished pattern of PTA artifacts33. The contribution of mutations with the PTA artifact 

signature was strongly reduced after filtering, while the contribution of the HSPC 

signature showed only a small decrease (Fig. 2e). Since no PTA signature has been re-

ported for indels so far, we used the COSMIC signatures for this case. The input data 

contained a large contribution of ID1, ID7 and, ID16 which was mostly removed by 

the random forest (Fig. S2g). It is difficult to distinguish true C and T insertions within 

repeat regions from artifacts since the latter are so much more abundant. Therefore, 

we filtered these variant calls out for subsequent analyses.

PTATO works robustly on external data
After validating PTATO on our own in-house data, we tested its robustness by ap-

plying it on external data from the original PTA publication5, as differences in sample 

handling and sequencing logistics could potentially impact the performance of our 

method. We performed variant calling and then applied PTATO on the sequencing 
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Figure 2: The walker and random forest perform well on the training data.
a Boxplot showing the walker scores of the SBSs in the samples used to train the random forest. The color 
indicates if mutations are shared between samples or are unique. Unique mutations with a walker score 
below 1 were used to train the random forest. b Precision and recall curve showing the performance of the 
random forest using all input variables on the out-of-bag training data for cutoffs between 0 and 1 with a 
step of 0.01. c Relative contribution of each trinucleotide change to the point mutation spectrum for the 
mutations used to train the random forests separated into the artifact variants (n = 756; samples = 10) and 
the mutations that were shared between samples (n = 756; samples = 10). d Relative contribution of each 
trinucleotide change to the point mutation spectrum for the mutations predicted to be artifacts (n = 745; 
samples = 10) and the mutations predicted to be true somatic mutations (n = 767; samples = 10). e Abso-
lute contribution of each mutational signature for all the mutations used to train the random forests (n = 
1512; samples = 10) and for all the mutations predicted to be true (n = 767; samples = 10) by the random 
forests.
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data of human umbilical cord blood PTA samples treated with either N-ethyl-N-nitro-

sourea (ENU), D-mannitol (MAN), or a vehicle (VHC) control5. Samples treated with 

either a moderate or high concentration of ENU clearly had an increased mutation 

load, compared to the other samples, in accordance with the original study (Fig. 3a). 

Since this increased mutation load is likely caused by true mutations, the ratio of true 

mutations is likely also higher in these samples. Indeed, PTATO filtered out a lower 

percentage of variants in the samples treated with a high concentration of ENU with 

the median mutation load being reduced by 23.9% from 5574 to 4240, whereas the 

median mutation load in VHC treated samples was reduced by 64.4% from 1159 to 

413. In comparison, the mutation loads found by the original PTA paper were quite 

a bit higher, with the high concentration ENU samples having a median mutation 

load of around 4700 and the VHC samples having a median mutation load of around 

8005. This shows that PTATO filters more stringently than the original PTA paper. The 

sample with the lowest percentage of the genome covered by at least one read also 

had the lowest mutation load among the samples treated with a moderate concentra-

tion of ENU (Fig. 3a; Fig. S1). The measured mutation load is thus likely an underes-

timation, showing that the quality control plots generated by PTATO can be used to 

identify potentially bad quality samples. Next, we looked at the mutation patterns of 

the cord blood samples before and after filtering. The C>T peaks associated with PTA 

artifacts were less pronounced after filtering and the contribution of the PTA signa-

ture, but not other signatures, was strongly reduced (Fig. 3b, c; Fig. S3a, b). Addition-

ally, the samples treated with ENU had a large contribution of a previously experi-

mentally defined ENU-induced SBS signature36, indicating that PTATO can accurately 

recover the patterns of mutations present in a sample.

Neither the MAN or ENU treatments caused an increased burden of indels, which is 

in line with earlier studies that showed that ENU does not cause indels36 (Fig. S4a). 

The mutational patterns consisted of mostly C and T insertions before filtering and 

T deletions after filtering (Fig. S4b). These deletions match signature ID2, which is 

associated with polymerase slippage during DNA replication (Fig. S4c). In contrast to 

the data used to train PTATO, the unfiltered data contained more T than C insertions. 

The lower abundance of T insertions in our data could be caused by improvements 

made to the PTA protocol, however, this is not certain. Overall, these data indicate 

that it might be beneficial for users of PTATO to re-train the PTATO random forests 

with their own data.

Accurate detection of structural variants in PTA-based sequencing data
Structural variants can also be detected in PTA-based WGS data, but optimized 

workflows to detect and filter such variants in this type of data are currently lacking. 

Existing bioinformatic tools for single-cell genome sequencing are usually developed 

for low-coverage sequencing and are limited to detection of copy number changes 

based on read depth and do not use other modes of information, such as split reads 

and concordant read pairs37,38. More comprehensive SV calling pipelines exist for 

regular bulk WGS data, but they are hampered by many false positive variants in 

PTA-based WGS data (Fig. 4a; Fig. S5).
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Figure 3: PTATO accurately filters SBSs in external cord blood samples.
a Boxplot showing the number of SBSs for human cord blood samples treated with different concentra-
tions of a vehicle control (VHC; n = 5), D-mannitol (MAN; low: n = 5, moderate: n = 5) or N-ethyl-N-nitro-
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by PTATO. b Relative contribution of each trinucleotide change to the point mutation spectra of the 
cord blood samples treated with a vehicle control (unfiltered: n = 5646; filtered: n = 1787; samples = 5) 
or with a high concentration of ENU (unfiltered: n = 21152; filtered: n = 16923; samples = 4) before and 
after filtering with PTATO. The mutations of samples with the same treatment were pooled together. c 
Absolute contribution of mutational signatures PTA, ENU, and SBS5 to the cord blood samples treated 
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of ENU (unfiltered: n = 21152; filtered: n = 16923; samples = 4) before and after filtering with PTATO. The 
mutations of samples with the same treatment were pooled together.
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To enable accurate detection of all types of structural variation in PTA-based data, 

PTATO applies several SV calling, fi ltering, and normalization steps, using a com-

bination of existing tools and custom scripts that make optimal use of the data’s 

nucleotide resolution (Fig. 1) (Methods). While the read depths of PTA-based WGS 

data are noisy compared to bulk WGS data, many of the fl uctuations in coverage are 

highly recurrent between PTA-based WGS samples (Fig. S6a). For example, three 

single HSPCs from a donor with Fanconi anemia had a mean cosine similarity of 0.94 

when comparing their read counts in 1kb bins across the genome (Fig. S6b). In con-

trast, they had a mean cosine similarity of only 0.77 when compared to an AML bulk 

sample from the same donor. This recurrence is used to smoothen the read counts of 

each sample, after which they are binned (Fig. 4b; Fig. S6c). Subsequently, each copy 

number call is supported using the VAFs of heterozygous germline SBSs. Additionally 

to identify SVs with a nucleotide resolution, PTATO detects and fi lters breakpoints 

and single breakends, which are breakpoints for which only a single end was detect-

ed. We found that many false positive SVs occurred in multiple unrelated individu-

als, enabling additional fi ltering based on recurrency. Furthermore, we noted that 

many called SV candidates in PTA-based data appear to be small duplications and 

inversions (<1kb) with only one breakpoint junction, which may correspond to small 

chimeric DNA molecules generated during the PTA reaction (Fig. S5b)39. By fi ltering 

these events PTATO removes most false positive calls (Fig. S5a). Finally, PTATO inte-

grates the copy number segments, BAF segments, and fi ltered breakends to obtain a 

high confi dence set of structural variants.

To optimize our SV fi ltering strategy, we used the three single HSPCs of one of the 

donors with Fanconi anemia. Comparison of the SVs in the single HSPCS with SVs 

detected in the bulk-sequenced AML sample shows that the blood of this patient 

is highly clonal. After fi ltering the PTA-based data of the HSPCs with PTATO, most 

structural variants that were present in the AML bulk sample, could still be detected 

while the number of false positive calls was greatly reduced (Fig. 4b, c, d). The de-

tected SVs included a t8;21 translocation, which causes the RUNX1-RUNX1T1 fusion, 

which is a known cancer driver40. Several SVs present in the blasts are not detected 

in the HSPCs, indicating that these HSPCs are pre-leukemic cells (Fig. 4b, d). For 

example, the AML blasts show a gain of chromosome 13, which is not present in any 

of the HSPCs, suggesting that this chromosomal gain could be an additional driver in 

this AML (Fig. 4b, c). HSPC3 also shows a partial loss of chromosome 2, which is not 

detected in any of the other samples. 

Abundance of C>A mutations caused by a continuous mutational process
One major benefi t of PTA followed by PTATO analysis is that it can be applied to 

study the genomes of single cells that cannot be easily clonally expanded either in 
vitro or in vivo. We previously observed a subset of pediatric AML cases that had an 

above average mutation load and an abundance of C>A mutations, which have been 

attributed to oxidative stress-induced mutagenesis19,36. These latter AML patients 

also had a better overall survival compared to patients with a lower mutation load. 

We hypothesized that the abundance of C>A mutations might have been generated 

by a single mutational burst caused by the myeloid differentiation41. To test this hy-

pothesis, we sequenced 6 differentiated cell types as well as a HSC and multipotent 

progenitor (MPP) cell of one of these pediatric AML patients, which had a NUP98-
NSD1 fusion as well as IDH2, WT1, and FLT3 driver mutations19. PTATO removed a 
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large fraction of mutations in all samples except for the AML bulk, which is not a PTA 

sample and thus does not contain any PTA artifacts (Fig. S7). PTATO retained 93.8% 

of all SBSs in this sample, which shows its high sensitivity. The differentiated cells as 

well as the MPP, HSC, and AML cells all contained similar autosomal mutation pat-

terns with respect to both the SBSs and indels, showing that the abundance of C>A 

mutations was not specific to the AML (Fig. 5a; Fig. S8; Fig. S9a, b).

0

200

400

600

HSC−P
TA

H2C
4

MPP−P
TA

H2A
2

CMP−P
TA

H2A
3

GMP−P
TA

H2A
1

PROMO−P
TA

D2D
3

PROMY−P
TA

D2D
4

MONO−P
TA

D2D
5

NEUT−P
TA

D2D
6

AML−
PTA

D2B
1

AML−
PTA

D2D
1

AMLB
ULK

Sample

A
bs

ol
ut

e 
co

nt
rib

ut
io

n

Point mutation type

C>A
C>G
C>T at CpG
C>T other
T>A
T>C
T>G

AML−PTAD2B1

AML−PTAD2D1

CMP−PTAH2A3

GMP−PTAH2A1

HSC−PTAH2C4

MONO−PTAD2D5

MPP−PTAH2A2

NEUT−PTAD2D6

PROMO−PTAD2D3

PROMY−PTAD2D4

AMLBULK

0 100 200 300 400 500 600 700 800 900 1000
0

50

100

150

200

A B C
Branch

A
bs

ol
ut

e 
co

nt
rib

ut
io

n

Point mutation type

C>A
C>G
C>T at CpG
C>T other
T>A
T>C
T>G

0

500

1000

1500

0 10 20 30 40 50 60 70
Age (years)

B
as

e 
su

bs
tit

ut
io

ns
 p

er
 g

en
om

e

A

B C

D

A

B

C
NUP98-NSD1

IDH2

WT1
FLT3

Figure 5: PTA samples can be used to make a lineage tree, allowing for the timing of drivers.
a Spectrum of the six types of base substitutions for different cell types in an AML patient. The colors 
indicate the type of base substitution. b Phylogenetic lineage tree of an AML patient. Each tip represents a 
single cell that was sequenced with PTA or the AML bulk. The length of the branches indicates the number 
of somatic bases substitutions in that branch of the tree. Blue indicates that a sample is a PTA sample and 
orange that a sample is an AML bulk. c Spectrum of the six types of base substitutions for the three branch-
es indicated in b. The colors indicate the type of base substitution. d The number of base substitutions is 
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95% confidence interval of the model, while the light grey area shows the 95% prediction interval. Black 
dots are clonally expanded HSCPs from normal donors (n = 33; donors = 11), whereas the two red dots are 
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Additionally, we found that several cells shared many mutations with each other 

and the AML bulk (Fig. S10). Based on the shared SBSs we generated a phylogenetic 

lineage tree showing the lineage relationships between the cells and the location 

of the drivers that had been previously identified in this AML (Fig. 5b). We found 

that the NUP98-NSD1 fusion and IDH2 driver mutation occurred early in the tree. A 

subset of the cells with these drivers also shared the WT1 and FLT3 driver mutations 

with the AML, indicating that these drivers occurred later during leukemogenesis. 

This observation is in line with previous studies, which found that IDH2 mutations are 

generally acquired early while FLT3 mutations are often acquired later during leuke-

mogenesis42–45. The WT1 and FLT3 drivers occurred in the tree before the AML bulk 

WGS-sample. This indicates that they were necessary for the development of the 

AML and that the NUP98-NSD1 translocation and IDH2 driver were not sufficient. 

The C>A mutations were already abundant in the earliest branches of the phyloge-

netic tree, irrespective of the presence of any AML drivers (Fig. 5c). This shows that 

the C>A mutations did not occur in a single burst but were instead generated by a 

continuous mutational process.

