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1.1 Unruptured Intracranial Aneurysms

An unruptured intracranial aneurysm (UIA) is a focal outward bulging in the wall of
an intracranial artery. Generally, UIAs occur in the larger blood vessels at the base of
the brain, known as the Circle of Willis (CoW). Intracranial aneurysms have a preva-
lence of approximately 3% in the general adult population [{]]. The majority of an-
eurysms do not rupture during a lifetime, and most patients can have an intracranial
aneurysm for a long period of time without any negative consequences. However,
if an aneurysm ruptures, it bleeds into the cerebrospinal fluid surrounding the brain,
a type of stroke called aneurysmal subarachnoid haemorrhage (aSAH). This can be
devastating, resulting in death or severe, long lasting disability [2]. Therefore, it is
important that UlAs are detected early to allow treatment decisions to be made. UIAs
are often found as incidental findings on CT or MR scans, but screening for unrup-
tured intracranial aneurysms using time-of-flight magnetic resonance angiography
(TOF-MRA) is also increasing. This allows us to understand more about risk factors
of aneurysm development, for example, in patients with a positive or familial history
of aSAH and intracranial aneurysms [B, 4]. When an intracranial aneurysm is first
diagnosed in an angiographic scan, a multidisciplinary team of treating physicians
will make a rupture risk assessment of the aneurysm, which is of great importance for
deciding the best clinical strategy. Aneurysm treatment, by means of neurosurgical
clipping or by endovascular approach (coiling, (flow diverting) stents or web-devices)
can prevent rupture, but it carries a significant risk of complications that has to be
balanced against rupture risk [§]. Therefore, preventative treatment should only be
considered in patients with aneurysms that have a high risk of rupture. To make an
individual patient treatment decision, it is important to understand the rupture and
treatment complication risk factors of the aneurysm, as well as considering patient
preference. Known aneurysm rupture risk factors include: the Population of the pa-
tient; Hypertension; Age over 70 years; Size of the aneurysm; Earlier aSAH from a
previous aneurysm and Site (location) of the aneurysm (PHASES score) [6]. Rupture
risk assessment requires accurate and quantitative characterisation of the intracranial
aneurysm on an individual level.

1.2 Clinical Aneurysm Assessment

For UIA diagnosis or follow-up, a patient will usually undergo a TOF-MRA (Figure [L.1)
or a contrast-enhanced computed tomography angiography scan (CTA). Both of these
scans provide brain images where the blood vessels have a higher intensity relative to
the rest of the brain scan, allowing the vessels and possible intracranial aneurysms, to
be clearly visualised. In TOF-MRAs, the higher intensity in the blood vessels is caused
by the magnetic saturation of the blood. In CTA, contrast agent is administered intra-
venously to enhance the intensity in the blood vessels. TOF-MRAs have preference
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Figure 1.1: An example TOF-MRA of a patient with an unruptured intracranial aneurysm in the
anterior communicating artery. Annotation of aneurysm is shown overlaid in green.

over CTAs in most cases as they require neither contrast administration nor radia-
tion exposure. When reviewing scans on the presence of an intracranial aneurysm,
a radiologist will first visually inspect the scan carefully and determine the location
of the aneurysm. They may do this by scrolling through the 2D slices of the scan
and by making a maximum intensity projection (MIP) of the image and/or make a 3D
volume render so the vessels can be seen more clearly. Once an aneurysm has been
detected, various size measurements of the aneurysm are taken as shown in Figure [.3.
The aneurysm size is a key predictor for risk of rupture of the UIA and is taken into
consideration using the PHASES score for rupture risk assessment [6]. If the risk of
treatment complication outweighs the rupture risk, the patient will undergo aneurysm
follow-up imaging with TOF-MRA or CTA to monitor for signs of aneurysm instabil-
ity such as aneurysm growth or shape change [[]]. In case of aneurysm instability,
treatment should be reconsidered.

1.3 Aneurysm Detection and Segmentation

Increasing numbers of patients are being screened, and undergo follow-up, as part of
family screening in patients with a ruptured intracranial aneurysm and in patients
with autosomal dominant polycystic kidney disease [4]. Automatic detection of in-
tracranial aneurysms would speed up the clinical workflow, however it is important
that this does not compromise accuracy. The detection of aneurysms from angio-
graphic scans can be difficult, especially for small intracranial aneurysms. A wide
range of sensitivities by visual assessment have been quoted in studies including as
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Figure 1.2: Height and width measurements of an unruptured intracranial aneurysm on a TOF-
MRA.

low as 28% for small aneurysms to 90% for larger aneurysms [8-10]. After detecting
the aneurysm, segmentation (extraction) of the aneurysm from the scan would allow
volumetric and morphology measurements to be made. Segmentation of intracranial
aneurysms is not easy because there is a large variability in the configuration of the
aneurysm relative to parent vessels, making it difficult to define the aneurysm neck.
To solve this problem, previous semi-automatic methods defined the neck where the
aneurysm is attached to the vessel before segmenting the aneurysm [[11]. Several other
(semi-) automatic methods for unruptured intracranial aneurysm detection and/or seg-
mentation have already been proposed, including approaches that use blobness fil-
ters [[12] and shape analysis of vessel surfaces [[13]. More recently, various deep learn-
ing detection approaches have been developed that prove to have high accuracy [14-
1¢]. Most deep learning approaches use a convolutional neural network (CNN), which
is dependent upon the intensities in the image. It is usual to normalise the intensity
of MRAs but the scans can still have a large variability in quality and resolution be-
cause of differing scanners, protocols and field strengths being used. Deep learning
approaches require large annotated datasets for training, which can often be difficult
to find [[17]. Furthermore, because of the large variance of unruptured intracranial
aneurysm configurations, shape and locations as well as difference in scan protocols,
the dataset should include as many variations as possible. Prior to this thesis, no such
dataset was publicly available.

An alternative to image-based deep learning is geometric deep learning, which can
be intensity independent, suggesting it can be applied across different modalities. Ge-
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ometric deep learning is a relatively new field in medical imaging and includes point
clouds [118, 19], graph convolutional neural networks [20, 21] and mesh neural net-
works [22, 23]. Vessel surface models could be derived from brain MRA and CTA by
extracting the higher intensity vessels before fitting meshes to the vessel surface. An-
eurysms are identifiable on vessel surface meshes as an outward bulge relative to the
smooth, tubular vessel surface. By exploiting this topology of vessel surface meshes,
a geometric model for aneurysm detection and or segmentation could be developed.
Such a model could be modality independent working across both MRA and CTA,
which would be a great aid in clinical practice, where both modalities are used in
follow-up imaging.

1.4 Aneurysm Growth and Shape

Once an unruptured intracranial aneurysm has been detected in a scan, measurements
of the UIA are made to assess if it has grown. Intracranial aneurysmal growth is diffi-
cult to define and measure, since it does not appear to be linear process [24]. The def-
inition of intracranial aneurysmal growth differs between studies and centres around
the world, although the generally accepted aneurysm growth definition is an increase
in either 2D height or width of at least 1 mm [25]. This growth definition relies on
reliable and reproducible height and width measurements of intracranial aneurysms.
However, because of the 3D nature of blood vessels and aneurysms, manual 2D mea-
surements can be difficult. Considerable variability between intra- and inter-observer
measurements of intracranial aneurysms on CTAs and MRAs has been reported [26,
27]. 3D measures could provide a volume measurement [28, 29], which would be inde-
pendent of the measurement orientation, thereby removing some observer variability.
3D measurements of UIAs have been performed previously [29, 30], however the re-
liability of such measurements for growth assessment was not known prior to this
thesis. Furthermore, 3D measurements of aneurysms would allow for the inclusion of
quantitative shape measurements for aneurysm stability and rupture risk.

Irregular aneurysm shape is a known predictor for growth and subsequently rup-
ture [[, B1]. Currently, shape is included in the clinical growth prediction score,
ELAPSS [B1], which includes the predictors: Earlier subarachnoid haemorrhage; an-
eurysm Location; Age; Population; aneurysm Size and Shape. It is known that the
shape of an intracranial aneurysm can change, independent of the size of the an-
eurysm [32]. Up to now, the shape of intracranial aneurysms has often been defined
as ‘regular’ or ‘irregular’ based on visual assessment by the radiologist, where irregu-
lar may be the presence of blebs, wall protrusions or multiple lobes [31]. These visual
measurements are observer dependent.

With image analysis techniques, quantitative 3D measures of the shape or mor-
phology of intracranial aneurysms have been introduced [33-B5]. Differences have
been found in quantified morphology between unruptured and growing or ruptured
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aneurysms [34] and morphology has also been used as a predictor for the instabil-
ity of unruptured intracranial aneurysms [36, 37]. There is a variety of different
shape/morphology measures used in these studies, which means that no standard
definition of intracranial aneurysm shape or morphology has yet been established.
The Image Biomarker Standardisation Initiative (IBSI) guidelines were made [38] to
standardise radiomics, including morphology measurements, on medical images. By
using these standard definitions, a better understanding of change in morphology of
aneurysms can be made. Intracranial segmentation approaches of unruptured intracra-
nial aneurysms would allow these volumetric and morphologic measures to be made
automatically, speeding up clinical work flow and removing observer bias.

1.5 Outline of the thesis

The objective of this thesis is to develop and investigate image analysis and quantita-
tive techniques for the detection and growth risk assessment of unruptured intracra-

nial aneurysms.

CHAPTERH describes the Aneurysm Detection and segMentation (ADAM) Challenge,
which we hosted at MICCAI conference 2022. We released a publicly available train-
ing set of annotated TOF-MRAs and evaluated method submissions for intracranial
aneurysm detection and segmentation.

CHAPTER E presents a feasibility study of using variational autoencoders with TOF-
MRAs. This could have future use in an anomaly detection method for unruptured
intracranial aneurysms from TOF-MRAs.

CHAPTER B explores the use of mesh convolutional neural networks for modality inde-
pendent intracranial aneurysm detection based on vessel surface meshes.

CHAPTER E considers how unruptured intracranial aneurysm growth is currently as-
sessed. We performed a reliability and agreement interobserver study for 2D and 3D
growth measurements in TOF-MRAs.

CHAPTER B investigates quantified morphology changes of unruptured intracranial an-
eurysms and if these morphology changes relate to UIA growth.

CHAPTER ﬂ describes the development of an intracranial aneurysm growth prediction
model using a mesh convolutional neural network.

Finally, in CHAPTERB the above chapters are summarised and some discussion of the
results is provided including limitations and future work that could be implemented.
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Comparing methods of detecting and
segmenting unruptured intracranial aneurysms
on TOF-MRAS: The ADAM challenge.

Published as: K. M. Timmins, I. C. van der Schaaf, E. Bennink, Y. M. Ruigrok, et al. “Comparing
methods of detecting and segmenting unruptured intracranial aneurysms on TOF-MRAS: The
ADAM challenge,” Neurolmage, vol. 238 (2021), p. 118216.
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Abstract

Accurate detection and quantification of unruptured intracranial aneurysms (UIAs) is
important for rupture risk assessment and to allow an informed treatment decision
to be made. Currently, 2D manual measures used to assess UIAs on Time-of-Flight
magnetic resonance angiographies (TOF-MRAs) lack 3D information and there is sub-
stantial inter-observer variability for both aneurysm detection and assessment of an-
eurysm size and growth. 3D measures could be helpful to improve aneurysm detec-
tion and quantification but are time-consuming and would therefore benefit from a
reliable automatic UIA detection and segmentation method. The Aneurysm Detection
and segMentation (ADAM) challenge was organised in which methods for automatic
UIA detection and segmentation were developed and submitted to be evaluated on a
diverse clinical TOF-MRA dataset.

A training set (113 cases with a total of 129 UIAs) was released, each case including
a TOF-MRA, a structural MR image (T1, T2 or FLAIR), annotation of any present UIA(s)
and the centre voxel of the UIA(s). A test set of 141 cases (with 153 UIAs) was used for
evaluation. Two tasks were proposed: (1) detection and (2) segmentation of UIAs on
TOF-MRAs. Teams developed and submitted containerised methods to be evaluated on
the test set. Task 1 was evaluated using metrics of sensitivity and false positive count.
Task 2 was evaluated using dice similarity coefficient, modified hausdorff distance
(95th percentile) and volumetric similarity. For each task, a ranking was made based
on the average of the metrics.

In total, eleven teams participated in task 1 and nine of those teams participated
in task 2. Task 1 was won by a method specifically designed for the detection task (i.e.
not participating in task 2). Based on segmentation metrics, the top-2 methods for task
2 performed statistically significantly better than all other methods. The detection per-
formance of the top-ranking methods was comparable to visual inspection for larger
aneurysms. Segmentation performance of the top ranking method, after selection of
true UIAs, was similar to interobserver performance. The ADAM challenge remains
open for future submissions and improved submissions, with a live leaderboard to
provide benchmarking for method developments at https://adam.isi.uu.nl/ .
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2.1 Introduction

Approximately 3% of the world general population have an unruptured intracranial an-
eurysm (UIA) [[1]. For some risk groups they are even more common, with a prevalence
of approximately 10% in individuals with a positive family history for aneurysmal sub-
arachnoid haemorrhage (aSAH) [3]. Rupture of an intracranial aneurysm causes an
aSAH which is a severe type of stroke. Approximately one third of patients die, and
another third have long-term, life-changing disabilities [2, 39]. During screening, it is
important that UlAs are detected early, to allow for a treatment decision to be made.
From diagnosis, the risk of growth and rupture of the UIA can be determined based
on accurate measurement and assessment [f], 31]. If an aneurysm has high risk of
rupture it will be treated preventively. Aneurysms with a lower rupture risk will be
followed-up with imaging and carefully monitored to assess aneurysm growth which
is an important determinant for aneurysm rupture [40]. This allows informed treat-
ment decisions to be made [41]. Due to the increasing availability and quality of brain
imaging, the number of incidentally discovered UIAs is increasing, and follow up imag-
ing is usually performed [42, 43]. Also, screening for UIAs with MRA is increasing
with knowledge of risk factors for UIA presence. Screening for UIAs with MRA has
been shown to be cost-effective in persons with a positive family history for aSAH
and in persons with autosomal dominant polycystic kidney disease [4#4-46]. The most
common imaging techniques for monitoring UIAs are contrast-enhanced computed to-
mography angiography (CTA) and non-contrast 3D time-of-flight magnetic resonance
angiography (TOF-MRA). TOF-MRA is well suited for routine follow-up imaging as it
does not need contrast agent or radiation [47].

The detection and measurement of UIAs can be difficult and it has been reported
that approximately 10% of all UIAs are missed during screening [[10, 26, 27, B9]. Detec-
tion is particularly difficult for small UIAs and detection by radiologists from MRAs of
UIAs <5 mm on MRAs can have a sensitivity as low as 35% [48]. However, detection by
radiologists is improving as MRA scan resolution is increasing, especially with higher
field strengths [49, 50]. In clinical practice, aneurysm detection is performed by a radi-
ologist carefully searching through the axial slices of the TOF-MRA, often combined
with coronal and sagittal multi-planar reconstructions, a maximum intensity projec-
tion (MIP) or 3D volume reconstruction, before making 2D size measurements of the
aneurysm.

As more individuals are followed-up or screened, the speed of clinical workflow
could be increased with automatic methods of detection and quantification of UIAs
from TOF-MRAs. However, it is important that these methods do not compromise the
accuracy of human observers for the detection and measurement of UIAs. Automated
volumetric segmentation of UIAs would enable 3D quantification of UIAs and may
aid the prediction of UIA rupture risk. For example, it is known that the shape of an
UIA, such as non-spherical and lobular shape, are related to an increase in growth and
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rupture risk [31-B3]. Furthermore, quantified shape measurements of the UIAs may
aid in models assessing treatment complication risk [51].

There are numerous different methods for the (semi-) automatic detection and
segmentation of UIAs. Semi-automatic methods include, defining the neck of the an-
eurysm where it attached to the parent vessel, before segmenting the aneurysm [[11].
The shape of the aneurysm has been used in some UIA detection techniques, including
using blobness filters [[12] and shape analysis of the surface of the vessel segmenta-
tions [[13, 52, 53]. Furthermore, multiple deep learning techniques for UIA detection
have been developed with high accuracy [14-16]. However, most methods are devel-
oped for CTA or Digital Subtraction Angiography (DSA) 2D images [54, 55] and are for
UIA detection only. The segmentation of UIAs is a difficult problem as UIAs can occur
at many different locations and positions relative to the vessels. They are small and
can vary greatly in shape and configuration. TOF-MRAs can also vary significantly
during the time between baseline and follow-up scans, due to the use of different scan-
ners, protocols, field strengths and field of view. This all leads to a basic requirement
for accurate UIA detection and segmentation methods on TOF-MRA.

The Aneurysm Detection And segMentation (ADAM) Challenge described in this
paper provides an overview of methods to fully automatically detect and segment UIAs
from clinical TOF-MRA images [56]. The aim was to compare methods and assess the
performance over clinical data from an in-house test set. Evaluation was performed
by ranking the methods against each other, for both the detection and segmentation
of UIAs, by determining detection and segmentation metrics. This paper provides an
overview of the challenge including the organisation, the results, a detailed evaluation
of methods submitted and their performance on the test data. This paper follows the
structure outlined in the Biomedical Image Analysis challengeS (BIAS) guidelines for
transparent reporting of biomedical image analysis challenges [57].

2.2 Material and Methods

2.2.1 Challenge Organisation

The results of the ADAM Challenge 2020 were presented at the 23rd International
Conference on Medical Image Computing and Computer Assisted Intervention (MIC-
CAI) on October 8th , 2020. From 3rd April 2020, participants could register on
the website (http://adam.isi.uu.nl/) to participate in the challenge. They could down-
load a training dataset (for full details on the data, see Section R.2.3) to train and de-
velop fully automatic methods for the challenge. Participants were also allowed to
use their own training data, as long as they referenced this in their method descrip-
tions. Once trained, methods were containerised by participants with Docker [5§]
and submitted to the organiser. Examples and instructions are provided on the web-
site (http://adam.isi.uu.nl/methods/). The containerisation allowed easy evaluation of
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the methods, guaranteeing it could be run on our platform. Submitted containers were
run on an individual training case from the training dataset, containing UIAs, and the
results were sent back to the participant for verification. If technical issues or bugs
occurred, teams were allowed to resubmit a new version with the bugs fixed.

The final verified, submitted methods were evaluated on a test set of images (see
Section P.2.3) using evaluation code that was made publicly available (https://github)
com/hjkuijf/ADAMchallenge). If the method required, NVIDIA Titan Xp GPUs were
used for evaluation. The deadline for submission for consideration for the challenge
leaderboard at MICCAI was 17th August 2020 and the results and awards were an-
nounced at the MICCAI conference (8th October 2020). However, the challenge con-
tinues to remain open for submissions, with an up-to-date online leaderboard to allow
for benchmarking of the methods. The ADAM challenge was advertised on the MIC-
CAI website, various social media platforms, and via email to previous MRBrainS and
WMH challenge participants [59, 60] .

2.2.2 Mission of the challenge

The ADAM Challenge consists of two tasks. Task 1 had the aim of automatic detec-
tion of UIAs on TOF-MRAs. Task 2 was for a method that could perform automatic
segmentation of UIAs on TOF-MRAs. Participants could submit to one or both tasks,
and methods submitted to task 2 were also assessed for task 1. The target cohort is the
term used to describe the patient group of which data would be acquired for the final
application of the submitted methods [57]. For the ADAM Challenge the target cohort
was any patient undergoing a clinical brain TOF-MRA to screen for the presence of
an UIA. To reflect the clinical setting, some MRA scans were negative (i.e. a patient
without any diagnosed UIAs) and some scans had more than one UIA. A patient in
the target cohort may be scanned for the following reasons: (1) follow-up scans of
patients with diagnosed UIA(s), with or without additional treated aneurysms; and (2)
patients screened for positive family history of UIAs or aSAH. The challenge cohort
is the term used to describe is the patient group of which the challenge data was ac-
quired, for both the training and the test datasets [57]. The challenge cohort consists
of a subset of patients, who had an available TOF-MRA, from a cohort of patients at
the University Medical Center (UMC), Utrecht with at least one diagnosed UIA and co-
horts of persons screened for UIAs because of a positive family history for aSAH. The
assessment aim of the challenge is to find a method that performs optimally for the
automatic detection and segmentation of UIAs from the TOF-MRAs in the challenge
cohort test dataset.

2.2.3 Challenge data sets

A total of 254 brain TOF-MRA scans were included with 282 untreated UIAs. The

training dataset provided to participants consisted of 113 training cases, while the test
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dataset consisted of 141 cases, where each case contained a TOF-MRA and a struc-
tural image (either T1-, T2- weighted or FLAIR). All MRIs were performed at the UMC
Utrecht, the Netherlands, on a variety of Philips scanners with field strength of either
1, 1.5 or 3T. The MRAs had an in-plane voxel spacing range of (0.195-1.04) mm and
slice thickness range of (0.4-0.7) mm, without a set acquisition protocol. This was due
to the clinical nature of the data and that it was taken from several studies across a
long period of time (between 2001 and 2019). The subjects with UIAs (N = 53) had a
median age of 55 years (range 24-75 years), with 75% of subjects being female. A sub-
set (N = 156) of the dataset includes two scans from the same subject, both a baseline
and a >6 month follow-up scan, to reflect the real clinical data. The UIAs ranged in
size, with a median maximum diameter of 3.6 mm and a range from 1.0-15.9 mm. 25%
(N = 52) of the scans contain multiple UIAs and 28% of the scans contained treated
(either coiled or clipped) UlAs (N = 59). The median age of the population without
UIAs was 41 years (range 19-61 years) and 65% were female. This reflects the clinical
setting, as UIAs are more common in females and the older generation [[1]. The dataset
was realistic and diverse, reflecting different standard clinical protocols used between
MR-scanners and over time.

TRAINING AND TEST DATA Subjects were randomly split into training and test sets and
it was ensured that both sets contained an adequate number of scans without any UIAs.
Every case in the dataset contained one TOF-MRA and one structural (T1/T2/FLAIR)
MR image of the same subject. The training dataset consisted of 113 cases: 93 cases
containing at least one untreated, UIA (35 baseline and 35 follow-up cases of the same
subject and 23 cases of unique subjects) and 20 cases of subjects without UIAs. The
test dataset consists of 141 cases: 115 cases containing at least one untreated UIAs (43
baseline and 43 follow-up cases of the same subject and 29 cases of unique subjects)
and 26 cases of subjects without UIAs. The training data is available on the challenge
website and requires a registration and acceptance of our terms of distribution. An
example of a provided training case can be seen in Fig. R.1. A specific validation set
was not provided and it is up to the participants to decide their own train/validation
set split. Statistical tests were performed to ensure both training and test sets had a
fair distribution of scans. An unpaired t-test was used to assess this difference in age,
maximum diameter, and number of UIAs, number of treated UlAs, pixel spacing and
slice spacing. Gender was assessed using Fisher’s exact test, and the Chi-square test
was used to assess location and magnetic field strength. The location categories used
were: anterior cerebral or communicating artery (ACA/ACoA), the internal carotid
artery (ICA), posterior communicating artery (PCoA), middle cerebral artery (MCA)
and posterior circulation.

PRE-PROCESSING All images were pre-processed with N4 bias-field correction [62].
The structural image was aligned to the corresponding TOF-MRA using the elastix
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Figure 2.1: An example training case. Top Row: a) Original TOF-MRA, b) Original structural MR
image c) original structural MR image aligned to TOF-MRA in a) using registration parameters de-
rived from elastix [61]] d) binary aneurysm image derived from annotations as described in Sec-
tion Bottom Row: e) pre-processed TOF-MRA using n4 bias field correction [62], f) structural
MR image pre-processed using n4, g) pre-processed structural MR image aligned to TOF-MRA using
pre-determined registration parameters.

toolbox for image registration [61]. The transformation parameters used were pro-
vided with the training data. Both original and pre-processed data was provided to
the registered participants.

ANNOTATION PROCEDURE All UIAs were diagnosed on the scans as part of clinical
routine. The UIAs were manually segmented from the original TOF-MRAs using in-
house developed software implemented in MeVisLab (MeVis Medical Solutions AG,
Bremen, Germany). A contour was drawn around the outline of the UIA, on all axial
slices of the MRA. The parent vessel and any branching vessels were excluded from
the annotation and annotations were always drawn starting from the UIA neck to the
UIA dome. An experienced interventional neuro-radiologist (>10 years of experience)
trained a second rater with considerable experience in medical image analysis and
annotation software, but not specifically UIAs. The trained second rater annotated
all images in the dataset. Finally, the first and second rater assessed the full dataset
together and made required modifications to the annotations in consensus to form the
official ground truth data set. During annotation, the raters had access to the structural
image and a radiologist report made at the time of the scan, indicating the location and
size of the UIA. The same annotation procedure was performed for all treated UIAs
and dilated to create a slightly larger mask for exclusion of treated aneurysm.

