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Abstract

Photodynamic therapy (PDT) is a minimally to noninvasive treatment modality that has emerged as a
promising alternative to conventional cancer treatments. PDT induces hyperoxidative stress and disrupts
cellular homeostasis in photosensitized cancer cells, resulting in cell death and ultimately removal of the
tumor. However, various survival pathways can be activated in sublethally afflicted cancer cells following
PDT. The acute stress response is one of the known survival pathways in PDT, which is activated by reactive
oxygen species and signals via ASK-1 (directly) or via TNFR (indirectly). The acute stress response can
activate various other survival pathways that may entail antioxidant, pro-inflammatory, angiogenic, and
proteotoxic stress responses that culminate in the cancer cell’s ability to cope with redox stress and oxidative
damage. This review provides an overview of the immediate early stress response in the context of PDT,
mechanisms of activation by PDT, and molecular intervention strategies aimed at inhibiting survival
signaling and improving PDT outcome.
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Abbreviations

1O2 Singlet oxygen
ABC ATP-binding cassette
AhR Aryl hydrocarbon receptor
ALA 5-Aminolevulinic acid
AP-1 Activator protein 1
APE Apurinic/apyrimidinic endonuclease
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ASK1 Apoptosis signal-regulating kinase 1
ASV Avian sarcoma virus
ATF1/2/3/4/6/7/
8

Activating transcription factor 1, 2, 3, 4, 6, 7, 8

ATG Autophagy-related genes
ATP Adenosine triphosphate
BAK BCL-2 homologous antagonist/killer
BAX BCL-2-associated X
BCL-2 B-cell lymphoma 2
bFGF Basic fibroblast growth factor
BMP2 Bone morphogenic protein 2
bZIP Basic leucine zipper
cAMP Cyclic adenosine monophosphate
CDH11 Cadherin 11
C/EPB CCAAT-enhancer-binding protein
CMPD1 2’-Fluoro-N-(4-hydroxyphenyl)-[1,10-biphenyl]-4-butanamide
COX-2 Cyclo-oxygenase 2
CRE Cyclic AMP response element
CREB ATF/CRE-binding protein
CRP C-reactive protein
DAMPs Damage-associated molecular patterns
DPI Diphenylene iodonium
EGF Epidermal growth factor
EGFR Epidermal growth factor receptor
ELK-1 ETS like-1 protein
Em Emission
EMT Epithelial-mesenchymal transition
ER Endoplasmic reticulum
ERK Extracellular signal-regulated kinase
EP2 Prostaglandin E2 receptor 2
Ex Excitation
FGF-2 Fibroblast growth factor 2
FHPI 4-(4-Fluorophenyl)-2-(4-hydroxyphenyl)-5-(4-pyridyl)1H-imidazole
FOXO Forkhead box O
FRA1/2 FOS-related antigen 1 and 2
GADD153/CHOP Growth arrest- and DNA damage-inducible gene 153
HDAC Histone deacetylase
HIF-1 Hypoxia-inducible factor 1
HO-1 Heme oxygenase 1
HSF1 Heat-shock factor 1
HSP27 Heat-shock protein 27
HUVECs Human umbilical vein endothelial cells
IAP Inhibitor of apoptosis
IC50 Half maximum inhibitory concentration
ICAM-1 Intercellular adhesion molecule 1
IFN-γ Interferon gamma
IκBα Nuclear factor of kappa light polypeptide gene enhancer in B-cell inhib-

itor alpha
IKKβ Nuclear factor kappa-B kinase subunit beta
IL-1β/6/8/10 Interleukin 1β, 6, 8, and 10
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iNOS Inducible nitric oxide synthase
i.p. Intraperitoneal (administration route)
i.v. Intravenous (administration route)
JDP-1/2 JUN dimerization protein 1 and 2
JNK c-JUN terminal kinase
KRAS Kirsten rat sarcoma virus
LC-3 II Microtubule-associated protein 1A/1B-light chain 3, phosphatidyleth-

anolamine conjugate
LC50 Half maximum lethal concentration
LD50 Half maximum lethal dose
LKB1 Liver kinase B1
MAF Musculoaponeurotic fibrosarcoma protein
MAPK Mitogen-activated protein kinase
MDR Multidrug resistance
MEF2 Myocyte enhancer factor 2
MEK-1 MAPK/ERK kinase 1
miRNA microRNA
MK2/5 MAPK-activated protein kinase 2 and 5
MKK3/4/6/7 MAPK kinases 3, 4, 6, and 7
MMP3/9 Matrix metalloproteinase-3 and 9
MNK1/2 MAPK-interacting serine/threonine-protein kinase 1 and 2
MPPa Pyropheophorbide-α methyl ester
MSK1 Mitogen‐ and stress‐activated protein kinase 1
MSV Murine osteogenic sarcoma virus
mTOR Mammalian target of rapamycin
MW Molecular weight
NA Not available
NAC N-acetylcysteine
NF-κB Nuclear factor kappa-light-chain-enhancer of activated B cells
NLK Nemo-like kinase
NOX NADPH oxidase
NQDI-1 2,7-Dihydro-2,7-dioxo-3H-naphtho[1,2,3-de]quinoline-1-carboxylic

acid ethyl ester
NRF2 Nuclear factor erythroid 2-related factor 2
O2

l
– Superoxide

p300HAT Histone acetyltransferase p300
PARP-1 Poly(ADP-ribose) polymerase 1
PDK-1 3-Phosphoinositide-dependent kinase 1
PDT Photodynamic therapy
PDTC Pyrrolidine dithiocarbamate
PGE2 Prostaglandin E2
P-gp P-glycoprotein
PI3K Phosphatidylinositol 3-kinase
PP5 Protein phosphatase 5
PS Photosensitizer
Rac3 Rac family small GTPase 3
ROS Reactive oxygen species
SAPK1/2 Stress-activated protein kinase 1 and 2
s.c. Subcutaneous (administration)
SCR-1/2/3 Steroid receptor coactivator 1, 2, and 3
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siRNA Small interfering RNA
t1/2 Circulation half-life
TDLO Lowest dose causing a toxic effect
TF Transcription factor
TFE3 Transcription factor binding to IGHM enhancer 3
TFEB Transcription factor EB
TGF-β Transforming growth factor β
TNF-α Tumor necrosis factor alpha
TNFR Tumor necrosis factor alpha receptor
TPCK N-tosyl-L-phenylalanine chloromethyl ketone
TPPS2a Meso-tetraphenyl porphyrin disulfonate
TRAF TNF-α receptor-associated factor
TRE TPA (12-0-tetradecanoylphorbol-13-acetate) responsive element
Trp53 Transformation-related protein 53
TRX Thioredoxin
UPR Unfolded protein response
USP7/21 Ubiquitin-specific protease 7 and 21
USP9X Ubiquitin-specific peptidase 9 X-linked
VCAM-1 Vascular cell adhesion protein 1
VEGF Vascular endothelial growth factor
XBP1 X-box-binding protein 1
XIAP X-linked inhibitor of apoptosis protein
ZEB2 Zinc finger E-box-binding homeobox 2
ZnPC Zinc phthalocyanine

1 Introduction

Photodynamic therapy (PDT) is a minimally to noninvasive treat-
ment modality that has emerged as a promising alternative to
conventional cancer therapies such as surgery, radiotherapy, and
chemotherapy. PDT was first approved for clinical use in 1993 in
Canada for the treatment of papillary bladder cancer and has since
been approved for various oncological indications in many
countries [1].

PDT is based on the photosensitization of tumor tissue with
light-sensitive molecules called photosensitizers (PSs) that are
administered intravenously or topically, depending on the location
of the tumor. Following intratumoral PS accumulation, the tumor
is illuminated at a wavelength that is absorbed by the
PS. Absorption of resonant light causes PS excitation from a
ground state to a singlet state, after which the singlet-state electron
undergoes intersystem crossing to a more stable but less energetic
triplet state [2]. Triplet-state PSs can undergo two types of photo-
chemical reactions with molecular oxygen and biomolecules. Type I
photochemical reactions result in the transfer of the triplet-state
electron to oxygen, yielding superoxide anion (O2l

–), or to other
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molecules to produce radicals. The primary ROS and radicals may
in turn react with other substrates to form secondary and tertiary
derivatives in a biological environment [3]. Type II photochemical
reactions involve the transfer of energy to molecular oxygen, caus-
ing its transition from triplet state (native state of oxygen) to singlet
state, thereby generating the highly reactive singlet oxygen (1O2)
[4, 5].

The photogenerated ROS and radical transients damage tumor
tissue via three distinct routes that collectively account for a thera-
peutic effect. First, ROS and non-oxygen radicals oxidize biomo-
lecules and inflict oxidative damage and consequent oxidative
stress. Excessive oxidative damage following PDT culminates in
cell death, which is predominantly but not exclusively apoptotic
and necrotic in nature [6–13]. Second, PDT affects photosensi-
tized endothelium that lines intratumoral vasculature, leading to
thrombosis-mediated vascular shutdown, tumor hypoxia, and met-
abolic catastrophe [14, 15]. Third, PDT-treated damaged and
dying cells release an armament of damage-associated molecular
patterns (DAMPs) and tumor-associated antigens that prime innate
and adaptive immune cells, which in turn mount an antitumor
immune response [16]. The antitumor immune response is
required for long-term tumor control [17, 18].

Despite the profound lethality of PDT toward parenchymal
cells in solid tumors, clinical accounts on PDT outcomes report
tumor recurrence in different types of cancer [19–23]. Tumor
recurrence may be attributed to the activation of survival pathways
in sublethally afflicted cancer cells following PDT [8–10, 12, 24,
25]. As exemplified in Fig. 1, cancer cells that are more distally
located from the light source are most prone to insufficient damage
from PDT, especially in bulkier tumors. Although wavelengths are
used in clinical PDT that do not have competing natural chromo-
phores, laser-tissue interactions still abide by the Lambert-Beer law
that dictates an attenuating photon density with tissue depth. Inas-
much as photochemical ROS production is directly proportional to
fluence rate, and the degree of oxidative stress is negatively corre-
lated with cell survival, the cancer cells that are exposed to subcriti-
cal fluence rates will be able to cope with the lower levels of
oxidative stress. These cells will have ample biological reserves to
activate survival cascades that ultimately ensure their post-PDT
viability. In time, surviving cancer cells will proliferate and restore
the parenchymal matrix that clinically will manifest as tumor recur-
rence. In some instances, post-PDT tumor control is managed by
the adaptive immune system (also via abscopal effects) that could
offset cancer cell survival [17, 18], but this mechanism is by no
means fail-safe.

To date, five main survival pathways that are activated by PDT
have been described [24]. The pathways include (1) the antioxidant
response mediated by nuclear factor erythroid 2-related factor
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2 (NRF2); (2) the pro-inflammatory and angiogenic response
mediated by nuclear factor kappa-light-chain-enhancer of activated
B cells (NF-κB); (3) the survival response to hypoxia driven by
hypoxia-inducible factor 1 (HIF-1); (4) an immediate early stress
response triggered by apoptosis signal-regulating kinase 1 (ASK-1),
which activates activator protein 1 (AP-1) via the mitogen-activated
protein kinases (MAPKs) c-Jun N-terminal kinase (JNK) and p38
MAPK (from here onward referred to as p38); and (5) the proteo-
toxic stress response comprising the unfolded protein response
(UPR) and the heat-shock response that signal through activating
transcription factor (ATF) 4, ATF6, heat shock factor 1 (HSF1),
and X-box binding protein 1 (XBP1) (see Fig. 2) [24]. ROS consti-
tute the overarching trigger for the survival pathways, although
some of the pathways can be induced by other means related to
PDT. For example, NF-κB and HIF-1 can be activated by hypoxia,
whereas the UPR and the heat-shock response require redox mod-
ifications of the cell’s proteome. Other pathways activated by PDT
but not listed here also have interacting and overlapping segments
with the survival pathways that may lead to activation of the latter.

Fig. 1 Key interrelated photophysical, biochemical, and biological variables that influence PDT outcome. Light
is attenuated with tumor depth relative to the light source (Beer-Lambert law), accounting for lower fluence
rates in the more distal tumor regions. A reduction in photon density translates to a lower probability that
electrons absorb the photons and are raised to a singlet and subsequently triplet energy state, from which ROS
are produced. Lower ROS production yields less damage and redox stress in cancer cells, allowing sublethally
afflicted cells to cope with the PDT-induced injury and survive by activating and executing survival pathways.
Cancer cells that have survived ultimately proliferate and reform tumors, which is a likely explanation for the
tumor recurrence that is observed in PDT-treated patients
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The principal activator molecules (NRF2, NF-κB, HIF-1α, ASK-1,
HSF1, ATF4/6, and XBP1) are also capable of transactivating or
modulating the activity and progression of the other pathways
through downstream signaling.