AML drivers occur years before diagnosis
Based on the mutation accumulation of HSPCs during healthy life18,46, we estimated 

that the NUP98-NSD1 fusion and IDH2 driver occurred before the patient was 9.12 

years old18,46 (Methods). Since drivers might increase the mutation rate, this age could 

be an overestimation. Therefore, as an orthogonal approach, we divided the number 

of mutations in the branch containing the drivers by the average of the total number 

of mutations in the cells that contained the first set of drivers but not the WT1 and 

FLT3 drivers. This method suggested that the first set of drivers occurred before the 

patient was 7.47 years. However, this might be an underestimation, because cancer 

drivers could have increased the mutation rate after they occurred, causing later 

branches to be elongated. Both these approaches estimate that the drivers occurred 

at least years before the diagnosis of the AML at 15.17 years, matching adult cancers 

which were also found to contain drivers years before diagnosis7–11. When applying 

these same methods on the WT1 and FLT3 drivers we estimated that they occurred 

before the patient was 19.9 or 11.81 years old, confirming that the first method 

overestimates the age, while the second method likely underestimates the age. These 

observations suggest that the latter drivers likely occurred relatively close to the di-

agnosis of the AML, further indicating that they were necessary for the development 

of the AML.

The clade containing the WT1 and FLT3 drivers included both differentiated and pro-

genitor cells, such as neutrophils and promonocytes, which were genetically closely 



154 155

Investigation of single-cell genomes at nucleotide resolution using the PTA Analysis Toolkit (PTATO)Chapter 5

5 5

related to the AML samples. Since these differentiated cells contain the mutations 

driving the AML, they could be differentiated blasts, which would match a previ-

ous finding that AML blasts can differentiate47. Interestingly, while the AML blasts 

were closely related to the differentiated cells, based on the phylogenetic tree, they 

seemed to have a higher mutation load. However, a larger sample size from multiple 

donors is needed to confirm this.

To further validate PTATO, we compared the autosomal mutation load of the hema-

topoietic stem cell (HSC) and multipotent progenitor (MPP) cell, neither of which 

contained the AML drivers, with the mutation load of HSPCs that were clonally 

expanded and sequenced without PTA18,46. After correcting for differences in the 

surveyed area of the genome, the MPP had a SBS mutation load that matched the 

expected mutation load for a donor of this age, while the HSC had a slightly higher 

mutation load (Fig. 5d). When comparing the mutation load of the indels, both the 

HSC and MPP had, after filtering with PTATO, a mutation load that was within the 

expected range (Fig. S9c). This shows that PTATO can identify the somatic mutation 

loads of samples relatively accurately, although it may lead to slight overestimations.

Discussion
Here we have shown that PTATO can accurately identify SBSs, indels, and SVs in PTA-

based WGS data, while effectively filtering out artifacts. During the last few years, 

the mutations of the normal stem and progenitor cells of many tissues have been 

characterized, allowing the determination of mutation rates during healthy aging and 

identifying the underlying mutational processes1,2,16,18,20,21,24,25,29,48,49. With the use of 

single-cell DNA sequencing, these analyses could be expanded beyond the stem cell 

compartment to include many different cell types, leading to a better understanding 

of the mutagenesis of normal cells and a better understanding of tumor heterogene-

ity. PTA-based WGS can be used to investigate the somatic evolution of a cancer after 

its initiation by the original transformed cell or after the last clonal sweep, as shown 

by our finding that AML blasts were able to differentiate in the patient we investigat-

ed.

Users can use the random forests generated here, but can also generate their own ran-

dom forests, which might give better results when their data is generated differently. 

For example, if the errors in PTA data change with future updates to the PTA protocol, 

then the random forests in PTATO can also be easily updated. Next to the PTA proba-

bility cutoff calculated by PTATO, users can also use their own cutoffs, which makes the 

toolkit useful for analyses that have specific sensitivity and specificity requirements. 

Next to PTA, other methods for detecting non-clonal somatic variants in non-divid-

ing cells, such as single-molecule duplex sequencing, META-CS, and MALBAC have 

been developed50–52. While this first method is highly accurate, it detects mutations 

at the level of single-molecules instead of single-cells and can therefore not identify 

which mutation is present in which cell, making it impossible to perform phyloge-

netic analyses50. META-CS, which separately amplifies both strands of the DNA, is 

also highly accurate, however its sensitivity is limited, because it only covers around 

50% of the genome51. MALBAC, which performs quasi-linear preamplification using 

looped amplicons, has a higher sensitivity, but it also generates around 100,000 false 

positives52. Overall, PTA is currently the only single-cell whole genome amplification 

method that combines a high sensitivity and precision.

Here we have tested PTATO on PTA data, however the different types of informa-

tion that PTATO uses to distinguish artifacts from true variants are not specific for 

PTA-based WGS data. PTATO could also be applied on other in vitro whole genome 

amplification methods, like MDA and MALBAC.

Next to PTATO, LiRA and SCAN2 can also be used to analyze PTA data33,34. LiRA uses 

read-backed phasing to identify SBSs in PTA data. While this tool has a high pre-

cision, it can only detect the +-27% of SBSs that are located near to heterozygous 

germline variants34. The tool also cannot detect indels or SVs. SCAN2 can detect both 

SBSs and indels by using the allelic imbalance and trinucleotide context of potential 

mutations to distinguish true variants from artifacts. However, by only focusing on 

the trinucleotide context of potential mutations it is ignoring the impact that the 

wider genomic context has on mutations53–55. Furthermore, the tool does not make 

use of read-backed phasing, cannot detect SVs, and has a sensitivity of only 45.7% for 

SNVs33. In contrast to these tools, PTATO uses machine-learning to combine read-

backed phasing, allelic imbalance, and a wider genomic context, in order to detect 

SBSs, indels, and SVs with maximum precision and sensitivity.

Limitations
PTATO performs best at removing SBS and indel artifacts in diploid regions of the 

genome, because copy number gains and losses can influence the walker score 

and the allelic imbalance. While PTA combined with PTATO has an unprecedented 

accuracy and sensitivity at directly sequencing single cells, it is still not as accurate as 

sequencing cells that were clonally expanded. However, for differentiated- and other 

cells that cannot be sequenced via clonal expansions, PTA with PTATO provides an 

important advance over existing methods. In general, PTA data has a good quality and 

shows an even coverage over the genome. However, it is still important to perform 



156 157

Investigation of single-cell genomes at nucleotide resolution using the PTA Analysis Toolkit (PTATO)Chapter 5

5 5

quality control checks to remove the occasional low-quality sample, because some 

samples can have artifacts caused by DNA damage or an improperly amplified allele 

of one or more chromosomes. The quality control figures generated by PTATO can 

help determine the quality of a sample.

With PTA it is possible to directly analyze whole genomes of single cells at an unprec-

edented accuracy and sensitivity. PTATO allows for this data to be easily analyzed, 

and for the removal of artifacts, further unlocking the potential of PTA. We expect 

that PTATO will be used to further our understanding of genomes at the single-cell 

level. 

Material and methods
Human bone marrow biopsies and umbilical cord blood
The bone marrow sample of patient Pt1 was obtained via the biobank of the Princess 

Máxima Center for Pediatric Oncology with ethical approval under proposal PMC-

LAB2018-007. Written informed consent for this included individual was obtained 

by the Princess Máxima Center. The use of material for this study was approved by 

the Biobank and Data Access Committee of the Princess Máxima Center. Addition-

ally, the umbilical cord blood sample of donor CB15 was obtained via the University 

Medical Center Utrecht (UMCU). The collection of cord blood samples was approved 

by the Biobank Committee of the UMCU (protocol number 19-737). Informed con-

sent for these samples was obtained by the UMCU. Furthermore, the samples from 

IBFM26 and IBFM35 were obtained from the German Society of Pediatric Oncology 

and Hematology (GPOH) via a material and data transfer agreement. Informed con-

sent for these samples was obtained by the GPOH.

Cell Isolation and Flow Cytometry 
Bone marrow mononuclear cells and cord blood derived cells were stained for FACS 

after thawing. The following combinations of cell surface markers were used to de-

fine cell populations:

HSCs: Lin−CD11c−CD16−CD34+, CD38−,CD45RA−, CD90+; MPPs: Lin−CD11c−

CD16−CD34+, CD38−,CD45RA−, CD90-; CMPs: Lin-CD11c-CD16-, CD34+, 

CD38+ and CD45RA-;  GMPs: Lin-CD11c-CD16-, CD34+, CD38+ and CD45RA+; 

Promyelocytes: CD117+, HLADR-; Neutrophils: CD117-HLADR-CD11b+CD14-; 

Promonocytes: CD117-HLADR+CD15+CD14-; Monocytes: CD117-HLADR+CD-

15dimCD14+. AML blasts were selected based on diagnostic immunophenotyping 

data if available. In most cases, these blasts were CD33, CD38, and/or CD34 positive. 

Cells were single cell sorted on an SH800S Cell Sorter (Sony). 

FACS and western blot antibodies 
Antibodies used for cell sorting were as follows: CD117-BV421 (clone YB5.B8, 1:50) 

was obtained from BD. All FACS antibodies were obtained from BioLegend. CD34-

BV421 (clone 561, 1:20), lineage (CD3/CD14/CD19/CD20/CD56)-FITC (clones 

UCHT1, HCD14, HIB19, 2H7, HCD56, 1:20), CD38-PE (clone HIT2, 1:50), CD90-

APC (clone 5E10, 1:200), CD45RA-PerCP/Cy5.5 (clone HI100, 1:20), CD33-PE/Cy7 

(clone WM53, 1:20), CD16-FITC (clone 3G8, 1:100), CD11c-FITC (clone 3.9, 1:20), 

HLADR-FITC (clone L243, 1:20), CD14-AF700 (clone HCD14, 1:50), CD11b-APC 

(clone IRFC44, 1: 20) and CD15-PE (clone HI98, 1:20). WESTERN Abs.

Generation of gene knockouts in AHH-1 cell lines
Human B-lymphocyte AHH-1 (CRL-8146) cells were purchased from ATCC. Cells 

were cultured in RPMI (Roswell Park Memorial Institute) 1640, GlutaMAX medium 

(Gibco, Thermofisher, US) supplemented with 1% Penicillin-Streptomycin (PenStrep, 

Gibco, Thermofisher, US) and 10% horse serum (HS, Gibco, Thermofisher, US). Guide 

RNAs (FANCC: 5’-GCAAGAGATGGAGAAGTGTA-3’ and MSH2: 5’-GTGCCTTTCAA-

CAACCGGTTG-3’) were cloned into pSpCas9(BB)-2A-GFP (PX458) vector (Ad-

dgene#48138). AHH-1 cells were transfected using Lipofectamine 2000 (Thermo 

Fisher Scientific). One to two days after transfection, GFP-positive transfected cells 

were single-cell sorted for clonal expansion on a SH800S Cell Sorter (Sony), which 

was also used for subsequent clonal steps. MSH2 or FANCC gene knockout status 

was confirmed using western blot, Sanger sequencing and whole genome sequencing. 

For the MSH2 knockout clonal line, a second clonal step was performed at day 48 af-

ter the first clonal step and a third clonal step at day 36 after the second clonal step. 

PTA was performed 47 days after the third clonal step. For the FANCC knockout 

clonal line, a second clonal step was performed 58 days after the first clonal step, and 

PTA was performed 56 days after the second clonal step. Cells were harvested for 

DNA extraction when the cell lines were sufficiently expanded after the clonal steps.

PTA whole genome amplification and whole genome sequencing
PTA whole genome amplification of single cells was performed according to the manufac-

turer’s protocol (BioSkryb Genomics). Instead of 10 minutes cell lysis on ice as indicated 

in the protocol, lysis was performed by 5 minutes incubation on ice followed by 5 minutes 

incubation at room temperature to maximize DNA denaturation as previously described56. 

DNA from bulk AML and germline control samples (MSCs or T-cells) was isolated using the 

DNeasy DNA Micro Kit (QIAGEN) or DNeasy Blood & Tissue Kit (QIAGEN) according to 

the manufacturer’s instructions. WGS libraries were generated using standard protocols 

(Illumina). Libraries were sequenced to 15-30x genome coverage (2x150bp) on an Illumina 

NovaSeq 6000 system at the Hartwig Medical Foundation (Amsterdam, the Netherlands).
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Primary processing WGS data
WGS reads were mapped against the human reference genome (GRCh38) using the 

Burrows-Wheeler Aligner (v0.7.17) mapping tool with settings ‘bwa mem –c 100 

–M’57. Sequence reads were marked for duplicates using Sambamba v0.6.8. Re-

alignment was performed using the Genome Analysis Toolkit (GATK) (v4.1.3.0)58. A 

description of the complete data analysis pipeline is available at: https://github.com/

ToolsVanBox/NF-IAP (v1.3.0).