The resulting annotations were converted to binary masks and voxels were con-
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sidered part of the UIA if they were >50% inside the contour. Untreated UIAs were
given the label 1, treated UIAs label 2 and background was labelled 0. From the binary
image, the centre of mass and maximum diameter of each of the untreated UIAs were
determined in voxel coordinates in the corresponding TOF-MRA image space. This
was provided in a text file for each training case.

2.2.4 Assessment method

METRICS AND RANKING Task 1 and task 2 were evaluated separately using different
metrics. All submitted methods for task 2 were also evaluated for task 1, where the
centre of mass of 3D connected components in the image was used to determine the
detection metrics.

For task 1, methods were evaluated by determining two detection metrics: (1) Sen-
sitivity and (2) False Positive Count (the total number of false positives per scan). The
sensitivity gives a measure of how many detected UIAs correspond to true UlAs, en-
suring we optimise to detect as many of the UIAs as possible. False positive count
balances the sensitivity ensuring not too many falsely identified UIAs are detected,
which would not aid the radiologist.

For task 2, methods were evaluated by determining three segmentation metrics:
(1) Dice Similarity Coefficient (DSC), (2) Modified Hausdorff Distance (MHD) (95 th
percentile) and (3) Volumetric Similarity (VS) [63]. DSC describes how much the pre-
diction and ground truth segmentations overlap. If there was no detection of UlAs,
then the DSC was zero. MHD is a distance metric which is sensitive to the shape
of the segmentation. This is important when segmenting UIAs as the shape may be
used to assess rupture risk. MHD was only calculated where there was any detection
of UIAs by the method, if there was no detection then it was ignored. VS assesses
the similarity in volume of the predicted and ground truth segmentation. Accurate
volume segmentation is important for UIAs for growth assessment.

Individual UIAs were defined as 3D connected components. A detection was con-
sidered positive when the predicted coordinate was within the maximum diameter of
the location of the centre of mass of the ground truth UIA.

A similar ranking was performed for both tasks. Teams were ranked per metric.
The rankings were averaged to achieve the overall ranking per task. For each team,
each metric was averaged over all test scans containing UIAs, other than false positive
count, which was evaluated over all test scans, independent of UIA presence. Next,
for each average metric, the participating teams were ordered from best to worst. The
metrics were scaled linearly to a number between 0 (corresponding to the best team)
and 1 (worst team) and then averaged to obtain a single ‘rank’. For task 1 the two
detection ranks were averaged, and for task 2, the three segmentation ranks were
averaged. For task 2, average interobserver segmentation metrics were also found
based on measurements made by two separate observers, on a subset of the scans.
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FURTHER ANALYSES To evaluate the performance and approach of each method, more
analyses were performed beyond the ranking procedure. In this way, we could de-
termine if there were particular factors that affected the results including both the
method approaches and the data characteristics. This included investigating the dif-
ferent method approaches, UIA size dependence, intra-subject variance and assessing

train versus test performance.

Method analyses. Based on the ranking of the method, a detailed look at each
method could be performed to see and characterise similarities and differences be-
tween the performances. This was performed to investigate if some methods per-
formed significantly better than others and if method design had an influence on per-
formance. Bootstrapping was performed to compute 95% confidence intervals for each
metric and ranking for each team. 2,000 random samples were taken from the test set
with replacement. If confidence intervals did not overlap, methods were considered
to have significantly different performance. Furthermore, the STAPLE algorithm [64]
was used to ensemble first, all of the segmentations from each method and second,
the segmentations from the top-3 teams in task 2. Segmentation metrics and rank-
ings were determined for these STAPLE ensemble method results and compared to

the individual team performances.

Segmentation performance of true UIAs. To assess the segmentation perfor-
mance of the methods, the segmentation metrics were determined for only the true
detected UlAs, excluding any false positives. This was done in order to imitate how
the tool could be used in clinical practice; as a radiologist will only select a correctly
detected UIA for segmentation. To make a similar scenario, it was assessed first if the
predicted segmentation overlapped with the ground truth segmentation. Connected
component analysis was performed on the predicted segmentation. If a connected
component overlapped with the ground truth segmentation, it remained and all other
connected components (false positives) were removed. Segmentation metrics were de-
termined for the remaining connected component relating to the true UIA. This was
performed for each predicted segmentation by each team and a mean of the metrics
and a ranking was made for each team.

Detection performance on negative scans. When screening for UIAs, some scans
will be negative if a patient does not have UlAs. A well performing method should
have a low false positive rate on the negative scans, as no true UlAs exist in these
scans. Twenty-six scans of the test set did not have any UIAs, and the performance of
each method on these scans was evaluated by determining the average false positive
count. The average false positive count in negative scans was compared to the average
false positive count in all scans in the test set containing true positives.
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Size of UIAs. It was thought that the size of aneurysm would affect the performance
of methods, as it is known that detection rates from visual inspection are lower for
smaller aneurysms [41]. The relationship between the size of the UIAs and the de-
tection and segmentation performance was investigated. Both sensitivity and DSC
were assessed for each team in four different size quartiles based on the maximum
UIA diameter.

Intra-subject analyses. Both the training and test data contained a subset of base-
line and follow-up scans of the same subject. As this is common in clinical practice, it
is vital that a measurement method should perform to a similar standard for both base-
line and follow-up imaging, even though the two scans may differ in scanner type, ac-
quisition protocol and quality. An accurate measure of the volume difference between
follow-up and baseline scans is important to be able to detect growth of the UIA. To as-
sess if the method could detect growth, the difference in volume between baseline and
follow-up ground truth segmentations was determined (ground truth volume change).
This was compared to the difference in volume of follow-up and baseline predicted
segmentations by each method (predicted volume change). These measurements were
only assessed for detected true UIAs, where the UIA was detected on both baseline and
follow-up scan by the method. Similarities between the two volume change measure-
ments indicate how reliable the measurement of the method is and this was assessed
using Kendall’s rank correlation measure [65]. Kendall’s tau indicates how well two
values correspond, where 1 indicates a strong agreement, 0 indicates no association
and -1 indicates a strong disagreement.

Furthermore, a method that performs well, and to the same standard, in both base-
line and follow-up scans is required. The intra-subject performance of each team was
investigated by comparing the evaluation metric for the baseline scan to the metric at
the follow-up scan. A Wilcoxon-signed rank test was used to compare the two values
for each team. This was performed for sensitivity, to assess detection performance,

and DSC and volumetric similarity for segmentation performance.

Train versus test performance To assess performance differences between the
training and test data, all methods were re-run on the training set and detection and
segmentation metrics were determined. Performance should be similar to that of the
test set and a large increase in performance indicates that the method may not be
very generalisable to unseen data. A similar ranking of methods was made and this
performance was compared to the performance of the methods on the test set.

All data analyses were conducted using pandas [66], scipy [67], seaborn [68] and
pingouin [69] toolboxes with Python 3.7.
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2.3 Results

2.3.1 Training and test data

There were no statistically significant differences between the cases of the training
and test datasets in age (p = 0.20), sex (p = 1), maximum diameter of the UIA (p = 0.58),
number of UIAs (p = 0.32), number of treated UIAs (p = 0.45), magnetic field strength
of the scanner (p = 0.11), in-plane voxel spacing of the scan (p = 0.43), slice thickness
of the scan (p = 0.78).

2.3.2 Challenge submission

Over 250 users registered for the challenge on the website, and 11 teams submitted
methods. Two teams submitted only under task 1, for the detection of UIAs, and nine
teams submitted under task 2, for the segmentation of UIAs. Results, presentations,
posters and a brief description of all submitted methods can be found on the challenge
website (http://adam.isi.uu.nl/results/results-miccai-2020/). The inference code sub-
mitted in Docker containers for the challenge is also available for most methods on
DockerHub (https://hub.docker.com/orgs/adamchallenge).

TASK 1 SUBMISSIONS MiBaumgartner submitted a 3D neural network based on the
Retina U-Net architecture [70]. The decoder was extended to incorporate semantic
segmentation information and followed by a Path Aggregation Network [71] to gen-
erate the features used for the detection prediction. [72]

Unil_chuv submitted a 3D U-Net [73] which was patch trained using patches
selected based on landmark points from a registered vessel atlas [74]. Both the ADAM
dataset and an in-house dataset for training. On inference, patches were evaluated
only if they were within a set distance from the registered landmark points and had
a minimum intensity. A maximum number of four false positives were allowed based
on the average brightness of the connected components. [[75]

TASK 2 SUBMISSIONS IBBM submitted a 2D convolutional neural network with Tri-
Winged-Net architecture based on the BtrflyNet [76]. MIPs of the MRAs were made in
all three orientations (axial, coronal and sagittal) with each view as a different input
branch. These are encoded separately before being concatenated in the centre of the
network. From this, there were three corresponding decoding branches, to provide
segmentation masks for each view which were, finally, recombined to form the full
segmentation volume. [[77]

Inteneural submitted a method including three 2D neural networks with U-Net ar-
chitecture based on EfficientNet [[78] that were pre-trained using ImageNet [79]. Each
network was fine-tuned for one axis: axial, coronal and sagittal with 2 input channels:
raw TOF signal and blood vessel segmentation, which was performed using Jerman


http://adam.isi.uu.nl/results/results- miccai-2020/
https://hub.docker.com/orgs/adamchallenge
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filter [80]. A loss function including both a generalised dice loss [81] and boundary
loss [82] was used. The final prediction was determined as an average of the evaluated
models’ outputs. [83]

Joker submitted a 3D fully-convolutional neural network based on no new U-Net
(nnUNet) [84]. Group Normalisation [85] was used instead of Batch Normalisation
and leaky ReLU was used. A Dice ranking loss was used for training. Predictions were
made by four separately trained models and ensembled using majority voting. [86]

JunMa submitted a 3D fully-convolutional neural network based on no new U-
Net (nnUNet) [84]. Networks were trained using five-fold cross validation and two
different loss functions: Dice loss and cross entropy, and Dice loss with topK loss [87]
because the two losses have been proven to be robust on highly imbalanced segmen-
tation tasks [88]. At prediction, the five models with optimum performance were en-
sembled. [89, 90]

Kubiac submitted an ensemble of 18 neural networks with three network variants:
A two path dual resolution fully convolutional neural network and two U-Net [73]
style architectures with two paths including contextual information in both the en-
coding and decoding path [P1] trained on different loss functions. The loss functions
were the sum of cross entropy, (generalised) Dice loss [81] and boundary loss [82]. [92]

Stronger submitted an ensemble method of three models, where each model in-
cluded a segmentation and a classification stage. The segmentation stage was based
on a patch-trained 3D U-Net [P3]. The classification consisted of a 3D convolutional
neural network to distinguish between true and false positives. [94]

TUM_IBBM submitted a U-Net based architecture with MRA and aligned struc-
tural image as different input channels [95]. Two networks were trained on sagittal
and coronal slices and during testing, voxelwise predictions of both models were av-
eraged. [94]

Xlim submitted a hybrid two input neural network: one for 3D patches and the
second for the corresponding maximum intensity projection of the patches [97]. The
two paths are brought together with a final concatenation layer. The patches con-
sist of vessels only, segmented from the MRAs using an intensity and morphological
transform based method. [P8]

Zelosmediacorp submitted a 3D fully convolutional neural network with a U-Net
like architecture [[73] trained on patches centred on the average UIA position. Twelve
networks were trained on four different training and validation splits, and the best of
four networks were selected to form an ensemble that averaged the outputs of each
network on the test set. Monte-Carlo dropout [99] was used for both training and
inference. [[100]

Further, more in-depth descriptions of each method can be found on the website
(http://adam.isi.uu.nl/results/results-miccai-2020/).
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Place Team False Positive Count  Sensitivity Rank

1 mibaumgartner  0.13(0.09-0.22) 0.67(0.59-0.74)  0.03(0.00-0.08)
2 joker 0.16(0.10-0.33) 0.63(0.54-0.71)  0.06(0.02-0.11)
3 junma 0.18(0.11-0.36) 0.61(0.53-0.69)  0.07(0.02-0.13)
4 kubiac 0.36(0.28-0.61) 0.60(0.52-0.68)  0.08(0.07-0.13)
5 xlim 4.03 (3.35-4.70) 0.70(0.62-0.77)  0.09(0.07-0.12)
6 inteneural 0.88(0.74-1.18) 0.49(0.40-0.58)  0.17(0.12-0.23)
7 zelosmediacorp  0.05(0.01-0.14) 0.21(0.14-0.28)  0.36(0.31-0.41)
8 stronger 0.45(0.33-0.62) 0.20(0.13-0.27)  0.38(0.33-0.43)
9 unil_chuv 1.45(1.22-1.68) 0.20(0.14-0.28)  0.40(0.34-0.45)
10 IBBM 0.01(0.00-0.04) 0.02(0.00-0.05)  0.50(0.50-0.50)
11 TUM_IBBM 22.62(18.47-27.10)  0.43(0.34-0.51)  0.70(0.64-0.76)

Table 2.1: Task 1: Average metrics and ranking for each team, with the lowest (best) rank placing
highest in the table. Each value is provided as a mean of all scans (95% confidence interval, de-
termined using bootstrapping). The lines indicates groups of methods that can be considered to
have statistically different ranking from the other groups as their 95% ranking confidence intervals
do not overlap.

2.3.3 Metrics and rankings

The mean performance of each participating team for task 1 is shown in Table p.1 and
for task 2 is shown in Table .4, The lines indicate groups of methods that can be con-
sidered to have statistically different ranking from the other groups as their 95% rank-
ing confidence intervals do not overlap. Figs.2.d and P.3 are bar charts and box plots
to show the distribution of metrics for each team. For task 1 the method of xlim per-
formed best for sensitivity and the method of IBBM performed best for false positive
count. Based on the overall ranking (equal weighting of both metrics) mibaumgartner
performed the best for task 1. For task 1, mibaumgartner, joker, junma and kubiac
had overlapping bootstrapped confidence intervals for rank and thus were considered
to have not substantially different performance from each other. For task 2, junma
had the best DSC and VS and joker had the best MHD. Based on the overall ranking
(equal weighting of all three segmentation metrics) junma performed the best for task
2. For task 2, junma and joker performed statistically significantly better than any
other methods based on the bootstrapped confidence intervals being non-overlapping
with any other methods. The bottom row of Table P.J indicates the interobserver
agreement of two observers. This was assessed as a mean over 144 scans (72 paired
baseline-follow-up scans). The average metrics are much higher than any submitted
method. An example segmentation of team junma can be seen in Appendix A , Fig. 1.


https://www.sciencedirect.com/science/article/pii/S1053811921004936?via%3Dihub#fig0006

30 Chapter2

a)
1o Sensitivity
0.8
> 06
2z
2
=
>
f=4
[
0 o4
0.2
0.0
b) -
. False Positive Count
30
o 25
c
3
o ‘
o
w20
2
=
i}
& 15 M
% ‘
c +
©
Y10 '
5

waqqiy«
1)0[{ ee <=

ewun({e « <

Je|gn { e eee
wijx

|einauajul I—l *oee

Jabuouys H—| -

Jaupebwneqiw { «
wqqiTwny
ANYD IUN

di0ooeIPRWSO|9Z { e==

Figure 2.2: Sensitivity and False Positive Count for all teams for all scans in the test set. a) Bar chart
of sensitivity of all teams for task 1, taken as an average across all scans in the test set b) Box plot
of total false positive count per scan of all teams for all scans in the test set.
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Figure 2.3: Box plots of metrics for all teams for task 2. a) Dice Similarity Coefficient (DSC) b)
Modified Hausdorff Distance (MHD) c) Volumetric Similarity for all scans containing a UIA. Each
point in the box plots is the metric evaluated on one scan in the test set for each method. The
centre line shows the median metric of all scans.
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Place Team DSC MHD (mm) VS Rank

1 junma 0.41(0.35-0.47)  8.96(5.59-12.71)  0.50(0.43-0.56)  0.00 (0.00-0.05)
2 joker 0.40(0.34-0.46)  8.67(5.35-12.32) 0.48(0.42-0.54)  0.02(0.00-0.09)
3 kubiac 0.28(0.23-0.33)  18.13(12.73-24.07)  0.39(0.33-0.45)  0.24(0.17-0.32)
4 inteneural 0.17(0.13-0.21)  23.98(19.65-28.04)  0.36(0.30-0.41)  0.39(0.32-0.47)
5 xlim 0.21(0.18-0.25)  36.82(32.72-41.30)  0.39(0.34-0.44)  0.41(0.35-0.47)
6 zelosmediacorp  0.09(0.06-0.13)  9.79(4.66-15.50) 0.13(0.09-0.18)  0.52(0.46-0.59)
7 stronger 0.07(0.04-0.11)  24.42(18.72-30.36)  0.21(0.15-0.28)  0.57(0.49-0.65)
8 IBBM 0.01(0.00-0.02) 12.77(0.97-25.81)  0.01(0.00-0.03)  0.69(0.67-0.77)
9 TUM_IBBM 0.07(0.05-0.10)  65.02(60.93-69.24)  0.31(0.26-0.36)  0.74(0.69-0.79)
1 STAPLE (all) 0.44(0.39-0.50)  17.61(13.18-22.36)  0.57(0.50-0.63)  -0.03(-0.07-0.04)
1 STAPLE (top-3)  0.41(0.35-0.47)  6.88(4.50-9.60) 0.47(0.40-0.53)  0.01(-0.01-0.06)
1 interobserver  0.63(0.60-0.67)  2.42(1.56-3.48) 0.76(0.73-0.79)

Table 2.2: Task 2: Average metrics and ranking for each team, and the brackets contain the 95%
confidence interval determined using bootstrapping. The lines indicates groups of methods that
can be considered to have statistically different ranking from the other groups as their 95% ranking
confidence intervals do not overlap. STAPLE (all) and STAPLE (top-3) are the average metrics and
ranking of the segmentation from the STAPLE algorithm of all and the top-3 methods, respectively.
Interobserver are the metrics comparing manual segmentations of two different observers on
a subset of the scans. DSC: Dice Similarity Coefficient; Modified Hausdorff Distance: MHD; VS:
Volumetric Similarity

2.3.4 Further Analysis

METHOD ANALYSIS All 11 submissions for both tasks used deep learning techniques
for the detection and/or segmentation of the UIA and information about the methods
is provided in Table P.3 . The U-Net [73] was the most common architecture with 72%
(8/11) submissions using a U-Net style architecture for at least part of their method.
The top-2 ranking segmentation methods used nnU-Net [84] as the base for their ap-
proach. Seven methods used 3D approaches, including the top-5 ranking methods. All
methods incorporated the Dice loss in their loss function for training, however junma
and joker, the top-ranking segmentation methods, also incorporated topK loss [87].
Ensembles were commonly used, and appeared to boost performance with the top-5
methods for task 1 and 2 using an ensemble. Ensembles were used by different teams
in various ways for example: with different validation splits, different loss functions
and different architectures before combining the trained models. Unil_chuv was the
only team to use an external, in-house dataset for training. 8/11 teams use augmen-
tation of the training data and 7/11 teams used post-processing techniques to reduce
the number of false positives.

SEGMENTATION PERFORMANCE OF TRUE UIAS To evaluate segmentation performance,
average segmentation metrics were determined for all teams for only the true UlAs
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Place Team DSC MHD (mm) Vs Rank

1 junma 0.64(0.59-0.68)  2.62(2.12-3.31)  0.71(0.65-0.76)  0.00(0.00-0.14)
2 joker 0.60(0.55-0.66)  2.95(2.42-3.66)  0.66(0.60-0.72)  0.11(0.02-0.25)
3 kubiac 0.45(0.39-0.51)  4.95(3.82-6.28)  0.53(0.45-0.60)  0.53(0.25-0.70)
4 xlim (1 1) 0.40(0.35-0.44)  6.55(5.42-7.83)  0.58(0.52-0.64)  0.61(0.32-0.80)
5 stronger (12)  0.39(0.27-0.50) 5.87(3.94-8.06)  0.54(0.36-0.71)  0.63(0.25-0.94)
6 zelosmediacorp  0.40(0.30-0.50)  5.63(4.29-7.00)  0.49(0.37-0.62)  0.66(0.30-0.87)
7 IBBM (1 1) 0.30(0.11-0.47)  5.47(2.00-12.17)  0.49(0.11-0.82)  0.74(0.23-1.00)
8 inteneural (| 4)  0.34(0.28-0.41)  5.76(4.34-7.64)  0.42(0.34-0.50)  0.80(0.40-0.96)
9 TUM_IBBM 0.31(0.24-0.38)  8.44(6.85-10.25)  0.56(0.48-0.65)  0.83(0.45-0.93)

Table 2.4: The mean segmentation metrics of each team evaluated only on the detected true UlAs.
The arrows and brackets signify the difference between the original task 2 ranking ( Table @ )
and the ranking based only on the detected UlAs. All values are quoted as means with 95% confi-
dence intervals determined by bootstrapping in brackets. Table is ordered with the highest placed
ranking first. DSC: Dice Similarity Coefficient; Modified Hausdorff Distance: MHD; VS: Volumetric
Similarity.

that were detected, as displayed in Table R.4. A similar ranking was made as for task
2 based on these metrics. It was observed that this ranking changed the placing of the
teams, as is shown by the red brackets and arrows. However, the top 3 teams remained
unchanged in position. The box plots of the segmentation metrics for each team over
detected UIAs only is shown in Appendix B, Fig. 1.

DETECTION PERFORMANCE ON NEGATIVE SCANS The average false positive count over
all scans containing no true UIAs was determined (Appendix C , Table 1). This can be
compared to the average false positive count for all scans with true UlAs. Teams IBBM,
zelosmediacorp, junma and joker all have a zero false positive count for the scans con-
taining no UIAs. All teams have a smaller false positive count per scan for the negative
scans, compared to the positive scans containing true UIAs. IBBM and zelosmediacorp
have a low false positive count for positive scans (0.02 and 0.06 respectively), but they
also had a very low true positive count. Junma and joker have a substantially higher
false positive count for positive scans (0.22 and 0.20 respectively).

SIZE OF UIAS The detection and segmentation performance improved with the size
of the UIA. Fig. P.4 shows the increase in sensitivity with increasing UIA diameter,
when assessing the UIA diameter in four quartiles. This was represented as the mean
sensitivity over all teams for each UIA. The error bar shows the 95% confidence interval
of the mean. In Appendix D, Fig. 1, it can be seen how the sensitivity of each individual
team varies with size of UIA. Fig. R.5 a) and b) demonstrate that the segmentation
performance also increased with UIA size. In P.9a) the median DSC over all teams for
each UIA was plotted against the individual UIA diameter. In P.53b), the UIA diameter
is again split into four quartiles and the mean DSC over all teams for each UIA was


https://www.sciencedirect.com/science/article/pii/S1053811921004936?via%3Dihub#fig0007
https://www.sciencedirect.com/science/article/pii/S1053811921004936?via%3Dihub#tbl0006
https://www.sciencedirect.com/science/article/pii/S1053811921004936?via%3Dihub#fig0008
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Figure 2.4: Sensitivity of methods for UIA of different sizes. Sensitivity of all teams for each UIA
as a function of maximum UIA diameter in mm, when separating UIA diameter into four quartiles.
Each point included in the box plot is the mean sensitivity of all teams across each UIA.

included. DSCs for individual teams were plotted in Appendix D, Fig. 2.

INTRA-SUBJECT ANALYSES Table P.3 shows the volume change measurements, the
ground truth measurements and the predicted measurements for each team, and how
well they agree using the Kendall’s tau correlation measure. All measurements are
taken only for true UIAs with a positive detection in both baseline and follow-up
scans. This means that the ground truth volume is also different as it is taken as a
mean over a different set of scans. The median ground truth difference over all base-
line and follow-up scans was 2.9 pl. Team IBBM was not included, as less than 5 true
UIAs were detected for both baseline and follow-up scans. Junma were found to have
the highest statistically significantly agreement between ground truth and predicted
volume change (Kendall’s tau >0.5, p <0.05). Inteneural had a Kendall tau < 0, which
indicates there was some disagreement between ground truth and predicted volume
change. Stronger and TUM_IBBM had values for Kendall’s tau which were close to
zero, suggesting that there is no association between ground truth and predicted vol-
ume change for these methods.