PDT considerably alters the biological and biochemical land-
scape of cells [12, 26–28], where sublethally afflicted cells mobilize
a maximum number of functional resources to sustain viability. The
survival pathways occupy a central position in the cell’s resource
carousel [24, 29, 30]. It is therefore arguable that pharmacological
inhibition of the survival pathways will lead to improved PDT out-
comes [24], which has been empirically demonstrated for the
HIF-1 survival pathway using the selective HIF-1α inhibitor acri-
flavine [9, 10]. The hypoxic cytotoxin tirapazamine also imparted
an adjuvant effect in PDT-treated cells post-therapeutically that
were exposed to hypoxic conditions [11]. A non-exhaustive list of
other eligible HIF-1 pathway inhibitors is provided in Chapter 19.
This chapter addresses potential immediate early stress response
pathway inhibitors against a backdrop of the ASK-1 signaling cas-
cade and its role in PDT.

2 ASK-1 Pathway

The acute stress response is generally induced by immediate stress
factors such as ROS, endoplasmic reticulum (ER) stress, or para-
crine signals from cells damaged by PDT. The stress factors enable

Fig. 2 The 5 main survival pathways responsible for therapeutic recalcitrance to PDT
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signal-receiving cells to sustain cell viability and to engage other
downstream survival processes, such as the antioxidant,
pro-inflammatory, angiogenic, and proteotoxic stress responses
[24]. ASK-1 is the prime orchestrator of the immediate early stress
response, summarized in Fig. 3.

In its inactive state, ASK-1 forms homo-oligomers through its
C-terminal coiled-coil domain, establishing a complex that is
referred to as the signalosome [31, 32]. To become activated, the
ASK-1 subunits need to be autophosphorylated. However, in a
homeostatic redox environment the autophosphorylation of

Fig. 3 Summary of the immediate early stress response, where ASK-1 occupies a central role. The ASK-1
signalosome requires autophosphorylation to become activated, a process inhibited by thioredoxin (TRX) in the
absence of oxidative stress. TRX dissociates when oxidized by ROS that are generated by either PDT or tumor
necrosis factor alpha receptor (TNFR) signaling. Phosphorylated ASK-1 relays downstream signals via MKK4
and MKK7 as well as MKK3 and MKK6, which phosphorylate JNK and p38, respectively. These subsequently
activate components of the AP-1 complex and associated proteins that in turn activate transcription at DNA
loci that contain an AP-1 promoter region. The biological ramifications of AP-1 signaling depend on activation
time. Transient activation induces survival by inflammatory, proliferative, and angiogenic processes, whereas
prolonged activation culminates in apoptosis
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ASK-1 is prevented by reduced thioredoxin (TRX) molecules that
bind to the N-terminal region of ASK-1 subunits [31]. ASK-1
activation is triggered via several mechanisms. First, ROS generated
either by PDT or via tumor necrosis factor alpha (TNF-α) receptor
(TNFR) signaling oxidize TRX, resulting in its dissociation from
the signalosome, autophosphorylation of Thr845 in the kinase
domain of the ASK-1 subunits, and subsequent activation of the
signalosome [33, 34]. There are 2 TNF-α-associated receptors;
TNF-R1 (p55) and TNF-R2 (p75). Second, the ubiquitin-specific
peptidase 9 X-linked (USP9X) deubiquitination enzyme binds to
ASK-1 upon the manifestation of oxidative stress. In the absence of
ROS, ASK-1 is ubiquitinated and proteasomally degraded as a
control mechanism. USP9X therefore positively regulates ASK-1
signaling by deterring proteasomal removal [31]. Third, TNF-α
receptor-associated factor (TRAF) 2 and 6 associate with the
ASK-1 signalosome adjacent to the C-terminal coiled-coil domain
during redox stress and positively regulate ASK-1 activity
[35]. Fourth, the binding of TNF-α to its cognate receptor pro-
motes ASK-1-mediated cell death and pro-inflammatory signaling
through TRAF2. This is not a trivial mechanism inasmuch as PDT
stimulates TNF-α production and secretion by macrophages in the
tumor microenvironment [36–38] and by photosensitized cancer
cells [7], further feeding signals into the ASK-1 cascade via TNFR
[39–41]. Negative feedback regulation of consecutively activated
ASK-1 is provided by protein phosphatase 5 (PP5) through
ROS-dependent dephosphorylation of the activating phosphoryla-
tion site on ASK-1 [42].

Phosphorylated ASK-1 activates two different subgroups of
MAPK kinases (MKK) [43], including MKK4 and MKK7 that
activate c-JUN N-terminal kinase (JNK) MAPK [44, 45], and
MKK3 and MKK6 that activate p38 [46, 47] (see Subheading
2.1). Additionally, MKK4 has been shown to activate p38 [48].

2.1 JNK and p38 There are three genes of JNK (also known as the stress-activated
protein kinase (SAPK or SAPK1)): JNK1, JNK2, and JNK3. Alter-
native splicing of the JNK transcripts produces at least ten different
isoforms. JNK1 and JNK2 give rise to four isoforms: α1, α2, β1,
and β2. JNK3 can produce an α1 and β1 isoform [49, 50]. There
are four known isoforms of p38: p38α (SAPK2a), p38β (SAPK2b),
p38γ (SAPK3), and p38δ (SAPK4) [51, 52].

The JNK isoforms are variably distributed in the body. JNK3
isoforms are mainly expressed in the brain, heart, and testes and
share many functional elements. JNK1 and JNK2 isoforms are
found throughout the entire body and have functional differences
[53], albeit somewhat elusive. JNK splicing variants differ in size,
where α1 and β1 isoforms have a molecular weight of 46 kDa and
the α2 and β2 isoforms have a molecular weight of 54 kDa
[50]. JNK splicing variants also differ in binding specificity toward
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downstream targets [49], suggesting that the isoform expression
pattern governs the downstream effects.

Upstream activation of JNK does not exclusively occur via the
ASK-1 pathway, as various other pro-inflammatory signaling path-
ways induce MAPK activity that can also lead to the activation of
JNK [54]. Both JNK1 and JNK2 seem to be primarily involved in
the regulation of tissue growth, development, and regeneration,
being particularly important in the differentiation of neural cells
and the regulation of apoptosis in many cell types, including cancer
cells [55–58]. JNK-regulated apoptosis seems to be key in tissue
remodeling and regeneration, and in the growth and differentiation
of nervous tissue [59]. Finally, JNK can act as a tumor suppressor
[56, 60].

The p38 kinase isoforms also exhibit differential expression
patterns. The p38α and p38β isoforms are found ubiquitously in
virtually all tissues, whereas the p38γ and p38δ isoforms are
expressed in a tissue-specific manner in skeletal muscle and various
organs (lungs, kidneys, testes, pancreas, and small intestine) [61–
63]. Evidence also points toward divergence in both normal and
disease-related functions (including different forms of cancer)
between the isoforms [64–68]. In general, p38 plays a role in
inflammation, apoptosis, cell cycle regulation, and differentiation
and can also be activated by various upstream regulators other than
ASK-1 [69].

Both JNK and p38 have tumor suppressor and pro-oncogenic
attributes as evidenced by their role in apoptosis and inflammatory
signaling, and both may act as negative regulators of each other
[65, 67, 70–72]. JNK has been implicated in inflammatory signal-
ing linked to cancer development, while p38 has been shown to
activate downstream targets that are involved in invasion and
metastasis [24, 72, 73]. JNK inhibits, among others, some of the
anti-apoptotic members of the B-cell lymphoma 2 (BCL-2) protein
family, including BCL-2 and BCL-xL, while activating
pro-apoptotic members of the BCL-2 family such as Bcl-2-asso-
ciated X (BAX) and Bcl-2 homologous antagonist/killer (BAK),
the cell cycle regulator and tumor suppressor p53, and the onco-
protein c-MYC. JNK can also act as a positive regulator of autop-
hagy through forkhead box O (FOXO)-dependent transcription of
autophagy-related genes (ATG) and post-translational modifica-
tion of BCL-2 [74, 75]. P38 can activate the FOS and CCAAT-
enhancer-binding protein (C/EBP) family of proteins as well as the
cell cycle regulators MAP kinase-activated protein kinase 2 (MK2),
MK5, and myocyte enhancer factor-2 (MEF2), which are involved
in cell division and differentiation. P38 further activates mitogen-
and stress-activated protein kinase-1 (MSK1) as well as MAP
kinase-interacting serine/threonine-protein kinase 1 (MNK1) and
MNK2 that regulate the translation of newly transcribed genes.
JNK and p38 both stimulate inflammation through activation of
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the JUN and ATF2 protein families and ETS like-1 protein
(ELK-1) as well as the antioxidant response through NRF2 (see
Fig. 2). Additionally, p38 activates the HIF-1 pathway [76] that is
further addressed in Chapter 19. Given the aforementioned down-
stream effects, p38 inhibitors have been proposed as anti-
inflammatory drugs as well as adjuvant agents for chemotherapy
to offset drug resistance [77–79].

2.2 AP-1

Transcription Factor

AP-1 is involved in several key cellular processes in the progression
of cancer, including proliferation, survival, growth, differentiation,
cell migration, and transformation. AP-1 plays a regulatory role in
redox-responsive gene expression [80] and inflammatory signaling
[81–83]. Ambivalently, AP-1 is linked to both tumorigenesis and
tumor suppression and is capable of inducing both pro-apoptotic
and anti-apoptotic effects [24, 81].

AP-1 is a superfamily of dimeric basic leucine zipper (bZIP)
transcription factors that bind to the AP-1 sequence motif
(TGACTCA), also known as the TPA (12–0-tetradecanoyl-phor-
bol-13-acetate) responsive element (TRE), and the AP-1-binding
site on DNA to activate transcription [84]. Additionally, AP-1
binds to the ATF/CRE (cyclic-AMP response element) sequence
motif (TGACGTCA) [85]. AP-1 homodimers and heterodimers
are composed of JUN (c-JUN, JUNB, and JUND), FOS (c-FOS,
FOSB, and FOS-related antigen 1 and 2 (FRA1/2)), ATF/CRE-
binding protein (CREB) (ATF1, ATF2, ATF3, ATF4, ATF6,
ATF7, and ATF8), and musculoaponeurotic fibrosarcoma (MAF)
protein families [81, 85–89].

All AP-1 proteins share a common DNA-binding bZIP motif
that allows the formation of dimers with other AP-1 proteins,
although not all proteins share the same dimerization partners
[85, 89–91]. Moreover, the DNA-binding site specificity of the
AP-1 complex is dimer-dependent. For example, ATF7 dimerizes
with proteins from the JUN and FOS family, where ATF7/c-JUN
dimers show efficient binding to the DNA-binding sites of ATF,
CRE, and AP-1, while ATF7/c-FOS dimers do not [92]. The
JUN/FOS dimers have at least a 25-fold higher binding affinity
toward TRE domains compared to JUN/JUN dimers [93]. In
general, AP-1 complexes that contain ATF family protein members
have a higher affinity for the ATF/CRE sequence motif, whereas
complexes that exclusively consist of FOS and/or JUN family
proteins exhibit greater affinity for the AP-1-binding site [85].

2.2.1 JUN The JUN transcription factor gene family consists of known proto-
oncogenes that are susceptible to gain-of-function mutations (thus
transgressing to oncogenes), leading to increased protein levels.
Accordingly, the oncogenic properties of JUN proteins have been
extensively researched. c-JUN was found to be instrumental in
malignant melanoma and its overexpression has been observed in
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a large number of other cancer types [94]. Experimental data have
not been unequivocal regarding the oncogene properties of JUN.
For example, c-JUN upregulated the expression of the tumor
suppressor p14ARF/p19ARF. Moreover, c-JUN and JUNB jointly
elevated transcription of the tumor-suppressor gene DMP1 and
regulated the redistribution of p19ARF from the nucleolus to the
nucleoplasm [95], which increases p53 stabilization [96]. Under
oxidative stress, c-JUN/ATF2 dimers mediate the activation of
apurinic/apyrimidinic endonuclease (APE), an enzyme that is
involved in DNA repair, redox regulation of transcription factors,
and initiation of an adaptive response to oxidative stress [97]. In
esophageal cancer (TE7) cells, c-JUN/ATF2 dimers were impli-
cated in cell cycle progression, as knockdown of ATF2 resulted in
downregulation of c-JUN, prevention of G2/M cell cycle arrest,
and increased apoptotic signaling [98], suggesting that both ATF2
and c-JUN protect against oxidative stress.

JUNB was first purported to be a tumor suppressor through
antagonistic action on c-JUN [99]. However, a study involving the
knock-in of JunB in c-JUN double-knockout (Jun-null) mouse
embryos showed that JUNB may substitute for c-JUN, disputing
that JUNB exclusively acts as a c-JUN antagonist [100]. In fact,
JUNB exhibits tumor-suppressive activity [81] as well as oncogenic
properties in some tumor types [101].

JUND and c-FOS jointly regulate hydrogen peroxide levels in
cells and can mediate the transcriptional response to remediate
redox- and UV-radiation-induced stress [102], suggesting a cyto-
protective role during oxidative stress.