SBS and indel variant calling
Raw variants were multisample-called by using the GATK HaplotypeCaller and 

GATK-Queue with default settings and additional option ‘EMIT_ALL_CONFIDENT_

SITES’. The quality of variant and reference positions was evaluated by using GATK 

VariantFiltration with options: “--filter-expression 'QD < 2.0' --filter-expression 'MQ 

< 40.0' --filter-expression 'FS > 60.0' --filter-expression 'HaplotypeScore > 13.0' --fil-

ter-expression 'MQRankSum < -12.5' --filter-expression 'ReadPosRankSum < -8.0' 

--filter-expression 'MQ0 >= 4 && ((MQ0 / (1.0 * DP)) > 0.1)' --filter-expression 'DP < 

5' --filter-expression 'QUAL < 30' --filter-expression 'QUAL >= 30.0 && QUAL < 50.0' 

--filter-expression 'SOR > 4.0' --filter-name 'SNP_LowQualityDepth' --filter-name 

'SNP_MappingQuality' --filter-name 'SNP_StrandBias' --filter-name 'SNP_Haplotype-

ScoreHigh' --filter-name 'SNP_MQRankSumLow' --filter-name 'SNP_ReadPosRank-

SumLow' --filter-name 'SNP_HardToValidate' --filter-name 'SNP_LowCoverage' --fil-

ter-name 'SNP_VeryLowQual' --filter-name 'SNP_LowQual' --filter-name 'SNP_SOR' 

-cluster 3 -window 10”

Processing external PTA data
sra files from cord blood tissue with study accession code “SRP178894” were 

downloaded from the Sequence Read Archive and extracted into bam files using the 

prefetch and sam-dump tools of the sratoolkit (v2.9.2)59. Samtools view (v1.3) was 

then used with the “-bf 1” argument to select for the paired reads and Picard Sam-

ToFastq (v2.24.1) was used with the “RG_TAG=ID” and “OUTPUT_PER_RG=true” 

arguments to generate fastq files57,60. Seqkit replace (v2.2.0) was used to add a sam-

ple id to each read name, because they only consisted of a single read number and a 

number indicating whether it is the first or second read in the pair61. Read alignment 

and variant calling were then performed as described above. Sample names were 

slightly modified for brevity and to fit our bioinformatic pipeline. The first number 

in the sample names indicates the treatment concentration and the second number 

indicates the cell number. PTATO was applied using the random forests trained on 

the in-house data.

PTATO Nextflow implementation
PTATO was implemented in nextflow (v21.10.6.5661). Submodules are containerized 

and automatically downloaded by a container engine, allowing for an easy installa-

tion. Singularity (v3.8.7-1.el7) was used for this manuscript, though Docker will also 

work with a small change to the config. As input the pipeline needs a bam file and a 

vcf containing all variants, both germline and somatic. Additionally, a pre-trained ran-

dom forest model is necessary when a user wishes to filter somatic variants without 

training a model. There are also several optional arguments, that allow a user to skip 

steps by supplying an intermediate file from a previous run or an external file.

PTATO resources
Next to the sample specific inputs, several general resource files were also used 

to run PTATO, which are listed in PTATO’s “resources.config” file. In order to make 

PTATO easy to install and more reproducible, these resource files are included with 

downloads of PTATO. First, the fasta file and accompanying indexes of the hg38 

version of the human reference genome were downloaded from GATK (https://gatk.

broadinstitute.org/hc/en-us/articles/360035890811). The input files necessary 

for the COBALT, GRIDSS2, and GRIPSS tools were downloaded from the Hartwig 

Medical Foundation (https://nextcloud.hartwigmedicalfoundation.nl/s/LTiKTd8Xx-

BqwaiC?path=%2FHMFTools-Resources)62,63. A text file containing the centromere 

locations was downloaded from the UCSC (https://genome.ucsc.edu/cgi-bin/

hgTables?hgsid=1424951119_QTS0nx5NshNSyspI7KDoJbVh9tci&clade=mam-

mal&org=Human&db=hg38&hgta_group=map&hgta_track=centromeres&hg-

ta_table=0&hgta_regionType=genome&position=chrX%3A15%2C560%2C138-15

%2C602%2C945&hgta_outputType=primaryTable&hgta_outFileName=)64. A text 

file with the genomic coordinates of cytobands was also downloaded from the UCSC 

(https://genome.ucsc.edu/cgi-bin/hgTables?hgsid=1424951119_QTS0nx5NshNSys-

pI7KDoJbVh9tci&clade=mammal&org=Human&db=hg38&hgta_group=map&hgta_

track=cytoBand&hgta_table=0&hgta_regionType=genome&position=chrX%3A15%

2C560%2C138-15%2C602%2C945&hgta_outputType=primaryTable&hgta_outFile-

Name=). A bed file with the genomic coordinates of simple repeats was downloaded 

from the UCSC for hg19 (http://genome.ucsc.edu/cgi-bin/hgTables?db=hg19&hg-

ta_group=rep&hgta_track=simpleRepeat&hgta_table=simpleRepeat). A bed file with 

the genomic coordinates of gene bodies was downloaded from Ensembl for hg1965. A 

bed file with replication timing data was generated as described previously (24). Files 

for which hg19 versions were downloaded were converted to hg38 using UCSCs Lift-

Over tool64. Shapeit maps for hg38 were included with Shapeit (v4.2.2)66. Shapeit ref-

erence haplotype vcf files were downloaded from the 1000 genomes project (http://

ftp.1000genomes.ebi.ac.uk/vol1/ftp/data_collections/1000G_2504_high_coverage/
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working/20201028_3202_phased/). Bcftools (v1.9), awk (v4.0.2) and bgzip (v1.8) 

were used to remove the “chr” prefix from the chromosome names. Our in-house 

SMuRF tool was used with two in-house mutation blacklists. These are bundled in 

with PTATO, similar to the other resource files, but they can also be downloaded sep-

arately (https://github.com/ToolsVanBox/Genotoxin_assay/tree/main/Blacklist)

QC
Aligment summary metrics were generated for each sample using the CollectAlign-

mentSummaryMetrics tool from GATK (v4.1.3.0), while WGS metric files were 

generated using GATKs CollectWGSMetrics tool. Both tools were run using standard 

parameters. Next, the output of both tools was merged between all the samples and 

between the tools using R (v4.1.2)67. Finally, the R ggplot2 (v3.3.6) package was used 

to generate quality control figures which are combined in a single pdf68. A table con-

taining the merged data used to generate the figures is also written.

Pre-filter somatic variants
Our in-house tool SMuRF (scripts available at: https://github.com/ToolsVanBox/

SMuRF) was used to remove germline and low quality variants by applying several 

filters as described previously24. Briefly, we considered variants at autosomal or X 

chromosomes without any evidence from a paired bulk control sample from the same 

individual; passed by VariantFiltration with a GATK phred-scaled quality score ≥ 100; 

a base coverage of at least 10X (30X samples) or 5X (15X samples) in the PTA and 

paired control sample; a mapping quality (MQ) score of 60; no overlap with single 

nucleotide polymorphisms (SNPs) in the Single Nucleotide Polymorphism Database 

v14669; and absence of the variant in a panel of unmatched normal human genomes. 

We additionally filtered base substitutions with a GATK genotype score (GQ) lower 

than 99 or 10 in PTA or paired control sample, respectively. For indels, we filtered 

variants with a GQ score lower than 99 in both PTA and paired control sample. In 

addition, for both SBSs and INDELs, we only considered variants with a variant 

allele frequency of 0.15 or higher to exclude sequencing artifacts. Lastly, we filtered 

out mutations that had a VAF of more than 0.3 and/or failed QC in all, or all but one 

sample in that patient, as this suggests germline mutations that are missed in one or 

multiple cells due to low quality mapping or low coverage.

Phase germline
Each chromosome was phased separately using Shapeit (v4.2.2), with the raw vcf 

containing all variants as its input66. Additionally, the “sequencing” argument was 

used, Shapeit maps for the relevant reference genome were supplied to the map ar-

gument and a vcf with reference haplotypes was supplied to the reference argument

Allelic imbalance
For each candidate somatic variant, the allelic imbalance was determined using R. For 

each somatic variant, all phased (germline) variants within 200,000 bp are loaded. 

To ensure only heterozygous germline variants are used, all variants that are not 

heterozygous in the bulk sample or do not have a dbSNP reference number were 

removed. The next steps were done separately for each sample in which the candi-

date somatic mutation was present. After removing all germline variants that were 

not heterozygous in the sample, the allele depths of all variants phased to the second 

allele were swapped and the b-allele frequencies were calculated. Next, the b-allele 

frequencies were fitted with a locally weighted least squares regression, which was 

used to predict the b-allele frequency of the candidate somatic variant. This regres-

sion was performed using the loess R function with a degree of 2 and using the total 

allele depth of each variant as weights. Next, a binomial test was performed using 

both the predicted and observed b-allele frequency as well as the total allele depth 

of the candidate variant, to determine whether the observed allele frequency of the 

candidate variant matched the surrounding germline variants. The log of the p-value 

from the allelic imbalance was then used for subsequent steps.

Determine context features
R was used to get the sequence context of each potential mutation of the pre-filtered 

vcf and functions modified from the R package MutationalPatterns were used to 

get the mutation type70. A bed file was then extracted from the vcf and sorted using 

bedtools (v2.30.0) with the “sort” argument71.

To identify the closest genebody and simplerepeat region for each somatic mutation, 

bedtools was used with the “closest” argument. Since a mutation can sometimes be 

linked to multiple features from a single bed file, bedtools was then used with the 

“merge -d -1 -o min” arguments to ensure that each mutation is linked to only the 

nearest feature for each feature list. To identify the transcriptional strand bias and 

replication timing for each somatic mutation, bedtools was used with the “intersect” 

argument. Some mutations were linked to multiple overlapping gene annotations. 

For the transcriptional stand bias this was solved by using bedtools with the “merge 

-d -1 -o distinct” arguments to check if a variant was present in the plus strand, minus 

strand or both. For the replication timing bedtools was used with the “merge -d -1 -o 

median” arguments to merge mutations that are present in multiple genes. Next, to 

merge the genebody, simplerepeat, transcriptional strand bias, and replication timing 

features, bedtools was used with the “intersect” argument, after which the variants 

were merged using bedtools with the “merge -d -1 -o unique” arguments.
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Read-backed phasing
Read-backed phasing is performed using python (v3.6.1). For each heterozygous can-

didate somatic variant, all overlapping reads are extracted from the sample’s bam file. 

Additionally, all heterozygous germline variants within the area spanned by the reads 

are extracted from the original input vcf. Next, for each germline variant each read 

that spans both the germline and somatic variant is checked. Each read that contains 

either the alternative alleles for both the germline and somatic variant or the refer-

ence alleles for both the germline and somatic variant is counted as a cis read. Other 

reads are counted as trans reads. If a candidate is real, then it would be expected that 

almost all reads are either cis or trans. Whether the variants are cis, trans, or mixed 

is then calculated based on a Bayesian likelihood score similar to the one used by 

SVTyper72. The likelihood scores of the three options are then combined into a single 

Phred-scaled quality score.

Random forest training data
A true positive and an artifact dataset were created to train the random forest model. 

For the true positive set, we included candidate somatic mutations that were present 

in multiple samples from a single donor, as these are likely true mutations that orig-

inated in an ancestor cell. For the artifact set we included candidate somatic muta-

tions that had a read-backed phasing score below 1. Any variants that were shared 

and also had a read-backed phasing score of less than 1 were excluded from both 

the true positive and the artifact datasets. The IBFM26, IBFM35 and PMCAHH1-

FANCKO samples contained several copy-number changes and loss of heterozygosi-

ty sites. Variants within these sites were also excluded from training.

Additionally, for the SBSs, any variant in the cord blood samples that was not shared 

with another sample was also considered an artifact, as the number of true mutations 

in the cord bloods is expected to be very low18. Finally, we subsampled the number of 

artifactual SBSs to be the same as the number of true SBSs, to result in a better class 

balance. These last two steps were not done for the indels, as we already had a large 

collection of artifactual indels and the class imbalance in the indels reflects the real 

imbalance seen in PTA data. 

Random forest
A random forest was trained on the previously described features with the random-

Forest (v 4.7-1) R package supplying the “mtry” argument with a value of 4. For some 

variants no p-value for the allelic imbalance or no replication timing value could 

be calculated, therefore they were excluded from the training. Instead, two more 

random forests were trained that did include these variables. One without the allelic 

imbalance variable and one without both this variable and the replication timing 

variable.

When using the random forest model to filter candidate somatic mutations, a pre-

diction score is calculated for each variant per sample. Next, any variants with either 

a low (<1) or a high (>=1000) read-backed phasing score are used as artifact and 

true positive mutation sets to validate the performance of the random forest on the 

sample it is filtering. The precision and recall of the model is calculated for different 

cutoffs of the prediction score generated by the random forest. This is done for cut-

offs between 0 and 1 with steps of 0.01. The intersection of the precision and recall 

curves is then used as the final cutoff for the random forest model. Next, any can-

didate somatic mutation that is predicted to be an artifact by the random forest or 

that has a low read-backed phasing score is filtered out per sample. A vcf containing 

all mutations annotated with the random forest score is also written out as is a table 

containing the precision and recall at different cutoffs, allowing users of the model to 

modify the stringency of the mutation filtering when needed. Finally, a multi-sample 

vcf is written containing the potential somatic variants of all the samples in a donor 

and the associated random forest prediction scores.