The performance of each method was evaluated between baseline and follow-up
scans using the Wilcoxon rank test, the results of which can be seen in Appendix E.
Fig. 1 and 2. For sensitivity, DSC and volumetric similarity, all methods had p >=
0.05 suggesting that performance was not different between baseline and follow-up
subjects.

TRAIN VERSUS TEST PERFORMANCE All the submitted methods were also evaluated on
the training data. The results can be seen in Appendix F , Tables 1a and 1b; which
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Figure 2.5: Dice Similarity Coefficient (DSC) as a function of aneurysm diameter a) Median Dice
Similarity Coefficient (DSC) of all teams for each UIA as a function of maximum UIA diameter in
mm, b) Mean DSC of all teams for each UIA as a function of maximum UIA diameter in mm, when
separating UIA diameter into four quartiles.
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Team GT Volume Change(pl) Predicted Volume Change(ul) Kedall’s tau (p value)
inteneural 3.8 (-0.2,11.6) 0.4 (-2.1,10.4) -0.10 (0.57)

joker 5.0 (-0.3,13.3) 1.8 (-3.7,7.3) 0.42 (<0.05)

junma 4.2 (0.7,12.5) 0.2 (-3.0,10.7) 0.54 (<0.05)

Kkubiac 2.9 (-0.6,11.8) 1.5 (-1.3,6.9) 0.17 (0.19)

stronger 12.1 (-13.9,14.8) -0.7 (-4.3,12.6) 0.06 (0.92)
TUM_IBBM 4.0 (-0.2,13.7) -6.4 (-27.4,15.0) 0.09 (0.53)

xlim 2.9 (-1.4,10.2) 9.5 (-22.1,18.1) 0.44 (<0.05)
zelosmediacorp 8.5 (-12.8, 13.3) 5.5 (-1.9,13.1) 0.42 (0.11)

Table 2.5: Comparison of volume change measurements (median (IQR)) for ground truth (GT) and
predicted segmentations with correlation measure, Kendall's tau (p value). Volume change mea-
surement was determined as the volume of the follow-up volume minus the baseline volume in pl.
Note that the ground truth (GT) volume is different for each team, as it is evaluated only over true
UlAs that were detected in both baseline and follow-up scans by the method.

correspond to Tables P.] and P.4 in the main text. As expected, the results on the
training data are generally better than on the test data. For task 1, the overall ranking
remains roughly similar, with some teams going up or down a few places. This could
suggest that some methods generalise less well to the unseen test data, resulting in a
lower performance on the test data as compared with the training data. For task 2, the
top-4 ranking methods remained the same order of ranking as when assessed on the
training data. All methods show a considerable drop in performance when assessed
on the test set, relative to the training set. This suggests that the methods submitted
for task 2 do not generalise well to the test data set.

2.4 Discussion

This paper presents the results and analysis of the Aneurysm Detection and segMenta-
tion Challenge held at the international conference of Medical Image Computing and
Computer Assisted Intervention (MICCAI) in October 2020.

Two methods perform significantly better than all other methods for both tasks:
(1) detection and (2) segmentation of UIAs on TOF-MRAs. Although the results are en-
couraging for automated UIA detection and segmentation methods, there is still room
for substantial improvement. Compared to visual UIA detection from MRAs, the sensi-
tivity of the submitted methods is, on average, lower than quoted in literature [[10, 49].
The submitted segmentation methods also show a lower performance than the two
observers in this study. Future developments will hopefully bring new and updated
methods that are closer in performance to manual methods.

2.41 Top ranked methods

Mibaumgartner placed first in task 1 for detection of UIAs and did not participate in the
second segmentation task. The method focuses on the detection task, by outputting
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bounding boxes from which a centre of mass was derived, as opposed to performing
semantic segmentation. This is different to all other submitted methods. Mibaumgart-
ner opts to still include semantic segmentation information by using Retina U-Net [70],
before classifying and regressing anchor boxes using a Path Aggregation Network [[71].
Mibaumgartner did not discriminate between treated and untreated UIAs, using both
as foreground voxels for training, which was different from other methods. This may
have aided detection by giving more examples as some aneurysms treated with coils
may look similar to untreated UIAs. As treated UIAs were masked on evaluation, this
did not negatively affect the performance. Furthermore, mibaumgartner used both
the structural MR images and the MRAs, which may have aided in the performance of
the model by incorporating more information. Although mibaumgartner has the high-
est overall ranking, it does not achieve the highest sensitivity or lowest false positive
count.

For task 1 and task 2, the methods of junma and joker showed comparable perfor-
mance, both ranking above the other methods. Both use a 3D U-Net architecture based
on the no new net (nnUnet).[84] The nnUnet is an “out-of-the box tool for state-of-the-
art segmentation” which is an open-source deep learning segmentation framework
that automatically adapts to new datasets. In December 2019, the nnUNet performed
optimally or on par with the best methods in 19 different biomedical image analy-
sis challenges, including the KiTS challenge (https://kits19.grand-challenge.org/), the
largest challenge at MICCAI 2019. Joker made some small changes to the model, in-
cluding using group normalisation instead of batch normalisation, although this did
not appear to make much difference to its overall performance. Joker also used the
structural images as input for training.

2.4.2 Method analyses

All top-3 methods for each task used an ensemble of trained models for prediction
and in total 7/11 submitted methods used an ensemble. It is known that ensembles
of deep learning models can aid in both image classification [101] and segmentation
tasks [59, [102]. In general, ensemble methods were made up of models trained on
different train/validation data splits or cross-validation. Winning team junma trained
using five fold cross-validation and two different loss functions, before selecting the
optimal five trained networks (based on DSC) to ensemble. Joker used an ensemble of
four networks, which included networks trained for different classes in the scan (both
treated and untreated UIAs) as well as including the structural MRI scans in two of
the networks. The STAPLE analysis confirms that ensembles perform well, with an
ensemble of all segmentations from all methods achieving the best ranking. STAPLE
using an ensemble segmentation of the top-3 teams for task 2, junma, joker and kubiac,
performs better than joker and kubiac individually but junma still remains the highest
ranking.
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In addition to joker, the methods of mibaumgartner, kubiac and TUM_IBBM also
use the structural images in their method suggesting that the networks may benefit
from having the information contained in the structural images when detecting and
segmenting UIAs. Other teams use the structural images to aid in patch selection for
training.

The volume of an UIA is a very small percentage of the volume of a whole TOF-
MRA, and in most MRAs only one UIA is present. As a result of this unbalanced prob-
lem, most methods chose to use ground truth knowledge for the patch selection, choos-
ing a particular proportion of training patches to contain an UIA. Only two methods,
inteneural and xlim, perform vessel segmentation on the TOF scans before performing
UIA detection/segmentation. However, both methods are middle ranking (0.39, 0.41
respectively), suggesting that vessel segmentation may not help much in UIA detec-
tion or segmentation.

Almost all task 2 segmentation methods used dice loss in some form for training
their networks. This is a calculated choice, as dice is one of the metrics on which we
evaluate the submitted solutions. Some methods use the generalised dice loss [81],
which has proven to be reliable for unbalanced problems, and others in combination
with other loss functions such as cross-entropy, topK and boundary loss [82]. The win-
ning method junma used an ensemble of methods trained using dice + cross entropy
and dice + topK loss. Kubiac and inteneural both included the boundary loss in their
loss functions for training their models. By including boundary loss, the models are
trained to minimise the distance between the predicted and ground truth segmenta-
tions. This reduces the problems associated with regional based metrics, such as Dice,
for highly imbalanced data. Kubiac and inteneural have similar performance for task
2 (rankings 0.24 and 0.39 respectively) and this may be due to the similar architecture
and loss function used.

Many teams performed post-processing to only accept positive detections of a cer-
tain number of voxels, within a range that was common in the training dataset. Fur-
ther, some teams even limited the maximum number of true positives found based on
probability, size or intensity of the predictions. This aided in the challenge ranking, as
we explicitly evaluated on false positive count. This can be seen for example by xlim,
with a mean false positive count of 4.03 but a sensitivity of 70%, meant their ranking
was lower than if they had perhaps used a further false positive reduction method.

2.4.3 Segmentation Performance of true UlAs

The top-3 teams in task 2, junma, joker and kubiac, also ranked top for segmentation
performance of true UIAs only. Junma with a DSC of 0.64 is slightly higher than the
interobserver DSC of 0.63. The MHD and VS are comparable to the MHD and VS of
the interobserver, with all 95% confidence intervals overlapping. This suggests that
the automatic segmentation method performance is on par with the manual segmenta-
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tion, once the true UIA has been identified. This method could be used in the clinical
research or routine, whereby a radiologist would only need to select an UIA, from
a small population of candidate UIAs, and segmentation of the correct UIA could be
performed.

2.4.4 Detection performance on healthy scans

Top performing teams junma and joker also perform well on scans without true UlIAs,
and have an average false positive count of 0 for such scans. This would be ideal for
in the clinic by not wrongly identifying UIAs, and providing radiologists with more
work to censor these falsely identified UIAs. Team IBBM and zelosmediacorp also had
a false positive count of 0, however, their overall detection performance (sensitivity)
across all scans, including those with positive UIAs, was poor.

2.4.5 Size of UlAs

Opverall, it was clear that both detection and segmentation performance was better for
all methods for larger UIAs, as both sensitivity and DSC increased with UIA diameter
(Spearman’s coefficient = 0.47 and 0.42 respectively). Not surprisingly, smaller UIA
are more difficult to detect, which is also consistent with studies investigating visual
detection of aneurysms. White et. al. [10] cite an average of 87% sensitivity for de-
tecting UIAs on MRAs by radiologists, of which sensitivity is 38% for UIAs <3 mm
and 94% for UIA >3 mm. From the results, it can be seen that the lower quartiles of
diameter have a comparable sensitivity. Xlim has the highest sensitivity with 71% for
UIAs with diameter >3.54 mm and <4.98 mm and 95% for UIAs >4.98 mm. As such,
this method may be suitable for detection of larger UIAs with performance that is on
par with human visual inspection. We assessed segmentation using DSC, which is a
difficult measure for small objects and is limited by voxel sizes of the images. For small
UlAs, with few voxels, the overlap will be less likely and this results in a smaller DSC.

2.4.6 Intra-subject Analyses

Comparing volume change between ground truth and predicted segmentations, found
that different methods performed differently. Junma had the best agreement between
ground truth and predicted volume changes (Kendall’s tau >0.5), suggesting that can
accurately measure volumetric change and growth. Junma had the best segmentation
performance overall which could explain the volumetric change agreement. For some
methods there was disagreement or almost no association between the predicted and
ground truth volume changes, suggesting that these methods are not appropriate for
measuring volumetric growth. It was also noted that the actual volumetric change was
very small, and none of the aneurysms showed considerable growth between baseline
and follow-up. The small volumetric change may explain the low volumetric change
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agreement of all methods. Based on the segmentation metrics and Wilcoxon rank test,
the methods performed similarly for both baseline and follow-up scans. One variable
that may have affected the intra-subject performance, was the train, test and validation
splits between the methods, as many methods did not take baseline-follow-up pairs
into account.

2.4.7 Train versus test performance

Most methods, for both tasks, had a considerably lower performance on the test
data than on the training data. This suggests that these methods did not generalise
well to the unseen data. Reasons for this could be in the method design, the train-
ing/validation data splits, aneurysm sizes, or not taking into account the baseline-
follow-up pairs. The distribution of aneurysm and scan characteristics is similar be-
tween the training and test sets, ensuring that the training data is representative of the
test data. Nevertheless, some features such as aneurysm shape or the configuration
with respect to the parent vessel were difficult to take into account, as they can vary
considerably between patients. This reflects the true clinical nature of the data set, but
ideally methods should be able to detect and segment UIAs, even on unseen examples.

2.4.8 Future work

Overall, further improvement is necessary to be comparable to manual clinical stan-
dards for UIA detection and segmentation. All methods performed worse for smaller
UIAs and as small UIAs are often overlooked by radiologists, this would be a main as-
pect for improvement of the methods. Furthermore, with increased screening studies,
detection of small UIAs would be beneficial to speed up workflow and to learn more
about the prevalence of UIAs in the general population. The best detection method
used a network specifically designed for detection as opposed to semantic segmenta-
tion. The other submitted methods appear limited for detection with most using a
generic semantic segmentation method. This suggests that a “brute force” technique,
by just applying a standard U-Net architecture, may not be optimal for this problem.
Instead, future developments should think out of the box. It was also noted that few
methods use information from the structural images to aid in their methods. Perhaps
some prior knowledge of, for example, the location, shape and size of the UIA would
aid in the method performance. The dataset was a true clinical dataset, with a mixture
of scan parameters, and although this makes it technically challenging, a method that
performs well over the whole test set would be very convenient to have for clinical
use. For larger aneurysms, the top-ranked detection methods had a performance that
was on par with human visual detection suggesting that these methods could be used
for the detection of larger UlAs.

The junma’s method showed promising segmentation performance on the true
UIAs. This suggests that a semi-automatic workflow allowing a radiologist to identify
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the location of the UIA and then using the model of junma as an accurate method of
UIA segmentation may already be of use in current clinical practice. In future work,
incorporating this segmentation method, with an improved detection method, may
lead to an optimal automatic detection and segmentation method for UlAs.

2.5 Conclusions

The provided results were presented at the 23rd International Conference of MICCAI
2020. Methods for UIA detection and segmentation are encouraging but require fur-
ther development before being able to be accurately used to detect, segment and quan-
tify UIAs automatically, to the same level as a radiologist. However, detection methods
may be suitable for use for larger aneurysms. Furthermore, segmentation performance
of the top ranking method suggests it may be suitable for UIA segmentation after man-
ual selection of the true UIA. The ADAM challenge remains open for submission of
both new and improved methods.

2.6 Data availability

Training data and results are available at http://adam.isi.uu.nl/. Scripts for evaluation
of methods can be found at: https://github.com/hjkuijf/ADAMchallenge.

The test set is not publicly available, as it is kept secret for evaluation purposes
of the submitted methods. The inference code submitted in Docker containers for
the challenge is also available for most methods, whose teams gave permission, on
DockerHub (https://hub.docker.com/orgs/adamchallenge).
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Abstract

Time-of-Flight Magnetic Resonance Angiographs (TOF-MRAs) enable visualisation
and analysis of cerebral arteries. This analysis may indicate normal variation of
the configuration of the cerebrovascular system or vessel abnormalities, such as an-
eurysms. A model would be useful to represent normal cerebrovascular structure
and variabilities in a healthy population and to differentiate from abnormalities. Cur-
rent anomaly detection using autoencoding convolutional neural networks usually
use a voxelwise mean-error for optimisation. We propose optimising a variational-
autoencoder (VAE) with structural similarity loss (SSIM) for TOF-MRA reconstruction.

A patch-trained 2D fully-convolutional VAE was optimised for TOF-MRA recon-
struction by comparing vessel segmentations of original and reconstructed MRAs. The
method was trained and tested on two datasets: the IXI dataset, and a subset from the
ADAM challenge. Both trained networks were tested on a dataset including subjects
with aneurysms. We compared VAE optimisation with L2-loss and SSIM-loss. Perfor-
mance was evaluated between original and reconstructed MRAs using mean square
error, mean-SSIM, peak-signal-to-noise-ratio and dice similarity index (DSI) of seg-
mented vessels.

The L2-optimised VAE outperforms SSIM, with improved reconstruction metrics
and DSIs for both datasets. Optimisation using SSIM performed best for visual image
quality, but with discrepancy in quantitative reconstruction and vascular segmenta-
tion. The IXI dataset had overall better performance, potentially due to the larger,
more diverse training data. Reconstruction metrics, including SSIM, were lower for
MRAs including aneurysms.

A SSIM-optimised VAE improved the visual perceptive image quality of TOF-MRA
reconstructions. A L2-optimised VAE performed best for TOF-MRA reconstruction,
where the vascular segmentation is important. SSIM is a potential metric for anomaly
detection of MRAs.
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3.1 Introduction

3.1.1 Background

Time-of-Flight Magnetic Resonance Angiographs (TOF-MRA) allow the visualisation
and analysis of the configuration of the cerebral arteries. This analysis can indicate
normal variation in the cerebrovascular system or vessel abnormalities such as an-
eurysms or stenosis. In addition, variation in the geometry and configuration of the
Circle of Willis, could indicate patients at risk for development of an aneurysm and
cerebral vascular disease [103—-105]. To diagnose these differences, a model would be
helpful which can represent the normal variation of the cerebral vessels in a healthy
population.

Previous work has demonstrated that autoencoders and variational autoencoders
(VAESs) [106] can be trained on images of healthy subjects to reconstruct healthy im-
ages. When these models are presented with a different image, containing an anomaly,
the model will ignore the anomaly and reconstruct the image as if it would be, as a
healthy image. The anomaly or variation may be determined by comparing the recon-
structed ‘healthy’ image with the original image. This enables autoencoders and VAEs
to be used for unsupervised anomaly detection, including pathology variation in brain
MRIs [[107, 108]. Most previously implemented VAEs for anomaly detection use per-
pixel loss functions such as L1-loss or L2-loss. Such loss functions, make the assump-
tion that intensity values of neighbouring pixels are independent. These approaches
are less suitable where the anomaly may result in a change in structure, rather than
pixel intensity. This is true in the case for example of aneurysms or vessel irregulari-
ties, where the irregularity often has the same intensity as the surrounding vasculature
in the MRA and can only be defined as an anomaly by its structure. A contextual loss
would allow for more structural features in the image to be taken into consideration.
The Structural Similarity Index Measure (SSIM) [[109] is an image quality measure
which can identify difference in structure of images by comparing patterns in intensi-
ties which are normalised for luminance and contrast.

3.1.2 Aim

We investigate the use of the Structural Similarity Index as a loss function for optimi-
sation of a VAE for reconstructing normal TOF-MRAs in healthy patients, compared
to a voxelwise L2 loss function. The experiments will be trained on a large publicly
available dataset, and a smaller in-house dataset. Prediction of the trained methods

will also be performed on a third dataset including subjects with aneurysms.
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3.2 Materials and Methods

3.2.1 Datasets

The IXI dataset (a) consists of 570 TOF-MRAs of healthy patients collected from three
different hospitals in London, United Kingdom, between 2005 and 2006: Hammersmith
Hospital (Philips Healthcare, 3T), Guy’s Hospital (Philips Healthcare, 3T) and Institute
of Psychiatry (GE, 1.5T). This set was randomly split into sets for training (365 MRAs),
validation (91 MRAs) and test (114 MRAs). [[110] The IXI database contains subjects
who have been screened by radiologists and diagnosed to be healthy, and therefore
the scans do not contain any diagnosed aneurysms.

The in-house dataset (b) was a subset of the healthy patient data used for the
Aneurysm Detection and segMentation (ADAM) challenge for MICCAI 2020 (https:
//adam.isi.uu.nl/), consisting of MRAs without aneurysms collected from the Univer-
sity Medical Center Utrecht, the Netherlands [111]. This consists of 46 MRAs which
were randomly split into sets for training (16 MRAs), validation (3 MRAs) and test (27
MRAs). The scans were diagnosed by radiologists in the clinic as having no present
un-ruptured intracranial aneurysms.

A third, additional test dataset (c) of 30 MRAs from the ADAM challenge [[111]], of
subjects diagnosed with un-ruptured intracranial aneurysms, was included for testing
of both the trained methods. This dataset contained images using the same protocols
as the in-house dataset (b). It was only used for testing and not used for training.

3.2.2 Pre-processing

All MRAs were corrected for bias field in-homogeneities with the N4 bias field cor-
rection algorithm [62]. The intensity of the images was normalised between 0 and 1,
based on 1 being 95% of the maximum intensity of the original MRA. Otsu thresholding
[112] was used to form a crude brain mask. Patches of 32 x 32 voxels were randomly
selected from the masked, normalised MRAs in the training set. A patch size of 32 x
32 voxels was chosen, because this allowed the full width of a vessel to be included in
a patch. For the IXI training dataset (a) 1,000 patches per MRA were extracted lead-
ing to a total of 365,000 patches for training. For the smaller healthy ADAM training
dataset (b) 10,000 patches were extracted per MRA, with a total of 160,000 patches for
training. More patches were taken from the ADAM dataset per image, as there were
less images in the ADAM dataset than the IXI dataset. The same patches were used
for all experiments.

3.2.3 Architecture

A fully convolutional VAE was developed using PyTorch to conserve spatial informa-
tion in the latent space. The latent space was a multidimensional tensor of 32 x 4 x 4,
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the size of which was optimised by comparing visual quality of the reconstructed out-
put. The reconstruction loss functions optimised were the voxelwise L2-loss function
and a differentiable SSIM loss function. The SSIM loss was implemented with a win-
dow size of 11 x 11 and given a weighting of 1,000. The Kullback-Leiber divergence loss
term was also included to standardise the distribution of latent space as is standard in
VAEs. The learning rate and batch size were optimized for memory and performance
with a batch size of 100 patches, and learning rate of 0.01 for L2 and 0.001 for SSIM for
all experiments. A total of four networks were trained: two networks each optimis-
ing L2 loss and SSIM loss for each of (a) the IXI and (b) the healthy ADAM training
datasets. The networks were trained until convergence of the validation loss. The
trained networks were then used to predict for each of the test sets: (a) the IXI healthy
test set, (b)) ADAM healthy test set and (c) the ADAM aneurysm test set. Since they
were fully convolutional networks, the predictions were made on the full-sized orig-
inal pre-processed MRAs. These were tested slice per slice before combining to the
full 3D TOF-MRA. The intensity of the resulting reconstructed images was re-scaled
to the same intensity scale as the original image. Vessel segmentation was performed
on the resulting reconstructed images using a previously trained vessel segmentation
U-Net [[113].

3.2.4 Evaluation

We compared the performance of two different trained networks for each dataset, one
optimised with L2 loss function and the other with a SSIM loss function. Prediction
was performed on the test sets from each of the same dataset, a) and b) (Table B.1)).
Prediction of both trained networks was also performed on the test set (c) of MRAs
of subjects with aneurysms (Table B.d). Reconstruction performance was evaluated
between the original and reconstructed images using mean square error (MSE), mean
SSIM, peak signal-to-noise-ratio (PSNR). The dice similarity index (DSI) was used to
determine overlap of the vessel segmentations of the reconstructed images and the
original images.

3.3 Results

Using L2 and SSIM loss functions for both (a) the IXI and (b) the ADAM datasets al-
lowed for sufficient image reconstruction and vessel segmentation to be performed as
shown in Table B.] and Figure B.]. Quantitative reconstruction was evaluated using
MSE, mean SSIM and PSNR, with MSE close to zero and all mean SSIM >0.7. L2 loss
performed on average better than SSIM loss for all quantitative evaluative purposes,
with a higher DSI, SSIM and PSNR and lower MSE for both datasets. The networks
trained and tested on the IXI dataset using SSIM loss outperformed the healthy ADAM
dataset with regard to quantitative reconstruction of the images when assessing with
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DSI MSE Mean SSIM PSNR
a) IXI SSIM  0.573 (0.199)  0.003 (0.002) 0.851 (0.039) 26.9 (3.16)
L2 0.604 (0.111)  0.001 (0.000) 0.914 (0.024) 33.5(1.09)
b) ADAM SSIM  0.729 (0.183)  0.012 (0.007)  0.706 (0.089)  20.8 (3.36)
L2 0.837 (0.065)  0.001 (0.001) 0.883 (0.031) 29.3(2.41)

Table 3.1: Reconstruction and segmentation metrics for the test set for the datasets from a) the IXI
dataset and b) the ADAM challenge, trained on the respective training dataset. Values are provided
as mean (standard deviation). DSI: Dice similarity index of the resulting vessel segmentation, MSE:
mean-square-error, SSIM: structural similarity loss, PSNR: peak-signal-to-noise-ratio, L2: L2-loss.
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Figure 3.1: Box plots of reconstruction and segmentation metrics for all scans in the test set for
the datasets from a) the IXI dataset and b) the ADAM challenge, trained on the respective training
dataset. The centre bars correspond to the median value

MSE, mean SSIM and PSNR. However, the MSE, mean SSIM and PSNR of the L2 trained
model for ADAM were higher than the SSIM trained IXI model. All DSI scores larger
than 0.5 for all reconstructed images as seen in Table @ However, all the DSI scores
were lower for the IXI dataset.

Optimization of the network using SSIM loss resulted in reconstructed images with
an improved visual perceptual image quality, with more structural details. These struc-
tural details were smoother on reconstruction based on the L2 loss VAE, as seen in

Figure B.4.