2.2.2 FOS FOS proteins are critically involved in the development of the
immune system, central nervous system, and bone structures
[103]. c-FOS also exerts oncogenic effects, as overexpression in
chimeric mice incites the development of chondrogenic tumors
[104]. In humans, upregulated c-FOS expression has been reported
in several types of cancer, and a positive correlation between c-FOS
protein levels and malignant progression and poor prognosis has
been reported in multiple studies [103, 105, 106]. However, in
epithelial ovarian carcinoma, low c-FOS expression was associated
with unfavourable progression-free survival and reduced overall
survival [107]. Furthermore, in rhabdomyosarcoma cells estab-
lished from transformation related protein 53 (Trp53)/Fos double-
knockout murine rhabdomyosarcoma cell lines, re-expression of
c-Fos through retroviral gene transfer increased apoptosis [108],
suggesting that c-FOS might also play an anti-oncogenic role. Cor-
roboratively, under an oxidative stress impetus, c-FOS induces the
expression of heme oxygenase-1 (HO-1), a stress-responsive
enzyme that protects against cell damage [109].

Wild-type FOSB displays pro- and antitumor characteristics.
Low expression of FOSB in gastric cancer is linked to increased

416 Daniel J. de Klerk et al.



tumor progression and poor prognosis, while induced overexpres-
sion limits cell proliferation [110]. Similar results have been
reported in pancreatic cancer [111]. In epithelial ovarian cancer
the inverse appears to hold, where overexpression of FOSB corre-
lates with reduced progression-free survival. FOSB actually steers
chronic stress-mediated cancer progression in ovarian cancer
[112, 113]. FOS-related antigen (FRA)1 also exhibits this dualistic
phenotype, while FRA2 is primarily associated with pro-oncogenic
properties [114–119]. In summary, the particular role that FOS
proteins occupy seems to rely on each particular type of cancer as
well as the prevailing biological milieu and molecular landscape.

Direct p38- or JNK-mediated phosphorylation of FOS pro-
teins has not been observed to date. Nevertheless, multiple studies
have reported downregulation of FOS proteins upon inhibition of
p38 [120–124]. Knockout of MSK1 and MSK2, which are both
targets of p38 [125], resulted in a 50% decrease in c-Fos transcrip-
tion in primary mouse cell lines [126]. As alluded to in Subheading
2.1, all FOS proteins can dimerize with all JUN proteins, but FOS
proteins do not form dimers among themselves. However, FOS
proteins could possibly substitute for each other, as one study
demonstrated that inhibition of a single member of the FOS family
has no effect on cell cycle progression, whereas simultaneous inhi-
bition of all four FOS proteins profoundly prevents cell cycle
progression [127].

2.2.3 ATF/CREB The ATF/CREB protein family members are able to dimerize with
some of the other AP-1 proteins [85, 87, 89, 128]. The ATF/-
CREB family consists of over 10 different proteins, which often
have multiple alternatively spliced variants that are typified by rather
complex nomenclature [88]. CREB2, for example, can refer to an
alternatively spliced CREB, CRE-BP1, and ATF4, while some of
the other proteins have up to five different designations. As a result,
some articles do not list the same proteins as members of the
ATF/CREB family. Moreover, not every member of the ATF family
is necessarily an AP-1 protein, and some ATF proteins that are
classified as AP-1 proteins de facto inhibit AP-1-mediated transcrip-
tion. Examples include B-ATF and JUN dimerization protein-1
and -2 (JDP-1/2), which all dimerize with JUN to form transcrip-
tionally inactive AP-1 complexes [129, 130]. ATF5 has been
reported to be the exact same protein as c-FOS [88]. The ATF/-
CREB proteins that are considered AP-1 transcription factors are
CREB, ATF1, ATF2, ATF3, ATF4, ATF6, ATF7, and ATF8.

ATF1 and CREB are different from most of the other men-
tioned ATF/CREB family members insomuch that they do not
dimerize with any other of the ATF/CREB proteins [89] nor
with any FOS or JUN family members, putting into question
their status as AP-1 proteins. However, since both proteins are
activated by MAPK-activated protein kinase (MK)2, a downstream
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target of p38 [131], ATF1 and CREB are part of the ASK-1
pathway. CREB is a pivotal regulator of neuroprotective signaling
against ROS-mediated cell death [132] and is required for the
activation of APE under oxidative stress [97]. ATF1 upregulates
the transcription ofHSF1 that codes for HSF-1, which is the master
regulator of heat-shock response proteins and associated with can-
cer aggressiveness, cell proliferation, and suppression of apoptosis
[133, 134]. Inhibition of ATF1 reduced cell proliferation and
migration in 2 different esophageal cancer cell lines (EC1 and
Kyse450) [135].

ATF2 is the most extensively researched member of the ATF/-
CREB family. In tumorigenesis, both oncogenic and tumor-
suppressive roles have been reported for ATF2 [136, 137]. In the
yeast species Schizosaccharomyces pombe, Atf1 (also known as Gad7
and Mts1), the functional homolog of human ATF2 [88], is one of
the central players in the general stress response, of which the
oxidative stress response is a subdivision [138]. In humans, under
oxidative stress, c-JUN/ATF2 dimers mediate the transcriptional
activation of APE (see Subheading 2.2.1) aimed at restoring the
redox balance [97]. Another study found that ATF2 both upregu-
lates and dimerizes with c-JUN in esophageal cancer (TE7) cells
and is responsible for regulating cell cycle progression under oxida-
tive stress [98]. Knockdown of ATF2 under these circumstances
reinforced oxidative stress-induced apoptosis. ATF2 can be phos-
phorylated by both JNK and p38, though it has been reported that
phosphorylation by the MAPK extracellular signal-regulated kinase
(ERK) is also necessary for the activation of ATF2 [139, 140].

ATF3 is mainly activated by cell damage [141] downstream of
JNK and p38 [142–145]. As a homodimer it mainly functions as a
transcriptional repressor [87], negatively regulating pro-inflammatory
cytokine production [146]. ATF3 is also able to dimerize with c-JUN
and JUND proteins to form transcription-activating AP-1 complexes
[87]. ATF3/ATF2 and ATF3/JUNB dimers possess both transcrip-
tion repression and activation functions [88]. ATF3 double-knockout
mice do not present with developmental abnormalities but become
“over-inflamed” upon being exposed to pro-inflammatory stimuli, in
line with ATF3’s repressive role in pro-inflammatory cytokine produc-
tion [146]. ATF3 possesses both oncogenic and tumor-suppressive
qualities [146] in that it regulates genes that are involved in cell cycle
progression and apoptosis signaling. One study reported that stress-
induced ATF3 in normal cells leads to the activation of a set of
pro-apoptotic genes, whereas in cancer cells ATF3 represses those
same genes [147]. Under oxidative stress, ATF3 contributes to the
cytoprotective and antioxidant functions of NRF2 [148].

ATF4 is one of the mediators of the proteotoxic stress/UPR
response [149–151], another PDT-triggered survival pathway (see
Subheading 1 and Fig. 2), that is also a downstream target of both
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JNK and p38 [152–155]. Like the ASK-1 pathway, the UPR path-
way is not strictly a survival pathway as it can promote apoptosis
too, depending on the cellular context [150, 156]. Apart from
playing a role in the UPR, ATF4 confers resistance against oxidative
stress through the activation of the glutathione-redox cycle
(in cardiomyocytes that have a mutation in aldehyde dehydroge-
nase 2) [157] and through the upregulation of vascular endothelial
growth factor (VEGF) (following arsenite-induced oxidative stress)
[158]. ATF4 has been proven to dimerize with c-FOS, c-JUN, and
JUND but not with other ATF/CREB family members [87, 88].

ATF6 is another AP-1 protein that is heavily involved in the
UPR [87, 150]. In fact, it is one of the three proximal sensors
located in the ER that initiate the UPR [150]. ATF6 is directly
phosphorylated by p38 [159], a process that was shown to be
central to the UPR [160], suggesting possible cross-talk between
the ASK-1 pathway and the UPR. Since no evidence supports ATF6
acting outside of the UPR, and since ATF6 was shown to preferen-
tially dimerize with itself and not with other AP-1 proteins [161],
ATF6 will be considered as part of the UPR and not necessarily the
ASK-1 pathway. This protein will therefore not be further discussed
in the review.

The last two ATF/CREB family members are ATF7 (formerly
known as ATFa [162]) and ATF8. These are the most recently
discovered ATF proteins and have not been extensively studied.
ATF7 is structurally very similar to ATF2 [136] and is phosphory-
lated by p38 during stress related to diet, social isolation, UVB
radiation, or aging in mice [163–166]. One study showed that
ATF7 was involved in cytoprotection against oxidative stress in
C. elegans [167], while no data on the potential role in oxidative
stress recovery was retrieved for ATF8.

3 ASK-1 Pathway in PDT

The direct activation of ASK-1 by PDT has hitherto not been
experimentally confirmed. Only ancillary proof using downstream
targets is available to attest to the role of ASK-1 in PDT. Particu-
larly JNK and p38 have been implicated, most often as drivers of
apoptosis and inflammation. The majority of studies have been
performed in vitro, providing the lowest level of evidence for the
involvement of ASK-1 as a survival pathway (as opposed to animal
and clinical studies).

3.1 ASK-1 Signaling:

Apoptosis

In terms of apoptosis as outcome category, Shi et al. [168] demon-
strated the activation of JNK and p38 by photoproduced ROS
using sinoporphyrin sodium-PDT (semiconductor laser, 650 nm,
cumulative radiant exposure of 3 J/cm2) in human esophageal
cancer (Eca-109) cells. Similarly, Tu et al. [169] demonstrated the
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activation of JNK by PDT in human osteosarcoma (MG-63) cells
using aloe emodin as PS (LED light, 430 nm, cumulative radiant
exposure of 2.4–6.4 J/cm2). Aloe emodin is an anthraquinone
found in aloe vera that in itself possesses anticancer properties
[170]. PDT with aloe emodin (10 μM) resulted in apoptosis and
autophagy. JNK activity and degree of apoptosis were reduced by
the ROS scavenger N-acetylcysteine (NAC, Subheading 4.3), indi-
cating that the photoproduced ROS activated JNK signaling and
suggesting that the ASK-1-JNK pathway may have accounted for
the apoptotic response. The conclusions of both previous studies
were supported by another investigation that showed that apopto-
sis was mediated by activated JNK and p38 in response to
5-aminolevulinic acid (ALA) and hexyl-ALA-PDT (halogen light,
irradiance of 14 mW/cm2, cumulative radiant exposure of 2 J/
cm2) in human lung carcinoma (H460) cells [171]. JNK activation
and corollary caspase activation were also observed in human leu-
kemia (K562) cells treated with hypericin-PDT (0.4 μg/mL, LED
light, 595 nm, irradiance of 0.3 mW/cm2, illumination time of
4 min) [172].

Although activation of p38 is more often implicated in tumor
cell survival than JNK, both JNK and p38 can confer a pro-death or
survival signal. Several reports have provided evidence that
JNK-mediated survival signaling and/or p38-mediated cell death
signaling can occur following PDT. For example, Xu et al. [173]
observed that p38 was activated in human breast cancer
(MDA-MB-231) cells exposed to evodiagenine-PDT (365 nm,
irradiance of 23 mW/cm2, 20-s illumination), resulting in cell
death. Experiments in human melanoma (A375) cells treated with
the zinc phthalocyanine (ZnPC) variant Pc13 (halogen lamp,
675 � 15 nm, cumulative radiant exposure of 340 mJ/cm2)
showed the manifestation of apoptosis as a result of p38-induced
poly (ADP-ribose) polymerase 1 (PARP-1) cleavage, whereas JNK
conferred cytoprotection through autophagic signaling [174]. The
signaling relationship between p38 and PARP-1 was reinforced by
Zhang et al. in human lung carcinoma (A549) cells subjected to
gallium (III) tris(ethoxycarbonyl)corrole-PDT (625 nm, 5-W out-
put power, 30-min illumination) using in vitro and in vivo test
models (BALB/c nude mouse xenografts) [175]. Comparable
results were also obtained in the study of Salmerón et al. [176],
who demonstrated an interaction between p38 and caspase-8 acting
as an inducer of apoptosis in acute promyelocytic leukemia (HL60)
cells treated with perinaphthenone-PDT (broadband white light,
cumulative radiant exposure of 5–20 J/cm2). Here, JNK mediated
cell survival entailed phosphatidylinositol 3-kinase (PI3K)/Akt sig-
naling. Weyergang et al. [177] revealed that inhibition of p38 in rat
ovarian cancer (NuTu-19) cells with SB203580 (see Subheading
4.2.6) increased cell viability from<5% to 50% following PDT with
meso-tetraphenyl porphyrin disulphonate (TPPS2a; 0.2 μg/mL,
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435 nm, irradiance of 13.5 mW/cm2), while inhibition of JNK
with SP600125 (see Subheading 4.3) enhanced phototoxicity.
Finally, combination treatment entailing cisplatin and berberine-
PDT (LED light, 420 nm, cumulative radiant exposure of 5.4 J/
cm2) in melanoma (A375, M8, SK-Mel-19) cells and cisplatin-
resistant variants resulted in p38-induced apoptosis that could be
blocked with SB203580 (see Subheading 4.2.6) and NAC (see
Subheading 4.3) [178].