PTATO validation
The performance of the walker and random forests on the training data and the 

external cord blood data was analyzed using R (4.1.0). For the training data the out-

of-bag predictions were used. The mutational patterns and signature analyses were 

made using MutationalPatterns (v3.7.1)70. Mutational signatures were used from 

COSMIC (v3.2) as well as the previously described HSPC, PTA, and ENU signa-

tures18,33,36,73. Figures were made using ggplot2 (v3.3.5)68.

The HSPC and PTA signatures were used for signature refitting on the validation 

data, because the HSPC signature is known to be the main signature in adult blood 

cells18. In contrast, the SBS5 signature was used with the external cord blood cells, as 

cord blood cells are known to not yet contain a contribution of the HSPC signature74. 

In agreement with this, the cosine similarity of the reconstructed mutation profile 

with the original was reduced when the SBS5 signature was used with the validation 

data and when the HSPC signature was used with the external cord blood cells.

To match the number of mutations in the HSC and MPP of the AML patient to HSPCs 

of healthy donors with different ages, we selected the autosomal variants and 

extrapolated the mutation load to the entire called autosomal genome based on the 

surveyed fraction of the genome, as previously described24. Next, we used a linear 
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mixed-effects model to fit the extrapolated mutation load to the donor age for the 

HSPCs. 95% confidence and 95% prediction intervals were calculated using the R 

package ggeffects (v1.1.0)75. The extrapolated mutation load of the HSC and MPP of 

the AML patient were then compared to the fitted distribution of the HSPCs.

Shared mutation heatmap and lineage tree creation
A matrix was created with all autosomal mutations that were clonally present in at 

least two samples of one AML donor and that passed PTATO in at least one sample. 

A heatmap was then plotted showing per variant per sample if a variant was clonally 

present, absent or had failed the quality control.

For the lineage tree a matrix was made that marked for each autosomal variant for 

each sample if the variant was either present or not based on the genotype. Variants 

had to pass PTATO in at least one sample, but they did not have to pass the quality 

control or be clonally present in other samples as this causes too many mutations to 

be missed. A phylogenetic tree was then generated using neighbor-joining as de-

scribed previously74.

Timing of driver occurrence
The drivers in the AML patient were timed using two different orthogonal methods. First, 

we matched the number of autosomal mutations in the branches containing drivers to 

HSPCs of healthy donors with different ages, similar to the comparison we described 

above. However, instead of using the mutation load directly, we fit their somatic muta-

tions to the SBS1, SBS5, SBS18, and HSPC signatures. We then removed the contribu-

tion of the SBS18 signature as this signature’s contribution is not correlated with age 

and might have an increased contribution caused by the drivers. Next, we extrapolated 

the combined contribution of the remaining signatures to the entire callable autosomal 

region of the genome as above. For the branches containing drivers the average surveyed 

fraction of the genome of the cells within the relevant clade was used. Next, we used 

a linear mixed-effects model to fit the extrapolated mutation load of the HSPCs to the 

donor age. The extrapolated mutation loads of branches containing drivers were then 

compared to the fitted distribution of the HSPCs, to estimate the age of occurrence.

The second method to time the occurrence of the drivers was to divide the number of 

autosomal somatic mutations in a branch containing the driver of interest by the average 

of the total number of mutations in the cells carrying this driver and then multiplying this 

number by the age of the patient. For the timing of the NUP98-NSD1 translocation and 

IDH2 mutation we used cells that did not also contain the WT1 and FLT3 drivers, as these 

might have changed the mutation rate.

Normalization of copy number ratios for SV detection
GC-normalized read depth per 1000 basepair genomic window was calculated by 

COBALT (v1.11). A coverage panel of normals (PON) was generated by merging CO-

BALT ratio files of 12 copy number neutral PTA-based samples. The total read counts 

from all windows of each sample were first normalized so that every sample has the 

same total amount of read counts. Subsequently the mean readcount per bin over 

all normal samples in the PON was calculated. PTATO uses the coverage PON file 

to smoothen PTA-specific coverage fluctuations. First the total read depth in a test 

sample is normalized to the same total amount of read counts in the coverage PON. 

Subsequently the read counts in each window are divided by the mean read counts in 

the same window in the PON. Additionally, the bottom and top 1% outlier windows 

in the PON file and the windows located within 1Mb distance of centromeres and 

telomers are excluded from the analysis.

The smoothened read counts were subsequently binned in 100kb windows. The 

copynumber (v1.34.0) R-package with parameter “gamma=100” was used to seg-

ment the median read count data in both the 100kb and 1kb windows76. The seg-

ments based on the 100kb resolution were used as raw copy number segments. The 

start and end coordinates of these raw copy number segments were fine mapped by 

taking the start and end coordinates of overlapping 1kb window-based segments. 

Fine mapped segments with a copy number ratio of <1.5 were considered to be copy 

number losses and segments with ratios >2.5 were considered to be copy number 

gains.

Deviation of allele frequency calculations
The VAFs for each germline SNV were collected from the corresponding bulk control 

sample. To reduce noise due to uneven amplification, germline SNVs were binned 

in 100kb windows instead of taking B-allele frequencies of each individual variant. 

To calculate a mean allele frequency for multiple variants in a bin, we calculated the 

deviation of allele frequency (DAF) by taking the absolute value after subtracting 

the VAF of each variant from 0.5, which is the expected VAF for a perfectly amplified 

and sequenced germline variant. Thus, each variant has a DAF between 0 (corre-

sponding to a VAF of 0.5) and 0.5 (corresponding to a VAF of 0 or 1). Subsequently 

all DAF values are binned in 100kb genomic regions and the mean DAF for each bin 

is calculated. The copynumber R-package with parameter “gamma=100” was used 

to segment the 100kb bins in crude DAF regions. These crude segments were fine 

mapped by adjusting the start and end coordinates of the segments to the positions 

of the nearest germline SNVs, that were within 200kb of the segment, with similar 

DAFs as the segment. Segments with a DAF of more than 0.4 (corresponding to VAF 
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< 0.1 or > 0.9) were considered to be loss of heterozygosity regions. Segments with 

a DAF between 0.16 and 0.4 (corresponding to VAFs between 0.1 to 0.32 or 0.64 to 

0.9) were considered to be regions with copy number gains.   

SV breakend calling and filtering
Somatic SV breakends were called by GRIDSS v2.13.2 and prefiltered by GRIPSS v1.9 

using a corresponding bulk-sequenced germline control63,77. The GRIPSS-filtered so-

matic breakends of 15 PTA-based samples of four unrelated individuals were merged 

using bedtools merge (v2.30.0). Breakend positions occurring within 2000bp of each 

other in multiple of these individuals were included in a breakend PON. Candidate 

breakends in other samples overlapping with the regions in the breakend PON were 

filtered. Subsequently the normalized coverage and DAF of the SV candidates was 

calculated. Breakends of duplications were filtered if the DAF was less than 0.18 and/

or the copy number ratio was <2.5. Breakends of deletions were filtered if the DAF 

was less than 0.4 and/or the copy number ratio was >1.5. Breakends with a coverage 

of more than 100 were also excluded for samples with a targeted genome coverage 

of 15x as many artefacts occur in these regions with excess coverage. Inversions 

were filtered if they only have one breakpoint junction. Additionally, all inversions 

less than 1kb in size were filtered. Interchromosomal events were also filtered if they 

only have one breakpoint junction, unless they were situated less than 100kb from a 

copy number variant. This exception rescues unbalanced translocations.

Integration of coverage, allele frequencies and structural variant breakends
The coverage segments, DAF segments, and breakends of SV candidates were inter-

sected to create the final list of filtered structural variants. Copy number changes 

were required to have both coverage and DAF support, but not necessarily breakend 

support, as many CNVs have start and/or end positions within repeat regions that are 

difficult to capture with PTA and/or short-read sequencing. Regions with a DAF >0.4 

(corresponding to VAFs of <0.1 and >0.9) without coverage support (copy number 

>1.5) were considered to be loss-of-heterozygosity regions. ggplot2 and Circos 

(v0.69-9) were used for to visualize structural variants and karyograms78.
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Figure S1: Quality control plots show quality differences between samples.
a The percentage of bases with at least x coverage is plotted against the coverage per sample. b Bar 
plot showing the percentage of the genome with a read coverage of more than 0 per sample. c Bar plot 
showing the percentage of the genome with a read coverage of at least 5 per sample. d Bar plot depicting 
the mean read coverage per sample. The error bars show the standard deviation. e Bar plot depicting the 
heterozygous SNP sensitivity per sample. The heterozygous SNP sensitivity is a theoretical estimate of the 
sensitivity to detect heterozygous SNPs based on the coverage and base quality distributions. f Bar plot 
depicting the percentage of bases that was filtered per sample. The color indicates the exclusion reason, 
which can be a base being in a read marked as a duplicate, low mapping quality, or a different reason. The 
other reasons are further delineated in the quality control table generated by PTATO. g Bar plot depicting 
the number of reads per sample. The color indicates if the read was filtered out, unaligned or aligned. PF 
stands for reads that have passed Illumina’s filters. h Bar plot depicting the error rate per sample. This is 
shown separately for the percentage of mismatched bases in aligned reads, the percentage of mismatched 
bases in aligned reads with a mapping quality of at least 20, and the number of indels per 100 aligned 
bases.
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Figure S2: The walker and random forest perform well on the indel training data.
a Boxplot showing the walker scores of the indels in the samples used to train the random forest. The color 

indicates if mutations are shared between samples or are unique. Unique mutations with a walker score 
below 0 were used to train the random forest. Not all samples have calculated walker scores for shared 
indels, because there are a limited number of shared indels and the majority of them are not close enough 
to a heterozygous germline variant to calculate a walker score. b Heatmap depicting the ratio of true 
positives, false positives, true negatives and false negatives for SBSs. c Heatmap depicting the ratio of true 
positives, false positives, true negatives and false negatives for Indels. d Precision and recall curve showing 
the performance of the random forest using all input variables on the out-of-bag training data for cutoffs 
between 0 and 1 with a step of 0.01. e Absolute contribution of each indicated mutation type to the indel 
mutation spectrum for the mutations used to train the random forests separated into the artifact variants 
(samples = 10) and the mutations that were shared between samples (samples = 10). f Absolute contribu-
tion of each indicated mutation type to the indel mutation spectrum for the mutations predicted to be ar-
tifacts (samples = 10) and the mutations predicted to be true somatic mutations (samples = 10). g Absolute 
contribution of each mutational signature for all the mutations used to train the random forests (n = 813; 
samples = 10) and for all the mutations predicted to be true (n = 32; samples = 10) by the random forests.
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Figure S3: PTATO accurately filters SBSs in external cord blood samples in different treatment categories.
a Relative contribution of each trinucleotide change to the point mutation spectra of the cord blood sam-

ples treated with a vehicle control (unfiltered: n = 5646; filtered: n = 1787; samples = 5), low concentration 
of MAN (unfiltered: n = 5375; filtered: n = 1624; samples = 5), moderate concentration of MAN (unfiltered: 
n = 6502; filtered: n = 1811; samples = 5), low concentration of ENU (unfiltered: n = 4839; filtered: n = 
1607; samples = 5), moderate concentration of ENU (unfiltered: n = 12943; filtered: n = 6106; samples 
= 5), or with a high concentration of ENU (unfiltered: n = 21152; filtered: n = 16923; samples = 4) before 
and after filtering with PTATO. The mutations of samples with the same treatment were pooled together. 
b Absolute contribution of mutational signatures PTA, ENU, and SBS5 to the cord blood samples treated 
with a vehicle control (unfiltered: n = 5646; filtered: n = 1787; samples = 5), low concentration of MAN (un-
filtered: n = 5375; filtered: n = 1624; samples = 5), moderate concentration of MAN (unfiltered: n = 6502; 
filtered: n = 1811; samples = 5), low concentration of ENU (unfiltered: n = 4839; filtered: n = 1607; samples 
= 5), moderate concentration of ENU (unfiltered: n = 12943; filtered: n = 6106; samples = 5), or with a high 
concentration of ENU (unfiltered: n = 21152; filtered: n = 16923; samples = 4) before and after filtering 
with PTATO. The mutations of samples with the same treatment were pooled together.
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Figure S4: PTATO accurately fi lters indels in external cord blood samples.
a Boxplot showing the number of indels for human cord blood samples treated with different concentra-
tions of a vehicle control (VHC; n = 5), D-mannitol (MAN; low: n = 5, moderate: n = 5) or N-ethyl-N-nitro-
sourea (ENU; low: n = 5, moderate: n = 5, high: n = 4). The color indicates if the mutations were fi ltered by 
PTATO. b Absolute contribution of each indicated mutation type to the indel mutation spectrum of the 
cord blood samples treated with a vehicle control (unfi ltered: n = 8506; fi ltered: n = 4199; samples = 5) or 
with a high concentration of ENU (unfi ltered: n = 7335; fi ltered: n = 3562; samples = 4) before and after 
fi ltering with PTATO. The mutations of samples with the same treatment were pooled together. c Heatmap 
showing the cosine similarity between the COSMIC indel signatures and the indel mutation spectra of the 
cord blood samples treated with a vehicle control (unfi ltered: n = 8506; fi ltered: n = 4199; samples = 5) or 
with a high concentration of ENU (unfi ltered: n = 7335; fi ltered: n = 3562; samples = 4) before and after 
fi ltering with PTATO.
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Figure S5: PTATO fi lters out many SVs in HSPC samples from a donor with Fanconi anemia.
a The number of SVs is shown before and after fi ltering with PTATO for a bulk sequenced AML sample 
and three PTA-based HSPC samples from a donor with Fanconi anemia. The type of structural variant is 
indicated by the color. b The sizes of the deletions, duplications, and inversions in a bulk sequenced AML 
sample and three PTA-based HSPC samples from a donor with Fanconi anemia are shown before and after 
fi ltering. The shape of a datapoint indicates whether the size is before or after fi ltering. DUP = Duplication; 
INS = Insertion; DEL = Deletion; CTX = Inter-chromosomal translocation; INV = Inversion.
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from a donor with Fanconi anemia is shown for a 100kb fraction of chromosome 1. b Heatmap depicting 
the cosine similarities of read counts in 1kb bins between a bulk sequenced AML sample and three PTA-
based HSPC samples from a donor with Fanconi anemia. c The copy numbers calculated by COBALT are 
shown for sample IBFM35_2 across the autosomal and sex chromosomes. Copy numbers are shown based 
on the number of reads per 1kb bin (top). Additionally, the copy numbers are shown after the 1kb bins have 
been normalized for the recurrence in PTA data (middle), and after the normalized bins have been binned 
in larger 100kb bins (bottom). The color indicates the estimated copy number. 
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Figure S8: Differentiated AML cells and blasts have a similar mutation profile.
Relative contribution of each trinucleotide change to the point mutation spectra of differentiated AML 
cells and AML blasts (HSC-PTAH2C4: n = 392; MPP-PTAH2A2: n = 221; CMP-PTAH2A3: n = 555; GMP-
PTAH2A1: n = 523; PROMO-PTAD2D3: n = 1033; PROMY-PTAD2D4: n = 432; MONO-PTAD2D5: n = 
817; NEUT-PTAD2D6: n = 494; AML-PTAD2B1: n = 803; AML-PTAD2D1: n = 836; AMLBULK: n = 473).