For (c) the third test set containing aneurysms, reconstruction metrics were poorer
for all trained networks as seen in Table B.4 and Figure B.3. The IXI trained method had
a worse DSI score and lower MSE, SSIM and PSNR than the ADAM trained method for
evaluation on (c). The IXI trained VAEs had a larger DSI for (c) the aneurysm dataset
compared to (a) the IXI test set.
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(b)

Figure 3.2: Reconstructions of TOF-MRAs using fully convolutional VAE trained with different loss
functions a) Original TOF-MRA b) Reconstructed MRA: VAE trained with L2 loss c) Reconstructed
MRA: VAE trained with SSIM loss. Top Row: IXI healthy dataset, Bottom Row: ADAM healthy dataset
Red arrows indicate areas of more clear structure in both vessel and brain tissue in SSIM recon-
structed image compared to original and L2 reconstructed image.

3.4 Discussion and Conclusion

Our results show that using SSIM as a loss function in a VAE provides a better percep-
tual image quality than with a voxelwise L2 loss for the reconstruction of TOF-MRAs.
However, L2 loss performs better for quantitative vessel segmentation and reconstruc-
tion metrics.

In the MRAs, there are multiple structures inside the brain which are emphasised
when the SSIM loss is optimised (see Figure B.J). This results in a lower contrast (as
demonstrated by the lower PSNR relative to the L2 loss) between the vessels and sur-
rounding brain tissue. This may result in the lower vessel segmentation performance.
For vascular segmentation, these structures in the surrounding brain tissue are not of
interest, but they can be for the diagnosis of other cerebral disease. For vessel seg-
mentation from the reconstructed VAEs, selection of patches for training containing
only vessel, merits further investigation as this narrows the problem. Furthermore,
the vessel segmentation method was trained on original TOF-MRAs, potentially lead-
ing to a lower performance for reconstructed TOF-MRA with different image qualities
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c) Aneurysm Test Set

Network DSI MSE Mean SSIM  PSNR

IXI SSIM 0.602 (0.217)  0.018 (0.008)  0.652 (0.081)  18.0 (2.72)
IXI L2 0.782 (0.133)  0.003 (0.001)  0.845 (0.040)  26.3 (2.31)
ADAM SSIM  0.692 (0.185)  0.012 (0.006)  0.696 (0.074)  20.1 (2.90)
ADAM L2 0.790 (0.014)  0.001 (0.001)  0.880 (0.028)  28.7 (1.95)

Table 3.2: Reconstruction and segmentation metrics for the prediction of the third test set contain-
ing aneurysms, for each of the networks trained on a) the IX| dataset and b) the ADAM challenge
dataset. Values are provided as mean (standard deviation).

DSl for all models MSE for all models SSIM for all models PSNR for all models.
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Figure 3.3: Box plots of reconstruction and segmentation metrics for all scans in the third test
set containing aneurysms, for each of the networks trained on a) the IX| dataset and b) the ADAM
challenge. The centre bars correspond to the median value.

compared to the original MRAs.

The higher reconstruction metrics for the IXI dataset may be caused by the larger
quantity and diversity in vascular confirmation and aneurysms in the training data.
The lower DSI scores of the IXI set are likely due to the fact that the vessel segmen-
tation network was trained using data from the ADAM challenge. This results in the
original vessel segmentation being sub-optimal and consequently the reconstructed
vessel segmentation might be even poorer. For more valid assessment of vessel seg-
mentation performance, an alternative vessel segmentation method could be used
which performs comparably for both datasets, or the current vessel segmentation net-
work could be re-trained on the IXI dataset. A further limitation of our study, was
that validation was performed on a single random split of the dataset and in future
studies different validation splits or k-fold validation should be used to ensure a fair
distribution of the data.

The networks trained on (a) the IXI dataset performed well on reconstruction of
(c) the aneurysm dataset and were not substantially worse than the (b) healthy ADAM
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Figure 3.4: a) Original TOF-MRA with aneurysm b) Reconstructed using ADAM SSIM trained network
) Possible anomaly detection method using SSIM values and thresholds. Anomalies in SSIM are
shown overlaid in dark pink.

trained networks. The aneurysm dataset was made up of MRAs that had the same
protocols and variety in field strength used in the healthy ADAM training set. This
suggests that the IXI trained dataset has good performance, even on data with a dif-
ferent protocol from which it was trained, and could potentially work on a variety of
different datasets.

Notably, the mean SSIM was lower for all trained networks on the aneurysm test
set relative to the healthy test sets. This suggests that an anomaly (such as an an-
eurysm) may result in a reconstructed image that has a structure more similar to that
of a healthy subject, less similar to the original image (lower SSIM). This can be seen
in Figure B.4, where the aneurysm in the reconstructed image has a lower SSIM value.
This suggests that VAEs trained using either an L2 or SSIM loss may be useful for
anomaly detection when evaluated against the original images using SSIM. Further
investigation into this would need to be performed.

In conclusion, our study demonstrates that using SSIM loss to train a VAE does im-
prove the perceptive visual quality of the reconstructed MRA over L2 loss. However,
it should be used with caution as it does not necessarily improve the quantitative vox-
elwise representation of specific features which may be required for future analysis.
L2-loss trained VAEs may be used for accurate reconstruction of TOF-MRAs. Fur-
thermore, we suggest that SSIM may be a potential metric for anomaly detection in
TOF-MRAs.
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Abstract

Early detection of unruptured intracranial aneurysms (UIAs) enables better rupture
risk and preventative treatment assessment. UIAs are usually diagnosed on Time-of-
Flight Magnetic Resonance Angiographs (TOF-MRA) or contrast-enhanced Computed
Tomography Angiographs (CTA). Various automatic voxel-based deep learning UIA
detection methods have been developed, but these are limited to a single modality.
We propose a modality-independent UIA detection method using a geometric deep
learning model with high resolution surface meshes of brain vessels. A mesh convo-
lutional neural network with ResU-Net style architecture was used. UIA detection
performance was investigated with different input and pooling mesh resolutions, and
including additional edge input features (shape index and curvedness). Both a higher
resolution mesh (15,000 edges) and additional curvature edge features improved perfor-
mance (average sensitivity: 65.6%, false positive count/image (FPC/image): 1.61). UIAs
were detected in an independent TOF-MRA test set and a CTA test set with average
sensitivity of 52.0% and 48.3% and average FPC/image of 1.04 and 1.05 respectively. We
provide modality-independent UIA detection using a deep-learning vascular surface
mesh model with comparable performance to state-of-the-art UIA detection methods.
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41 Introduction

An intracranial aneurysm (IA) is a focal bulging of the vessel wall in the brain. They
have a prevalence of approximately 3% in the general population [L]. If an IA rup-
tures it leads to subarachnoid haemorrhage which can be fatal or lead to long-term
disability [B9, 114]. It is important that unruptured IAs (UIAs) are detected early
to allow for clinicians to make informed rupture and preventative treatment risk as-
sessments [115]. A radiologist usually diagnoses UIAs by visually inspecting Time-Of-
Flight Magnetic Resonance Angiographs (TOF-MRA) or contrast-enhanced Computed
Tomography Angiographs (CTA) but this inspection can be time-consuming and un-
reliable. Visual inspection for UIA detection has been found to have a large variability
in sensitivity across different studies, varying from as low as 28% for small UIAs to
as high as 88% [8-[10]. Various (semi-) automatic detection methods for UIAs exist,
including those developed for TOF-MRAs as part of the Aneurysm Detection and seg-
Mentation (ADAM) Challenge [111]. All methods submitted to this challenge were
voxel-based deep learning methods, including nnU-net [84] and nnDetection [[116]
with a varying range of sensitivity and false positive count (FPC) /image (top 10 meth-
ods: sensitivity = 76% - 59%, FPC/image = 0.18 - 9.37). Voxel-based methods are often
limited by their sensitivity to modality and scan acquisition parameters. Geometric
deep learning methods operating on vessel surface meshes generally would not have
these limitations and could be used instead. This paper investigates the use of a mesh
convolutional neural network for modality-independent UIA detection.

4.2 Background

4.2.1 Geometric Vessel Surface Models for UIA detection

Vessel surface models could be directly used for UIA detection, since the shape of
the vessel surface where an UIA occurs is different from the surrounding vasculature;
the UIA bulges out beyond the smooth tubular vessel structure. Until now most UIA
detection methods use voxel-based methods which tend to be limited to one modality
and often struggle to generalise to different scanning acquisitions. UIAs are often
followed up with a different modality and follow-up can occur over a long period of
time and/or across different centres with different scanning protocols. Using vessel
surface meshes reduces the modality and/or scan protocol dependence of a method,
allowing for a generalised detection method.

Geometric surface analysis of vessels in TOF-MRAs can aid in the detection of UIAs
[117, 118]. Studies have found that the local shape index and curvedness [[119] can be
used as a visual aid to detect UlAs, especially UlAs that are smooth and round [[117)].
Prasetya etal. [[118] found shape index to be more effective at identifying UIA location
than the mean or Gaussian curvature alone. Shape index combines mean and Gaussian
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curvature to give a rotation, translation and scale invariant value that is indicative of
the local shape. Curvedness provides information about the local scale of the object.
The coordinate independence of these measures makes them ideal geometric features
to consider in geometric UIA detection and in geometric deep learning.

4.2.2 Geometric Deep-learning Methods

Geometric deep learning using 3D point clouds and meshes has good performance for
3D object classification and segmentation. Both PointNet++ [[1§] and PointCNN [19]
operate on point clouds. Meshes may have a benefit over point clouds, because they
include connectivity information about the points on the 3D object surface. Geometric
deep learning models using meshes include MeshNet [22] and MeshCNN [23]. Studies
have shown that geometric deep learning performs well for UIA segmentation when
considering a smaller region-of-interest around an already detected UIA with its par-
ent vessels [120-122].

Bizjak et al. [52] provide an UIA detection method from point clouds representing
intracranial vessels extracted from Digital Subtraction Angiograghy (DSA), CTA and
TOF-MRA. A PointNet [123] model was trained using smaller parcellated point clouds
from DSAs for predicting points as UIA or vessel. The resulting predictions were
merged to generate the detection prediction for the full vasculature resulting in a 98.6%
sensitivity with 0.2 FPC/image. The majority (92%) of UIAs were larger than 5 mm
(median size: 9.22 mm).

Yang et al. [[121] investigated multiple geometric deep learning methods to perform
UIA segmentation, with optimal performance using SO-Net [124] (Intersection-Over-
Union (IOU): 81.4%). All input meshes were a small region-of-interest containing part
of the parent vessel and with an UIA (>3 mm). They used MeshCNN [23] with three
different resolution input meshes (namely 750, 1,500 and 2,250 edges). The IOU was
highest for 2,250 edges (72% (95% CI: 64-79%)) demonstrating that a larger number of
input edges improves the UIA segmentation performance. They state that every UIA
was segmented at least in part, suggesting MeshCNN could be a good UIA detection
method. The same group have recently published a two-step pipeline for UIA seg-
mentation from full brain vasculature [125]. The first step uses Point-Net++ [[1§] to
classify vessel segments with and without UIAs. The second step uses SO-Net [[124]
to segment the UIA from the vessel (Dice Similarity Coefficient (DSC) : 72%).

Schneider et al. [122] proposed an application of MeshCNN to segment UIAs.
They extended the original MeshCNN implementation to use sparse matrices, low-
ering memory costs and allowing higher resolution input meshes. Input meshes of
19,200 edges were used to segment four classes: inlet, vessel, bifurcation and UIA
from a small region-of-interest with good performance (average IOU of 63.24%).
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4.2.3 MeshCNN

MeshCNN [23] is a convolutional neural network (CNN) developed for triangular 3D
meshes. For the sake of completeness, we provide some description of MeshCNN, but
for full details we refer the reader to the original paper [23].

Mesh edge convolutions, pooling and unpooling are implemented in MeshCNN
analogous to a CNN operating on voxels in an image. For each edge, five relative geo-
metric edge features (the dihedral angle, two inner angles and two edge-length ratios
for each face) are determined as input features for the model. These features are scale,
translation and rotation invariant. Convolutions are symmetric operations performed
on an edge and its four 1-ring neighbouring edges. Pooling layers consist of collapsing
edges; which are prioritised based on the weighting of the edge features, collapsing
edges that are less important to the task. The resulting number of edges after pool-
ing is a tunable hyperparameter. The link between the old collapsed edges and the
new edges is logged and used in the paired unpooling layer to up-sample the mesh
to its original resolution. MeshCNN has been shown to work well for semantic seg-
mentation in large datasets such as the human body segmentation dataset [126] and
co-segmentation dataset (COSEG) [127]. In the medical domain, MeshCNN has only
been used for a few classification and segmentation problems, including age predic-
tion based on the neonatal white matter cortical surface [128] and UIA segmentation
from a parent vessel [122].

The original MeshCNN implementation [23] is limited by memory intensive book-
keeping of edge collapses in the pooling layers which reduces the possible resolution of
input meshes with large number of edges and parameters. In the original paper, input
meshes with 750 edges were used for classification, and 2,250 edges for segmentation.
This is too limited for meshes generated from full 3D medical images. For example,
taking a full unsimplified vessel surface mesh from a 3D TOF-MRA results in as many
as 25,000 edges. Although these edges can be reduced, it is important to have a high
resolution to include the full detail and topology of the surface. The original imple-
mentation was also limited by edge collapses, which often failed if the collapse would
result in a non-manifold mesh.

Modifications can be made to make MeshCNN more suitable for high resolution
meshes from medical images. MedMeshCNN [[122] introduced sparse matrices for
book-keeping of the edge collapses, improving the memory capacity by a factor of 8.5.
In another adaption for CAD model surface segmentation [[129], sparse matrices were
again included in the pooling layers and further changes were made to improve effi-
ciency, such as deleting no longer used tensors and rewriting functions to perform in
place. Additionally, edge collapses which result in non-manifold meshes were skipped.
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4.2.4 Aim

Mesh neural networks have been used successfully in a few previous medical applica-
tions for classification [[128] and segmentation [[120, 125], and we demonstrated that
modality-independent UIA detection using mesh convolutional neural networks was
possible with a small dataset [[130]. As mesh convolutional neural networks continue
to be developed, there is little information on optimal hyperparameter and configura-
tion of mesh convolutional neural networks such as the resolution of input meshes,
pooling layers and additional input features. In this paper, we further explore the op-
timal configuration and hyperparameters of a mesh convolutional neural network for
modality-independent UIA detection in a large, heterogeneous dataset.

We performed modality-independent UIA detection using a modified mesh convo-
lutional neural network with full intracranial vessel surface meshes. First, we explored
the impact of input mesh resolution on the model performance. Second, the impact
of different edge resolutions in the pooling layers by using different pooling schemes
was investigated. Third, since shape index and curvedness are known to aid visual
UIA detection, we added these in our model. Fourth, the generalisability and modality
independence of our model for UIA detection was evaluated against a public dataset
of TOF-MRAs (derived from the ADAM challenge) [[111] and on an in-house dataset
of CTAs.

4.3 Materials and Methods

4.3.1 Dataset

The training data consisted of 93 brain TOF-MRAs with diagnosed UIAs released as
part of the ADAM challenge [[111]. The dataset included manual annotations for UIAs
present in the scans. The UIAs ranged in size, with a median diameter of 3.9 mm and
a range from 1.0 - 15.9 mm.

The test TOF-MRA data was the separate hold-out test dataset used for the ADAM
Challenge, which consisted of 142 TOF-MRAs, of which 117 contained UIAs and 25 did
not. As organisers of the challenge, we had direct access to the test dataset, but this
was only used for the final inference. The test data was not used for fine-tuning or in
the development of our method, to ensure fair bench-marking against other challenge
method submissions.

The test CTA data consisted of 20 CTAs with corresponding non-contrast CTs,
which all contained at least one untreated, UIA. The median UIA diameter was 5.1
mm and a range of 2.3 - 16.2 mm. All CT scans were made at the UMC Utrecht and
UIAs were labelled by the same radiologist and using the same procedure as the ADAM
data [111].
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4.3.2 Labelled Mesh Generation

VESSEL SEGMENTATION TOF-MRAs were corrected for bias field inhomogeneities us-
ing N4 [62]. The TOF-MRAs and corresponding manual labels were re-sampled to
have median voxel size of the dataset (0.357 mm x 0.357 mm x 0.500 mm). Vessel seg-
mentation was performed automatically using an existing 3D U-net [[131]. Automatic
connected component analysis was used to leave only the main vessels (>= 1000 con-
nected voxels). We removed six TOF-MRAs from the training set at this point because
of poor quality vessel segmentation.

All CTAs were re-sampled and the corresponding non-contrast CT was registered
to the CTA using elastix [61] with B-Spline registration. A bone mask was gener-
ated by thresholding the registered non-contrast CT, which was dilated and then sub-
tracted from the CTA to remove the bone structures. The main vessels were then
semi-automatically segmented from the CTA using thresholding and connected com-
ponent analysis.

VESSEL SURFACE MESH LABELLING Labelled vessel surface meshes were generated en-
tirely automatically, based on the vessel segmentations and the binary image UIA
annotations. Using a Neighboring Cells algorithm, developed in MeVisLab (MeVis
Solution A.G, Fraunhofer MEVIS) [[132], each voxel in the vessel segmentation was
scanned to generate a triangular surface mesh representation. For standardisation of
the dataset, all meshes were downsampled to 15,000 edges, using a quadratic error met-
ric to decide which edges to collapse first. UIAs on the vessel surface were identified
and the corresponding vertices and edges were labelled. Morphological mesh closing
was performed to fill any holes in the labelling and to ensure that all meshes were
closed and manifold. This pre-processing was performed automatically for all TOF-
MRAs and CTAs in both the training and test datasets. Figure jt.1 shows an example
of a labelled vessel mesh.

Figure 4.1: Vascular surface mesh generation. A: TOF-MRA with labelled UIA, B: Vessel segmenta-
tion from TOF-MRA using pre-trained U-net. C: Labelled vessel surface mesh used to train model.
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4.3.3 Model

MODEL ARCHITECTURE For our method, we use a ResU-net style architecture [[73, 133]
with MeshCNN [23] convolution and pooling layers. Sparse matrices were imple-
mented in the pooling layers, to make the network more memory efficient and enable
higher resolution mesh inputs than the original MeshCNN implementation. Further-
more, the pooling layers were modified to not collapse edges that resulted in non-
manifold meshes [129]. The model was further modified to allow additional input
features for each edge to the original five geometric features. Specifically, two extra
local curvature features were added for each edge: shape index and curvedness [[119],
as these are known to aid in UIA detection [117, 118]. Shape index and curvedness
were determined for every vertex on the vessel mesh surface. An edge was then given
a curvature feature (shape index or curvedness), as being the average of the values at
the corresponding end vertices of the edge. The final model included seven features
for each edge: the dihedral angle, two inner angles, two edge-length ratios for each
face, shape index and curvedness. A softmax layer was added at the end of the model,
to allow saving soft segmentation results for each mesh, which indicate the probability
of each edge in the mesh being an UIA.

MODEL TRAINING The remaining 87 TOF-MRAs in the ADAM training set, after the six
exclusions, were randomly split into sets for three-fold cross validation for training (58
TOF-MRAs) and validation (29 TOF-MRAs). Paired baseline and follow-up scans were
considered when making the training and validation splits. The loss function used was
weighted cross entropy with weighting 0.9 to the aneurysm class, 0.1 to the vessel class.
A learning rate of 0.001 was used with a learning rate scheduler, AdamW was used as
optimizer and the network was trained for 350 epochs. The training was implemented
in Python 3.8.5 with Pytorch version 1.8.0 on either a NVIDIA GEOFORCE 2080 Ti
GPU (11GB) or NVIDIA TITAN X Pascal (12GB) GPU with CUDA version 11.2.

4.3.4 Experiments

In three different experiments we assessed the influence of: (1) the input mesh reso-
lution, (2) pooling layer resolution of the network and (3) including shape index and
curvedness as additional input edge features, on the performance of the model for
UIA detection. These experiments were evaluated using three-fold cross validation.
The best performing network was trained on the full training set and tested on the
TOF-MRA and CTA test sets.

INPUT MESH EDGE RESOLUTION  The use of different input mesh resolutions for training
the model was investigated. In the original MeshCNN paper, input meshes with 2,250
edges were used for segmentation. With the increased capacity of our model, higher
resolution meshes could be included. 15,000, 10,000, 7,500 and 5,000 were chosen as
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input edge resolutions. 15,000 edges was chosen as the maximum, because this was
the full resolution of the smallest mesh in the training data. This resolution allowed
for high detail of the surface of the vessel meshes whilst taking into account memory
constraints. 5,000 was chosen as the minimum number of edges, because any lower
number resulted in severe loss of detail so that any smaller UIAs were no longer clearly
defined or that vessel bifurcations were no longer distinct. For this experiment, a fixed
pooling scheme was kept with ratios as similar as possible to the original MeshCNN.
Only the original five input geometric features per edge were used as input.

POOLING SCHEME Different pooling schemes were chosen to investigate the effect of
increasing or reducing the minimum number of edges the meshes are pooled to (see
Table t.9). The number of input edges was chosen based on Experiment 1 and all other
hyperparameters were kept the same. As before, only the original five input geometric
features per edge were used as input.

INPUT FEATURES The addition of shape index and/or curvedness features per edge was
investigated. The baseline model includes the five geometric features from the original
MeshCNN. The shape index and curvedness were added as input, first individually
and then combined. The number of input edges and pooling scheme were based on
Experiments 1 and 2 and all other hyperparameters were kept the same.

TOF-MRA AND CTA TEST SET The best performing method from Experiments 1-3 was
trained using the full TOF-MRA training set. The trained network was used for infer-
ence on the TOF-MRA and CTA test sets.

4.3.5 Evaluation

The output of the methods was a soft-labelled mesh and a threshold of 0.9 was used
to select edges that were predicted to be part of an UIA. This threshold was chosen
to balance optimal sensitivity and false positive count, based on empirical results of
the development phase on the validation set. The threshold was kept consistent in all
experiments. Each connected component of labelled vertices was considered a detec-
tion. Connected components that overlapped with treated aneurysms were excluded,
similar to the ADAM challenge [111]. A true positive was considered a connected
component that overlapped with the true UIA. The bottom ten slices of the images
were removed, because false positives often occurred here, owing to the rounded end
of the vessels. Moreover these slices do not depict the Circle-of-Willis with its bifur-
cations where UIAs usually occur. Sensitivity and FPC/image were determined. All
experiments were evaluated using three-fold cross validation and the metrics were av-
eraged across all validation splits. For each experiment a similar ranking to the ADAM
challenge[[111] was used to determine the optimum method, using an average ranking
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of sensitivity and FPC/image for each experiment. These metrics were chosen as it
is important that all UlAs are detected, indicated by a high sensitivity, even if this re-
sults in some false positives. However, too high a false positive count would also be
disadvantageous to the clinician. FPC/image can be determined even if there are no
true UIAs in the image, allowing evaluation of the full dataset.

4.3.6 Analyses

A comparison was made between the sensitivity and FPC/image on the TOF-MRA and
the CTA test set using a Mann Whitney U-test with a statistical significance level of p
<0.05. Results of the best performing method evaluated on the full TOF-MRA test set
were stratified for UIA size and location.

For the TOF-MRA test set, the predicted UIAs were converted back to binary im-
ages and detection metrics were determined based on the resulting binary segmenta-
tions for direct comparison to the official ADAM challenge ranking.

4.4 Results

4.4.1 Experiments

INPUT MESH EDGE RESOLUTION Table ft.1] shows the performance of Experiment 1 with
the top ranking method having an input resolution of 15,000 edges, suggesting that
higher edge resolution has better performance. This edge resolution was then used
for Experiment 2.