In other instances, blockade of both p38 and JNK results in
increased cell death. Ge et al. [179] reported that inhibition of p38
or JNK reduced cell viability in cultured skin squamous carcinoma
(SCL-1) cells subjected to 5-ALA-PDT (40 mg/mL, 632 nm,
irradiance of 23 mW/cm2, illumination time of 30 min). Similarly,
mouse embryonic fibroblasts could be sensitized to hypericin-PDT
(white light, irradiance of 4.5 mW/cm2, cumulative radiant expo-
sure of 0.8–1.9 J/cm2) by antagonizing p38 using molecular inhi-
bitors, short hairpin RNA, and knockout cell lines. In this case, p38
steered cell survival through autophagy and redox stress manage-
ment via activation of the NRF2 pathway [180]. Likewise, thera-
peutic recalcitrance was reversed in chlorin e6-PDT-treated human
colorectal cancer (SW620) cells (650 nm, cumulative radiant expo-
sure of 3 J/cm2) by knockdown of p38 with siRNA [181].

3.2 ASK-1 Signaling:

Inflammation

With respect to inflammation as outcome category, which is con-
sidered pro-tumorigenic in nature, JNK and p38 have been shown
to activate AP-1 in response to PDT [86], leading to an increase in
pro-inflammatory signaling owing to treatment-induced upregula-
tion of interleukin 6 (IL-6) [182], IL-10 [183], and C-reactive
protein (CRP) [184]. Corroboratively, Weijer et al. [8] reported
the upregulation of AP-1-related genes (JUN, FOS, FOSB, ATF2,
and ATF3) in PDT-treated human perihilar cholangiocarcinoma
(SK-ChA-1) cells following photosensitization with ZnPC-
encapsulating DPPC-DSPE-PEG liposomes (1.5 μM PS concen-
tration, diode laser, 671 nm, irradiance of 50 and 500 mW/cm2,
cumulative radiant exposure of 15 J/cm2). Several upstream reg-
ulators of ASK-1 such as TRAF2 and TRAF6 were also upregu-
lated, implying an ASK-1 signal feed from upstream inducers (see
Fig. 3). ASK-1 activation by paracrine signaling was also suggested
with increased transcript levels of TNF in the 50 mW treatment
group, as explained in Subheading 2. The data were largely repro-
ducible in SK-ChA-1 cells, human epidermoid carcinoma (A431)
cells, human umbilical vein endothelial cells (HUVECs), and
mouse (RAW 264.7) macrophages treated with ZnPC-PDT at
half maximum lethal concentration (LC50) and LC90 using PEGy-
lated cationic liposomes as PS delivery system (30-750 nM PS
concentration, 500 mW/cm2, cumulative radiant exposure of
15 J/cm2). JUN, FOS, and JUNB were upregulated in all cell
lines except the HUVECs, which exhibited downregulation of
JUNB [12].
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On a protein level, it was demonstrated that HO-1 (see Sub-
heading 2.2.2) protected human cervix carcinoma (HeLa) cells and
human urothelial carcinoma (T24) cells that had been subjected to
hypericin-PDT (L18W30 fluorescent lamps, emission between
530 and 620 nm, irradiance of 4.5 mW/cm2 with a cumulative
radiant exposure of 4 J/cm2) [185]. The HO-1 cytoprotection was
mediated by PDT-activated p38 and PI3K, as inhibition of p38 and
PI3K using PD 169316 (see Subheading 4.2.2) and LY294002 (see
Subheading 4.3), respectively, resulted in increased susceptibility to
apoptotic cell death following PDT. Post-PDT pro-inflammatory
signaling has also been corroborated based on the cyclooxygenase
2 (COX-2) signaling axis. Hendrickx et al. [186] demonstrated that
JNK1 and p38 were activated in human cervix carcinoma (HeLa)
and human urothelial carcinoma (T24) cells as soon as 0.5 h after
PDT with hypericin (L18W30 fluorescent lamps, 530–620 nm
maximum intensity, irradiance of 4.5 mW/cm2). Activation of
JNK1 and P38 coincided with COX-2 upregulation at 3 h post-
PDT and lasted for at least 21 h in both cell types. The COX-2
upregulation was p38 specific. Furthermore, PDT activated NF-κB
signaling at 24 h post-PDT, reflecting an interplay between the
ASK-1 and the NF-κB survival pathways (see Subheading 1 and
Fig. 2). P38 and COX-2 inhibition with PD 169316 (1 μM) and
NS-398 (50 μM; Subheading 4.3), respectively, increased the
extent of apoptosis in HeLa cells in the order of PD
169316 > NS-398, confirming an adjuvant effect on cell death
induction by survival signaling blockade at various levels in the
ASK-1-p38 pathway. Similarly, Song et al. [187] reported that
sublethal Photofrin-PDT (5 μg/mL, 635 nm, irradiance of
2 mW/cm2, cumulative radiant exposure of 0–360 mJ/cm2)
resulted in COX-2 induction and corollary release of prostaglandin
E2 (PGE2), which was mediated by p38. Both COX-2 and PGE2

were suppressed by pretreatment with NAC (Subheading 4.3),
PD98059 (20 μM, MAPK/ERK kinase (MEK)-1 inhibitor; Sub-
heading 4.3), SB203580 (10 μM, p38 inhibitor; Subheading
4.2.6), LY294002 (10 μM, PI3K inhibitor), diphenyleneiodonium
(5 μM, NADPH oxidase inhibitor), rotenone (5 μM, mitochon-
drial complex I inhibitor), pyrrolidine dithiocarbamate (PDTC;
10 μM, NF-κB inhibitor), and N-tosyl-L-phenylalanyl chloro-
methyl ketone (TPCK; 10 μM, IκB protease inhibitor). Further-
more, PDT activated p53, an effect that was blocked by PD98059
and SB203580 as well as COX-2 siRNA. COX-2 siRNA also
increased Noxa (downstream effector of p38) and reduced Bax
protein levels that in turn translated to exacerbated caspase-3 acti-
vation (occurs downstream of p38 [188]) and consequent apopto-
sis, altogether implicating the immediate early stress response
pathway at the level of p38 and below. In PDT-treated mice bearing
murine breast cancer (EMT6) xenografts, COX-2 inhibition by
celecoxib reduced COX-2, PGE2, VEGF, TNF-α, and IL-1β
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protein levels, which were all considerably elevated after PDT.
p38-regulated COX-2 signaling can also activate histone acetyl-
transferase p300 (p300HAT) that, when directly inhibited with
anacardic acid or short hairpin RNAs or indirectly with upstream
inhibitors of COX-2 (NS-398), sensitized human melanoma
(A375) cells to PEGylated liposomal chlorin e6 PDT (diode laser,
662 nm, irradiance of 95 mW/cm2) [189]. Furthermore, Solban
et al. showed that p38 could regulate VEGF expression indepen-
dently of HIF-1α in prostate cancer cells (LNCaP) following sub-
lethal benzoporphyrin-derivative PDT (140 nmol/L, 690 nm
diode laser, 0.5 J/cm2) [190]. The increased expression of VEGF
could be abrogated using p38 inhibitor SB202190. Similarly,
another study succeeded in suppressing hypericin-PDT-induced
migration of endothelial cells by inhibiting either p38 using PD
169316 or COX-2 using NS-398 in T24 cells (L18W30 fluores-
cent lamps, maximum emission between 530 and 620 nm, cumu-
lative light dose of 4 J/cm2) [191]. The inhibition of p38 in this
study also further sensitized cells to PDT. These data suggest that
pro-inflammatory signaling, which may translate to tumor survival
and recurrence if left unchecked, occurs after PDT and can be
pharmacologically controlled.

In the final analysis, the discrepancy between pro-survival ver-
sus pro-death signal relay can be ascribed to prolonged or transient
activation of the ASK-1/p38/JNK signaling cascade, the particular
PS used and its localization preference [13, 25], and cell type and
genotype [24, 177]. Furthermore, particular inhibitors for the
same target can have different effects on PDT outcome. For exam-
ple, the p38 inhibitor PD 169316 reduced apoptosis while
SB203580 (another p38 inhibitor) increased apoptosis [192], indi-
cating that there could be variation in downstream effects imparted
by different inhibitors of the same target or that other (unknown/
pharmacodynamic) factors are at play. All these should be taken into
consideration when designing combinatorial PDT modalities
encompassing small molecular inhibitors of survival pathways.

4 Inhibition Strategies for the ASK-1 Pathway

Given the role of ASK-1 in survival signaling under conditions of
oxidative stress, inhibition of the ASK-1 pathway is expected to
improve PDT outcome, although some anticancer treatments that
mechanistically rely on ROS generation in fact require ASK-1 for
therapeutic potency [193–195]. In those cases, inhibition would be
ill advised. In the previous section it has become clear that p38 and
JNK exhibit pleiotropic divergence after PDT, signaling either
pro-apoptosis or pro-survival and therefore making it difficult to
pharmacodynamically prognosticate the net effect of pathway inhi-
bition. On the other hand, some cancer types are known to rely on
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ASK-1 for its oncogenic properties [196], which in itself could
provide cues as to the possible end result of pathway inhibition.
All these elements should be carefully considered when implement-
ing ASK-1 inhibitors as adjuvants for PDT. In the following sec-
tions a summary is given of ASK-1 and p38 inhibitors that could be
used as adjuvants in PDT.

Inhibitors of JNK were omitted given that JNK is a key regula-
tor of apoptosis (inhibits anti-apoptotic BCL-2 family members
while activating pro-apoptotic BCL-2 family members) and exe-
cutes tumor suppressor and pro-oncogenic functions (see Subhead-
ing 2.1). Its downregulation may be deleterious to PDT outcome,
although in some particular cases pharmacological intervention
could be fruitful for reasons provided above. Those cases did not,
however, warrant inclusion of and elaboration on the respective
inhibitors.

4.1 ASK-1 Inhibitors Most ASK-1 inhibitors are small molecules that have been primarily
investigated as anti-inflammatory drugs for the treatment of
immune disorders, neurodegenerative diseases, and surgery-
induced fibrosis [197–204]. A selection of ASK-1 inhibitors that
could be explored for use in PDT is presented in Fig. 4 that outlines
their molecular structure, chemical attributes, spectral properties,
and pharmacodynamic properties. An overview of the mechanism
of action, pharmacological and biological effects, test systems, and
application in PDT is provided Table 1. A select number of the
listed inhibitors is addressed in the text.

4.1.1 Gilead Science’s

ASK-1 Inhibitors (GS-4997/

Selonsertib, GS-444217,

GS-459679)

Gilead’s synthetic ASK-1 inhibitors are linear amide backbone
polycyclic compounds that constitute interesting pharmacological
candidates for PDT due to their low 50% inhibitory concentration
(IC50) values toward ASK-1, namely in the 3–10 nM range
[210, 231]. To date, none of the compounds have been tested in
combination with PDT and no studies have been performed in
oxidatively (hyper)stressed cancer cells.

Selonsertib (GS-4997) is a selective inhibitor of ASK-1 that has
been indicated for the treatment of nonalcoholic steatohepatitis
owing to its anti-inflammatory and anti-fibrotic properties
[228]. Selonsertib binds the catalytic kinase domain (serine/threo-
nine) of ASK-1 in an adenosine triphosphate (ATP)-competitive
manner and prevents phosphorylation of downstream kinases such
as JNK and p38 [224, 227]. Although late-stage clinical trials for
various liver indications failed [229], selonsertib is being consid-
ered as a cancer therapeutic because of its ability to reverse
ATP-binding cassette (ABC) transporter-facilitated multidrug
resistance (MDR) through ABCB1 or ABCG2 [230]. It should
be noted that selonsertib attenuated apoptosis induced by eclipta-
saponin A in human non-small cell lung cancer (H460 and H1975)
cells, which was mediated by p-ASK-1, p-JNK, and cleaved caspase-
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3 [226]. However, ASK-1 was not activated by ROS per se, as ROS
do not seem to be the driver behind ecliptasaponin A-induced
ASK-1 activation.

Fig. 4 Overview of ASK-1 inhibitors that are eligible candidates for use as adjuvants in PDT. LogP (octanol:
water partition coefficient) values were retrieved from PubChem and were predicted with XLogP2 or XlogP3
software. The half maximum inhibitory concentration (IC50, enzymes), half maximum lethal concentration
(LC50, in vitro), half maximum lethal dose (LD50, in vivo), t1/2 (circulation half-life), and spectral properties were
obtained from the material safety data sheets (retrieved from the Cayman Chemicals, MedKoo, and Spectrum
Chemical websites) and PubChem. The half maximum inhibitory concentration (IC50, used for proliferation and
enzymes) and half maximum cellular potency (EC50) were obtained from literature. This also applies to LC50,
LD50, and t1/2 data that were missing from or inconsistent in the abovementioned databases. Abbreviations:
Em emission, Ex excitation, ip intraperitoneal, iv intravenous, MW molecular weight, NA information not
available, sc subcutaneous, λmax the wavelength at which there is an absorption maximum (may be multiple
absorption bands)
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GS-444217 is a selective ASK-1 inhibitor that targets to the
ASK-1 kinase domain with an IC50 of 2.9 nM [209]. Gilead has
studied the compound in the framework of nephropathies
[204, 208, 209, 211], pulmonary diseases [197, 232], and hepatic
fibrosis [212] but not for oncological indications. ASK-1 inhibition
by GS-444217 has been sufficiently demonstrated in the cited
studies with downstream ramifications on p38 and JNK
[208]. The advantage of this compound is that it can be adminis-
tered orally and that it enjoys high oral bioavailability (>89% in
rats) [210].