182 183

Investigation of single-cell genomes at nucleotide resolution using the PTA Analysis Toolkit (PTATO)Chapter 5

5 5

0

200

400

600
HS

C−
PT

AH
2C

4

M
PP

−P
TA

H2
A2

CM
P−

PT
AH

2A
3

G
M

P−
PT

AH
2A

1
PR

O
M

O
−P

TA
D2

D3
PR

O
M

Y−
PT

AD
2D

4
M

O
NO

−P
TA

D2
D5

NE
UT

−P
TA

D2
D6

AM
L−

PT
AD

2B
1

AM
L−

PT
AD

2D
1

AM
LB

UL
K

N
r o

f i
nd

el
s

0

10

20

30

HS
C−

PT
AH

2C
4

M
PP

−P
TA

H2
A2

CM
P−

PT
AH

2A
3

G
M

P−
PT

AH
2A

1
PR

O
M

O
−P

TA
D2

D3
PR

O
M

Y−
PT

AD
2D

4
M

O
NO

−P
TA

D2
D5

NE
UT

−P
TA

D2
D6

AM
L−

PT
AD

2B
1

AM
L−

PT
AD

2D
1

AM
LB

UL
K

N
r o

f i
nd

el
s

0

25

50

75

0 10 20 30 40 50 60 70
Age (years)

In
de

ls
 p

er
 g

en
om

e

muttype

C_deletion
T_deletion
C_insertion
T_insertion
2bp_deletion
3bp_deletion
4bp_deletion
5+bp_deletion
2bp_insertion
3bp_insertion
4bp_insertion
5+bp_insertion
2bp_deletion_with_microhomology
3bp_deletion_with_microhomology
4bp_deletion_with_microhomology
5+bp_deletion_with_microhomology

A

B

C

Figure S9: PTATO identified the mutation patterns and loads of indels in an AML patient.
a Absolute contribution of the indicated mutation types to the indel spectrum for different cell types in an 
AML patient before filtering with PTATO. b Absolute contribution of the indicated mutation types to the 
indel spectrum for different cell types in an AML patient after filtering with PTATO. c The number of indels 
is plotted against the age in years of the donor. Each dot is a sequenced sample. The black line shows the 
mean fitted number of indels at that age (linear mixed-effects model). The dark grey area shows the 95% 
confidence interval of the model, while the light grey area shows the 95% prediction interval. Black dots 
are clonally expanded HSCPs from normal donors (n = 33; donors = 11), whereas the two red dots are an 
HSC (top) and MPP (bottom) from the AML patient.
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Figure S10: Many mutations are shared between differentiated AML cells and blasts.
Heatmap showing the somatic substitutions shared between multiple samples of an AML donor. Each row 
is a substitution and each column is a sample. Red indicates that a variant is present, blue indicates that a 
variant is absent and yellow indicates that the variant failed the quality control.

Table S1: Overview of the used samples

Subject Sample Label Sample 
type

Type Purpose Se-
quenc-
ing

Sample 
source

Se-
quencing 
depth

IBFM35 IBFM35-DX2BM-AMLBULK NA Bulk AML Bulk control Internal GPOH 29

IBFM35 IBFM35-DX2BM-HSCPTAP1D9 IBFM35_1 PTA HSC/Blast Training Internal GPOH 17.4

IBFM35 IBFM35-DX2BM-HSCPTAP1E9 IBFM35_2 PTA HSC/Blast Training Internal GPOH 15.5

IBFM35 IBFM35-DX2BM-HSCPTAP1G9 IBFM35_3 PTA HSC/Blast Training Internal GPOH 16.3

IBFM35 IBFM35-DX2BM-MSCBULK NA Bulk MSC Bulk control Internal GPOH 33.4

IBFM26 IBFM26-DX2BM-AMLBULK NA Bulk AML Bulk control Internal GPOH 36.9

IBFM26 IBFM26-DX2BM-HSCPTAP1B8 IBFM26_1 PTA HSC/Blast Training Internal GPOH 18.3

IBFM26 IBFM26-DX2BM-TCELLBULK NA Bulk T-cell Bulk control Internal GPOH 37.4

Pt1 Pt1AMLBULK AMLBULK Bulk AML Bulk control Internal PMC 34.3

Pt1 Pt1MSCBULK NA Bulk MSC Bulk control Internal PMC 38.5

Pt1 Pt1-BMAML-PTAD2B1 AML-PTAD2B1 PTA AML blast Training Internal PMC 17

Pt1 Pt1-BMAML-PTAD2D1 AML-PTAD2D1 PTA AML blast Training Internal PMC 18.6

Pt1 Pt1-BMCMP-PTAH2A3 CMP-PTAH2A3 PTA CMP AML insight Internal PMC 17.9
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Pt1 Pt1-BMGMP-PTAH2A1 GMP-PTAH2A1 PTA GMP AML insight Internal PMC 16.2

Pt1 Pt1-BMHSC-PTAH2C4 HSC-PTAH2C4 PTA HSC AML insight Internal PMC 16

Pt1 Pt1-BMMONO-PTAD2D5 MONO-PTAD2D5 PTA Monocyte AML insight Internal PMC 17.4

Pt1 Pt1-BMMPP-PTAH2A2 MPP-PTAH2A2 PTA MPP AML insight Internal PMC 16.2

Pt1 Pt1-BMNEUT-PTAD2D6 NEUT-PTAD2D6 PTA Neutrophil AML insight Internal PMC 16

Pt1 Pt1-BMPROMO-PTAD2D3 PROMO-PTAD2D3 PTA Promonocyte AML insight Internal PMC 19.1

Pt1 Pt1-BMPROMY-PTAD2D4 PROMY-PTAD2D4 PTA Promyelocyte AML insight Internal PMC 18

PMCCB15 PMCCB15-CBMPP-PTAP6F4 PMCCB15_1 PTA Cord blood MPP Training Internal PMC 20.2

PMCCB15 PMCCB15-CBMPP-PTAP6F5 PMCCB15_2 PTA Cord blood MPP Training Internal PMC 17.8

PMCCB15 PMCCB15-CBMPP-PTAP6F6 PMCCB15_3 PTA Cord blood MPP Training Internal PMC 20.2

PMCCB15 PMCCB15-CBWTVCR-HSP3L19 NA Bulk Cord blood HSC Bulk control Internal PMC 15.2

PMCAHH1-
FANCCKO

PMCAHH1-FANCCKO-C02B-
03SC03E05-PTAP1D7

PMCAHH1-FANC-
CKO_1

PTA FANCC-knockout Training Internal PMC 14

PMCAHH1-
FANCCKO

PMCAHH1-FANCCKO-C02B-
03SC03E05

NA Bulk FANCC-knockout Subclone Internal PMC 16.7

PMCAHH1-
FANCCKO

PMCAHH1-FANCCKO-C02B03 NA Bulk FANCC-knockout Bulk control Internal PMC 17.9

ENU-1-1 Cord_blood_donor ENU-1-1 PTA Cord blood HSPC Validation Ref: 5 Ref: 5 18.9

ENU-1-2 Cord_blood_donor ENU-1-2 PTA Cord blood HSPC Validation Ref: 5 Ref: 5 19.5

ENU-1-3 Cord_blood_donor ENU-1-3 PTA Cord blood HSPC Validation Ref: 5 Ref: 5 24.3

ENU-1-4 Cord_blood_donor ENU-1-4 PTA Cord blood HSPC Validation Ref: 5 Ref: 5 17.2

ENU-1-5 Cord_blood_donor ENU-1-5 PTA Cord blood HSPC Validation Ref: 5 Ref: 5 20.4

ENU-2-1 Cord_blood_donor ENU-2-1 PTA Cord blood HSPC Validation Ref: 5 Ref: 5 17

ENU-2-2 Cord_blood_donor ENU-2-2 PTA Cord blood HSPC Validation Ref: 5 Ref: 5 19.2

ENU-2-3 Cord_blood_donor ENU-2-3 PTA Cord blood HSPC Validation Ref: 5 Ref: 5 19.8

ENU-2-4 Cord_blood_donor ENU-2-4 PTA Cord blood HSPC Validation Ref: 5 Ref: 5 14.1

ENU-2-5 Cord_blood_donor ENU-2-5 PTA Cord blood HSPC Validation Ref: 5 Ref: 5 17.9

ENU-3-1 Cord_blood_donor ENU-3-1 PTA Cord blood HSPC Validation Ref: 5 Ref: 5 20.7

ENU-3-2 Cord_blood_donor ENU-3-2 PTA Cord blood HSPC Validation Ref: 5 Ref: 5 18.2

ENU-3-3 Cord_blood_donor ENU-3-3 PTA Cord blood HSPC Validation Ref: 5 Ref: 5 15.5

ENU-3-4 Cord_blood_donor ENU-3-4 PTA Cord blood HSPC Validation Ref: 5 Ref: 5 16.6

MAN-2-1 Cord_blood_donor MAN-2-1 PTA Cord blood HSPC Validation Ref: 5 Ref: 5 17

MAN-2-2 Cord_blood_donor MAN-2-2 PTA Cord blood HSPC Validation Ref: 5 Ref: 5 14.7

MAN-2-3 Cord_blood_donor MAN-2-3 PTA Cord blood HSPC Validation Ref: 5 Ref: 5 18.9

MAN-2-4 Cord_blood_donor MAN-2-4 PTA Cord blood HSPC Validation Ref: 5 Ref: 5 15.2

MAN-2-5 Cord_blood_donor MAN-2-5 PTA Cord blood HSPC Validation Ref: 5 Ref: 5 22

MAN-3-1 Cord_blood_donor MAN-3-1 PTA Cord blood HSPC Validation Ref: 5 Ref: 5 19.6

MAN-3-2 Cord_blood_donor MAN-3-2 PTA Cord blood HSPC Validation Ref: 5 Ref: 5 17

MAN-3-3 Cord_blood_donor MAN-3-3 PTA Cord blood HSPC Validation Ref: 5 Ref: 5 22.1

MAN-3-4 Cord_blood_donor MAN-3-4 PTA Cord blood HSPC Validation Ref: 5 Ref: 5 19.8

MAN-3-5 Cord_blood_donor MAN-3-5 PTA Cord blood HSPC Validation Ref: 5 Ref: 5 22.9

VHC-0-1 Cord_blood_donor VHC-0-1 PTA Cord blood HSPC Validation Ref: 5 Ref: 5 15.7

VHC-0-2 Cord_blood_donor VHC-0-2 PTA Cord blood HSPC Validation Ref: 5 Ref: 5 23.9

VHC-0-3 Cord_blood_donor VHC-0-3 PTA Cord blood HSPC Validation Ref: 5 Ref: 5 19.8

VHC-0-4 Cord_blood_donor VHC-0-4 PTA Cord blood HSPC Validation Ref: 5 Ref: 5 19.3

VHC-0-5 Cord_blood_donor VHC-0-5 PTA Cord blood HSPC Validation Ref: 5 Ref: 5 21.8

BULK-1 Cord_blood_donor BULK-1 Bulk Cord blood HSPC Bulk control Ref: 5 Ref: 5 39.9
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Introduction
Somatic mutations accumulate in the human body throughout life1–16. They play a 

role in several diseases such as neurogenerative disorders and diseases associated 

with aging, as discussed in chapter 117–20. Additionally, they can drive cancers and 

other clonal expansion disorders such as clonal hematopoiesis of indeterminate 

potential, which can itself also develop further into cancer21–25. However, somatic 

mutations can be difficult to detect, because their generally low allele fraction in bulk 

tissues makes them difficult to distinguish from technical noise26. Furthermore, for 

many of these somatic mutations, the processes that cause them are unknown27,28. 