Input Edges Sensitivity FPC/Image Ranking
5,000 50.8% 1.99 0.50
7,500 60.5% 3.31 0.42
10,000 65.2% 3.56 0.50
15,000 61.8% 2.87 0.60

Table 4.1: Experiment 1: Influence of Input Edges. Detection metrics of model with different input
edge resolution meshes using three-fold cross-validation and averaged over all validation splits,
FPC: False Positive Count

POOLING SCHEME Table .9 shows the detection metrics on the validation splits for
each of the pooling scheme experiments. Figure .4 shows the meshes at the inner
pooling layer and at the final output for pooling schemes: 15,000 12,000 6,000 2,000 (A
& B) and 15,000 12,000 10,000 8,000 (C & D). The optimal pooling scheme was found
to be 15,000 12,000 6,000 2,000.
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Input Edges Sensitivity FPC/Image Ranking
15,000 12,000 6,000 2,000 58.8% 1.45 0.65
15,000 12,000 8,000 4,000 61.8% 2.87 0.50
15,000 12,000 9,000 6,000 55.7% 1.10 0.50
15,000 12,000 10,000 8,000 56.5% 1.57 0.43

Table 4.2: Experiment 2: Influence of Pooling Scheme. Detection metrics of model with different
pooling schemes with 15,000 input edges using 3-fold cross-validation and averaged over all vali-

dation splits. FPC: False Positive Count

Predicted Edge Classification

Vessel

Probability of Class

Inner Pooling Layer

Aneurysm

Figure 4.2: Experiment 2: An example of pooling layer resolution and the effect on network out-
put results demonstrated in Experiment 2. Figures A and B: Pooling scheme 15,000 12,000 6,000
2,000. Figures C and D: Pooling scheme 15,000 12,000 10,000 8,000. The first column (Figs A and
C) show the output of the trained model after inference on an unlabelled vessel mesh with 15,000
edges. The second column (Figs B and D) is the output of the final predicted mesh, in the centre
of the network at its most pooled stage (B: 2,000 edges, D: 8,000 edges). At this point, the most
important edges to identify UIAs should be identifiable and not be collapsed and all unimportant

edges should be collapsed.
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INPUT FEATURES The optimal network configuration (input features: 15,000, pooling
layers: 15,000 12,000 6,000 2,000) was trained to include the extra curvature features
and the results of inference can be seen in Table t.3. Figure .3 shows the output predic-
tions for the experiments with the additional curvature features per edge. Adding both
shape index and curvedness had optimal performance. As seen in Table [t.3, adding
shape index increased the sensitivity of the method but also increased the false positive
count. By adding curvedness as well, the increased sensitivity was retained but the
number of false positives was reduced. Figure .4 A.i) and B.i), demonstrate that shape
index is higher in certain regions such as in the curved ICAs (shown by the white ar-
rows) which leads to false positives. In Figure t.4.A.ii) and 4.B.ii), these regions have a
lower curvedness and therefore are not considered as false positives. Thus, using both
the shape index and curvedness leads to a more optimal performance with higher sen-
sitivity and reduced false positive count.

Input Edges Sensitivity FPC/Image Ranking
Geometric 58.8% 1.45 0.66
Geometric and SI 67.2% 2.97 0.50
Geometric and CV 55.0% 1.71 0.41
Geometric, SI and CV 65.6% 1.61 0.88

Table 4.3: Experiment 3: Influence of Input Features. All models used input number of edges
as 15,000 and pooling layer resolution: 15,000 12,000 6,000 2,000. All values averaged across
all validation sets, Geometric: Original geometric features in MeshCNN [23], SI: Shape Index, CV:
Curvedness, FPC: False Positive Count

TOF-MRA AND CTA TEST SET the model performance on the TOF-MRA test set and the
CTA test set (Table [t.4) was not statistically significantly different when assessing both
sensitivity and FPC/image with a Mann Whitney U-test with both p >0.05 (p = 0.20, p
= 0.50 respectively).

Input Edges Sensitivity FPC/Image
TOF-MRA test set 52.0% 1.04
CTA test set 48.3% 1.05

Table 4.4: Detection Performance using Optimal Network. Model with input number of edges as
15,000, pooling layer resolution: 12,000 6,000 2,000 and including shape index and curvedness as
extra features. Trained on full TOF-MRA training data. Sensitivity: average of all scans containing
UIA. FPC/image: average false positive count per image over all scans including those with and
without UlAs.
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Probability of Class

Vessel Aneurysm

Figure 4.3: Experiment 3: All images show the predicted model output for one example with the
model trained using different input features. A: geometric features only, B: geometric features
and shape index, C: geometric features and curvedness, D: geometric features, shape index and
curvedness

4.42 Analyses

Figure [t.5 indicates how the model performs on the TOF-MRA test set with regard to
size. UIAs were split into size categories based on diameter; large: = 7 mm (n = 12),
medium: > 3mm and < 7mm (n = 78), and small: maximum diameter < 3 mm (n = 58).
The average sensitivity to detect UIAs for large, medium and small UIAs were 83.3%,
73.1% and 32.7% respectively, with number of true positives (TP) of 10, 57 and 19. The
number of false negatives (FN) (missed aneurysms) for large, medium and small UIAs
was 2, 21 and 39. Figure @ shows the detection results stratified based on location of
the UIA.

Based on the binary images generated from the meshes in the TOF-MRA test set,
the average sensitivity was 59.3% and the FPC/image was 1.08. Our method would
rank 8th in the ADAM challenge [[111] (assessed in December 2021).
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<0 0.5
Shape Index Curvedness

Figure 4.4: Experiment 3: Two vessel meshes used for inference. Left hand column colours indi-
cate the shape index of the surface, the right hand column is coloured based on curvedness. The
white arrows indicate areas of high shape index, but low curvedness. Using both measures en-
sures these areas are not considered false positives.

4.5 Discussion

We demonstrate modality-independent UIA detection with a mesh convolutional neu-
ral network using high resolution intracranial vessel surface meshes. The optimal
model set-up was found to include input meshes of 15,000 edge resolution, and pool-
ing layers 15,000 12,000, 8,000 and 2,000. Additional input features of shape index
and curvedness improved the detection performance of the model. The modality in-
dependence of the model was validated on both TOF-MRAs and CTAs with compa-
rable performance. Our model based on vascular surface meshes had UIA detection
performance comparable to voxel-wise methods (top ten ranking method in ADAM
challenge).
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Figure 4.5: The number of true positives (TP) and false negatives (FN) for all UIAs in the ADAM test
set evaluated with the best performing method, stratified into groups based on UIA size.
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Figure 4.6: The number of true positives (TP) and false negatives (FN) for all UlAs in the ADAM test
set evaluated with the best performing method, stratified into UIA location. ACA/ACoA: anterior
cerebral or communicating artery, ICA: internal carotid artery, MCA: middle cerebral artery, PCoA:
posterior communicating artery, and Pos Circ: posterior circulation.

INPUT MESH EDGE RESOLUTION A larger input mesh resolution (15,000 edges) was de-
termined to have the best UIA detection performance. Higher edge resolution meshes
provided detailed topology of the vessel surfaces which became concentrated at the
UIA borders during edge collapsing and pooling. The smaller edge resolution input
meshes have fewer possible edges to collapse, sometimes resulting in removing edges
defining UIAs. Our implementation extends the original MeshCNN by allowing these
better performing, high resolution meshes as input. It is worth noting that because
of GPU memory constraints, larger input resolution requires smaller batch sizes and
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hence takes longer to train. Therefore, a balance should be reached based on perfor-
mance and efficiency requirements for each independent application.

POOLING SCHEME We found the model performance to be sensitive to the pooling
layer scheme with the lowest inner pooling resolution (15,000 12,000 6,000 2,000) per-
forming optimally. Figure .4 B shows how the larger number of edge collapses results
in the vessels having less detail and so more confidently being classified. Furthermore,
the concentration of edges around the UIA provides more localised UIA detections.
Figure .4 D demonstrates that there is still high resolution and detail in the pooling
layers. With a large number of edges in the inner pooling layer there is more possi-
bility of false positives. Our experiments highlight that the pooling layer resolutions
influence the performance of the method. The correct scheme depends on the shape
and structure of the 3D object, so this is a hyperparameter which should be chosen for

each specific application.

INPUT FEATURES The addition of shape index as an edge input feature increased the
sensitivity of the method by almost 10%. This could be expected because it is known
that shape index can aid in the sensitivity of visual UIA detection [[117, 118]. How-
ever, the addition of shape index also increased the number of false positives, shown
by higher regions of shape index in Figure f.4.A.i) and B.i). Therefore, shape index
should be considered for a preferred high sensitivity detection method (i.e. ensuring
all possible UIAs are detected) over a precise method. Figure .3 shows that the result-
ing UIA detections appear to be smaller and more localised, with a higher confidence.
Curvedness by itself as an additional feature reduced the sensitivity and increased the
FPC/image compared to baseline (geometric features only). Visually (Figure f.3), the
addition of curvedness appears to highlight more candidate UIA areas, with low prob-
abilities (yellow areas). A combination of curvedness and shape index increases the
sensitivity (increase of 7%) with only a marginal increase in false positives relative to
geometric features alone (increase of 0.24/scan). The curvedness appears to correct
for the false positives detected as a result of adding the shape index, without reducing
the sensitivity of the method. Based on our experiments, we believe it could be use-
ful to include both of these features for other classification/regression problems using
MeshCNN.

TOF-MRA AND CTA TEST SET Our method performed comparably for both the TOF-
MRA and CTA test sets, demonstrating the modality independence of the model. The
sensitivity was slightly higher and FPC/image was slightly lower for the TOF-MRA
test set relative to the CTA test set. This may be attributed to the to the better and
smoother TOF-MRA vessel segmentations on which the model was trained. The CTA
vessel segmentation was not as smooth and was more difficult, due to the extra step to
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separate the vessel from the skull base. For optimum inter-modality performance ves-
sel segmentations of similar qualities for all modalities should be used. The median
UIA diameter in the CTAs was higher than in the TOF-MRAs. This reflects clinical
practice, because some UIAs on our TOF-MRAs were found incidentally on scans dur-
ing familial screening, whereas the CTAs were made specifically for UIA diagnosis or
monitoring.

ANALYSES Compared to visual UIA detection from TOF-MRAs by radiologists, the
sensitivity of our method is lower than quoted in literature: (87%) [[10], however our
dataset consisted of a large proportion of small UIAs (39%). The study of Bizjak et al.
[62] found a sensitivity of 98.6% and FP count of 0.2. However, the median size of UIA
was 9.22 mm, which is much larger than our median size of 3.4 mm. As seen in Figure
k.5, our method performed best for larger UIAs with more true positives than false
negatives (missed UIAs) and a sensitivity comparable to literature (83.3%). Medium
and large UIAs have a higher clinical relevance since preventive treatment in those
UIAs might be considered as they have a higher growth and rupture risk. For small
UlAs, the sensitivity of our method (32.7%) was low but found to be comparable to
that in literature, where the sensitivity for radiologists was determined to drop as low
as 38% [[10] for UIAs <3 mm.

The UIA location influenced the performance of the model as seen in Figure .6,
with the UIAs in the posterior circulation having the least number of false negatives.
False positives were frequently found at the branch of the ophthalmic artery on the
ICA, which often looked similar to an UIA, and the highly curved carotid siphon
(see Figure f.3). Improvements on the vessel segmentation to include smaller ves-
sels, would reduce false positives and allow detection of more UIAs. This is also true
with regard to the CTAs, where the vessel segmentation was not as smooth as the
TOF-MRAs, resulting in deformities in the vessels which looked similar to UlAs.

Compared to voxel-wise methods submitted for the ADAM challenge [111], our
method ranked 8th on the test data. Our model based on vascular surface meshes
removes any image protocol specific dependencies, making this approach ideal for the
diverse, heterogeneous dataset. The advantage of our method over the top 7 methods
in the ADAM challenge is that it can be used on any modality for UIA detection and
not just TOF-MRAs. It is possible that a common framework for CTAs and TOF-MRAs
could be used by training separate models for each modality. However, the proposed
method was trained using TOF-MRAs only. Separate intensity-based models would
require new training data for each modality. Our proposed method also had a lower
FPC/image than two of these top methods, which may be due to our method including
only the vessels, eliminating any possibility of false positives in the rest of the image.
The ADAM test dataset includes a large portion of small UIAs (39%) which also affects
the average sensitivity of our method as it is lower for smaller UIAs.
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LIMITATIONS AND FUTURE WORK All UIA annotations were made directly on the TOF-
MRAs by an experienced radiologist, enabling the use of the full image information
and context. Labels for training were made by projecting the image binary segmenta-
tions onto the surface meshes. This performed well for a detection method, however,
for accurate 3D segmentation and UIA neck definition, the manual labels should be
performed directly on the vessel mesh.

The current implementation is relatively memory inefficient due to book-keeping
of unpooling layers, even using sparse tensors. Although distributed training could
be used, the model still had long training times due to the edge collapsing being per-
formed on CPU. Future implementations should consider the bottlenecks due to the
pooling/unpooling layers and how this could be more efficiently performed. As geo-
metric deep-learning libraries such as Pytorch Geometric [134] and Pytorch3D [[135]
continue to be developed, more efficient mesh convolutional and pooling layers could
be implemented which would speed-up and expand the usefulness of the MeshCNN
style framework. However, we note that after training, the current implementation
has an inference time of approximately 90 seconds per unlabelled vessel mesh of 15,000
edges when evaluated on a Nvidia TITAN X 12GB GPU.

Previous geometric models for UIA segmentation and/or detection have used patch
based and region-of-interest approaches [[122, 125]. The current implementation
makes a large training set of patches unfeasible with long training time and memory
constraints. Our implementation has the benefit that it uses the full high resolution
brain Circle-of-Willis vessel segmentation for training and inference with no require-
ment for extra pre/post-processing of patches. It could be investigated if a combination
of our detection method followed by a patch-based segmentation approach could be
used for UIA segmentation.

Our modality-independent UIA detection method gives promising results about
the use of mesh neural networks in the field of medical image analysis. We believe
such an implementation of mesh convolutional neural networks with high resolution
meshes could also be useful in other vascular imaging problems such as for abdom-
inal aortic aneurysm or coronary artery segmentation or for 3D lesion classification
and regression problems, where the surface topology of a lesion is important for the
outcome. Based on our results, we would recommend that future applications of
MeshCNN should consider a high resolution input mesh and include both shape in-
dex and curvedness as extra input features. The pooling resolution scheme should
also be investigated specific to the desired task.

4.6 Conclusion

We demonstrate that a mesh convolution neural network using high resolution
brain vessel meshes and additional curvature features, can be used for a modality-
independent intracranial aneurysm detection. Our method was validated on TOF-
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MRAs in the ADAM challenge test set and a test set of CTAs with comparable per-
formance for both modalities.
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Abstract

Background and Purpose: Reliable and reproducible measurement of unruptured
intracranial aneurysm growth is important for unruptured intracranial aneurysm rup-
ture risk assessment. This study aimed to compare the reliability and reproducibility
of 2D and 3D growth measurements of unruptured intracranial aneurysms.
Materials and Methods: 2D height, width, and neck and 3D volume measurements
of unruptured intracranial aneurysms on baseline and follow-up TOF-MRAs were per-
formed by two observers. The reliability of individual 2D and 3D measurements and
of change (growth) between paired scans was assessed (intraclass correlation coeffi-
cient) and stratified for aneurysm location. The smallest detectable change on 2D and
3D was determined. Proportions of growing aneurysms were compared, and Bland-
Altman plots were created.

Results: Seventy-two patients with 84 unruptured intracranial aneurysms were in-
cluded. The interobserver reliability was good-to- excellent for individual measure-
ments (intraclass correlation coefficient >0.70), poor for 2D change (intraclass correla-
tion coefficient <0.5), and good for 3D change (intraclass correlation coefficient = 0.76).
For both 2D and 3D, the reliability was location-dependent and worse for irregularly
shaped aneurysms. The smallest detectable changes for 2D height, width, and neck
and 3D volume measurements were 1.5, 2.0, and 1.9 mm and 0.06 mL, respectively.
The proportion of growing unruptured intracranial aneurysms decreased from 10% to
2%, depending on the definition of growth (1 mm or the smallest detectable changes
for 2D and 3D).

Conclusions: The interobserver reliability of the size measurements of individual 2D
and 3D unruptured intracranial aneurysms was good-to-excellent but lower for 2D
and 3D growth measurements. For growth assessment, 3D measurements are more
reliable than 2D measurements. The smallest detectable change for 2D measurements
was larger than 1 mm, the current clinical definition of unruptured intracranial an-
eurysm growth.
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5.1 Introduction

In the adult population, the prevalence of unruptured intracranial aneurysms (UIAs)
is around 3% [ll]. Intracranial aneurysm rupture leads to SAH with a high case fa-
tality rate. The PHASES (Population, Hypertension, Age, Size, Earlier subarachnoid
haemorrhage and Site) study found the 5-year rupture risk of UIAs to be, on aver-
age, 3.4% (0.5%-17.8%), depending on patient and aneurysm characteristics [6]. When
one makes a treatment decision, the risk of aneurysm rupture is weighed against the
complication risk of treatment. Aneurysm size is a key determinant in the prediction
models of rupture risk [6, 136]. If a multidisciplinary team decides against preventive
aneurysm treatment, the UIA is followed up with repeat TOF-MRA or CTAs to detect
potential aneurysm growth. Growth is an additional rupture risk factor [[137], and
if detected, preventive treatment should be considered. TOF-MRA has been shown
to systematically underestimate the size and volume of the aneurysm compared with
the criterion standard DSA [[138]. However, noninvasive TOF-MRA is the first-choice
imaging method for follow-up imaging in clinical practice because neither contrast
agent administration nor radiation exposure is required [[139, 140].

Assessment of UIAs is performed by taking 2D size measurements of aneurysms
on MRA/CTA using electronic calipers. The 3D nature of UIAs makes 2D measure-
ments difficult and dependent on optimal orientation in multi-planar imaging. The
2D measurements by human observers are reported to have comparable mediocre re-
producibility on both CTAs and MRAs [26, 27]. These UIA measurements are relevant
when comparing aneurysm size in a follow-up scan to assess aneurysm growth. An-
eurysm growth is defined as an increase in either 2D height or width of at least 1

m [25]. A reliable measurement method with good agreement is important for risk
assessment. In this context, the reliability depends on the variability of the aneurysm
sizes among patients. The agreement describes the interobserver measurement error
and is characteristic of the measurement method itself. Without knowledge of reliabil-
ity and agreement, it is unclear whether a measured change in aneurysm size between
baseline and follow-up scans represents real growth or is attributable to observer or
scan variations.

In this study, we investigated the reliability and reproducibility of 2D size and
3D volume measurements of UIAs and change in aneurysm size and volume between
baseline and follow-up MRAs. For an agreement measure, we calculated the smallest
detectable change (SDC) and assessed agreement using Bland-Altman plots.
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5.2 Materials and Methods

5.2.1 Study Population

We included 72 patients from a series of patients with UIAs from the University Med-
ical Center Utrecht who met the following inclusion criteria: (1) A TOF-MRA was
available at both the baseline admission scan and follow-up, (2) the follow-up scan
was per-formed at least 6 months after the baseline scan, and (3) the patient had at
least 1 untreated UIA present on both baseline and follow-up MRA. Any treated an-
eurysm in these subjects was excluded from this study. The most recent follow-up
scan in which the UIA remained untreated and unruptured was used. The scans had
an in-plane resolution range of 0.175-1.04 mm and a section thickness range of 0.399—
1.2 mm. All scans were obtained from 2004 to 2019. Due to the nature of the scans,
protocols varied, but all scans were obtained on 1T, 1.5T, or 3T scanners with a me-
dian TR of 23 ms and a median TE of 6.4 ms across all scans. This retrospective study
required no formal consent from participants. The data that support the findings of
this study are available from the corresponding author on reasonable request.

5.2.2 Measurements

2D MEASUREMENTS Manual 2D measurements of the UIAs were performed on the In-
telliSpace Portal (Phillips Healthcare). Measurements were obtained using electronic
calipers on the TOF-MRAs, which could be rotated in the software. The aneurysm
height, width, and neck were measured on the TOF-MRAs on a 0.1 mm scale [31, #0]
as shown in parts A and C in Figure b.1. Aneurysm height was defined as the maximum
distance from the aneurysm neck to the dome. Aneurysm width was measured per-
pendicular to the height along the maximum width of the UIA. The neck was measured
as the maximum width of the UIA where it attached to the parent vessel. Observers
determined whether the UIA shape was regular or irregular.

All 2D measurements were performed independently by 2 observers. The ob-
servers were a neuroradiologist (I.C.v.d.S., with 15 years of experience) and a general
radiologist (M.J.O., with 10 years of experience, including cerebral MRA evaluation).
Individual measurements were first obtained on the baseline scan, then on the follow-
up scan of the same patient. The observers were not blinded to the time order of the
scans and had the baseline for comparison, as is standard in clinical practice.

3D MEASUREMENTS For 3D measurement, the UIAs were segmented from the TOF-
MRAs using in-house-developed software implemented in MeVisLab (MeVis Medical
Solutions). A contour was drawn around the outline of the aneurysm on axial slices,
and the parent vessels were not included (Figure b.1). The UIA volume (in millilitres)
was determined on the basis of the voxels contained within the contours and the MRA
voxel size. Annotations were performed independently by two observers, first on the
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Figure 5.1: Baseline (A and B) and follow-up (C and D) TOF-MRA with an anterior communicating
artery aneurysm that shows growth when measured in 2D (A and C) and in 3D (B and D).
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baseline scan, followed by the follow-up scan of the same patient. The observers were
the neuroradiologist (I.C.v.d.S.) and a trained medical student (D.S.).

STATISTICAL ANALYSIS First, the interobserver reliability of the individual 2D measure-
ments (height, width, neck) and 3D measurements (volume) of the aneurysms was de-
termined. Second, on the basis of the 2D and 3D size measurements, changes in size
and volume (growth) between paired baseline and follow-up scans for 2D (difference
in height, width, and neck in mm) and 3D (volume difference in millilitres) were cal-
culated. Third, the interobserver reliability of these changes in size (2D) and volume
(3D) measurements was assessed by computing the intraclass correlation coefficient
(ICC). The ICC was calculated using a single-measurement, absolute-agreement, 2-
way random-effects model [141]. An ICC above 0.9 represents excellent reliability;
between 0.75 and 0.90, good reliability; between 0.5 and 0.75, moderate reliability; and
lower than 0.5, poor reliability [[141, 142]. The interobserver reliability for detecting
change in 2D and 3D measurements was compared in regular and irregular aneurysms.

The SDC was computed on the basis of the 2D and 3D measurements to assess the
interobserver agreement. The SDC represents the minimal change that an aneurysm
measurement must show to ensure that the observed change is real and not just due to
measurement error. For both 2D size and 3D volume measurements, we calculated the
standard error of measurement (SEM) using the ICC previously determined. The SDC
was calculated from the standard error, SEM,greement, SDC = 1.96 V2 SEMagreements

where SEMygreement = SDy/1 = ICCygreement; and SD is the standard deviation of all
measurements [[143].

Bland-Altman plots for the interobserver difference between the change in 2D and
3D measurements between baseline and follow-up scans were created to assess agree-
ment. The difference between each observer and the overall mean of both observers
was calculated and plotted. The limits of agreement from the mean (£1.96 SD) were
determined. Measurements outside the limits of agreement were considered outliers.

The number of UIAs with change in 2D height and/or width measurements larger
than 1 mm, the current clinical definition of aneurysm growth [25], was determined.
Next, the number of UIAs with a change in 2D height and/or width and volume larger
than the determined 2D and 3D SDCs was determined. The proportion of UIAs show-
ing growth based on the 1 mm clinical definition versus the proportion of UlAs with
growth based on the SDCs was compared.

Finally, a sub-analysis was performed stratifying the reliability of change mea-
surements for aneurysm location: anterior cerebral or communicating artery, internal
carotid artery, posterior communicating artery, MCA, and posterior circulation.

All data analyses were conducted using Pandas, SciPy, and Pengouin [69] toolboxes
with Python 3.7 (https://www.python.org/downloads/release/python-370/).
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5.3 Results

We included 72 patients with 84 UIAs. The mean age was 53 years (range, 27-73 years),
and 71% were women. Most patients had 1 UIA (n = 63). The median time between
baseline and follow-up scans was 4.7 years (range, 0.9-13.1 years). The median an-
eurysm height was 3.4 mm (range, 0.8—15 mm). 22% of aneurysms were located at the
anterior cerebral artery/anterior communicating artery, 27% at the ICA or posterior
communicating artery, 38% at the MCA, and 13% in the posterior circulation. Figure
b.1 shows an example of a growing aneurysm measured in 2D and 3D.

The interobserver reliability of the 2D size and 3D volume measurements is sum-
marised in Table b.1. The ICC of the individual 2D size measurements was excellent
for height (0.93), good for width (0.85), and moderate for the neck (0.74). The ICC for
the individual 3D volume measurement was excellent (0.98).

The ICCs for the change in measurements (growth) between the paired baseline-
follow-up scans for the 2 observers are shown in Table p.4. The ICC for the change
in 2D measurements was poor for height (0.46), width (0.45), and neck (0.26). The
ICC for the change in 3D volume measurements was good (0.76). Irregularly shaped
aneurysms had a lower reliability for 2D change in height and width (ICCs = 0.23, 0.38)
and 3D change in volume (ICC = 0.60) than for regular aneurysms (ICCs = 0.57, 0.47,
0.83, respectively).