GS-459679 is the most elusive selective ASK-1 inhibitor of the
three, with no publicly available information on binding site(s) and
molecular structure. The IC50 with respect to ASK-1 is 6.1 nM
[214]. The compound has been studied in conditions of hypoxia/
reoxygenation, which have ROS generation, oxidative/nitrosative
stress, and sterile inflammation at their helm [3, 233–
238]. GS-459679 ameliorated infarct size, reduced cardiomyocyte
apoptosis, and preserved left ventricular function in a mouse model
of myocardial ischemia-reperfusion [202]. In vivo ASK-1 inhibition
by GS-459679 was confirmed in a mouse model of acetaminophen-
induced liver toxicity, where GS-459679 was shown to reduce
p-ASK-1 and p-JNK protein levels, liver damage, and inflammation
as well as improve antioxidative capacity [213].

Taken together, these data suggest that ASK-1 blockade by
these GS inhibitors may cause the downstream biological responses
to veer into an undesired direction (i.e., cytoprotection) when
juxtaposed to the goals of cancer drugs, with the exception of
sensitization of cancer cells to chemotherapeutics. Nevertheless,
the conditions in which these inhibitors have been tested do not
emulate the redox landscape created by PDT, which embodies
substantial oxidative damage by ROS that above all are not pro-
duced under pathophysiological circumstances (i.e., 1O2). The
testing of these inhibitors as well as the many others detailed in
[210, 231] in cancer cells as adjuvants for PDT is therefore still
warranted, even if these inhibitors ultimately fulfill their function as
negative controls in assays.

4.1.2 ASK-1 Inhibitor 10 ASK-1 inhibitor 10, also known as TC ASK 10, is a synthetic
imidazo[1,2-a]pyridine compound that selectively inhibits
ASK-1 at an IC50 of 14 nM [205, 210]. ASK-1 inhibitor 10 has
been tested in neither cancer cells nor PDT. The compound was
used in growth assays with ASK-1-overexpressing airway smooth
muscle cells isolated from patients with chronic obstructive pulmo-
nary disease. ASK-1 inhibitor 10 reduced mitogen-activated cell
growth andmigration in a concentration-dependentmanner, which
were mediated by p38 and JNK [206]. ASK-1 inhibitor 10 was also
found to inhibit streptozotocin-induced JNK in INS-1 pancreatic β
cells, whereby phosphorylation of p38 was dose-dependently
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inhibited [205]. Finally, ASK-1 inhibitor 10 exhibited good bio-
availability when dosed orally in rats [205]. Oral dosing is easy
and practical and generally has preference over intravenous deliv-
ery, which has to be performed in a clinical setting.

4.1.3 MSC2032964A MSC2032964A is a synthetic compound identified by high-
throughput screening that exhibits selectivity and inhibitory
potency toward ASK-1 (IC50 ¼ 93 nM) [198]. The compound
has a favorable pharmacokinetics profile; the good metabolic stabil-
ity, enterocytic permeability, and moderate plasma protein-binding
affinity account for excellent oral bioavailability (82%), moderate
clearance (1.1 L/kg/h), long circulation half-life (5.2 h), and a
high distribution volume (1.0 L/kg) in rats. Comparable results
were obtained in mice. MSC2032964A also possesses brain-
penetrating capabilities [198]. In follow-up studies,
MSC2032964A blocked lipopolysaccharide-induced ASK-1 and
p38 phosphorylation in cultured mouse astrocytes and was able to
almost completely blunt ASK-1 enzymatic activity in mice with
experimental autoimmune encephalomyelitis during an 18-d oral
gavage regimen (30 mg/kg), which translated to reduced spinal
cord demyelination, decreased astrocyte and microglial activation,
and partial prevention of optic nerve demyelination [198]. In an
optic nerve injury mouse model, p38 activation and retinal gan-
glion cell death were suppressed by MSC2032964A, which con-
curred with a reduction in TNF-α and inducible nitric oxide
synthase (iNOS) protein levels [219]. Despite its inhibitory activity
toward ASK-1 and downstream p38-suppressive effects,
MSC2032964A has not been investigated in cancer cells or onco-
logical PDT.

4.1.4 NQDI-1 NQDI-1 (2,7-dihydro-2,7-dioxo-3H-naphtho[1,2,3-de]quino-
line-1-carboxylic acid ethyl ester) is a synthetic aminoanthraqui-
none derivative [239] that selectively and reversibly inhibits
ASK-1 at an IC50 of 3 μM by competitively targeting the
ATP-binding site in the catalytic domain [222]. ASK-1 inhibition
by NQDI-1 was confirmed in a Langendorff Sprague-Dawley rat
heart perfusion experiment, where the roles of ASK-1, JNK, and
MKK7 were investigated in a setting of sunitinib-induced cardio-
toxicity. Compared to untreated hearts, NQDI-1 reduced protein
levels of p-ASK-1 and its downstream targets p-JNK and p-MKK7,
in addition to increasing levels of microRNA (miR)-1, miR-27a,
and miR133a [221]. Implementation of NQDI-1 in differentiated
human monocytic leukemia (THP-1) cells that had been primed
with the quercetin derivative quercetin 3-oxyloside showed that
(1) NQDI-1 was not toxic to cells up to a 50 μM concentration;
(2) NQDI-1 reduced TNF-α protein levels in a concentration-
dependent fashion; and (3) NQDI-1 blocked the activation of
ASK-1 and its downstream target p38, altogether reversing the
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inductive effects of quercetin 3-oxyloside on these proteins
[223]. The cytotoxicity of NQDI-1 was contested in [221],
where the compound caused a concentration-dependent reduction
in the viability of cultured human acute myeloid leukemia (HL60)
cells and exacerbated the potency of sunitinib [221]. Finally, in a
study on the role of glucose in metformin cytotoxicity toward
human ovarian cancer (SKOV3) cells, Ma et al. [220] demonstrated
in monolayer cultures that NQDI-1 reduced protein levels of
p-JNK and growth arrest- and DNA damage-inducible gene
153 (GADD153/CHOP), and cleaved caspase-4 under conditions
of hypoglycemia. The hypoglycemia in itself triggered activation of
ASK-1 (but not JNK) and reduced Bcl-2 protein levels, whereby
inhibition of ASK-1 by siRNA translated to increased apoptosis via
the intrinsic pathway. In euglycemic mice bearing SKOV3 xeno-
grafts, NQDI-1 reduced tumor volume by completely abrogating
intratumoral ASK-1 activation but compromised the therapeutic
efficacy of metformin.

NQDI-1 has not been investigated in relation to PDT. Readers
should note that numerous other potent ASK-1-inhibiting ami-
noanthraquinone derivatives are available, some of which have
shown antitumor efficacy in mouse models of human cancer
[239] and could be considered as adjuvants for PDT.

4.2 p38 Inhibitors As described in Subheading 3, p38 is a kinase downstream of ASK-1
involved in survival signaling, albeit one that can also act as a
pro-death signal inducer. A selection of p38 inhibitors that could
be explored for use in PDT is presented in Fig. 5. An overview of
the mechanism of action, pharmacological and biological effects,
test systems, and application in PDT is provided in Table 2. Some of
the included inhibitors are addressed in the text.

4.2.1 CMPD1 CMPD1 (20-fluoro-N-(4-hydroxyphenyl)-[1,10-biphenyl]-4-buta-
namide) is a selective noncompetitive inhibitor of p38α that blocks
the binding of its substrate, mitogen-activated protein kinase-
activated protein kinase 2 (MK2a), which post-translationally reg-
ulates TNF-α [341]. Currently CMPD1 is not known to inhibit any
other substrate of p38α.

CMPD1 has been tested as a therapeutic agent against several
types of cancer. In gastric cancer (MKN-45 and SGC7901) cells
CMPD1 inhibited cell proliferation in a dose-dependent manner by
inducing G2/M cell cycle arrest and apoptosis [244]. Apoptosis was
accompanied by downregulation of BCL-2 and c-MYC and upre-
gulation of BAX and cytochrome c release and cleavage of PARP. In
the treatment of human cervix carcinoma (HeLa) cells, CMPD1
inhibited the phosphorylation of heat-shock protein 27 (HSP27), a
downstream target of p38/MK2a, that protected cells from
TNF-α-induced apoptosis [241]. This study also revealed that the
pro-apoptotic proteins cleaved PARP and that cleaved caspase-3

Strategies for Improving Photodynamic Therapy Through Pharmacological. . . 431



Fig. 5 Overview of p38 inhibitors that are eligible candidates for use as adjuvants in PDT. LogP (octanol:water
partition coefficient) values were retrieved from PubChem and were predicted with XLogP2 or XlogP3
software. The half maximum inhibitory concentration (IC50, enzymes), half maximum lethal concentration
(LC50, in vitro), half maximum lethal dose (LD50, in vivo), t1/2 (circulation half-life), and spectral properties were
obtained from the material safety data sheets (retrieved from the Cayman Chemicals, and Spectrum Chemical
websites), PubChem, and Selleckchem. The half maximum inhibitory concentration (IC50, used for proliferation
and enzymes) was obtained from available literature. This also applies to LC50, LD50, and t1/2 data that were
missing from or inconsistent in the abovementioned databases. Abbreviations: Em emission, Ex excitation, ip
intraperitoneal, iv intravenous, MW molecular weight, NA information not available, sc subcutaneous, λmax the
wavelength at which there is an absorption maximum (may be multiple absorption bands)
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and -8 were upregulated by CMPD1. Furthermore, CMPD1 can
selectively inhibit the growth of leukemia (Kasumi-1) cells at the
level of MK2a, as MK2a phosphorylation is a key leukemogenic
event, but not p38 and without affecting healthy cells [245]. Lastly,
a study investigating the cytotoxic activity of CMPD1 in glioblas-
toma cells (U87, U87-EGFRvIII, A172, and U251) revealed cyto-
toxic effects independent of MK2a inhibition [242]. CMPD1-
treated cells showed no change in phosphorylation of MK2a and
heat shock protein 27 (HSP27), and knockdown of MK2a did not
attenuate the cytotoxicity of CMPD1. Further analysis revealed
that CMPD1 inhibits tubulin polymerization in a dose-dependent
manner, disrupting mitosis and inducing cell cycle arrest and
apoptosis.

Studies are needed to investigate the pharmacodynamics of
CMPD1 and PDT in cancer cells.

4.2.2 PD 169316 PD 169316 is a synthetic substituted 2,4,5-triarylimidazole that
acts as a cell-permeable, reversible, competitive, and selective p38
inhibitor with an IC50 of 89 nM. As alluded to in Subheading 3,
p38 inhibition by PD 169316 augmented the extent of apoptosis in
hypericin-PDT-treated human cervix carcinoma (HeLa) cells
[186], providing proof of concept for the successful implementa-
tion of the combinatorial modality.

Furthermore, but in the absence of PDT, PD 169316 amplified
apoptosis triggered by TNF-α by 14% in human histiocytic lym-
phoma (U-937) cells, an effect that was even more pronounced
when PD 169316 was administered jointly with another
pyridinylimidazole-based compound, PD 98059, but not with
SB203580 (see Subheading 4.2.6). The combination yielded a
67% increase in apoptosis compared to TNF-α-primed control
cells and was mediated by caspase-3 [247]. The role of TNF-α on
the ASK-1 signaling axis in the context of PDT has been explained
in Subheading 2 and essentially encompasses dual ASK-1 activation
following PDT (ROS-induced and activation by paracrine signaling
via TNFR). A plethora of synthetic pyridinyl imidazole analogs with
low IC50 values (for p38) have been synthesized [342] that all
qualify as candidate adjuvants for PDT, either as singular or as
combined adjuvants.

It should be noted that numerous studies in various types of
cells and cell lines have shown that blockade of p38 MAP kinase by
PD 169316 deters apoptosis. For instance, Nath et al. [188]
reported an increase in p38 kinase activity and consequent apopto-
sis following an episode of potassium deprivation in rat cerebellar
granule neurons, which was attenuated by PD 169316 in a
concentration-dependent manner. Similarly, Kummer et al. [248]
found increased p38 activity in serum-deprived Rat-1 fibroblasts
and nerve growth factor-deprived differentiated rat phaeochromo-
cytoma (PC12) cells, which was accompanied by apoptotic cell
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death. PD 169316 blocked the increase in p38 activity and reduced
the degree of apoptosis by up to 80%. The manifestation of
p38-mediated cell death signaling should be investigated before
developing combinatorial therapeutic regimens aimed at cell
death induction.

4.2.3 Ralimetinib (LY222

8820)

Ralimetinib (LY2228820) is a tri-substituted imidazole derivative
and a potent oral selective inhibitor of p38α/β that derives its
inhibitory action from competitive binding in the ATP catalytic
domain (IC50 ¼ 5.3 and 3.2 nM for the α- and β-isoform, respec-
tively) [260]. Like many other p38 inhibitors, much of the ralime-
tinib research has been centered on inflammation. However, unlike
many other p38 inhibitors, the drug has primarily been investigated
for oncological indications, which underscores the importance of
inflammation in the field of oncopharmacology. Ralimetinib has
undergone phase I clinical trials [258, 261–263] unveiling that
the compound is orally bioavailable and potentially associated
with mild adverse events (rash, fatigue, nausea, constipation, pruri-
tus, vomiting, anorexia, tremors, and dizziness) and more severe
adverse events (anemia, leukocytopenia, thrombocytopenia, confu-
sion, and ataxia).