The goal of this thesis was to discover previously unidentifiable somatic mutations in 

normal cells and to improve methods for analyzing patterns within these mutations 

in order to better understand the processes that caused them. To do this, we first 

set out to measure somatic mutations in fetuses with and without Down syndrome. 

Some of these mutations occurred as early as the first cell division, complicating their 

detection. We also developed new methods to identify mutagenic mechanisms by in-

depth mutational analyses and applied these on a human cell line in which we deleted 

various DNA repair genes. In addition, we studied the lifelong mutation accumulation 

in mitochondria and compared the mitochondrial genomes of normal and cancer 

cells. Finally, we developed a toolkit to distinguish somatic mutations from artifacts 

in single cells that were sequenced with PTA, allowing the genomes of differentiated 

cells to be analyzed29. Together, these projects improved our understanding of the 

patterns of mutations in normal cells and through this understanding brought us 

closer to understanding the origin of cancer.

The impact of the fetal mutation rate
Several studies have found that the mutations driving pediatric cancers like leuke-

mia and rhabdoid tumors can already occur during fetal or possibly even embryonic 

development30–36. In the work described in chapter 2, we investigated the origin and 

abundance of these early somatic mutations in normal fetal stem and progenitor 

cells.

 

Normally, somatic mutations are identified by comparing a sample with a bulk tissue 

control25,37. However, somatic mutations can be present at observable levels in bulk 

tissues if they occur early enough in the development38,39. Therefore, instead of just 

using a bulk control, we sequenced multiple clonally expanded single cells and used 

them as a control for each other. As a result, we could observe somatic mutations 

that occurred before gastrulation and might have originated as early as the first cell 

division of the fertilized egg cell. In the future, this type of approach might be used 

to detect early occurring somatic mutations in pediatric cancers that are diagnosed 

early after birth and that are suspected of having an embryonic origin31.

Having identified the somatic mutations in fetal stem and progenitor cells, we 

observed that hematopoietic stem and progenitor cells (HSPCs), which are difficult 

to distinguish by sorting and have similar mutation loads10, have a 5.8 times higher 

somatic mutation rate during fetal development compared to the postnatal rate. This 

higher mutation rate might contribute to the increased incidence of leukemias in chil-

dren compared to young adults40. However, we also observed an increased mutation 

rate in fetal intestinal stem cells, even though children do not have an increased risk 

of developing intestinal cancers. These observations support findings that other fac-

tors besides the mutation rate, such as epigenetic or developmental changes, might 

play a role in the development of pediatric cancers31. The importance of such factors 

is exemplified by the finding that in newborns only 1% of pre-leukemic clones with 

the ETV6-RUNX1 fusion develop into a full acute lymphoblastic leukemia, showing 

that the driver alone is not sufficient for the development of cancer30. The impor-

tance of the increased mutation rate of cells during development on cancer is thus 

not yet fully clear, as was discussed in more detail in chapter 1.

To obtain more insight into the mutational processes causing the observed muta-

tions, we analyzed the mutational spectra and observed that the mutations in HSPCs 

could be explained by mutational signatures SBS1 and SBS5, both of which are 

clock-like signatures that are known to accumulate in a linear fashion with age1,41. We 

observed the same signatures in pediatric acute myeloid leukemia (AML) blasts, indi-

cating that no additional mutational processes are necessary to initiate AML. Howev-

er, many drivers causing pediatric leukemias are structural variants, which were not 

present in the fetal HSPCs42,43.

Another way to study the link between somatic mutations in normal cells and car-

cinogenesis is by studying individuals at risk of developing cancer. Young children 

with Down-syndrome have a 500-fold increased risk of developing Down-syndrome 

associated acute megakaryoblastic leukemia (DS-AMKL) and a 7-20 times high-

er risk of developing acute lymphoblastic leukemia44,45. DS-AMKL is preceded by 

transient abnormal myelopoiesis, which is already present at birth and characterized 

by GATA1 driver mutations and thus likely originates during fetal development34,45. 

As described in chapter 2, we investigated stem and progenitor cells of fetuses with 

Down-syndrome and observed 34 extra substitutions compared to regular fetuses. 

These mutations were caused by the same mutational processes as the mutations 

in regular fetuses, which could contribute to their increased chance of developing 
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leukemias. However, this increase in mutation load seems too small to fully explain 

the increased leukemia incidence in young children with Down-syndrome, suggesting 

that epigenetic and gene expression differences also play a role45,46.

Mutation accumulation in normal stem cells
Investigating the mutations in normal cells throughout life allows us to better under-

stand the accumulation of mutations and how this contributes to disease. By knowing 

what processes drive mutagenesis in normal cells, it can determined if and how they 

are perturbed in diseases, such as cancer. Sequencing normal clonally expanded 

single cells, such as the fetal HSPCs we analyzed, allows for a direct comparison with 

cancer, because cancers are also clonally expanded from an original transformed 

single cell. The mutation accumulation of the stem cells of many tissues have been as-

sessed in the last few years, however, there are still several unresolved questions1-16.

As described in chapter 2, we observed an increased mutation rate in stem and pro-

genitor cells during fetal development, caused by an increased contribution of SBS1 

and SBS5. It is currently not known why the mutational processes behind these two 

signatures are more active during fetal development, but several possibilities, like an 

increased cell division rate, were discussed in chapter 1. The increased mutation rate 

during fetal development contrasts with the mutation rate during adult life, which is 

remarkably constant in all the tissues that have been investigated so far. Most studies 

into somatic mutation rates during life have used donors with ages below 80. Older 

donors have been sequenced, but these studies either did not sequence single cells or 

they used single-cell multiple displacement amplification, which is not very accu-

rate47,48. It is possible that the mutations that have accumulated during life in older 

donors might affect the mutation rate of their stem cells. On the other hand, it is also 

possible that centenarians have reached their old age, because they were protect-

ed from developing cancers by a below average mutation rate, caused by germline 

variants or other unknown protective factors. Studies into the blood or other tissues 

of centenarians and super centenarians might elucidate if the mutation rate of stem 

cells is changed at a very old age, just like it is at a very young age.

While it is now known that somatic mutations accumulate linearly with age in stem 

cells, it is not yet known what causes the variation between patients. Understanding 

this variation could help us better understand the mutational processes generating 

the mutations in stem cells. Some of the variation might be caused by germline vari-

ants49, however this cannot explain all the variance as we and others have observed 

that there are even differences in mutation load between stem cells of a single tissue 

of a single donor5,10,50. The variance in mutation load is thus likely caused at least in 

part by differences between cells at an intra-individual level. These environmental 

factors could be investigated in the future by methods combining single-cell genom-

ics and transcriptomics to see if cells with a higher mutation load have a lower ex-

pression of DNA-repair genes, if they have up- or down-regulated certain pathways 

that influence the mutation rate51. Additionally, spatial genomics methods could be 

used to see how the physical location of a cell influences its mutation rate. Cells locat-

ed closer to the border of a tissue or micro-environment might, for example, have a 

higher exposure to oxidative stress or other mutagenic factors.

The lung stem cells of smokers have an increased mutation load compared to 

non-smokers; however, in a subset of cells of ex-smokers this increase has disap-

peared3. Since mutations cannot be repaired anymore after being fixed in the ge-

nome, this indicates that the affected cells are being replaced by other stem cells. 

One possible explanation for this phenomenon is the concept of quiescent or long-

term stem cells52,53. This hypothesis states that most stem cells in some tissues are 

only alive for several months to years and that they are replenished by longer lived 

long-term stem cells when necessary. These long-term stem cells, which can be quies-

cent for prolonged periods, would then also be more protected from damage to their 

genome. Since these long-term stem cells are less numerous and more protected 

than the short-term stem cells, they have likely been rarely sequenced by studies into 

the mutation accumulation of normal cells. Identifying these long-term stem cells, if 

they exist, and investigating their mutational loads might help us better understand 

mutation accumulation in normal cells.

Mutation accumulation in differentiated cells
While the mutation accumulation of adult stem cells of different human tissues has 

been analyzed1–16, most differentiated cell types have not yet been assessed due 

to technical limitations. In the coming years novel single cell sequencing technolo-

gies, that do not depend on the clonal expansion of cells will be used to analyze the 

mutations in these single cells29. Knowing the mutation load of more differentiated 

cell types will help us understand cancer, as we can compare the mutation load of 

differentiated cells to cancers that developed, via a process of dedifferentiation, from 

a differentiated cell type24,54–56. An example of this is the finding that melanocytes can 

dedifferentiate during melanoma tumorigenesis54. Additionally, sequencing differ-

entiated cells can also aid in our understanding of AML, as it has been suggested that 

differentiation is necessary for the development of this type of cancer57. Knowing 

the mutation load of differentiated cells can also help us better understand other 
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diseases. The neurons of Alzheimer’s patients, for example, were recently shown to 

have an increased mutation load compared to normal neurons, which might impair 

their function and contribute to the development of the disease58.

Differentiated cells have a limited lifespan and division potential, because of their 

low telomerase activity59,60. As a result, they are expected to be less likely to trans-

form into cancer cells and any damage to their genomes that affects their functioning 

will only be inherited by a limited number of transient progeny. Because of this, it has 

been hypothesized that the genomes of differentiated cells need to be less protected 

than that of stem cells and that therefore, differentiated cells could have a higher mu-

tation rate than stem cells, caused by either a decreased activity of the DNA repair 

machinery or a less protective niche59,61,62. In the coming years, single-cell and/or 

molecule genome sequencing will likely be used to find out if this hypothesis is valid. 

Some studies have already observed differences in mutation loads between differ-

entiated cells and stem cells, but few systematic analyses using high-quality data 

have been performed so far63–65. Even with single-cell whole genome sequencing, 

identifying the mutation rates of differentiated cells might be difficult, because these 

cells often have a limited lifespan and therefore most of the mutations in them likely 

occurred before their differentiation. As a result, it might be necessary to sequence 

cells of which the time since differentiation is relatively long and either known or 

approximated. 

Single-cell whole genome sequencing techniques will also be used to investigate 

if the process of differentiation itself might cause a burst of mutations. The large 

transcriptomic and epigenetic changes that constitute differentiation might damage 

the genome through oxidative or other stresses66. One known example of mutations 

caused by the differentiation process itself, is the somatic hypermutation caused by 

the activation-induced cytidine deaminase associated with the V(D)J-recombination 

in B-cells and T-cells48,63,67. However, whether the process of differentiation also caus-

es mutations in other cell types is not yet clear.

Next to the mutation rates, the mutational processes causing mutations can also be 

investigated in differentiated cells. It is possible that compared to stem cells, differ-

entiated cells contain dissimilar contributions of some mutational processes or even 

contributions of distinct mutational processes, which are not present in the matching 

stem cells. Changes in the mutational processes of cells after differentiation could 

be caused by a lack of DNA-repair machinery, the differentiation process itself, or an 

increased exposure to environmental factors because of a less protective niche59,61,62.

Overall, while our understanding of mutation accumulation in normal cells has 

improved a lot the last few years, there are still many unanswered questions. Aided 

by the continuous development of novel technologies, we will likely begin answering 

these questions in the next few years.

Improving the identification of mutations in single cells
Analyzing the genomes of differentiated cells requires single-cell sequencing 

technologies that do not depend on a cells’ self-renewal ability. Historically, these 

technologies had a low sensitivity and accuracy29. However, several methods have 

recently been developed like single-molecule duplex sequencing (NanoSeq), multi-

plexed end-tagging amplification of complementary strands (META-CS), and primary 

template-directed amplification (PTA) that claim to have a significantly improved 

sensitivity and precision29,64,68. For the project described in chapter 5, we focused on 

PTA, because it has a high sensitivity, is relatively easy to perform, and is supported 

by a commercial kit. Additionally, it distinguishes between individual cells, which 

NanoSeq does not do. PTA results in less artifacts and has a much more even genome 

coverage compared to its predecessor multiple displacement amplification29.

In order to analyze PTA data and accurately identify somatic mutations, we devel-

oped the PTA analysis toolkit (PTATO). We showed that PTATO could identify single 

base substitutions (SBSs), insertions and deletions (indels), and structural variants 

(SVs) with high sensitivity and precision. Additionally, we showed that PTATO could 

accurately estimate the mutation load of cells and analyze the mutational processes 

that had been active in them. Finally, we applied PTATO on samples from an AML 

patient to illustrate how it could be used to gain new biological insights.