On the basis of the standard error of measurement for agreement, between the 2
observers, the SDC for 2D measurements was 1.5 mm for height, 2.0 mm for width,
and 1.9 mm for neck. The SDC for 3D volume measurement was 0.062 mL.

The Online Supplemental Data show Bland-Altman plots for the interobserver dif-
ference between the change in 2D and 3D measurements between baseline and follow-
up scans. The Bland-Altman plots show that there are 4-6 outliers that fall outside
the limits of agreement for all change measurements between size and volume. About
half of these outliers (55%) were the same for 2D and 3D and were classified as irregu-
larly shaped by the observers. There was no relation between aneurysm size and the
outliers.

The number of UIAs with a change in size measurements larger than 1 mm and a
change in size and volume larger than the SDCs is shown in the Online Supplemental
Data. The proportion of UIAs with growth based on the definition of 1 mm was 10%,
compared with 2% when using a 1.5 mm change in height as a cutoff value (SDC for
2D height) or a 2.0 mm change in width as a cutoff value (SDC for 2D width) and a
0.062 mL change (SDC for 3D) as cut-off value.

The Online Supplemental Data indicate the reliability of the change in measure-
ments in different locations. The reliability was found to be location-dependent for
both 2D and 3D; however, 3D measurements were more reliable than 2D measure-

ments across all locations (ICC >0.5).
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Parameters Height (mm) Width (mm) Neck (mm) Volume (mL)
Observer A 3.4 (2.4-4.4) 3.4 (2.2-4.5) 2.6 (2.0-3.5) 0.0278 (0.0117-0.0578)
Observer B 3.4 (2.5-4.6) 3.2 (2.2-4.3) 2.0 (1.6-2.8) -

Observer C - - - 0.0227 (0.0090-0.0470)

Abs. Diffjps  0.40 (0.20-0.60)  0.45 (0.20-0.80)  0.55 (0.30-1.00)  0.0091 (0.0036-0.0206)
ICChgree(95%)  0.93 (0.90-0.95)  0.85(0.80-0.89) 074 (0.31-0.87)  0.98 (0.97-0.98)

Table 5.1: Interobserver size and volume measurements. 2D and 3D measurements of the an-
eurysms by observers A and B for 2D and observers A and C for 3D. Total: 168 aneurysms, includ-
ing both baseline and follow-up scans. Each measurement is provided as a median (quartiles 1-3).
Reliability is in the bottom row as an ICC on absolute agreement (95% confidence interval). Note:—
- indicates no measurement; ICCagreement, Intraclass correlation coefficient on absolute agreement
between observers’ measurements; Abs. Diffops, absolute difference between observers’ measure-
ments.

Parameters Height (mm) Width (mm) Neck (mm) Volume (mL)

Observer A 0.2 (-0.1-0.7) 0.1 (-0.2-0.4) 0.0 (-0.2-0.4) 0.00001 (-0.0043-0.0011)
Observer B 0.1 (-0.1-0.5) 0.1 (-0.2-0.6) 0.0 (-0.1-0.3) -

Observer C - - - 0.0015 (-0.0054-0.0106)
Abs. Diff,ps  0.40 (0.20-0.70)  0.40 (0.20-0.60)  0.30 (0.10-0.70) ~ 0.0057 (0.0024-0.0135)
ICCypree(95%)  0.46 (0.27-0.61)  0.45 (0.26-0.60)  0.26 (0.06-0.46)  0.76 (0.65-0.76)

Table 5.2: Interobserver change measurements. Change between baseline and follow-up mea-
surements of the 2D height, width, neck and 3D volume of the aneurysm by observers A and B for
2D and observers A and C for 3D. Total: 84 baseline-follow-up pairs measured by 2 observers. Sub-
stantial positive differences between baseline and follow-up may indicate growth of the aneurysm.
Each measurement is provided as a median (quartiles 1-3). Reliability of the differences is provided
in the bottom row as the ICC on absolute agreement (95% confidence interval).Note:—- indicates
no measurement; ICCqgree, Intraclass correlation coefficient on absolute agreement between ob-
servers’ measurements; Abs. Diffops, absolute difference between observers' measurements.
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5.4 Discussion

In this study, interobserver reliability was better for 3D than 2D measurements of
UlAs, both for individual size and detection of change in size (growth). Overall, the
interobserver reliability of both 2D and 3D measurements was lower for the detection
of change (growth) compared with measurements on individual scans. The SDC be-
tween the baseline and follow-up scan for 2D measurements was substantially larger
than the current clinical definition (1 mm), and proportions of UIAs showing growth
decreased more than three-quarters depending on the growth definition.

Many studies have investigated MRAs for UIA diagnosis [48]. However, few stud-
ies have investigated the interobserver reliability of 2D measurements from individual
MRAs of patients, and no studies have fully investigated the reliability and agreement
of growth measurements between baseline and follow-up MRAs of the same patient.
The results of studies for individual 2D height and width measurements are similar to
our findings, with the lowest reliability for measuring the neck. Kim et al [27] studied
intra- and interobserver individual 2D measurement variability of 33 aneurysms with a
mean size of 5.1 mm, finding an ICC of 0.83-0.99 on MRAs with the lowest reliability
for the neck measurement (ICC = 0.83-0.86). Mine et al [144] compared the diagno-
sis and measurements of UIAs between DSAs and MRAs. Three readers assessing 56
aneurysms in MRAs determined an interobserver agreement between individual 2D
maximal diameter as moderate-to-substantial (k = 0.53-0.66) and the neck measure-
ment as fair-to-moderate (k = 0.20-0.41). The lower ICC for the neck is likely due
to difficulty in defining an aneurysm neck, particularly if there are branching vessels
emerging from the neck. This lower measurement reliability for neck measurements
may have implications for treatment planning and complication risk assessment [5].
For aneurysm growth assessment, the neck measurement is less important because
height and width measurements are commonly used [25, 40].

With ever improving image analysis techniques, 3D measurements of UlAs [30,
34, 145] are more commonly investigated, but little is known of their reliability or
reproducibility for individual size and growth measurement of UIAs in TOF-MRAs.
D’Argento et al [[146] found no significant difference in intra- and interobserver vari-
ability of automatic and manual 2D size measurements of UIAs on 3D DSAs and CTAs.

We determined the ICC of absolute agreement to include the systematic error of
both observers and random residual errors. A substantially lower ICC for change mea-
surements (growth) between paired baseline—follow-up scans was determined, relative
to measurements from individual scans. The ratio of the systematic measurement er-
ror compared with the individual aneurysm size is smaller than the ratio of the mea-
surement error compared with the change in aneurysm size. Thus, a small measure-
ment error in individual measurements can have a larger influence on the subsequent
change measurements in paired scans.

The interobserver agreement in 2D and 3D measurements was assessed by deter-
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mining the SDC. The SDC for both 2D and 3D measurements was relatively large,
compared with the median aneurysm size (3.4 mm) and median aneurysm volume
(0.025 mL). For example, for 2D height, the SDC of 1.5 mm was about half of median
aneurysm height. This study has a large proportion of small aneurysms, and the ratio
of the SDC to aneurysm size would be better (lower) in larger aneurysms. However,
because most patients who undergo follow-up MRAs have small UIAs, our population
represents the clinical situation. The SDC for the 2D measurements is larger than
the 1 mm used in the current definition of aneurysm growth [25]. The number of
UIAs showing growth according to threshold values of the SDC of 2D and 3D mea-
surements decreased by more than three-quarters compared with this 1 mm threshold.
This finding shows the influence of the thresholds for growth definition and has po-
tential important clinical consequences for treatment decisions based on aneurysm
growth.

The Bland-Altman plots (Online Supplemental Data) show that 3D interobserver
differences were more similar than 2D measurements because the measurements were
closer together. Most outliers for both the 2D and 3D measurements were irregularly
shaped. We also found that irregular aneurysms had a lower inter-observer reliabil-
ity for detecting change in both 2D size and 3D volume measurements. Irregular an-
eurysm shape is a risk factor for rupture [32, 40]. 2D measurements and shape assess-
ment of aneurysms are influenced by the selected viewing angle. 3D volume measure-
ments allow a more complete shape of the UIA to be assessed with a single, rotation-
invariant measure. Furthermore, 3D segmentation may allow quantitative shape as-
sessment of UIAs, which would be potentially beneficial in risk assessment [31].

We found that aneurysm location affects the reliability of 2D and 3D measure-
ments. We found that the reliability of 3D volume measurements was higher and
more consistent for all locations than 2D size measurements.

There were some limitations in our study. One limitation was that the 3D mea-
surements were determined from segmentations based on 2D annotations on axial
slices, which is time-consuming and the aneurysm neck definition could be difficult,
particularly when the parent vessel did not lie in-plane. Furthermore, the difference
in experience of the second observers for 2D (radiologist) and 3D (student) measure-
ments may have introduced bias. If this had influenced our results, it would be toward
less agreement for the 3D measurement between the student and the neuroradiologist.
However, we found higher agreement in 3D than in 2D.

Second, most scans had small aneurysms with a median diameter of 3.4 mm (range,
0.8-15 mm). The population of patients with small UlAs is, however, representative
of patients who undergo follow-up imaging. Because rupture risk increases with an-
eurysm size, the larger UIAs are more often treated. The protocol and quality of the
MRAs between baseline and follow-up differed in some cases, possibly resulting in
measurement differences, but they are realistic for clinical practice.

This study investigates TOF-MRAs only because this is the preferred imaging
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method for follow-up of UlAs [140].

Our findings of a large SDC for 2D size measurements may have implications for
the definition of clinical aneurysm growth and growth/rupture models. This subject
requires further study because it would have important consequences for rupture and
treatment assessment of UIAs. 2D and 3D measurements cannot be directly compared,
but instead a standard growth definition should be used for both. The higher reliability
of 3D measurements compared with 2D measurements implies that 3D measurements
may be important for accurate assessment of aneurysm growth on TOF-MRA. Auto-
matic or semi-automatic 3D UIA segmentation would allow faster and less operator-
dependent aneurysm volume measurement for standard 3D growth assessment, along-
side quantitative 3D morphological characterisation of UlAs.

5.5 Conclusions

This study found that 3D change measurements are more reliable than 2D with regard
to assessing the change in size and volume measurements of UIAs. The SDC for 2D
measurements was found to be larger than the current definition for clinical growth,
suggesting that more studies into the reliability of 2D measurement on MRA should
be performed. This study opens the door for development and incorporation into of
automatic and semi-automatic segmentations and volumetric growth assessments of
UIAs into clinical practice.
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Abstract

Background and Purpose: Untreated unruptured intracranial aneurysms are usu-
ally followed radiologically to detect aneurysm growth, which is associated with in-
creased rupture risk. The ideal aneurysm size cutoff for defining growth remains un-
clear and also whether change in morphology should be part of the definition. We
investigated the relationship between change in aneurysm size and 3D quantified mor-
phologic changes during follow-up.

Materials and Methods: We performed 3D morphology measurements of unrup-
tured intracranial aneurysms on baseline and follow-up TOF-MRAs. Morphology mea-
surements included surface area, compactness, elongation, flatness, sphericity, shape
index, and curvedness. We investigated the relation between morphologic change be-
tween baseline and follow-up scans and unruptured intracranial aneurysm growth,
with 2D and 3D growth defined as a continuous variable (correlation statistics) and a
categoric variable (t test statistics). Categoric growth was defined as 1 mm increase in
2D length or width. We assessed unruptured intracranial aneurysms that changed in
morphology and the proportion of growing and nongrowing unruptured intracranial
aneurysms with statistically significant morphologic change.

Results: We included 113 patients with 127 unruptured intracranial aneurysms. Con-
tinuous growth of unruptured intracranial aneurysms was related to an increase in
surface area and flatness and a decrease in the shape index and curvedness. In 15
growing unruptured intracranial aneurysms (12%), curvedness changed significantly
compared with nongrowing unruptured intracranial aneurysms. Of the 112 nongrow-
ing unruptured intracranial aneurysms, 10 (9%) changed significantly in morphology
(flatness, shape index, and curvedness).

Conclusions: Growing unruptured intracranial aneurysms show morphologic
change. However, nearly 10% of nongrowing unruptured intracranial aneurysms
change in morphology, suggesting that they could be unstable. Future studies should
investigate the best growth definition including morphologic change and size to pre-
dict aneurysm rupture.
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6.1 Introduction

In management decisions on unruptured intracranial aneurysms (UIAs), the risk of
rupture needs to be balanced against the risk of treatment complications [ff]. UlIAs
often remain untreated if the risk of treatment complications is higher than the risk
of rupture [b, 115]. In that case, UIAs can be monitored with follow-up imaging to
detect potential aneurysmal growth, which is associated with an increased risk of rup-
ture [7]. If aneurysmal growth is detected, preventive aneurysm treatment should be
reconsidered.

Substantial heterogeneity exists in the definition of UIA growth [40, 147, 148]. Gen-
erally, the definition of growth includes a certain increase in aneurysm size and/or any
morphologic change [26]. Currently, it remains unclear which definition is most rele-
vant and how morphologic changes relate to any change in aneurysmal size. UIA size
and morphology are currently assessed with caliper measurements and visual classi-
fication by human observers, which can be prone to measurement errors and poor
reproducibility [26, 27]. 3D volumetric segmentations of UIAs enable reproducible
and reliable quantification and analysis of UIA volume, morphology, and assessment
of changes in morphology [B5, 147, 149]. The recent Image Biomarker Standardis-
ation Initiative (IBSI) [38] has been developed to standardise quantitative radiomics
extracted from medical imaging, including morphology measurements.

3D quantified morphology measurements of UIAs [34, [145] are more frequently
used to better understand growing and unstable UIAs. Previous studies have investi-
gated difference in morphology in growing UIAs [34, 150] and morphology as a pre-
dictor of UIA instability [3¢]. However, no studies have investigated morphologic
changes in stable or nongrowing aneurysms. Furthermore, various different morphol-
ogy measurements are used, making it difficult to make direct comparisons between
studies.

More investigation is warranted into both growing and non-growing (stable) UIAs
to understand the relationship between growth and morphologic change of UIAs using
standardised morphology definitions.

This study aimed to investigate the relationship between UIA growth and mor-
phologic change by considering continuous and categoric (dichotomous) 2D and 3D
growth of growing and non-growing UIAs.

6.2 Materials and Methods

6.2.1 Study Population

From the UIA data base of the University Medical Center Utrecht, the Netherlands,
we included consecutive patients of >18 years of age who adhered to the following
inclusion criteria: (1) at least 1 saccular UIA; (2) a 3D TOF-MRA available both at the



90 Chapter 6

baseline admission scan and at follow-up in the period 2004-2020; and (3) the inter-
val between the baseline scan and follow-up scan was at least 6 months. Exclusion
criteria were the following: (1) fusiform or arteriovenous malformation-related an-
eurysm; and (2) aneurysm rupture or preventive treatment between baseline and the
first follow-up scan. For each patient, we assessed both a baseline and the most recent
follow-up TOF-MRA scan for the analysis. All scans were obtained between 2004 and
2020. Due to the time period, protocols varied, but either a 1 T, 1.5 T, or 3 T scan-
ner was used with a median TR of 23 ms and a median TE of 4 ms across all scans.
The scans had a median in-plane resolution range of 0.357 mm and a median section
thickness range of 0.5 mm. All scans were pre-processed and re-sampled to the same
voxel size (0.357 x 0.357 x 0.500 mm) to account for scan protocol differences. The
institutional review board of the University Medical Center Utrecht waived individual
patient consent and formal ethics approval for this study because data available from
routine patient care were used.

6.2.2 Measurements

2D MEASUREMENTS 2D measurements of the UlAs in all scans were performed manu-
ally on the IntelliSpace Portal (Philips Healthcare) by an experienced neuroradiologist
(L.C.v.d.S.). The UIA length and width were measured on the TOF-MRAs on a 0.1 mm
scale using electronic calipers [31, 40]. UIA length was defined as the maximum dis-
tance from the UIA neck to the UIA dome. UIA width was measured perpendicular
to the measured length along the maximum width of the UIA. Individual length and
width measurements were made on both the baseline and follow-up scans. 2D length
and width changes were determined as the difference in the 2D length and width mea-
surements between the follow-up and baseline scans of the same UIA of the same
patient.

3D MEASUREMENTS To make 3D quantified morphology measurements of the UlAs,
we manually segmented the UIAs from the original TOF-MRAs using in-house devel-
oped software implemented in MeVisLab (MeVis Medical Solutions). All annotations
were made by drawing a contour around the UIA on axial slices of the original TOF-
MRA by the neuroradiologist who made the 2D measurements. The annotation did
not include the parent vessels. Annotations were first made on the baseline scan, fol-
lowed by the follow-up scan of the same patient. The annotations were converted to
binary masks in which voxels that were located. 50% inside the contour were labelled
as UIAs. The images and annotations were all re-sampled to the median voxel size of
0.357 x 0.357 x 0.500 mm. Using a marching cubes algorithm [[151], we automatically
fitted a mesh to the outside of the segmented UIA. The volume and surface area of the
UIA were determined on the basis of the mesh around the segmented UIA. 3D volume
change was determined as the difference in volume between the follow-up and base-
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line scans. The size of the UIA was determined by performing principal component
analysis on the voxels within the segmented UIA and calculating the major, minor, and
least extent. From these values, various morphology measurements were calculated
on the basis of definitions in accordance with the IBSI guidelines [B38], including com-
pactness 1, compactness 2, elongation, flatness, and sphericity. Compactness 1 and 2
and sphericity are different measures that all quantify how similar the morphology of
the UIA is to a sphere. Elongation describes the eccentricity of the UIA by describ-
ing how long it is relative to its width. Flatness quantifies the amount the UIA is flat
relative to the length. Next, on the basis of the generated 3D mesh, the mean and
Gaussian curvature of the surface of the UIA was determined, allowing the principal
curvatures k1 and k2 to be calculated. By means of these principal curvatures, it was
possible to determine the shape index and curvedness (Fig b.1)) [119]. Shape index and
curvedness were calculated for every point on the mesh, and a median over the whole
mesh of the UIA was determined. The shape index is a descriptor of the local shape
of the surface of an object and is scale-invariant. The curvedness is a positive value,
which describes the local curvature of the surface and is dependent on the local scale
of the object. These values are rotation and translation invariant, and Fig b.1 depicts
examples of how these values vary.

All measurements and segmentations were performed on anonymised data sets by
a neuroradiologist (I.C.v.d.S., with 15 years of experience). 2D measurements and the
3D segmentations were performed in a different order and several months apart to
prevent bias. The observer was not blinded to the time order of the scans because this
reflects the clinical setting. Morphology measurements were made on both the follow-
up and baseline scans. Morphologic change was considered the difference between
each morphology measurement at follow-up compared with baseline.

6.2.3 Statistical Analysis

MORPHOLOGIC CHANGES IN RELATION TO CONTINUOUS UIA 2D AND 3D GROWTH. The
relation between morphologic change and UIA growth was investigated by assessing
growth as a continuous 2D and 3D outcome measurement (2D size: length and width
in millimetres and 3D volume in cubic millimetres). Correlations were assessed using
the Pearson or Spearman correlation coefficient, in which normality was tested using
a Shapiro-Wilk test. The threshold for statistical significance was P <0.05.

MORPHOLOGIC CHANGES IN GROWING AND NONGROWING UIAS. The whole study pop-
ulation was categorised into 2 groups, including either growing or nongrowing UIAs.
Growing UIAs were defined according to the clinical definition of 2D growth of =
1 mm increase in any direction between the baseline and follow-up scan [25]. All
other UIAs were categorised as nongrowing. The difference in morphology measure-
ments between baseline and follow-up scans was determined for each UIA (morpho-



92  Chapter 6
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Figure 6.1: Shape index and curvedness. Shape index and curvedness values vary in 3D shapes.
The shape index is a descriptor of the local shape of the surface of an object and is scale-invariant.
Shape index values range from -1 (concave “cup”) through 0 (saddle point) to 1 (convex “dome").
The curvedness is a positive value to the local curvature of the surface, which usually lies between 0
and 1 and is dependent on the local scale of the object. These values are rotation- and translation-
invariant.

logic change) and compared between the populations of growing and nongrowing
UlIAs. An unpaired Student t test was used for normally distributed data, and a Mann-
Whitney U test, for non-normally distributed data, for which normality was tested
using a Shapiro-Wilk test. The threshold for statistical significance was P<0.05.

MORPHOLOGIC CHANGE BASED ON MODIFIED Z SCORES. We determined the modified
z score of the morphologic change, to identify UIAs with morphologic changes that
significantly differed from those in most of the study population. This allowed us
to differentiate those UIAs that can be considered to change in morphology more
than could be expected on the basis of the trend of morphologic change in our pop-
ulation. The modified z score (M;) for each morphology measurement for each UIA

0.675(x;—X . ; iati
0.675(x; %) X), ,where MAD is the median absolute deviation

was determined as M; =
MAD = median(|x; - X|), and x; was each morphology measurement for each (ith)
UIA. For this subanalysis, we selected the morphologic parameters that were statisti-
cally significantly related to growth (either as continuous or categoric variables) on
the basis of the first analyses (parameters: flatness, shape index, and curvedness). Sta-
tistically significant morphologic change was defined as any change in morphology
measurement that had a modified z score >3.5 [152]. Finally, we determined the pro-
portion of UIAs with statistically significant morphologic change in the 2 groups of

growing and nongrowing UIAs.
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Characteristic

No. of patients 113

No. of aneurysms 127 (102 patient with 1 UIA, 8 with 2
and 3 with 3 UIAs)

Sex (% women) 81 women, 32 men (72% women)

Age at baseline (mean) (yr) 55 (range, 27-77)

Time between baseline and follow-up 4.1 (range, 0.9-13.1)
scan (median) (yr)

Location of Aneurysm

Anterior cerebral or communicating 25 (20%)

artery
ICA or posterior communicating 33 (26%)
artery
MCA 53 (42%)
Posterior circulation 16 (13%)

Table 6.1: Patient Characteristics

6.3 Results

6.3.1 Study Population

We included 113 patients with 127 UIAs who met the inclusion criteria (Table p.1).
After a median follow-up time of 4.1 years (range, 0.9-13.1 years), aneurysm growth
was observed in 15/127 (12%) UIAs. There was no statistically significant difference
in follow-up time between the groups of growing and nongrowing aneurysms (Mann-
Whitney U test, P = 0.48). A morphologic change that differed statistically significantly
from that in most of the study population was found in 18/127 (14%) UIAs.

6.3.2 Morphologic Change in Relation to Continuous UIA 2D and 3D
Growth

The correlation between UIA morphologic change and continuous UIA growth (2D
size and 3D volume) is shown in Table b.3. An increase in volume and surface area
showed a statistically significant correlation with 2D growth. An increase in surface
area and flatness and a decrease in the shape index and curvedness showed statistically
significant correlation with continuous 3D volume growth. Shape index and curved-
ness were also seen to decrease with increasing continuous 2D length and width mea-
surements, but not enough to be considered statistically significant.
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Change in

Median (IQR)

Correlation Coeflicient (P value)

2D Growth, Length 2D Growth, Width

3D Growth, Volume

Volume (mm?)
Area (mm?)
Compactnessl
Compactness2
Elongation
Flatness
Sphericity
Shape Index
Curvedness

1.60 (-3.70-10.80)
2.30 (-6.10-11.40)
0.50 (-1.70-2.60)%
0.01 (-0.04-0.07)
0.01 (-0.03-0.04)
0.00 (-0.03-0.04)
0.01 (-0.02-0.04)
0.00 (-0.03-0.01)
-0.01 (-0.18-0.07)

0.29 (<0.01)* 0.28 (<0.01)*
0.25 (<0.01)* 0.34 (<0.01)*

0.10 (0.28) -0.01 (0.89)
0.09 (0.30) -0.02 (0.86)
0.01 (0.89) 0.02 (0.79)
0.00 (0.97) 0.05 (0.58)
0.10 (0.27) -0.01 (0.94)
-0.09 (0.32) -0.17 (0.06)
-0.12 (0.16) -0.15 (0.09)

0.90 (<0.1)*
0.15 (0.09)
0.15 (0.10)
0.09 (0.33)
0.19 (0.03)*
0.15 (0.09)
-0.33 (<0.01)*
-0.33 (<0.01)*

Table 6.2: Change in UIA morphology measurements in relation to continuous UIA 2D and 3D growth. Note:—IQR indicates interquartile range; -, perfect
correlation (same input variable). The correlation coefficient was calculated with the Pearson or Spearman correlation based on normality of morphologic

change. * P values are statistically significant. ® All values x10%.
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Change in Growing Nongrowing P value
Volume (mm?) 2192 (4.80-33.23)*  1.42 (-4.26-9.76)*  0.01*
Area (mm?) 28.09 (-4.23-35.37)*  2.07 (-6.47-9.89)*  <0.01*
Compactnessl  0.40 (-1.35-3.85)2 0.00 (-1.65-2.33)2  0.21
Compactness2  0.01 (-0.03-0.11) 0.01 (-0.04-0.06) 0.22
Elongation -0.02 (-0.05-0.02)  0.02 (-0.03-0.04)  0.42
Flatness 0.01 (-0.04-0.04) 0.00 (-0.03-0.04)  0.37
Sphericity 0.01 (-0.02-0.05) 0.01 (-0.02-0.03)  0.20
Shape Index  0.00 (-0.13-0.00) 0.00 (-0.03-0.01)  0.06
Curvedness -0.14 (-0.37-0.01)*  -0.01 (-0.16-0.09)*  0.03*

Table 6.3: Comparing change in 3D quantified morphology of stable and growing UlAs. Values
are written as median (IQR). Growth was defined as an increase of at least 1 mm in either width
or length of the UIA. P values refer to the relation between parameters of the growing and stable
UlAs using a t test or Mann-Whitney U test. * P values are statistically significant. ¢ All values x1 0°.