As a monotherapeutic, ralimetinib reduced angiogenesis in an
in vitro co-culture endothelial cord formation assay, which was
accompanied by endothelial p38 activation following growth factor
stimulation and a corollary reduction in VEGF, basic fibroblast
growth factor (bFGF), epidermal growth factor (EGF), and IL-6.
This in turn resulted in inhibition of endothelial as well as tumor-
driven cord formation and pro-angiogenic cytokine secretion by
stromal cells. The drug was further shown to decrease VEGF-A-
stimulated vascularization in a mouse ear model [251]. A study by
Zhang et al. [253] added that Rac family small GTPase 3 (Rac3)-
induced cell invasion, migration, and epithelial-mesenchymal tran-
sition (EMT) of lung adenocarcinoma (A549) cells were subdued
by ralimetinib. Ralimetinib-mediated p38 inhibition has also been
demonstrated by Campbell et al. [260], which led to dose-
dependent inhibition of MK2 (p38 downstream target, Subhead-
ing 2.1) in mouse melanoma (B16-F10) tumors 24 h after a single
oral gavage dose of 10 mg/kg. Most importantly, ralimetinib sig-
nificantly and considerably reduced tumor size in a mouse model of
human lung cancer (A549), ovarian cancer (A2780), breast cancer
(MD-MBA-468), glioma (U87MG), and multiple myeloma
(OPM-2) subcutaneous xenografts, mouse skin melanoma
(B16-F10) lung metastases, as well as human ovarian cancer
(SK-OV-3) and renal cell cancer (786–0) orthotopic xenografts.

Ralimetinib has also been tested in combination with other
drugs. Wiegmans et al. [252] showed in human triple-negative
breast cancer (MDA-MB-231, MDA-MB-436, and PMC42-ET)
cells that concurrent inhibition of p38 with ralimetinib and DNA
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repair proteins RAD51 and PARP with B02 and ABT-888, respec-
tively, synergistically improved drug cytotoxicity. These drug com-
binations were deemed useful inasmuch as pharmacological
intervention into RAD51 signaling triggered the activation of
counterproductive pathways (including p38 and PARP) that
needed to be co-downmodulated to restore therapeutic efficacy of
the initial singular modality. Corroboratively, the triple inhibition
strategy significantly reduced cultured cell confluence and colony
formation and tumor size in mice bearing MDA-MB-231 xeno-
grafts compared to each monotherapeutic regimen. In another
example, ralimetinib combined with the MAPK/ERK kinase
(MEK) inhibitor selumetinib synergistically impaired growth in
Kirsten rat sarcoma virus (KRAS)-mutated non-small cell lung
cancer (NCI-H23, NCI-H157, NCI-H460, and NCI-H1792)
cells, which were sensitized to ralimetinib by increased p38 activity
as a result of pharmacological MEK inhibition [259]. Ralimetinib
also restored sensitivity to the inhibitor of apoptosis (IAP) antago-
nist birinapant in liver kinase B1 (LKB1)- and KRAS-mutated
non-small cell lung cancer (H1299, H520, H1975, H2009,
H358, LU99, H727, H460, H2030, A549, H23) cells
[254]. Moreover, ralimetinib combined with the microtubule-
targeting therapeutics paclitaxel and vinorelbine conferred strong
synergistic cytotoxicity through G2/M cell cycle arrest and apopto-
sis in MDR human breast cancer (Bads-200 and Bats-72) cells. The
cytotoxic effects were mediated by the inactivation of HSP27 by
ralimetinib but not paclitaxel. Therapeutic synergy achieved with
ralimetinib and paclitaxel was confirmed in a mouse model of MDR
human breast cancer (Bats-72 xenografts) [255].

These studies collectively attest to the fact that the pharmaco-
logical shutdown of one (vital) pathway in cancer cells opens the
door to another pro-survival pathway and underpins the necessity
of multimodal therapeutic strategies for optimally combatting
malignancies. At the time this chapter was written, no studies had
been performed that investigated the potentially synergistic effects
of ralimetinib and PDT.

4.2.4 RWJ 67657 RWJ 67657 is an inhibitor of the α and β isoforms of p38 with
a ~ten-fold greater potency compared to SB203580 (see Subhead-
ing 4.2.6) [267]. The compound has been primarily researched in
the context of inflammation and inflammation-based diseases
[269–271].

RWJ 67657 was tested in humans in a single-center double-
blind study, showing a concentration-dependent inhibition of
pro-inflammatory cytokines TNF-α, IL-6, IL-8, and IL-1β
[264]. The compound is administered orally and a single dose
abides by nonlinear pharmacokinetics with a half-life between 5.1
and 7.7 h at higher doses (0.25–30 mg/kg) and a half-life of
1.3–2.8 h at lower doses (0.25–1 mg/kg). Adverse events were
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mild (dizziness, nausea, headache, and somnolence). In stimulated
peripheral blood mononuclear cell isolated from patients, RWJ
67657 inhibited the production of TNF-α (IC50 ¼ 0.18 μM),
IL-6 (IC50 ¼ 0.43 μM), and IL-8 (IC50 ¼ 0.43 μM) in a
concentration-dependent manner at > 85% inhibition for a
20 mg/kg dose. The sedation of a pro-inflammatory phenotype
of immune cells was echoed in monocyte-derived macrophages
from healthy subjects and rheumatoid arthritis patients, where
RWJ 67657 (0–10 μM) reduced protein levels of TNF-α
(IC50 ¼ 0.03 μM in patients), IL-6, IL-8 (IC50 ¼ 1.2 μM in
patients), and matrix metalloproteinase-9 (MMP-9) and transcript
levels of TNF-α, IL-1β, IL-6, IL-8, and COX-2 [272]. RWJ 67657
inhibited the activity of p38 but not its phosphorylation in
lipopolysaccharide-stimulated monocyte-derived macrophages. A
study in IL-1β- and TNF-α-stimulated human umbilical vein endo-
thelial cells showed similar inhibitory behavior of RWJ 67657
toward IL-6, IL-8, and E-selectin but had no effect on intercellular
adhesion molecule 1 (ICAM-1) and vascular cell adhesion protein
1 (VCAM-1). Combination treatment with RWJ 67657 and the
NF-κB inhibitor MOL-294 strongly augments the anti-
inflammatory effects [268]. Given the importance of inflammatory
signaling in tumor biology as well as cellular and molecular
responses to PDT (see Subheading 2), pharmacological immuno-
modulation at the level of p38 after PDT is expected to confer
beneficial effects on therapeutic outcome.

Unfortunately, only a few studies examined the effects of RWJ
67657 on cancer cells and none have been conducted in the frame-
work of PDT. In human breast cancer (MCF-7 and MCF-7TN-R)
cells, RWJ 67657 dose-dependently inhibited p38 and decreased
ATF andNF-κB signaling, resulting in impaired clonogenic survival
as well as stalled tumor growth in immunocompromised female
ovariectomized mice bearing MCF-7TN-R xenografts (dosing:
60 mg/kg for 9 d) [265]. Additionally, RWJ 67657 (0–10 μM)
blocked critical proteins that mediate EMT (Twist, Snail, Slug, and
zinc finger E-box binding homeobox 2 (ZEB2) [343]) and favor-
ably modulated expression levels of miRNAs that are involved in
resistance to chemotherapy and endocrine therapy (miR-199,
miR-200,miR-302,miR-303, andmiR-328 [344–347]). An earlier
study by the same group also looked into the effect of RWJ 67657-
mediated p38 inhibition on estrogen receptor activity in breast
cancer (MCF-7) cells, nonmalignant breast epithelial (MCF10A)
cells, and human embryonic kidney (HEK 293) cells [266]. RWJ
67657 was able to reduce cell growth via p38 inhibition, which in
turn induced downregulation of the estrogen receptor and its
co-activators steroid receptor coactivator-1 (SRC-1), SRC-2, and
SRC-3.
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4.2.5 SB202190 (FHPI) SB202190 or FHPI (4-(4-fluorophenyl)-2-(4-hydroxyphenyl)-5-
(4-pyridyl)1H-imidazole) is a pyridinyl imidazole derivative that
selectively inhibits p38α and p38β isoforms via competitive binding
in the catalytic ATP-binding site [240]. The compound has been
tested for antiviral and anti-inflammatory properties in neurode-
generative diseases [240, 282–284].

SB202190 has been investigated in PDT alongside other p38
inhibitors. Luna et al. [275] reported that Photofrin-PDT of
mouse fibrosarcoma (RIF-1) cells resulted in transcriptional
engagement of the NF-κB-, CRE-2-, C/EBP-, and AP-1 response
elements (see Fig. 2). Photofrin-PDT further induced phosphory-
lation of p38, c-JUN, ERK1/2, and SAPK/JNK and promoted
nuclear protein binding to the NF-κB, CRE-2 (activated by p38
and ERK1/2), c-FOS, and c-JUN response elements. COX-2
expression was subdued by inhibitors of p38 (SB202190 and
SB203580), slightly reduced following MEK1 inhibition by
U0126 (directly upstream of ERK1/2), and not influenced after
NF-κB inhibition with SN50. Given that COX-2 promotes tumor
cell proliferation, metastasis, and therapeutic recalcitrance [278]
and given the steering role of the p38 pathway herein, the results
reflect adjuvant potency of SB202190 in PDT.

Another study on Pc4-PDT in mouse leukemic lymphoblasts
(LY-R) and Chinese hamster ovary (CHO) cells showed that
SB202190 blocked PDT-induced apoptosis in mainly LY-R cells
and to a lesser extent in CHO cells. While PDT strongly activated
p38/HOG in CHO cells, no such activation occurred in LY-R cells
despite the p38-mediated cell death. The authors contended that
the high level of constitutively active p38/HOG in LY-R cells may
have predisposed the cells to rapid activation of apoptosis following
PDT. Constitutive p38 overexpression in itself could serve as a
barometer to gauge whether cancer cells are more amenable to
PDT [277], especially in light of the fact that prolonged activation
of AP-1 transcription factors (that are activated by p38 upstream)
poises cells for apoptosis (see Fig. 3).

In contrast, a study by Chan et al. [276] on hypericin-PDT
demonstrated that p38 inhibition by SB202190 and SB203580
enhanced apoptosis in nasopharyngeal carcinoma (HK-1) cells,
which was mediated by caspase-9 and caspase-3. P38 and JNK
were rapidly activated by PDT, an effect that in turn was inhibited
by 1O2 scavengers. Blockade of p38 but not JNK (by SP600125)
accelerated the proteolytic cleavage of caspase-9 and execution of
the apoptotic program.

Besides effects on PDT-induced apoptosis, studies have shown
that SB202190 inhibition of p38 has additional downstream effects
that could benefit cancer therapy. SB202190 downregulates
leukocyte-adhesion molecules such as ICAM-1 and various
pro-inflammatory cytokines that collectively could hamper tumor
sustenance [285–287, 348]. SB202190 was able to inhibit spher-
oid invasion in ovarian cancer (SKOV3) cells [279], although this
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was contrary to another study showing that SB202190 increased
cell migration through inhibition of p38 in human corneal epithe-
lial cells as a result of the involvement of p38 in the EMT process
[288]. In a combined treatment regimen with SB203580 and
SB590885, SB202190 exerted an antiproliferative effect on mela-
noma cells carrying a BRAF V600E mutation and induced endoly-
sosomal perturbations possibly as a result of interference in the
endocytic transport machinery [280]. Furthermore, SB202190
was able to induce transcription factor EB (TFEB)/transcription
factor binding to IGHM enhancer 3 (TFE3)-dependent autophagy
and lysosomal biogenesis independently of p38 inhibition [281],
which might be related to its aforementioned effect on lysosomal
processing [280]. Autophagy can have cytoprotective functions,
which should be ruled out before combining PDT with SB202190.

4.2.6 SB203580 As PD 169316, SB203580 is a synthetic 2,4,5-triarylimidazole that
selectively inhibits p38 catalytic activity by binding to the
ATP-binding pocket without inhibiting phosphorylation of p38
by upstream kinases [298]. Inhibition of p38 by SB203580 has
generally been associated with an increase in apoptosis in human
cancer cells, as was shown in melanoma (Colo 853 and FO-1) cells
following p38 induction with, respectively, farnesylthiosalicylic acid
[294] and adenoviral melanoma differentiation-associated gene-7/
IL-24 [290]; in breast cancer (MDA-MB-453 and MDA-MB-231)
cells where p38 was activated with, respectively,
α-tocopheryloxybutyric acid [297] and aplidin [291]; in neuroblas-
toma (SH-SY5Y) cells where p38 was induced by the prion protein
mimetic peptide PrP106–126 [292]; and in colon cancer (HT-29)
cells where p38 was stimulated with indomethacin [293]. The
activated p38-mediated apoptosis proceeded via caspase-3 in
those studies that had assayed caspase-3. Ye et al. [299] further
demonstrated that SB203580 can reverse p38 activation and con-
sequent apoptosis by the phytochemical 3,30-diindolylmethane
even when the upstream ASK-1 activator TRAF2 (see Fig. 3) is
repressed. Also, p38 has been associated with moderating
P-glycoprotein (P-gp) levels in murine leukemia (L1210/VCR)
cells, which imparted MDR against vincristine. SB203580 treat-
ment considerably reversed the MDR and resensitized the cells to
vincristine [295]. Finally, SB203580 inhibited human renal cancer
(Caki-1) cell migration and invasion induced by butaprost by inac-
tivating p38 and consequently downregulating MMP-9 protein
levels and activity [296].