While PTATO filters out most artifacts, we still have about a 20% false positive rate 

and a 20% false negative rate for the detection of SBSs. This error rate could result 

in cancer drivers being missed. Additionally, one cannot be confident that any drivers 

that were found in only one cell are real. There are several potential approaches 

to improve the performance of PTATO. First, PTATO was trained on a relatively 

small dataset of ten samples. Training PTATO on a larger dataset, with samples 

from multiple cell types and cell lines that have been exposed to a variety of differ-

ent mutational processes could increase its accuracy and stability. Combining data 

from multiple labs, as it becomes available, to create a single large training set could 

further increase PTATO’s stability. A larger dataset would also allow us to replace 

the random forest with a more powerful and flexible model like a neural network. A 

convolutional network in particular might work well on the features describing the 
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ten bases upstream and downstream of a potential mutation69,70. The outcome of the 

convolutional layers could then be combined with the other features in regular full 

layers to give the final prediction.

A larger dataset for training would also make it possible to use more features with-

out overfitting. These could be epigenetic features like Ensembl’s regulatory regions 

or the number of bases upstream and downstream of potential mutations could be 

increased71,72.

While these methods could improve PTATO, there might be an upper limit to its 

accuracy. It might not be feasible to distinguish artifacts from real mutations that are 

very similar to artifacts. PTA, for example, generates a lot of artifactual C insertions 

at C repeat regions, making it difficult to detect real C insertions at these locations. 

Furthermore, any mutations that occur during the early steps of the PTA protocol 

might be indistinguishable from real mutations if they occur outside of typical artifact 

locations.

Currently, work is underway to combine PTA with single-cell RNA sequencing51. 

Since this combined method still requires variant filtration, PTATO can probably be 

used for this, in combination with a single-cell transcriptomics pipeline. Integrating 

single-cell genomics and transcriptomics will help clarify the differences in mutation 

accumulation between different types of cells and will help elucidate the effects that 

both coding and non-coding mutations have on gene expression. Furthermore, this 

combined method could be used to investigate the mutation rate of differentiated 

cells, since it is possible to use the transcriptomic profile of a cell to approximate how 

far along its differentiation trajectory it is.

One major downside of both PTA and whole genome sequencing in general is the 

relatively low number of cells that can be analyzed, as each cell requires a separate 

sample. While sequencing costs have gone down over time, sequencing the genomes 

of thousands of cells at a time, similar to single-cell RNA sequencing experiments, is 

unlikely to become affordable soon73,74.

Mutagenesis in mitochondria
Next to the nuclear genome, mutations can also occur in the mitochondrial genome. 

In the investigation described in chapter 4, we characterized mutation accumulation 

in mitochondrial DNA (mtDNA). We observed that mtDNA accumulates mutations 

with age in normal cells and by comparing our data with cancer samples we found 

that the majority of mutations in cancer were the result of pre-malignant mutation 

accumulation75. However, this was tissue type dependent as colon cancers showed a 

larger increase in the mutation load compared to blood cancers. It is not clear what 

caused this difference, but one explanation could be a higher activitiy of mitochon-

dria in colon cells, as indicated by the higher mtDNA copy number load. It is also not 

yet known how big the difference in mitochondrial mutation load is between normal 

cells and cancers in other tissue types. Analyzing the mitochondrial genomes of more 

tissue types might provide hints as to what causes the increased mutation load in 

cancer. Focusing on specific samples that are known to harbor dysfunctional mito-

chondria might also be fruitful. Next to the small increase in mutation load in cancer, 

we also found that different types of cancer treatment did not result in an increased 

mutation load, suggesting that these treatments do not cause a risk to mitochondrial 

genomes76,77. One potential explanation for this is the ability of cells to remove dam-

aged mitochondrial genomes.

Mitochondrial genomes have been extensively linked to cancer and other diseas-

es75,76,78–82; however, our results would suggest that mitochondrial mutations do not 

play a large role in the origin of cancer. One explanation for this is that mitochon-

dria can play a role in cancer without containing DNA damage. Many mitochondrial 

proteins are encoded in the nucleus and mutations in them could lead to incorrectly 

functioning mitochondria without the mitochondrial DNA itself being damaged76. 

Additionally, an aberrant expression of genes regulating the mitochondria could 

change a cells metabolism. This also matches the fact that a single cell contains many 

mitochondrial genomes83,84. A mutation in only one of these genomes is unlikely to 

significantly affect a cells metabolism unless its VAF was first increased through 

either selection or random drift78. 

It is also possible that we are missing a considerable number of mitochondrial muta-

tions. We sequenced clonally expanded single cells. During this clonal expansion the 

variant allele frequency of mutations could decrease because of selection or neutral 

drift, causing them to not be detected. However, we do not expect that the limited 

time of the clonal expansions will massively impact the VAF of most mutations. Addi-

tionally, while mutations with a VAF below the detection limit will be missed, they are 

unlikely to have a biological effect as mentioned previously. One way to better detect 

mitochondrial variants would be to directly sequence single cells without a clonal 

expansion, via a technique like PTA29. For the PTA analysis toolkit we described in 

chapter 5, we focused on the nuclear genome, but in the future, it would be interest-

ing to combine it with the mitochondrial analyses described in chapter 4.
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We analyzed mitochondrial genomes using whole genome sequencing data. It is also 

possible to sequence samples that have been enriched for mtDNA85–87. This is cheap-

er, because the nuclear genome is not sequenced; however, this also means a lot of 

genomic information is lost. The main benefit of the method we used is that it can be 

used on the large amount of whole genome sequencing data that has already been 

generated.

Overall, the importance of mitochondrial mutations is not clear yet. However, their 

importance might be elucidated by analyzing more samples and by directly sequenc-

ing single cells. Since the mitochondrial genome analysis pipeline we used only uses a 

small amount of computational resources, adding it to existing sequencing pipelines 

would not be very costly.

The processes behind somatic mutations
By observing patterns in the somatic mutations present in cells, it is possible to ana-

lyze the processes that caused them. In chapter 3 we described the second version of 

the MutationalPatterns package to analyze these patterns. We included new muta-

tion types like indels and double base substitutions. We also included functions to 

perform stricter and bootstrapped signature refitting, and functions to analyze lesion 

segregation and illustrated their use on cell lines in which we deleted specific DNA 

repair genes.

Recently, COSMIC published a set of mutational signatures for copy numbers88. At-

tempts to define mutational signatures for structural variants have also been made89–

91. It would be good to extend MutationalPatterns to be able to analyze and plot copy 

number mutation patterns, since this would likely require a limited amount of work 

and might make MutationalPatterns an even more comprehensive tool to analyze the 

mutation accumulation of cells. Extending MutationalPatterns to structural variants 

would, however, be more difficult since there is less consensus on how they should be 

identified, filtered, and represented in VCF files89,92. Furthermore, no widely used set 

of canonical structural variant signatures currently exists.

The last few years has seen a large increase in the defined number of SBS mutational 

signatures, resulting in overfitting where signatures are incorrectly attributed to 

a sample27,41,93–97. We tried to tackle this issue with the stricter and bootstrapped 

refitting functions, however this is only moderately effective when fitting against the 

latest large signature sets, like the current set of COSMIC signatures (v3.3)27. Anoth-

er approach that we have used is to perform NMF on a combination of the data of 

interest as well as a standard in-house dataset followed by signature refitting using 

the smaller set of signatures defined by the NMF. While this decreases false positives 

and gives more stable results, it does provide a bias for the signatures present in 

the standard in-house dataset96. Another method that has been proposed is to use 

tissue-specific signatures96. Finally, it is also possible to perform signature refit-

ting against a small set of common signatures, followed by a second refit using rare 

signatures for samples that cannot be properly explained by the common signatures 

alone94. While these approaches might reduce the number of false positives, they also 

introduce bias94,96. The best method or combination of methods is not yet clear and 

might depend on the research question. The accuracy of signature refitting also de-

pends strongly on the signatures to which a sample was exposed. Refitting performs 

well for signatures with large contributions from only a few features but performs 

somewhat poorly for more ‘flat’ signatures that contain small contributions from 

many features50,96. Overall, the accuracy of signature refitting is not ideal, and care 

must be taken when interpreting its results.

Mutational signatures were originally designed on a set of 21 breast cancers using 

the 96-trinucleotide context as its features95. Since then, signatures have been de-

fined on ever larger datasets, but the features that are used for SBSs have remained 

the same27,94. With these larger datasets it is possible to use a large sequence context 

or to include other features like the distance to the nearest gene body, since we and 

others have shown that these features can influence mutational processes27,98–100. 

This could help distinguish mutational processes, that are very similar based on the 

current 96-trinucleotide context. Therefore, we allowed for a larger sequence con-

text to be used in the second version of MutationalPatterns.

Another way to improve the features used to define signatures would be to make 

them more informative. Currently, the 96 features are all treated equally, while some 

are much more informative than others. When using a larger mutational context, 

this will become an even bigger issue, as adding a single base to both the the 5’ and 

3’ ends, increases the number of features 16-fold. One potential way to solve this, 

would be to use an autoencoder or PCA to reduce the number of features to a small-

er more informative amount101. This reduced number of features could be used as a 

type of signatures themselves or they could be further analyzed with NMF. For the 

latter option, a single autoencoder could be trained on a large pan-cancer dataset and 

the features it created could then be used by other labs to perform signature refitting 

or NMF. Overall, it might be good to define signatures using an extended feature set 

that has been treated with a dimensionality reduction method.
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The patterns present in somatic mutations have been used for more than just ana-

lyzing the processes that caused them. In the work described in chapter 5 we used 

mutation patterns to distinguish true mutations from artifacts. Additionally, mutation 

patterns have been used to estimate the cell-of-origin of cancers and to distinguish 

healthy people from cancer patients using the cell-free DNA present in plasma102–105. 

On top of this, more use-cases for mutational patterns might be developed in the 

future.

Impact of mutational processes
As described in chapter 2, we observed that SBS1 and SBS5 were present in normal 

fetal stem and progenitor cells and that no additional mutational signatures were 

needed for the development of AML. However, the importance of these two signa-

tures to the development of AML is still unknown. This reflects a wider issue in the 

field, as it is difficult to determine how often different mutational processes result 

in mutations that drive cancers or affect a person’s health. In the work described in 

chapter 3, we started to address this by adding a function to MutationalPatterns that 

predicts how likely a mutational process is to cause, missense and stop-gain muta-

tions. However, while this provides a useful indication on how damaging a mutational 

process is, it doesn’t show how often a process results in cancer drivers. To properly 

determine the impacts of mutational processes it is necessary to determine for indi-

vidual mutations by which mutational process they were generated.

In the investigation described in chapter 5, we did something very similar to this, as 

we trained a random forest on an extended mutation context to predict if a mutation 

was a PTA artifact. A similar approach has been developed in our group to predict 

if individual mutations were caused by ganciclovir106. Extending these methods to 

other mutational signatures would allow individual driver mutations to be linked to 

mutational processes. By then applying these methods on large pan-cancer data-

sets the overall impact of mutational processes on cancer could be clarified. Next to 

pan-cancer analyses, these methods should also be applied per cancer type, because 

differences in drivers between cancer types will likely result in differences in the 

damage potential of mutational processes between tissues25. However, while this 

approach will work well on signatures that mutate nucleotides within very specific 

genomic contexts, it will work less well on ‘flat’ signatures that cause mutations with-

in a less specific context.

The random forest we trained only had a specificity of around 75%, however this is 

not a major issue for identifying the impact of mutational processes. The probabil-

ity that a driver mutation belongs to a specific mutational signature can be used as 

a weight when adding up the drivers linked to a signature, thus averaging out the 

uncertainties in these models. 

Identifying the impact of different mutational processes on cancer will lead to a 

better understanding of the origin of cancer and could even be used for prevention. 

Knowledge on the impact of mutagenic chemotherapy treatments, for example, could 

aid clinicians in determining what treatments and therapy doses to use.

Concluding remarks
In this thesis I have focused on the genome wide identification of somatic mutations. 

While my focus was on base substitutions and indels in the nuclear genome, I also 

looked at structural variants in the works described in chapter 2 and chapter 5 and 

looked at mitochondrial variants in the investigation described in chapter 4. I could 

compare the mutation loads between samples and find patterns in the identified 

mutations, informing us about the processes that caused them. For the mutations in 

the coding part of the genome, I also determined whether they were likely to drive 

cancers. 

However, since the vast majority of mutations that we identified are located outside 

of the coding region of the genome, their biological effects cannot be easily deter-

mined25,107–109. This is not just the case for somatic mutations, but also for germline 

variants110. While these variants do not code for proteins, they have been linked to 

many diseases including cancer by GWAS, eQTL, and other techniques107–109,111–113. 

Epigenomic studies have also shown that many non-coding regions of the genome 

are functional as enhancers, promoters, or other functional elements71,114,115. Multiple 

tools have been made to predict whether variants in non-coding genomes cause dis-

ease by, for example, using epigenetic data and by looking at how conserved different 

regions of the genome are70,108,111,116. However, so far these tools have had a limited 

accuracy109. While many variants are known to increase or decrease an individual’s 

risk of a specific disease, there are still very few non-coding variants that can be iden-

tified as directly driving or causing a disease. An exception to this are mutations in 

the TERT2 promoter, which are known to occur in over 50 cancer types25,60. Because 

of the difficulty in identifying the effects of non-coding mutations, cancer drivers are 

generally called within the exome107.