6.3.3 Morphologic Change in Growing and Nongrowing UIA

Morphologic changes in growing and nongrowing UIAs are shown in Table p.3. There
were 15 growing UIAs (12% of all 127 UlAs). Growing UIAs had a higher increase
in volume and surface area and a larger decrease in curvedness compared with non-
growing UIAs (p<0.05).

6.3.4 Morphologic Change Based on Modified z Scores

For the parameters flatness, shape index, and curvedness, we determined the propor-
tion of UIAs with morphologic changes that statistically significantly differed from
most of the full study population. In total, 18 UIAs (14%) changed statistically signif-
icantly in = 1 of the morphology parameters compared with most of the population.
Eight of the 15 growing UlIAs (53%) and 10 of the 112 nongrowing UIAs (9%) showed
a statistically significant morphologic change (Fig b.2).

6.4 Discussion

This study showed a correlation between UIA 3D quantified morphologic changes and
UIA growth, as both continuous and categoric variables. Increase in surface area and
flatness and decrease in shape index and curvedness were correlated with continu-
ous 3D volume growth. Surface area and curvedness remained statistically significant
for growth as a categoric variable. In addition, nearly 1 of 10 nongrowing UlAs also
showed morphologic change, suggesting that UIAs can change in morphology even if
they are considered nongrowing.

Several previous studies investigated 3D quantified morphology of UIAs, in rela-
tion to UIA growth and as a predictor for UIA rupture. In one study, 56 growing UIAs
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Figure 6.2: Nongrowing UIA with statistically significant change in morphology. An example of a
ROI around a UIA taken from baseline and follow-up TOF-MRAs made on a Philips 1.5T scanner
(Intera/Achieva). The measured UIA shows statistically significant changes in morphology but was
considered to be nongrowing (<1 mm change in length or width). The bulge (arrow)that becomes
visible on follow-up results in more saddle points on the surface of the UIA, whereby the shape
index decreases. The bulge also increases the curvature of the surface of the UIA, resulting in a
slightly increased curvedness value.

and 81 nongrowing UIAs were included [B4]. UIA growth was defined as an increase
of at least 0.5 mm in any direction or a visual change in shape. Only baseline scans of
nongrowing UIAs were assessed. At baseline, no statistically significant morphologic
differences were observed between non-growing UIAs and UIAs with future growth.
Another study included 38 growing UIAs [[150]. Growth was defined as 1 mm growth
in 1 direction, 0.5 mm growth in 2 directions, or a significant visual change in shape.
Similar to our findings, morphology of the UIA (bottleneck factor and ellipticity in-
dex) after growth was statistically significantly different from baseline morphology. A
third study included 420 UIAs and investigated whether 12 different morphologic mea-
surements of UIAs predicted UIA stability [36], which was defined as rupture within
1-month, clinically defined growth at radiologic follow-up or symptomatic UIAs with
adjacent structure compressive symptoms. They found that flatness was the most im-
portant morphologic measurement to predict UIA stability.

A direct comparison with previous studies is difficult because consistent method-
ology and morphology measurements have not been used. Because the field of quan-
titative medical image analysis is developing rapidly, the IBSI guidelines provide a
standardisation of radiomics and morphology measurements across all medical im-
ages [38]. Thus, this study incorporated the morphology measurements as defined in
IBSI to assess the growth of UIAs on TOF-MRAs.

Our study differs from previous studies by investigating changes in morphologic
measurements between baseline and follow-up of both growing UIAs and UIAs that
were considered to be nongrowing. By this method, we were able to show that 9%
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of nongrowing UIAs also showed statistically significant morphologic changes. This
raises the question of whether UIA growth and stability should be defined only by size
measurements and suggests that (quantified) standard morphologic measurements
could also be considered when assessing the stability of UIAs with regard to growth
and potential subsequent rupture.

New in our study, compared with previous studies, was the definition of growth
both as a continuous as well as a categoric variable. We found more differences that
are statistically significant using continuous outcome measures for UIA growth com-
pared with categoric outcomes. By assessing growth as a continuous measure, we
consider all UIAs with any change in size or volume, without the use of a cutoff value.
By dichotomising growth into nongrowing and growing categories, precision is lost,
reducing the statistical power to find relationships between growth and morphology
measurements, which is especially important in smaller data sets. Growth measure-
ments that are close to the 1 mm cutoff, for example 0.9 and 1.1 mm, can be very
similar, but by means of a dichotomous measure, they are categorised as completely
different. Because many of our UIA growth measurements are in this range, around
the clinical definition of growth, a continuous outcome has much larger power [[153].
Despite a larger statistical power of continuous measurements, in the clinical setting a
definition of dichotomised growth is important because it allows better interpretation
of UIA growth and facilitates clinical decision-making. However, the growth defini-
tion of 1 mm is rather arbitrary, and studies suggest that the interobserver variability
in growth measurements could be larger than this [[147]. Future studies are needed
to investigate the best cutoff values for size and morphologic change and a growth
definition for predicting aneurysm rupture. Change in size and morphology could aid
in rupture prediction modelling, and how this may affect treatment decisions of UIAs
should be studied.

A limitation in our study was that the 3D measurements were determined from
segmentations based on annotations on axial slices. This is time-consuming, and the
definition of the UIA neck was difficult in some UIAs. An alternative and reproducible
automatic aneurysm segmentation method could be used. [[111] There was variation
in the time period between baseline and follow-up because the most recent follow-
up MRA was always performed to ensure the longest follow-up time and potential
largest proportion of growth and morphologic change. In some cases, the aneurysm
was treated or ruptured after the first standard follow-up at 1 year, meaning that the
time until follow-up was relatively short. The growing and nongrowing aneurysms
did not have statistically significantly different follow-up times. Future studies could
assess the longitudinal growth and change in morphology across time. Next, because
the MRA scans were performed during a long time period, the scan protocol, scanner
field strength, and scan quality differed in some patients between baseline and follow-
up scans for both growing and nongrowing UIAs. This difference is realistic in the
clinical setting, and we did re-sample all images to median voxel spacing. This step
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would have influenced both growing and nongrowing UIAs; therefore, we do not think
it has biased our results.

6.5 Conclusions

Our study suggests that both aneurysm size and morphologic changes should be taken
into account when assessing UIA growth during radiologic follow-up. However, more
studies should be undertaken to develop a complete growth definition based on size
and standard 3D-quantified morphology measurements.
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Abstract

The growth of unruptured intracranial aneurysms (UIAs) is a predictor of rupture.
Therefore, for further imaging surveillance and treatment planning, it is important
to be able to predict if an UIA is likely to grow based on an initial baseline Time-of-
Flight MRA (TOF-MRA). It is known that the size and shape of UIAs are predictors
of aneurysm growth and/or rupture. We perform a feasibility study of using a mesh
convolutional neural network for future UIA growth prediction from baseline TOF-
MRAs. We include 151 TOF-MRAs, with 169 UIAs where 49 UIAs were classified as
growing and 120 as stable, based on the clinical definition of growth (>1 mm increase
in size in follow-up scan). UIAs were segmented from TOF-MRAs and meshes were
automatically generated. We investigate the input of both UIA mesh only and region-
of-interest (ROI) meshes including UIA and surrounding parent vessels. We develop
a classification model to predict UIAs that will grow or remain stable. The model con-
sisted of a mesh convolutional neural network including additional novel input edge
features of shape index and curvedness which describe the surface topology. It was
investigated if input edge mid-point co-ordinates influenced the model performance.
The model with highest AUC (63.8%) for growth prediction was using UIA meshes with
input edge mid-point co-ordinate features (average F1 score = 62.3%, accuracy = 66.9%,
sensitivity = 57.3%, specificity = 70.8%). We present a future UIA growth prediction
model based on a mesh convolutional neural network with promising results.



Future UIA Growth Prediction using Mesh Convolutional Neural Networks ~ 103

7.1 Introduction

Approximately 3% of the general population has a unruptured intracranial aneurysm
(UIAs) [6]. If an UIA ruptures, it leads to subarachnoid haemorrhage with a high
mortality and morbidity rate. Neurosurgical or endovascular treatment can prevent
UIAs from rupture, but carry a considerable risk. Therefore a balanced decision based
on the rupture and treatment complication risk must be made [5]. UIA growth is
an important rupture risk factor [[7], and if detected, preventative treatment should
be considered. Most UlAs are monitored, using Time-of-Flight Magnetic Resonance
Angiographs (TOF-MRAs) or Computed Tomography Angiographs (CTAs). Currently,
2D size measurements of the UIAs are made by a radiologists and changes in size (>1
mm) would be considered aneurysmal growth [25]. Shape and topology of UlAs is
also known to be different in aneurysms that grow [31] and is often visually assessed.
The ELAPSS score [31] is a clinical score for UIA growth prediction based on patient
and aneurysm characteristics. The predictors are: Earlier subarachnoid haemorrhage,
aneurysm Location, Age, Population, aneurysm Size and Shape. Shape is assessed
visually as 'Regular’ or "Irregular’.

As computer aided radiology tools continue to be developed, there is the possibility
to measure UIAs in 3D, including their shape [147]. Quantitative shape/morphology
measures of UIAs could be used, including to distinguish between growing and stable
aneurysms [B4, [150, 154]. Based on such morphological parameters, as well as clas-
sical parameters, UIA rupture risk prediction models have been developed [[155, 15€].
More recently, some prediction models for aneurysmal stability and growth have been
proposed [36, B7].

Liu et al. [36] investigated the feasibility of predicting aneurysm stability using ma-
chine learning regression models and 12 morphology radiomics features. The dataset
included 420 aneurysms, between 4 and 8 mm in size. Instability was defined as rup-
tured within a month, growth or adjacent structure compressive symptoms. They
determined flatness to be the most important morphology predictor of aneurysm sta-
bility. Bizjak et al. [37] found using point clouds with PointNet++ for future UIA
growth prediction had a higher accuracy than other machine learning (random forest
and multi-layer perceptron) models based on classical shape parameters. The method
was performed using only 44 UIAs, where 25 were considered to be growing and 19
to be stable. Growing UIAs were defined by visual inspection in 3D of the UIAs and
their configuration.

Various different morphology measurements and definitions of growth or stability
have been used in these studies, making it difficult to make direct comparisons. How-
ever, it is clear that UIA shape and surface topology is an important predictor of future
UIA growth and that deep learning methods may have an advantage over using pre-
defined morphology parameters. Geometric deep learning methods are well suited to
this problem, as they accurately describe the shape and topology of a surface by using
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point clouds or meshes [[157]. Meshes may have a preference over point clouds as they
include connectivity information, providing more information about the topology of
the surfaces. Meshes could be used of the UIA itself as we already know UIA shape is
a growth predictor growth. Alternatively, parent vessels in a Region-of-Interest (ROI)
around the UIA could be included which allows UIA-vessel configuration to also be
considered and exact UIA segmentation is not required.

MeshCNN [23] is a convolutional neural network (CNN) developed for classifica-
tion and segmentation problems using 3D triangular meshes. Convolutions and pool-
ing are performed on edges of the meshes, based on an edge neighbourhood. Five
relative scale, translation and rotation invariant geometric edge are determined for
each edge as input features for the model. These five geometric features are: the di-
hedral angle, two inner angles and two edge-length ratios. MeshCNN has only been
used for a few medical imaging classification and segmentation problems, including
age prediction based on the neonatal white matter cortical surface [128] and UIA seg-
mentation from a parent vessel [[158]. In our previous work, we proposed a modified
version of MeshCNN for UIA detection based on brain vessel surface meshes [[130].
We use our MeshCNN framework in this study.

In this paper, we propose a prediction model for future UIA growth from base-
line TOF-MRAs using a mesh convolutional neural network. We investigate the use
of meshes of UIAs alone, and region-of-interest (ROI) meshes including the UIA with
parent vessels as input for these models and their performance for future UIA growth
prediction. We also investigate the addition of edge mid-point co-ordinate input fea-
tures of the meshes and the impact on the model performance.

7.2 Materials and Methods

7.2.1 Dataset

The dataset consisted of 151 baseline Time-of-Flight MRAs (TOF-MRAs) taken from
routine clinical scans. We included patients with UIAs who met the following inclu-
sion criteria: 1) A TOF-MRA or CTA was available at baseline and follow-up, 2) the
follow-up scan was performed at least 6 months after the baseline scan, and 3) the pa-
tient had at least 1 untreated UIA present on both baseline and follow-up imaging. The
most recent follow-up scan in which the UIA remained untreated and unruptured was
used for growth assessment. Fusiform and ruptured aneurysms were excluded. All
scans were made from the University Medical Center Utrecht between 2006 and 2020.
The average time between baseline and follow-up scans was 5.2 + 3.3 years (range: 1
- 16 years) The mean baseline aneurysm size was 5.0 = 2.2 mm with a range of 1.3 -
14.7 mm. Manual 2D length and width UIA measurements were performed in Intel-
liSpace Portal (Philips Healthcare) by an experienced neuroradiologist (I.C.v.d.S.) and
a trained PhD-student (M.J.K.) according to standard clinical protocol. Growth was
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defined as a = 1.0 mm increase in any direction between the baseline and follow-up
scan [25]. Based on this definition, UIAs were categorised as either ‘growing’ (30%, n=
49) or ‘stable’ (70%, n = 120).

7.2.2 Methods

INPUT MESH GENERATION All baseline TOF-MRAs were pre-processed using an N4
bias field correction algorithm and z-score normalised before being resampled to have
voxel size 0.357 mm x 0.357 mm x 0.500 mm (median of the dataset). All UIA and ROI
selection, mesh generation and processing was performed completely automatically
based on UIA annotations.

UIA mesh generation UIA meshes were generated and pre-processed automati-
cally based on the TOF-MRAs and UIA annotations. UIAs were manually segmented
from the TOF-MRAs using annotations drawn on axial slices in in-house-developed
software implemented in MeVisLab (MeVis Medical Solutions) (performed by I.C.v.d.S.
and M J.K). A triangular mesh was automatically fitted to the outside of the UIA sur-
face using a Marching Cubes algorithm [[151]. All UIA meshes were down-sampled to
1000 edges and included just the UIA and no other vessels.

Region-of-Interest (ROI) mesh generation ROI meshes were automatically gen-
erated from the TOF-MRAs using the UIA segmentations. An existing 3D U-net was
used to automatically perform full vessel segmentation from the scans [[113]. Based
on the UIA segmentation, a region-of-interest (ROI) including only the UIA and par-
ent vessels was made. The centre-of-mass of the UIA segmentation was determined
and the ROI included all connected vessels (and UIA) within a 20 mm cube around
the centre-of-mass. A mesh was automatically fitted to the outside of the UIA and
parent vessel surface using a Marching Cubes algorithm [[151]. All ROI meshes were
down-sampled to 2000 edges.

Input edge features Based on the generated UIA and ROI meshes, new input edge
features were automatically determined per edge. These were shape index, curvedness
and edge mid-point co-ordinates. These further edge features (shape index, curved-
ness and mid-point co-ordinates) could then be included as input to the network, in
addition to the original five geometric edge features.

Shape index and curvedness are rotation and translation invariant measures which
describe the topology of the UIA surface. The invariant nature of these novel input
edge features ideal for use in MeshCNN. It is known from our work that the addition
of both shape index and curvedness as input edge features improve the performance
of the original MeshCNN [[159]. Shape descriptor values; shape index and curvedness,
were calculated for each vertex on the mesh surface using the standard formulae [119].
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Figure 7.1: Example generation of input region-of-interest (ROl) mesh including parent vessels and
UIA. A: TOF-MRA with annotated UIA shown overlaid in red. B: Vessel segmentation performed us-
ing 3D U-net [[113]. C: ROl selection including UIA and parent vessels, followed by mesh generation.
D: Shape index determination for each edge, to be used as an additional input feature alongside
curvedness and edge coordinates.

An edge was then given a shape descriptor value (shape index or curvedness), as being
the average of the values at the corresponding end vertices of the edge.

The addition of edge mid-point co-ordinate values was suggested in the original
MeshCNN paper [23]. We experiment with including these co-ordinates in our models
as we know location is important as an aneurysm growth predictor [31]. Edge mid-
point co-ordinates (x,y,z) were determined as the average of the world co-ordinates of
the corresponding end vertices of the edge.

Figure [1.] shows an example generation of a ROI mesh including shape index val-
ues determined for each edge.

MODEL IMPLEMENTATION A ConvNet style network was set up based on our modi-
fied MeshCNN framework [[130] including four convolutional layers and four pool-
ing layers. Four different model configurations were investigated. The first model
(uia_model) had UIA meshes only as input, with 1000 edges. Pooling layer configura-
tion for the UIA model was: 750, 600, 500, 400. The second model (roi_model) had ROI
meshes including UIA and parent vessels as input. The pooling layer configuration
for the ROI model was: 1500, 1200, 1000, 800. All models were made to include shape
index and curvedness as additional input features to the original five edge geometric
features of MeshCNN. This meant that there were seven input edge features as stan-
dard. For each different input, two models were trained. The first with the seven input
edge features (uia_model_1, roi_model_1), and the second including edge mid-point
co-ordinates (x,y,z) as further additional input features (uia_model_2, roi_model_2),
meaning there were ten input edge features. No augmentation was used.

For all models, all other hyper parameters were kept the same, and as similar to
the original paper as possible [23]. Both a weighted data sampler and weighted cross-
entropy loss function were used, based on the class distribution of growing and stable
UIAs (0.7 to growing, 0.3 to stable). Batch normalisation was used with a batch size
of 50 meshes and a learning rate of 0.0002. The classification model was trained to
predict future growth of the UIA as defined by the clinical definition, whereby output
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was one of the two classes: growing or stable. All experiments were performed using
five-fold cross-validation where the validation splits were made randomly and kept
the same for each experiment. The models were trained for a maximum of 200 epochs
with validation every 5 epochs and the model with the highest average F1 score for
each split was selected. The model was implemented in Python 3.8.5 with Pytorch
version 1.8.0 on a NVIDIA TITAN X Pascal (12GB) GPU with CUDA version 11.2.

For final model assessment, we determined the classification accuracy, growth pre-
diction sensitivity and specificity, where the metrics were averaged across all valida-
tion splits. A true positive was considered a correctly identified growing UIA, a true
negative was a correctly identified stable UIA. Sensitivity and Specificity were deter-
mined using these definitions, therefore high sensitivity suggests the model is good at
detecting growing UIAs and high specificity suggests the model is good at detecting
stable UIAs. We plotted the mean ROC curve and calculated the mean area under the
curve (AUC) for each model, as the average over all validation splits for each model.

7.3 Results

Results of the growth prediction models averaged across all validation splits are sum-
marised in Table .1 Figure .4 shows ROC curves for all of the models. Roi_model_1,
using ROI meshes and no edge mid-point co-ordinates, had the highest accuracy
(0.761), F1 score (0.681) and specificity (0.883) suggesting it performs optimally for
stable aneurysm detection. Uia_model_2, using UIA meshes and including edge mid-
point co-ordinates, had the highest sensitivity for growth detection. Overall, both the
second models including edge mid-point co-ordinates had higher AUC and sensitivity
values but slightly lower accuracy and F1 scores.

Model Accuracy F1 score Sensitivity Specificity AUC

uia_model, 0.704 (0.077) 0.617 (0.062) 0.389 (0.048) 0.833 (0.121) 0.620 (0.119)
uia_model,  0.669 (0.061)  0.623 (0.073)  0.573 (0.155) 0.708 (0.075)  0.638 (0.116)
roi_model;  0.761(0.017)  0.681 (0.021)  0.458 (0.038)  0.883 (0.030)  0.606 (0.056)
roi_model,  0.713 (0.075)  0.650 (0.077)  0.498 (0.090) 0.781 (0.110)  0.622 (0.064)

Table 7.1: Classification metrics for each model. F1 score is the average of F1 score for each class
(growing and stable). A true positive was considered a correctly identified growing UIA, a true
negative was a correctly identified stable UIA. Sensitivity and Specificity were determined using
these definitions. AUC is the area under the mean ROC curve in Figure @ Values are provided as
mean (standard deviation) across all validation splits (standard deviation)

1.4 Discussion

In this paper, we demonstrate that a future UIA growth prediction model could be de-
veloped using a mesh convolutional neural network, which considers the topology of
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Mean ROC curves for all models
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Figure 7.2: ROC curves of all trained models for growth prediction classification. Each line is the
mean of the performance across all cross validation splits for each model. The black dotted line
indicates a classifier which would give random choice.

UIAs and their parent vasculature. We found that adding edge mid-point co-ordinates
as input features to the network increases the AUC and sensitivity of growth predic-
tion but reduces the overall accuracy of the model (uia_model_2, roi_model_2). Using
ROI meshes as opposed to UIA meshes alone, improved the accuracy and F1 score of
the model but has a decreased AUC for growth prediction. A sensitive growth predic-
tion model should consider using UIA meshes as input and including edge mid-point
co-ordinates as input features (uia_model_2).

We found using UIA meshes alone (uia_model_2) improved the AUC relative to
using the ROI including parent vessels (roi_model_2). This suggests that it is the topol-
ogy of the aneurysm surface itself which is high indicative of growth or stability as
opposed to UIA configuration relative to parent vessels. This result is also on par with
previous studies, where measurements of just the UIA were used for distinguishing
between growing and stable UIAs [34, 150, 154]. However, it is also worth noting that
using a ROI as opposed to the UIA mesh does not greatly reduce the performance of
the method. A ROI mesh, is easier for a clinician to achieve in the clinic as it requires
only a simple click of a centre point from which to select the ROL. Whereas, currently
the UIA meshes require accurate manual segmentation of the UIA. Therefore, a ROI
model may be more useful in the clinic and we prove it could still have adequate per-

formance for UIA growth prediction.



Future UIA Growth Prediction using Mesh Convolutional Neural Networks ~ 109

The inclusion of input edge mid-point co-ordinate features increased the AUC and
growth prediction sensitivity. We believe this to be because the co-ordinate provides
information of the location of the aneurysm to the network. Location is a known
predictor of growth [31]. In the original MeshCNN paper [23] it was commented
that adding in edge co-ordinates reduced the model performances. They suggest this
may be because the additional features, removes the rotation, translation and uniform
scaling in-variance of the usual relative geometric input edge features. However, in
real-life applications, such as in medical images, the co-ordinates give important in-
formation about the location of lesions. Therefore, the addition of these features only
appears to improve the performance in this scenario. Further studies could be per-
formed to investigate the use of relative position input features, which would ensure
the in-variance to rotation, translation and scaling is kept. Another possibility could
be to include position/location, and potentially other known growth predictors, as
global features in the final layers of the network.

The models all had a relatively high specificity, suggesting they perform well for
detecting stable UIAs. This may be useful in clinic to identify those UIAs which are
stable and do not need further investigation. In our study, we had a relatively large
class imbalance of only 30% growing UIAs to 70% stable UIAs. Although weighted
loss functions and samplers were used, this does not eliminate the class imbalance.
In the future, a more balanced dataset, including more growing UIAs could be used.
The validation results displayed a large range in sensitivity, and all models performed
particularly badly for one validation split. It was also clear, that the model tended to
over-fit relatively quickly to the training set. This is due, in part, to the heterogeneous
nature of the UIAs and configurations leading to the validation sets being quite dif-
ferent to the training data. This could be improved by including more training and
validation data. Furthermore, a larger dataset would allow for independent evaluation
on a separate test set.