SB203580 has been investigated in the context of PDT and
p38 as exemplified in Subheading 3 with the data from Song et al.
[187], who demonstrated the deleterious effects of SB203580 on
pro-inflammatory (survival) signaling. Wang et al. [178] reported
that PDT with the PS berberine sensitized cisplatin-resistant
human melanoma (A375/DDP, SKMel-19/DDP, and
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M8/DDP) cells to cisplatin, an effect that coincided with an
increase in protein levels of p-p38, p-JNK, p-ERK1/2, BAX,
cleaved caspase-9, and cleaved caspase-3 and a reduction in Bcl-2.
Neutralization of ROS with NAC and blocking of p38 with
SB203580 reduced the extent of PDT-induced cell death by
roughly 100% and 50%, respectively, whereby NAC treatment also
downregulated p38 protein levels. Lastly, Ge et al. [179] demon-
strated that ALA-PDT of human squamous carcinoma (SCL-1)
increased levels of p-MEK, p-ERK1/2, p-p38, p-Elk-1, p-JNK,
and p-c-Jun and that inhibition of ERK1/2 with PD98059, p38
with SB203580, and JNK with SP60125 reversed these changes
and amplified apoptotic cell death.

4.2.7 SB239063 SB239063 (trans-1-(4-hydroxycyclohexyl)-4-(4-fluorophenyl)-5-
[(2-methoxy)pyrimidin-4-yl] imidazole) is a potent and selective
p38 inhibitor (IC50 ¼ 44 nM [309]) that has chiefly been investi-
gated for protection against inflammatory and neurological disor-
ders [311–315, 349].

SB239063 has not been tested in combination with PDT.
Nevertheless, the p38 inhibitor harnesses several interesting mod-
ulatory properties that make it an eligible adjuvant drug candidate
for cancer chemotherapy or PDT. First, inhibition of the p38
signaling pathway by SB239063 decreased cell proliferation, migra-
tion, VEGF protein levels, and angiogenic ability in human endo-
thelial (ECV304) cells that had been primed with human
hepatocellular carcinoma (HepG2) cell-derived bone morphogenic
protein (BMP2) [306]. BMP2 moderates liver cancer development
[350] and activates p38 under hypoxic conditions in human artic-
ular chondrocytes [351]. These effects could be pertinent in select
PDT applications since BMP2 is a driver of the abovementioned
processes in cancers of non-hepatic origin as well [352–354]. Also,
PDT induces hypoxia by damaging and occluding vasculature
[355] that consequently may undergo remodeling, where endothe-
lial cells and VEGF occupy a central role [356]. Second, SB239063
blocks p38-dependent release of TNF-α [302, 303], attenuates
IL-6 [300], and inhibits NF-κB activation and translocation
[304, 305], which could deter inflammation-driven tumor cell
survival (see Fig. 2), including the propagation of the immediate
early stress response via the TNF-α/TNFR signaling axis (see
Fig. 3). Finally, the anticancer attributes of SB239063 emanate
from its ability to (1) inhibit transforming growth factor β
(TGF-β)- and bFGF-induced cell migration (in human corneal
epithelial cells) [301]; (2) suppress invasion and MMP-3 produc-
tion in pancreatic cancer cells [243] and invasion of nicotine-
primed human colorectal cancer cells [316]; and (3) reduce
tumor volume, intratumoral vascularization, and migration prone-
ness in BMP2-overexpressing HepG2 xenografts in mice [306].
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As with other p38 inhibitors, SB239063 may confer cytopro-
tection. Kim et al. [308] reported that SB239063 inhibited apo-
ptosis and restored anti-apoptotic BCL-2 protein levels in human
diploid fibroblasts that had been treated with hydrogen peroxide
and staurosporine. Accordingly, SB239063 can protect cells from
oxidative stress and apoptotic fallout. Another study demonstrated
that SB239063 can attenuate radiation-induced vascular inflamma-
tion and recruitment of immune cells [307], which may have
negative implications for immune control of PDT-treated tumors
(see Subheading 1).

4.2.8 Thymoquinone Thymoquinone is a monoterpene phytochemical extracted from
the seeds of Nigella sativa that has been extensively researched for
its antioxidant, anti-inflammatory, and anticancer properties
[323, 357]. The phytochemical is toxic to cancer cells, including
colon cancer cells [323, 326, 327], pancreatic cancer cells
[319, 328], prostate cancer cells [329], laryngeal carcinoma cells
[330], and leukemia cells [331], where it generally induces apopto-
sis that can proceed in a p53-dependent [332] and
p53-independent manner [332, 333].

As numerous other anticancer compounds, thymoquinone
generates ROS in cancer cells [320, 333], serving as a trigger for
apoptotic signaling [358–363]. A study by El-Najjar et al. [317]
convincingly demonstrated that thymoquinone incites oxidative
stress in human colon cancer (Caco-2, HCT-116, LoVo, DLD-1,
and HT-29) cells by triggering ROS generation, which was abro-
gated by NAC. However, ROS activated the ASK-1 downstream
target JNK as well as ERK, but not p38. The null effect on p38 may
be related to the p38-inhibiting properties of thymoquinone that
may have countered stimulation by ROS, possibly via ASK-1 given
that JNK was activated. Direct ASK-1 activation by thymoquinone
has never been reported. Only one investigation [203] could be
retrieved on rheumatoid arthritis synovial fibroblasts where the
body of proof regarding thymoquinone activation of ASK-1 was
somewhat compelling. Thymoquinone inhibited TNF-α-induced
p-p38 and p-JNK expression. The p-p38 and p-JNK downregula-
tion was mediated by ASK-1, as evidenced by the finding that
TNF-α selectively induced phosphorylation of ASK-1 at the
Thr845 residue that in turn was inhibited by thymoquinone in a
dose-dependent manner.

Several studies have confirmed that thymoquinone blocks p38,
although the data are not consistent. For example, Park et al. [296]
demonstrated that thymoquinone inhibits p38 in cultured human
renal carcinoma (Caki-1) cells, where it co-downregulated protein
levels of p-AKT, prostaglandin E2 receptor 2 (EP2), and MMP-9
and with it hampered cell migration and invasion. The
p38-inhibiting properties of thymoquinone have been reproduced
in oral cancer cells [318], but not in other studies. In human
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bladder cancer (T24 and HTB-9) cells, for instance, thymoquinone
induced pathways related to EMT and attenuated mTOR activity
and downstream signaling, but had no effect on ERK 1/2 or p38
MAPK activity. Conversely, it was shown that thymoquinone
induced apoptosis in human pancreatic cancer (FG/COLO357
and CD18/HPAF) cells by the activation rather than inhibition
of JNK and p38 [319]. Similar observations were made by Woo
et al. [320] in human breast cancer (MCF-7 and MDA-MB-231)
cells, where thymoquinone activated p38, JNK, and ERK that
culminated in apoptosis. The p38 activation and cell death were
attenuated by the selective p38 inhibitor SB203580 (see Subhead-
ing 4.2.6) and NAC. Thymoquinone-induced p38 activation,
reduction of X-linked inhibitor of apoptosis protein (XIAP),
BCL-2, BCL-xL, and survivin as well as increased apoptosis and
reduced proliferation were further confirmed in human breast can-
cer (MDA-MB-231) xenografts in mice. Finally, thymoquinone
reportedly induces autophagic cell death and reduces metastatic
propensity of irinotecan-resistant (CPT-11-R) LoVo colon cancer
cells, both of which involve p38 activation [321, 322].

Taken altogether, the effect direction of thymoquinone on p38
activity is variable in cancer cells and difficult to predict. Inasmuch
as thymoquinone has never been assayed in cells treated by PDT,
studies are needed to investigate a potential synergistic or additive
effect of such a combinatorial modality and rule out therapeutic
antagonism.

4.2.9 VX-702 VX-702 is an orally dosed selective p38α inhibitor [364]. P38α
mediates the biosynthesis of TNF-α and IL-1β at the transcriptional
and translational level and with it occupies a central role in
pro-inflammatory signaling (see Subheading 2.1). Accordingly,
p38α is pharmacologically targeted for the modulation of cytokine
production [365] and researched for the treatment of rheumatoid
arthritis and other inflammatory diseases [334, 340, 366–
368]. Although the drug does not cause serious clinical side effects,
VX-702 lacked efficacy in human trials and was therefore discon-
tinued in the framework of the aforementioned conditions [367].

In terms of anticancer properties, VX-702 is efficacious
although there is paucity in the number of supporting studies. A
recent investigation elucidated that VX-702 is an inhibitor of p38 as
well as Nemo-like kinase (NLK), which is responsible for survival
signaling in endocrine-resistant breast cancer [335]. Combined
treatment of VX-702 with the mTOR inhibitor everolimus pro-
duced a significant anticancer effect in therapy-resistant cell line-
derived and patient-derived xenograft models [336]. VX-702 fur-
ther inhibited apoptosis induced with the histone deacetylase
(HDAC) inhibitor Trichostatin A in cultured colonic epithelial
(HCoEpiC) cells. Apoptotic signaling concurred with increased
BAX and reduced BCL-2 levels. Trichostatin A also promoted
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p38 expression and activation, all of which were reversed by
VX-702 [338].

VX-702 has never been tested in the context of PDT. It is
notable that VX-702 attenuates fibrosis in chronic graft-versus-
host disease and suppresses infiltration of immune cells [339],
which might negatively impact PDT given its reliance on antitumor
immunity for long-term tumor control (see Subheading 1).

4.3 Other Inhibitors

of the ASK-1 Pathway

In this section inhibitors are described that do not directly target
ASK-1 or p38 but are considered potentially relevant inhibitors of
the ASK-1 pathway (see Fig. 6) because they affect regulators
located upstream or downstream of ASK-1 and p38 or impact
nodes in other pathways that intersect with ASK-1 signaling. A
summary of their mechanism of action, pharmacological and
biological effects, test systems, and application in PDT is provided
in Table 3.

BAY 11–7082 and BAY 11–7085 (synonym: BAY 11–7083)
are inhibitors of nuclear factor of kappa light polypeptide gene
enhancer in B-cell inhibitor alpha (IκBα) that itself inhibits
NF-κB. The compounds act by blocking TNF-α-induced phos-
phorylation of IκBα (IC50 ¼ 10 μM for BAY 11–7085), which
leads to decreased levels of NF-κB and subsequently reduced
expression of the adhesion molecules ICAM-1, VCAM-1, and
E-selectin in HUVECs. Both compounds also induce JNK-1 and
p38 and reduce ERK-1 in TNF-α-stimulated endothelial cells
[370]. BAY 11–7082 also inhibits ubiquitin-specific protease
(USP)7 and USP21 (IC50 ¼ 0.19 and 0.96 μM, respectively)
[371] that constitute druggable targets in cancer therapy
[426]. However, BAY 11–7082 could stabilize HIF-1α by blocking
its proteasomal degradation [372] and possibly interfere in thera-
peutic modalities targeting the HIF-1 survival pathway (see Sub-
heading 1, Fig. 2) or aid in tumor survival signaling. With respect to
PDT, IκBα is downregulated and NF-κB is upregulated, at least
after hypericin PDT [186]. These molecular targets should there-
fore be susceptible to BAY 11–7082 and BAY 11–7085. BAY
11–7082 completely abolished ALA-PDT-induced JNK activation,
which almost completely abrogated PDT-induced apoptosis in
human oral cancer (Ca9–22) cells [373]. BAY 117085 was
employed to mechanistically elucidate hypericin-PDT-mediated
changes in COX-2 expression in human cervix carcinoma (HeLa)
wild-type cells in comparison to genetically modified HeLa cells
that stably overexpress IκBα and that are devoid of NF-κB
DNA-binding activity. The study revealed that PDT did not result
in altered COX-2 expression levels when NF-κB was inhibited
pharmacologically or genetically compared to non-illuminated con-
trols, indicating that NF-κB was not involved in the upregulation of
COX-2 by hypericin-PDT [186].
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Fig. 6 Overview of inhibitors that affect the immediate early stress response upstream or downstream of ASK-1 and p38
that are eligible candidates for use as adjuvants in PDT. LogP (octanol:water partition coefficient) values were retrieved
from PubChem and were predicted with XLogP2 or XlogP3 software. The half maximum inhibitory concentration (IC50,
enzymes), halfmaximum lethal concentration (LC50, in vitro), halfmaximum lethal dose (LD50, in vivo), t1/2 (circulation half-
life), and spectral propertieswere obtained from thematerial safety data sheets (retrieved from theCaymanChemicals and
Spectrum Chemical website), PubChem, LC Laboratories, Merck-Millipore, Pfizer, Selleckchem, and TargetMol. The half
maximum inhibitory concentration (IC50, used for proliferation and enzymes) and half maximum growth inhibitory
concentrations (GI50) were obtained from available literature. This also applies to LC50, LD50, and t1/2 data that were
missing from or inconsistent in the abovementioned databases. Abbreviations: Em emission, Ex excitation, ip intraperito-
neal, iv intravenous,MWmolecular weight,NA information not available, sc subcutaneous, TDLO the lowest dose causing
a toxic effect, λmax the wavelength at which there is an absorption maximum (may be multiple absorption bands)
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Celecoxib is a noncompetitive inhibitor of COX-2 that is clas-
sified as a nonsteroidal anti-inflammatory drug with analgesic, anti-
inflammatory, and antipyretic properties [378, 427]. Celecoxib fur-
ther inhibits 3-phosphoinositide-dependent kinase-1 (PDK-1)-
mediated apoptosis (IC50 ¼ 48 uM), causes AKT dephosphoryla-
tion [375], and binds to cadherin-11 (CDH11) [376] that is over-
expressed in several types of cancer [428], together accounting for
the compound’s anticancer properties. Photofrin-PDT
(i.v. injection of 5 mg/kg, light-dose interval of 16 h, cumulative
radiant exposure of 135 J/cm2) substantially increased protein
levels of PGE2, COX-2, VEGF, IL-1β, and TNF-α in syngeneic
mammary carcinomas (EMT6) implanted into the dorsal scapula
region of female BALB/c mice. Celecoxib (10 mg/kg,
i.p. injections directly after and at 4 h and 24 h post-PDT) reduced
the levels of all listed proteins to pre-PDT baseline values, suggest-
ing a role of NF-κB signaling. In human breast cancer (MCF-7)
cells, PDT upregulated p53 protein levels that were downmodu-
lated to pre-PDT control levels by celecoxib [187].