Improved tools to determine the effects of all somatic mutations, and not just the 

ones in coding regions, would further increase the value of identifying somatic muta-
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tions in the whole genome, a major focus of this thesis, and would allow for new types 

of analyses on identified sets of somatic mutations. In my opinion, a better under-

standing of the impact on disease of somatic mutations and germline variants in the 

non-coding part of the genome is currently the most important challenge within the 

field of genetics.

In the future it might be possible to reduce mutation accumulation and with it the 

impact it causes on a person’s health. Mutations caused by smoking, alcohol con-

sumption, and eating red meat can be reduced with lifestyle changes, and the bans 

of mutagenic materials like chrome-6 in paint and asbestos have already prevented 

mutations and the cancers they would have caused27,117–120. Additionally, the ban of 

chlorofluorocarbons has reduced the damage to the earth’s ozone layer, which has 

likely already lead to reduced mutation rates in the skin121. Furthermore, a future re-

duction in air pollution via stricter regulation and technological improvements could 

also prevent somatic mutations in the lungs from occurring. 

A better understanding of mutational signatures commonly present in normal cells, 

like SBS1 and SBS5 could possibly also help to reduce their activity. Several germline 

variants have already been correlated with the activity of specific mutational signa-

tures and more are likely to follow49. Furthermore, SBS5 was recently linked to REV1, 

so variants within this gene might be correlated to SBS5 exposure122. Gene editing 

in zygotes of variants associated with an increased mutation load could be used to 

reduce the rate with which they accumulate mutations during life. However, this is 

unlikely to happen in the next several decades. Overall, a future reduction in somatic 

mutation rates might reduce the prevalence of cancers and other diseases caused by 

somatic mutations.

In the coming years our knowledge of the mutation accumulation present in normal 

cells and the processes behind them will likely be further expanded. This will help us 

explain the origin of cancer and hopefully also provide us with hints on how to pre-

vent it. Overall, the research described in this thesis has improved our understanding 

of mutation accumulation in normal cells and has produced tools that will hopefully 

be used to further improve our understanding in the coming years and thereby help 

elucidate the origin of cancer.
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DNA en mutaties
Bijna iedere cel in ons lichaam bevat DNA. DNA-moleculen bestaan uit twee 

suiker-fosfaat ruggengraten die in een helix vorm in elkaar zijn gedraaid. Deze twee 

ruggengraten zitten aan elkaar vast via twee complementaire nucleotide basenpar-

en, adenine en thymine, en cytosine en guanine. De volgorde van deze nucleotiden 

vormt een code, die de instructies bevat voor het maken van eiwitten. Deze eiwitten 

vormen de cellulaire machines en een deel van de bouwstenen die ervoor zorgen dat 

het menselijke lichaam werkt. In totaal bevat het DNA rond de 3.2 miljard basen-

paren verdeeld over 22 reguliere chromosomen en 2 geslachtschromosomen. Bij de 

bevruchting van de eicel komt een set van 23 chromosomen van de vader en een set 

van 23 chromosomen van de moeder.

Herhaaldelijke celdelingen van de bevruchte eicellen en diens dochtercellen kunnen 

uiteindelijk leiden tot de ontwikkeling van een menselijk lichaam. Tijdens ieder van 

deze celdelingen wordt het volledige DNA gekopieerd. Hoewel dit grotendeels goed 

gaat, kunnen er bij het kopiëren foutjes optreden. Daarnaast is het ook mogelijk 

dat het DNA beschadigd wordt tussen celdelingen in. Deze beschadigingen kunnen 

veroorzaakt worden door externe factoren zoals UV-straling, maar ook door in-

terne cel processen. In totaal wordt het DNA per cel per dag ongeveer 10,000 keer 

beschadigd, maar de meeste beschadigingen worden gerepareerd met behulp van 

DNA-reparatie eiwitten. Een voorbeeld van DNA-schade is de spontane deaminatie 

van een cytosine, waardoor het verandert in een thymine. Dit zorgt ervoor dat een 

thymine gebonden is aan een guanine. Deze combinatie, die normaal niet hoort te 

gebeuren, kan door een cel opgemerkt en gerepareerd kan worden. Echter als dit niet 

gerepareerd wordt voordat er een celdeling, plaatsvindt dan wordt er een adenine 

tegenover de thymine geplaatst en kan deze verandering niet meer gedetecteerd 

en gerepareerd worden. Dit soort veranderingen in het DNA die tijdens het leven 

plaatsvinden noemen we somatische mutaties. De combinatie van verschillende 

soorten DNA-schade met incomplete of foutieve DNA-reparatie zorgt voor verschil-

lende soorten somatische mutaties. Door te kijken naar de verhoudingen tussen ver-

schillende typen mutaties in een cel, is het mogelijk om de processen die de mutaties 

hebben veroorzaakt te onderzoeken.

Bij een celdeling wordt een somatische mutatie doorgegeven aan de dochtercellen, 

die het vervolgens weer aan hun eigen dochtercellen doorgeven. Doordat somatische 

mutaties er constant bijkomen en meestal niet verdwijnen neemt het aantal basis 

substituties, mutaties waarbij een nucleotide is vervangen door een andere nucleo-

tide, lineair toe met de leeftijd. De snelheid van mutatie accumulatie verschilt tussen 

organen. Bloed stamcellen krijgen er gemiddeld 15 base substituties per jaar bij, 

terwijl stamcellen in de dunne darm er meer dan 40 substituties per jaar bij krijgen. 

De meeste mutaties hebben geen of nauwelijks effect. Sommige mutaties zorgen er 

echter voor dat de functie of activiteit van een eiwit verandert. Het is geen probleem 

als een enkele cel door een mutatie minder goed functioneert of zelfs doodgaat, 

omdat ons lichaam nog genoeg andere cellen overheeft. Sommige mutaties zorgen 

er echter voor dat een cel ongecontroleerd gaat delen, of het immuunsysteem kan 

ontwijken. Meerdere van deze mutaties samen kunnen uiteindelijk leiden tot kanker.

Het onderzoek beschreven in dit proefschrift
Kanker ontstaat in de meeste gevallen door somatische mutaties in een normale cel. 

Het doel van het onderzoek in dit proefschrift was om technieken te ontwikkelen 

om somatische mutaties te ontdekken die eerst nog niet makkelijk ontdekt konden 

worden en om technieken voor het detecteren van patronen in somatische mutaties 

te verbeteren, zodat we meer inzicht krijgen in de processen die mutaties veroorzak-

en.

Een manier om de link tussen somatische mutaties en kanker te onderzoeken is om 

individuen met een verhoogd risico te bestuderen. Jonge kinderen met Downsyn-

droom hebben een 400 keer zo hoge kans op het krijgen van Downsyndroom geasso-

cieerde acute megakaryoblastische leukemie als reguliere kinderen. Sommige van de 

mutaties die leiden tot deze vorm van kanker ontstaan al tijdens de foetale ontwik-

keling. Om dit te onderzoeken hebben we bloed en darm stamcellen van foetussen 

met en zonder Downsyndroom geanalyseerd. Door de genomen van losse cellen met 

elkaar te vergelijken konden we somatische mutaties vinden die tijdens de ontwik-

keling hadden plaatsgevonden. Doordat sommige mutaties gedeeld waren tussen 

cellen konden we ook stambomen maken die lieten zien hoe de cellen aan elkaar 

gerelateerd waren. We vonden dat mutatie snelheid van cellen tijdens de ontwik-

keling 5,8 keer hoger was dan de snelheid na de geboorte. Dit zou kunnen bijdragen 

aan het hogere risico voor kinderen om leukemie te krijgen vergeleken met volwass-

enen. Daarnaast vonden we in de stamcellen van foetussen met Downsyndroom nog 

34 extra mutaties. Dit aantal extra mutaties lijkt te klein om de verhoogde kans op 

leukemie in kinderen met Downsyndroom volledig te verklaren, maar kan hier wel 

aan bijdragen. Andere factoren zoals veranderingen in de activiteit van verschillende 

genen spelen waarschijnlijk ook een rol. Vervolgens vergeleken we de mutaties in 

de foetussen met de somatisch mutaties in leukemie monsters. De mutaties in beide 

groepen werden veroorzaakt door dezelfde mutatieprocessen, wat betekend dat 
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er dus geen extra mutatieprocessen nodig zijn voor het ontstaan van leukemie. De 

gevonden processen zijn actief in normale cellen gedurende het leven.

Om mutatieprocessen beter te kunnen bestuderen hebben we vervolgens de tweede 

versie van het “MutationalPatterns” softwarepakket geschreven. De eerste versie 

van het pakket was gefocust op substituties van een nucleotide door een andere 

nucleotide. De tweede versie kan echter ook dubbele substituties van twee nucle-

otiden naast elkaar analyseren. Inserties en deleties (indels), waarbij er een of een 

aantal nucleotiden aan het DNA worden toegevoegd of verwijderd kunnen ook 

worden geanalyseerd. We hebben ook functies toegevoegd die de mutatieprocessen 

die actief zijn geweest in een monster kunnen ontdekken met minder vals positieven. 

Daarnaast hebben we functies toegevoegd die mutatieprocessen kunnen onderzoek-

en die alleen actief zijn in een deel van het genoom. De nieuwe versie van Mutational-

Patterns hebben we vervolgens getest op cellijnen waar specifieke genen die belan-

grijk zijn voor het repareren van DNA waren uitgeschakeld. De mutatie patronen die 

we vonden in deze cellijnen kwamen overeen met wat we verwachten.

Vervolgens hebben we gekeken naar somatische mutaties in mitochondriën. Mito-

chondriën zijn organellen die verantwoordelijk zijn voor de energiehuishouding van 

een cel. Ze hebben hun eigen circulaire DNA, waarvan er meerdere kopieën aanwezig 

zijn per cel. Dit maakt het lastig om mutaties in het mitochondriale DNA (mtDNA) te 

ontdekken, wat dan ook niet standaard wordt gedaan. Door gebruik te maken van 

specifieke software en streng vals positieve varianten te filteren konden we mutaties 

detecteren in mitochondriën. We vonden dat het aantal somatische mutaties in mito-

chondriën van normale cellen lineair toeneemt met de leeftijd, net zoals in de celkern 

waar de rest van het DNA zich bevindt. Het aantal kopieën van het mtDNA per cel 

veranderde niet met de leeftijd, maar verschilde wel tussen het bloed, de dikke darm, 

en de dunne darm. Vervolgens vergeleken we het aantal mutaties in mitochondriën 

van normale cellen met kanker. Uit onze vergelijking bleek dat de meerderheid van 

de mitochondriale mutaties in kanker monsters al hadden plaatsgevonden voor 

het ontstaan van de kanker, toen de cel nog normaal was. Het mutatieproces dat 

de mitochondriale mutaties veroorzaakte was ook hetzelfde tussen de normale- en 

kankercellen. Vervolgens hebben we gekeken naar cellen die in het lab zijn behandeld 

met chemotherapie en andere kankerbehandelingen. Deze behandelingen leken geen 

groot effect te hebben op het mitochondriaal genoom.

De hierboven beschreven experimenten in normale cellen zijn gedaan door losse 

cellen te kweken in het laboratorium, zodat we genoeg DNA hebben om het genoom 

te analyseren. Dit werkt echter alleen voor stamcellen en niet voor het grote aantal 

“gedifferentieerde” cellen die minder kunnen delen. Om het genoom van deze cellen 

toch te kunnen analyseren is recent de PTA-techniek ontwikkeld, die het DNA van 

een cel artificieel kopieert zodat er genoeg materiaal is voor een analyse. Deze meth-

ode is een stuk sensitiever en accurater dan eerdere methodes, maar resulteert al-

snog in een flink aantal vals positieve artefacten. We hebben de “PTA analysis toolkit” 

(PTATO) ontwikkeld om deze vals positieve artefacten te onderscheiden van echte 

mutaties voor substituties, indels, en structurele varianten waarbij er een groter deel 

van het genoom is geamplificeerd of verwijderd. PTATO doet dit door onder andere 

te kijken naar de patronen van potentiële mutaties en door te kijken of potentiële 

mutaties op het DNA van of de vader of de moeder zitten. Als een mutatie op zowel 

het DNA van de moeder als de vader wordt aangetroffen, dan is het waarschijnlijk 

een artefact, omdat de kans zeer klein is dat twee dezelfde mutaties op exact dezelf-

de locatie hebben plaatsgevonden. We hebben PTATO gevalideerd op zowel onze 

eigen data als op een externe dataset. Uiteindelijk hebben we PTATO toegepast op 

monsters van een leukemiepatiënt. We vonden dat sommige van de mutaties die de 

kanker veroorzaakten al jaren voor de diagnose hadden plaatsgevonden. Daarnaast 

bleek het dat kankercellen nog steeds konden differentiëren.

In dit proefschrift hebben we gekeken naar somatische mutaties in normale cellen 

en de processen waardoor ze worden veroorzaakt. Hiervoor hebben we ook soft-

warepakketten geschreven die gebruikt kunnen worden in verdere onderzoeken. 

Hiermee kunnen we het ontstaan van kanker beter begrijpen wat uiteindelijk zou 

kunnen leiden tot een betere behandeling of zelfs preventie.
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