Diphenylene iodonium (DPI) is an iodonium-class flavoprotein
dehydrogenase inhibitor that blocks the activity of NADPH oxi-
dases (NOX). The compound has been explored as an oncother-
apeutic for a subset of human cancers that overexpress NOX,
including colorectal cancer [383] and breast cancer [385], which
require NOX for their survival and growth [429]. Doroshow et al.
[383] demonstrated that DPI retarded the growth of cultured
cancer cells that overexpressed NOX1 (human colon cancer cell
lines Caco2, HT-29, LS-174T) at 0.01–0.25 μM concentration by
decreasing steady-state ROS production (coinciding with
decreased mRNA expression of NOX1 and antioxidant enzymes)
and causing G1/S cell cycle arrest, reduced proliferative signaling at
the level of the transcriptome, and apoptosis in some of the cell
lines. DPI decreased the expression of cyclin A, D1, and E in vitro.
In vivo, DPI reduced tumor volume by ~40% compared to vehicle
control in HT-29 and LS-174T xenografts in athymic nude mice.
In light of the above, DPI could be used in conjunction with PDT
of cancer types that rely on NOX signaling for sustenance, espe-
cially given that NOX isoforms may be activated by PDT
[430, 431] and hence aid in survival. It is imperative that DPI is
administered after PDT inasmuch as it acts as an antioxidant
[430, 432] that could otherwise enfeeble the efficacy of PDT.

LY294002 is a morpholine-based compound that is a strong
inhibitor of PI3K [391] with an IC50 of 0.5 μM/0.57 μM/
0.97 μM for the PI3Kα/δ/β isoforms [393], but also inhibits
other proteins such as the proto-oncogene serine/threonine-pro-
tein kinase (PIM1) [392] that is overexpressed in some forms of
cancer [394, 395, 433–435]. The PI3K pathway regulates key
biological processes such as cell growth, survival, proliferation,
and angiogenesis [436]. Every key node in the PI3K pathway is
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frequently mutated or amplified in many cancers [437] that not
only fortifies the tumor, but also causes loss of sensitivity to some
chemotherapeutics [438], which is why this pathway is widely
targeted by singular or hybrid chemotherapeutic modalities
[439, 440]. LY294002 is further interesting for application in
PDT in that the drug can downregulate HIF-1α [389], which is a
key survival regulator in PDT-subjected, sublethally afflicted cancer
cells (see Subheading 1, Fig. 2). In a study on ALA-PDT and
LY294002, Zhang et al. [390] showed that the combinatorial
modality exerted a synergistic inhibitory effect on the migration
of human esophageal cancer (Eca-109) cells and reduced gene and
protein expression levels of epidermal growth factor receptor
(EGFR), PI3K, and AKT.

NAC is commonly used as a nutritional supplement with strong
antioxidant properties, acting directly as a scavenger of ROS and
other types of oxidants and radicals [441]. Pretreatment of human
breast cancer (MCF-7) cells with NAC (2.5 mM) before Photofrin-
PDT reduced COX-2 protein levels to baseline values and strongly
inhibited PGE2 release, indicating that PDT-induced ROS genera-
tion is responsible for pro-inflammatory signaling via COX-2 and
PGE2 [187]. Equally important was the finding that pretreatment
of cells with a potent antioxidant did not abrogate the photooxida-
tive destruction of cells by PDT but inferentially improved thera-
peutic efficacy, as was the case for COX-2 inhibition using small
interfering RNA (siRNA). Moreover, NAC pretreatment of human
osteosarcoma (MG-63) cells was found to inhibit MPPa-PDT-
induced autophagy and JNK phosphorylation [397]. Finally, Tsai
et al. [189] showed that ALA-PDT of human melanoma (A375)
cells strongly induced p300 HAT mRNA that led to elevated HAT
activity and PS concentration-dependent cell death. Oxidative
stress can activate p300HAT and result in increased histone acety-
lation and subsequent regulation of gene expression [442, 443]
that could favor cell survival. In that respect, the ALA-PDT also
augmented survivin protein levels in A375 and mouse colon carci-
noma (C26) cells. NAC abolished the p300HAT transcriptional
response induced by ALA-PDT.

NS-398 [N-(2-cyclohexyloxy-4-nitrophenyl)methanesulfona-
mide] is a nonsteroidal anti-inflammatory drug and a selective
inhibitor of COX-2 with antiproliferative and pro-apoptotic attri-
butes [399, 400]. Hypericin-PDT of cultured human cervix carci-
noma (HeLa) cells pretreated with 50 μM of NS-398 completely
blocked the release of PGE2 induced by PDT and slightly increased
the extent of apoptosis, although to a lesser degree than the p38
inhibitor PD 169316 (see Subheading 4.2.2) [186]. In PH-PDT-
treated cultured radiation-induced fibrosarcoma cells, the addition
of NS-398 directly after illumination entirely eliminated detectable
protein levels of PGE2 and COX, which were both strongly upre-
gulated by PDT. PH-PDT of radiation-induced fibrosarcomas in
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C3H/HeJ mice resulted in protein overexpression of COX-2,
PGE2, and VEGF. NS-398 treatment (10 mg/kg i.p.) reduced
PGE2 and VEGF protein levels by ~50% and ~75%, respectively,
and ensured that ~55% and ~75% of animals remained tumor free
during 90 d post-PDT follow-up when PDT was performed at a
cumulative radiant exposure of 200 and 300 J/cm2, respectively,
compared to 0% and ~25% in the PDT-only treatment group
[401]. Finally, Tsai et al. [189] demonstrated that the inclusion of
NS-398 in liposomal chlorin e6-PDT of mouse colon carcinomas
(C26) improved PDT efficacy by about 45%.

N-tosyl-L-phenylalanine chloromethyl ketone (TPCK) is an
inhibitor of serine/cysteine endopeptidases that also inhibits the
expression of inflammatory mediators by blocking NF-κB through
direct thiol modification at Cys-179 of inhibitor of nuclear factor
kappa-B kinase subunit beta (IKKβ) and at Cys-38 of p65/RelA
[404]. Pretreatment of human breast cancer (MCF-7) cells with
TPCK (10 μM) in Photofrin-PDT substantially attenuated
PDT-induced COX-2 and PGE2 protein levels [187].

PD98059 is a non-ATP competitive MEK inhibitor
(IC50¼ 2 μM) that specifically inhibits MEK-1-mediated activation
of MAPK without directly inhibiting p38, JNK, and ERK1/
2 [409, 410], although causing phosphorylation of ERK1/
2 [405]. PD98059 is also a ligand for the aryl hydrocarbon recep-
tor (AhR) and functions as an AhR antagonist [411]. AhR ligands
are produced by the tumor microenvironment and via intracrine
routes [444]. Sustained transcriptional activation of AhR promotes
tumor growth and impairs antitumor immunity [445]. AhR further
mediates proteasomal processing of estrogen receptor α and affects
ERK kinase activity and signaling by direct cross talk [446] while
stimulating cell proliferation through interactions with EGF
[447]. Blockade of AhR induced cell cycle arrest in the G1 phase
in rat hepatoma (5 L) cells and G2/M phase in murine hepatoma
(1c1c7) cells [448]. AhR is targeted pharmacologically to inhibit its
pro-tumorigenic properties and to re-sensitize tumor cells to thera-
pies [445, 449]. Despite these anticancer properties of PD98059,
hypericin-PDT-treated human cervix carcinoma (HeLa) cells and
bladder cancer (T24) cells that had been pretreated with 20 μM
PD98059 elicited no effect on COX-2 protein levels that were
increased by PDT itself. PDT-induced downmodulation of COX-2
as well as other regulators of that inflammatory pathway such as
PGE2 were effectuated by other inhibitors, including PD 169316
(see Subheading 4.2.2) and NS-398 (this section) [186]. Similar
non-responsiveness in the COX-2/PGE2 signaling axis was
observed in human breast cancer (MCF-7) cells [187]. Actual anti-
cancer effects of PDT + PD98059 were not studied.

Pyrrolidine dithiocarbamate (PDTC) is a metal chelating com-
pound that can induce G1-phase cell cycle arrest in vascular smooth
muscle cells [412] and inhibits NF-κB [416–418]. Accordingly,
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PDTC reverted deoxynivalenol-induced mitochondrial dysfunc-
tion and apoptosis via theNF-κB/iNOSpathway [413, 450].Deox-
ynivalenol is an inducer of stress responses in the ER and ribosomes
and triggers mitochondrial dysfunction and intrinsic apoptosis
through oxidative stress [451, 452]. In PDT an opposite (i.e.,
non-protective) effect is induced by PDTC. Pretreatment of
human breast cancer (MCF-7) cells with PDTC (10 μM) in
Photofrin-PDT substantially attenuated PDT-induced COX-2
and PGE2 protein levels [187].

SP600125 is an anthrapyrazolone that acts as a potent, cell-
permeable, selective inhibitor of JNK and dose-dependently com-
petes with ATP to inhibit the phosphorylation of c-Jun. Through
JNK inhibition, SP600125 prevents the activation of inflammatory
genes such as COX-2, IL-2, interferon (IFN)-γ, and TNF-α [419];
regulates TLR-mediated inflammatory signaling [423, 424]; and
downregulates Beclin-1 and reduces autophagy while increasing
apoptosis [425]. Treatment of squamous nasopharynx carcinoma
(HK-1) cells with Zn-BC-AM-PDT was shown to upregulate
p-p38, p-JNK, and p-ATF, where SP600125 slightly reduced
p-JNK and considerably attenuated p-ATF that mediates the pro-
teotoxic stress response (see Subheading 1, Fig. 2) [192]. However,
pretreatment of cells with SP600125 did not induce apoptotic cell
death regardless of drug concentration (0–20 μM) and light dose
(0–2 J/cm2). On the other hand, SP600125 was able to reduce
pyropheophorbide-α methyl ester (MPPa)-PDT-induced autopha-
gic signaling in human osteosarcoma (MG-63) cells, which
involved p-JNK and microtubule-associated protein 1A/1B-light
chain 3, phosphatidylethanolamine conjugate (LC-3 II) downre-
gulation by SP600125 following their induction by PDT
[397]. Both JNK and LC-3 II are involved in autophagy
[453, 454]. The effect of SP600125 on PDT-induced cell death
was not studied.

5 Conclusions

When activated, the immediate early stress response protects the
cell from oxidative stress and can activate other PDT-induced
downstream survival pathways. However, long-term activation
can induce apoptosis. Since the immediate effect of ASK-1 activa-
tion is protection against oxidative stress and since its downstream
effects can have pro-inflammatory (i.e., survival) consequences,
ASK-1 inhibition in combination with PDT is expected to improve
treatment efficacy. However, the combination of ASK-1 inhibitors
and PDT has currently not been tested in any experimental setting.
In contrast, downstream targets of the ASK-1 pathway, such as p38,
have been used in combination with PDT. Nevertheless, the results
show that inhibition can both sensitize cancer cells to PDT and
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promote cell survival. Outcomes are determined by various factors
including the type of PS used, PS localization, cancer type, muta-
tions in relevant pathways, and experimental design.
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