The ELAPSS growth prediction score was determined to have a c-statistic (AUC)
of 0.69 in an external validation study [[160]. Our model performed only slightly in-
ferior to this (AUC = 0.64), suggesting that our model has comparable performance
to current clinical prediction models. Future studies should consider combining the
patient characteristics used in the ELAPSS score, with the aneurysm characteristics
used in our model.

Our proposed method did not perform as well as the method using PointNet++
put forward by Bizjak [B7] (accuracy = 82%). This may be for a variety of reasons.
Firstly, our dataset was imbalanced (30% growing, 70% stable) compared to the dataset
they used which included more growing than stable aneurysms. Secondly, our model
predicts clinically defined growth, assessed directly on the TOF-MRAs by radiologists.
In Bizjak et al. they assess growth visually on the pre-processed 3D meshes. Instead,
we propose a model, which can provide prediction for growth as is currently clini-
cally assessed and accepted in the clinic. Future studies should investigate different
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definitions of growth, and as computer aided tools for UIA diagnosis and assessment
continue to be developed and improve, a definition for volumetric growth should be
considered [[147, 161]. It is difficult to make a comparison of our model performance
to the study by Liu et al. [B6] as they are predicting aneurysm stability, which included
rupture and not just growth. Furthermore, they also include aneurysms all larger than
4 mm and have a much larger dataset. However, future studies could investigate if our
mesh based model could also predict rupture/aneurysm instability as well as growth.

In our previous paper [130], we demonstrated the mesh convolutional neural net-
works could be used for a modality independent UIA detection method. Based on
these results, we believe that our growth prediction method could also be modality
independent. This would be helpful in the clinic, where UIAs are often assessed or
followed-up with different modalities such as CTA or DSA.

1.5 Conclusion

We present a future UIA growth prediction model using a mesh convolutional neural
network. We demonstrate that both UIA and ROI meshes can be used as input for such
a prediction model, and that edge mid-point co-ordinates improve the growth predic-
tion sensitivity. This model may have potential clinical use as an aid for radiologists
assessing potential future UIA growth.
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Summary and discussion
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8.1 Summary

This thesis presents and investigates image analysis and quantitative techniques
for the detection and growth risk assessment of unruptured intracranial aneurysms
(UIAs). Using such methods, robust and reliable growth assessment of UIAs can be
made to aid in treatment decision making. Chapters ] to {| in this thesis consider
methods for automatic UIA detection and segmentation from angiographic brain
scans; specifically Time-of-Flight Magnetic Resonance and Computed Tomography
Angiography scans (TOF-MRAs and CTAs). Chapters § and [ investigate UIA
volume and morphology and their relationship to UIA growth assessment. Finally in
Chapter [, a geometric deep learning prediction model for UIA growth based on a
mesh convolutional neural network is presented.

CHAPTERH describes the organisation of an international biomedical image analysis
challenge: the Aneurysm Detection And segMentation (ADAM) challenge, as part of
MICCALI 2020. This included the release of 113 annotated TOF-MRAs. Teams submit-
ted automatic UIA detection and segmentation methods, which were evaluated on a
secret held-out test set. The winning detection method of the ADAM challenge has
since been developed into an open-source, self-configuring framework for medical im-
age detection (nnDetection). The challenge remains open as an important benchmark
for UIA detection and segmentation methods.

CHAPTERE describes a novel feasibility study of an anomaly detection method using
a variational autoencoder (VAE) trained on healthy TOF-MRAs. Reconstructed TOF-
MRAs with diagnosed aneurysms had a lower Structural Similarity Index Measure
(SSIM), than TOF-MRAs of subjects with no aneurysms. SSIM could be a potential
metric for anomaly/aneurysm detection. Importantly, the results identified that struc-
ture and shape within the scans, and not just intensity, is important for UIA detection.

The UIA detection method in CHAPTERH exploits the fact that the vessel surface of
an UIA is different from the surrounding tubular-shaped brain vessels. Vessels were
segmented from TOF-MRAs and meshes were fitted to the surface. A mesh convo-
lutional neural network was trained using the labelled vessel meshes, to detect UIAs
on the vessel surface. The method is modality-independent, with comparable perfor-
mance for both TOF-MRAs and CTAs and to voxel-wise detection methods.

Automatic detection and segmentation of UIAs from TOF-MRAs as described in
Chapters } to i allow 3D volume and morphology UIA measurements to be made
automatically. Such measures could be used for reliable growth and rupture risk as-
sessment.

The reliability and agreement of UIA growth assessment using both 2D size and 3D
volume measurements was studied in CHAPTER B 3D growth assessment was more re-
liable than 2D, with smaller interobserver differences, and was more consistent across
all UIA locations. The smallest detectable change for 2D growth (1.5 mm) was larger
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than the current accepted growth definition of 1 mm. This might lead to ambiguity in
the current 2D growth definition.

3D UIA quantitative morphology measures, such as flatness, shape index and
curvedness were introduced in CHAPTERB and their relationship with UIA growth was
investigated. Continuous UIA growth was related to an increase in surface area and
flatness, and a decrease in shape index and curvedness. Morphology also change in
non-growing (stable) aneurysms, suggesting that non-growing aneurysms could still
be unstable. Quantified morphologic change should be considered when assessing
UIA growth and rupture risk.

Finally, in CHAPTER ﬁ, UIA growth prediction from baseline TOF-MRAs was in-
vestigated. Combining the concepts learnt from previous chapters on UIA detection,
morphology, and growth, an UIA growth prediction model based on a vessel surface
mesh convolutional neural network was developed. The model had comparable
prediction performance to patient demographic growth prediction models (ELAPSS).

In conclusion, this thesis provides a complete description of UIA characterisation
from TOF-MRAs using computer-aided techniques. The automatic detection and seg-
mentation of UIAs from TOF-MRAs and CTAs allow UIA measurements to be made au-
tomatically and reliably. 3D volume and morphology measurements aid in UIA growth
assessment and formal UIA growth definitions including these measures should be in-
vestigated. As the accuracy of automatic UIA segmentation methods and growth pre-
diction models increase, these will become more commonplace in clinical workflows.
This could result in a fully automatic UIA characterisation tool, which determines UIA
volume, morphology and growth prediction scores. This would allow complete assess-
ment and prediction of UIA growth, aiding the clinician in the treatment decision and
improve patient outcome.

8.2 General Discussion

This thesis presents image analysis techniques for the detection and characterisation
of UIAs, as well as assessment and prediction of growth. This could aid medical spe-
cialists in making UIA rupture risk assessments to allow informed treatment decisions
to be made. First, methods for automatic detection and segmentation of UIAs from
angiographic scans (TOF-MRAs and CTAs) were investigated. Second, the use of 3D
volumetric and morphology UIA quantification was explored and compared to current
growth assessment of UIAs. Finally, a geometric deep learning prediction model for
UIA growth was developed based on a mesh convolutional neural network. This thesis
covers developments in (geometric) deep learning methods for medical imaging detec-
tion and prediction models, and their application in UIA characterisation and growth
assessment.
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8.2.1 Detection and Segmentation of UlAs

Automatic detection and segmentation of UIAs from angiographic scans (e.g. TOF-
MRAs or CTAs) would allow for fully automatic, observer independent quantification
of UIAs. Volume and morphology of the UIA can be derived from a UIA segmentation.
Up until now and including Chapters fland ff, UIA segmentation has been performed by
manual annotations. These annotations are time-consuming and made on each slice,
as the radiologist scrolls through the scan. The image orientation often makes it diffi-
cult to define the UIA neck relative to the parent vessel to segment the UIA. Automatic
detection and segmentation techniques (such as those described in Chapters [ to ),
could remove this manual step and any observer bias and dependence. It would also al-
low 3D measures such as volume and morphology to be determined automatically and
relatively fast. Of course, automatic measures are not without flaws, such as bias from
training data and inability to deal with abnormal data. For an automatic technique to
be beneficial over manual segmentation, it should have performance comparable to, if
not better than, human observers and it should speed up the segmentation procedure.
Automatic segmentations will likely have more power when combined with quality
assessment by a human observer, and in this way, they would be more likely to be
accepted for use by clinicians. Further clinical research studies of automatic UIA seg-
mentation techniques need to be performed before it would be considered suitable for

clinical use.

DEEP LEARNING METHODS Supervised deep learning models are commonly used for
medical image detection and segmentation problems. They require a large amount
of labelled data to train the models. Prior to this thesis, no such labelled database
of TOF-MRAs including UIAs was publicly available. In 2020, we organised the
Aneurysm Detection And segMentation (ADAM) Challenge as part of the MICCAI
conference as described in Chapter [ As part of this challenge, a large dataset of
113 TOF-MRAs including manually annotated UIAs were released. Such biomedical
image analysis challenges are important, not only to find a solution to one particular
application (here, UIA detection and segmentation), but also for the development of
techniques, frameworks and open-source resources that could be used and applied
to different or similar tasks. Furthermore, it provides a benchmark for the field,
which allows direct comparison of methods by evaluation on the same dataset with
the same evaluation method. All participants that entered the ADAM challenge
submitted a deep learning based method and the top method for the segmentation
task was based on the nnU-Net framework [84]. The nnU-Net has been developed
since the start of my PhD (2018), and is an “out-of-the box tool for state-of-the-art
segmentation”. It is an open-source, self-configuring deep learning segmentation
pipeline, which dynamically adapts to the input, selecting optimal parameters for the
network based on the input data. The architecture itself is the same for all applica-
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tions; the U-net architecture that is known for its optimal performance in medical
image segmentation problems [162]. In December 2019, nnU-Net had top-ranking
performance on 19 different biomedical image analysis challenges. Now by 2022,
nnU-Net has become the benchmarking standard for medical image segmentation
methods. Their results suggest that perhaps a ‘brute-force’, ‘one-fits-all” architecture
and workflow may be possible and suitable for multiple medical imaging problems.
As it develops and continually outperforms other methods, nnU-Net could change
the field of image analysis and segmentation problems. However, with the advance
of transformer networks [[163], CNN-based architectures such as the nnU-Net could
soon be out-performed. A transformer model uses the self-attention mechanism
that allows the entire image data to be considered and not just filters on image
patches as in a CNN. Regardless, the concept of a self-configuring framework is
likely to remain and is a good way to make image analysis accessible to everyone.
For segmentation tasks, manual experimentation of different architectures, data
augmentations, hyper-parameter optimisation and configurations are no longer
required. Perhaps in the future, we will see nnU-Net developed into a full application
that can be used by someone with any background and no coding ability but just some
annotated data. Nevertheless, it is no surprise that nnU-Net was the top-performer
for the segmentation task of the ADAM challenge. Leading on from nnU-Net is
nnDetection [116], which was the top ranking method for the detection task of the
ADAM challenge and comes from the same centre as nnU-Net. nnDetection has since
been developed into a full open source framework, similar to that of nnU-Net, but
for lesion detection tasks. nnDetection uses a similar self-configuring method that
outputs bounding boxes with confidence scores for detection. It has been great to see
the use of the ADAM challenge as validation for the nnDetection framework as it
develops to become the benchmark medical image detection tool.

As discussed, both implementations of nnU-Net and nnDetection, are anatomy
independent and there were few methods submitted to the challenge that used prior
anatomical information. Only two methods performed vessel segmentation to aid in
their method. This is surprising, as the aneurysms are very small relative to the full
3D TOF-MRAs, and by concentrating on regions around the vessels, it would reduce
the imbalance problem. Furthermore, the vessel surface of the aneurysms are likely
to be very different from the rest of the brain vessels. This motivated the proposed
method in Chapter §|. There is a relatively similar configuration of the brain and brain
vessels between subjects. The similarity of healthy control scans, and the imbalanced
problem, suggests that an anomaly (or out-of-distribution) detection method could
potentially be suitable here, but no such method was submitted to the ADAM chal-
lenge. Such an anomaly detection method was what motivated Chapter f of this thesis.

In Chapter B, an anomaly detection method for UIA detection by considering image
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reconstruction using a variational autoencoder (VAE) was investigated. Anomaly de-
tection is an unsupervised method and only requires normal data for training without
annotated lesions. Instead, a model is trained on healthy control data to learn on scans
that represent subjects without the disease, or here, subjects without aneurysms. This
means that large publicly available datasets can be used, such as the IXI dataset [110],
and no time-consuming annotations from radiologists are required. Anomaly detec-
tion requires a large training dataset to ensure that all variabilities of possible healthy
configurations are included in the training data. The first stage of this process would
be to ensure that the model, when trained on healthy data, can reproduce the same
image. If subsequently a ‘diseased’ patient, i.e. a patient with an UIA, is input to the
model, reconstruction metrics will be worse in the output ‘diseased’ image relative to a
healthy output image. This is, indeed, what was determined in Chapter [}, using a VAE,
where the SSIM (Structural Similarity Index Measure) was found to be lower in recon-
structed scans of patients with UIAs, relative to healthy control subject scans. Our
study was merely the beginning of an anomaly detection method for UIA detection,
and future work would be needed to explore if using SSIM and VAEs could directly
detect UIAs. However, an important result was that using a structural loss (SSIM)
performed better at identifying patients with UIAs than an intensity-based loss (L2).
This confirms that that the shape and structure of the image is more important than
the image intensity values to identify aneurysms. This further motivated the work
of Chapter [, assessing only the shape of vessels in the scans using geometric deep
learning and vessel surface meshes.

GEOMETRIC DEEP LEARNING In Chapter §, geometric deep learning with vessel surface
meshes for UIA detection was proposed. Voxel-wise methods such as convolutional
neural networks (CNNs), like those described in Chapters [ and B, operate on
Euclidean grid data, such as 2D and 3D images. These methods use the full image and
voxel information, thus the intensities in the image is the most important variable.
As a result, for medical images, the application of such voxel-wise methods is usually
limited to a single imaging modality, the modality of scans on which the model has
been trained. Furthermore, they will often struggle to generalise to different scan-
ning acquisitions and protocols, which could have different intensity distributions.
Geometric deep learning is a rapidly advancing field of deep learning methods for non-
Euclidean data such as graphs, meshes or point clouds [[157]. These techniques do not
require any resampling of 3D objects to a structured 2D or 3D space, since generally
convolutions and pooling layers are performed on the non-Euclidean surface of the
3D object itself. As a result, geometric deep learning techniques depend only on the
3D object surface and can be intensity independent. Meshes and graphs also include
connectivity of points on the surface of the object. In medical imaging, geometric
methods would allow for modality-independent models and reduce the scan protocol
dependence compared to a voxel-wise deep learning model. Geometric deep learning
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has demonstrated good performance for 3D object classification and segmentation,
for example PointNet++ [[18] using 3D point clouds and MeshCNN [23] for 3D meshes.

The original MeshCNN includes five relative geometric input edge features that
are rotation, translation and scale invariant [23]. In Chapters i and [j, it was proposed
to include additional input edge features to MeshCNN, namely: shape index, curved-
ness [119] and the edge midpoint coordinates. These features were specifically chosen
for the tasks: UIA detection in Chapter {|, and UIA growth prediction in Chapter ff.
Shape index and curvedness are already known to aid in UIA detection [[118], and
their invariance made them ideal features for MeshCNN. Edge midpoint coordinates
were included for the growth prediction model, since location is a known indicator
of UIA growth prediction [31]. Our results indicate that model performance can be
improved by including specific, predetermined input edge features for a particular
purpose. However, input edge features should be carefully chosen for the specific
application and the translation, rotation and scale invariance of the resulting model
should be considered. Relative features solve the issues with lack of invariance, and
in the future, relative features such as a relative distance to an atlas or a template
space could be considered.

The original MeshCNN was developed for low-resolution 3D objects, since high
resolution medical 3D images result in memory constraints. A large amount of
training in the original MeshCNN is restricted to the CPU (central processing unit)
because this is where the edge collapsing and bookkeeping of the MeshPool layers is
performed. Distributed training and performing all computations on GPU (graphics
processing unit) would speed up training times and greatly increase the usability
of MeshCNN, allowing for the use of higher resolution meshes and larger batch
sizes, which is important in medical imaging problems. As geometric deep learning
is increasing in popularity, libraries such as Pytorch Geometric and Pytorch3D are
being expanded. These libraries provide potential for the implementation of more
efficient MeshCNN pooling and convolutional layers that could reduce the memory
associated problems.

The results of Chapters [| and [] give promising results for the use of MeshCNN, and
more generally geometric deep learning techniques, in the field of medical image anal-
ysis. The use of MeshCNN could be extended for other modality-independent vascular
imaging problems, such as abdominal aortic aneurysm or coronary artery segmenta-
tion. However, there can also be 3D lesion classification and regression problems,
where the surface topology of a lesion is important for the outcome. In these situa-
tions, I believe that MeshCNN or geometric deep learning could play a large role in de-
veloping models based on the surface topology, including information that is perhaps
missed in intensity-based voxel-wise deep learning models. In the future, a combina-
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tion of both intensity-based and geometric-based deep learning models would allow
for complete inclusion of surface topology and image voxel information in a model.

8.2.2 UIA Measurement

2D VERSUS 3D MEASUREMENTS Currently, UIAs are assessed in the clinic using 2D
length and width measurements made by radiologists on TOF-MRAs or CTAs using
digital calipers. The observer selects the orientation of the length and width measure-
ments and adjusts the contrast setting of the scan. This results in a relatively large
heterogeneity in length and width measurements between observers, as was described
in Chapter f. However, since length and width measurements are easily performed
and interpreted by clinicians, currently UIA growth is still assessed using these 2D
measurements. UIA segmentation using the previously described automatic methods
(Chapters [ to l) or using manual annotations (Chapters f and g) allow the volume
of UIA to be determined. Volumetric measurements are independent of orientation,
and incorporate the full shape of the UIA in a single measure. In Chapter B, it was
found that manual 3D volume measurements were more reliable when assessing in-
terobserver measurements then 2D measurements. However, volume measurements
are currently not used in clinical settings since these require time-consuming manual
annotations. As automatic segmentation methods improve, automatic volume mea-
surements could be made. This will lead to more studies using and understanding
UIA volume and eventually these volume measurements can become applicable in the
clinic.

MORPHOLOGY MEASUREMENTS UIA segmentation also allows morphological mea-
surements of the UIAs to be made, which describe the shape of the aneurysm. Morpho-
logical characterisation of lesions in medical images is a well-studied field, and recently
the IBSI guidelines [38] have standardised radiomics, including morphology parame-
ters, across medical imaging and radiology. This allows direct comparison between
studies and formal, standard morphology definitions, which can be used in clinical
research studies, and eventually in the clinic. For this reason, in Chapter [, the IBSI
morphology parameters were used and I believe that future studies should continue to
do so. Quantifying UIA shape using morphology measurements is important because
irregular UIA shape is a risk factor for growth and rupture [31, 32].

GROWTH ASSESSMENT After diagnosis, UIAs are followed up over time, and consid-
ered to grow significantly if either the measured length or width of the UIA increases
by more than 1 mm [25]. Aneurysm growth is considered a proxy for aneurysm
rupture. If the UIA is determined to be growing, then it is likely to be treated. An
important result from Chapter [ was that the smallest detectable change (SDC) of
the interobserver 2D length measurements was determined to be 1.5 mm. This is
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larger than the currently accepted definition of growth of 1 mm [25], suggesting
that that UIAs could be incorrectly identified as growing or non-growing based on
interobserver measurement error. This questions the robustness and reliability of the
1 mm definition for 2D growth assessment. Alternatively, a volumetric definition
of growth could be considered and in Chapter [, it was found that volumetric
measurements to have a lower interobserver error. Future studies to understand more
about volumetric measures and UIA progression would need to be performed before
a growth definition including a cut-off for UIA volume increase can be determined.

Volume measurement includes more information than size alone, and in Chapter f
it was determined that changes in morphological measures of UIAs could also be
indicative of aneurysmal instability. It was found that aneurysms considered to be
non-growing (stable), could still change in shape. Although these aneurysms are not
growing, their change in shape may indicate that they are becoming more unstable,
and possibly more likely to rupture. These patients undergo be follow-up, to fully
understand the implications of this change in morphology and UIA outcome. (Chap-
ters fj and [) indicate that a definition for UIA growth should include morphology
measurements as well as volume and/or size measurements.

In Chapter f, growth was assessed both as a continuous measure (e.g. volume in
ml, size in mm) and as a categorical value (growing or non-growing). By assessing
growth as a continuous value, all measurements could be included as outcome, which
increases the statistical power. Growth measurements that are close to the 1 mm cut-
off, for example 0.9 and 1.1 mm, can be very similar, but by means of a dichotomous
measure, they are categorised as opposite outcomes. However, a dichotomised def-
inition of growth is important for clearer interpretation of aneurysmal growth and
clinical decision-making. Therefore, future studies and clinical research trials should
investigate a 3D volume growth definition including morphology changes, for full
characterisation of UIAs. A main limitation in Chapters f and ff was that scans were
assessed only at two time points, and the time between the baseline and follow-up
scans varied. In the future, longitudinal studies with longer follow-up time, and more
scan time points should be made to assess the longitudinal growth and change of mor-
phology over time. Furthermore, a percentage volume change could be considered
relative to the initial baseline volume to consider relative growth of the UIA.

8.2.3 UIA Growth Prediction Model

Based on morphological parameters, UIA stability and rupture risk prediction models
have been developed [36, 155, 15¢]. Models using handpicked morphological param-
eters have the benefit that it is known which parameters influence the outcome of
the prediction model. However, it also limits the model to only using the specifically
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chosen parameters to make the outcome decision. The shape of UIAs and their
configuration relative to the parent vessels can be diverse. An ideal prediction model,
should include all possible UIA shapes and configurations in the most complete sense.
After the success with mesh convolutional networks in Chapter l, a UIA growth
prediction model using MeshCNN [23] was developed in Chapter [| with vessel
surface meshes extracted from baseline TOF-MRAs. Comparable performance of the
mesh based model to clinical prediction models based on patient demographics and
aneurysm characteristics (ELAPSS) was found [31, 160]. For a complete prediction
model, both models could be used together or patient demographics should be
included in the mesh model. This gives a probability score of growth that could aid
clinicians when making a treatment decision of a patient with an UIA.

One limitation of the mesh model is the ‘black box’ nature of such a prediction
model, where it is not clear why the model has chosen such an outcome. As such,
explainable Al methods could be used to give understanding of the model’s decisions.
This could be in the form of highlighting areas on the surface mesh of the UIA and
vessel, which had higher activations, and were more important in the decision-making.
Using explainable Al it could be possible to find new growth risk markers. These
features could be previously unidentified markers and are common between all the
growing UIA meshes or vessel surface meshes. An explainable model with determined
risk factors would be more understandable to clinicians and therefore, more trusted
and applicable in the clinic. The explainability of Al prediction models is a rapidly
developing field [[164], and understanding and defining learned features by networks
would make prediction models more appealing for clinical use.

8.2.4 Future perspectives

The development of automatic UIA detection methods could speed up the workflow
and remove any observer bias in UIA detection. This will be especially important to
aid clinicians in the future, especially since preventative screening may become more
commonplace [4]. However, before such methods could be used in the clinic, they
should have a detection sensitivity greater than clinicians — realistically this should be
larger than 90% [[10] for larger aneurysms. The current methods require development
and improvement before this sensitivity would be achieved. False positives could be
easily removed by a radiologist, as long as all UIAs are detected, thus a highly sensi-
tive, less precise method may be beneficial. Small aneurysms (<3 mm) will always be
difficult to detect, even for radiologists, due to their similarities to vessel irregularities
or infundibulums. However, the sensitivity of a method for detecting larger UIAs is
the most important and can still be of clinical value, as these are the UlAs that may
have treatment implications.

For growth assessment, more studies into the usefulness and applicability of these
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morphology measurements in different patient populations using the same morpho-
logical parameters should be made. The main limiting factor is the use of manual, time-
consuming annotations for 3D segmentation. Automatic segmentations would greatly
improve this, removing the observer dependence of the measurements. However, cur-
rent automatic segmentation methods, have an even lower performance than the in-
terobserver error. Automatic segmentation methods need to be greatly improved, or
semi-automatic methods could also be investigated to overcome this hurdle. Such de-
tection and segmentation algorithms followed by morphology measurements could
eventually be implemented in radiology software, allowing for standard UIA measure-
ment techniques throughout all institutions. Currently, there is no 3D definition of
growth so future studies should consider a 3D volume growth definition including
morphology changes, before automatic quantification can have clinical use.

For growth prediction from baseline scans, future studies should investigate more
time points during the UIA life cycle. More time-points would allow for a better un-
derstanding of the non-linear growth process of UIAs and the pathophysiology of UIA
instability. A model could then be developed to predict growth per year, or over a
longitudinal time period. Geometric deep learning methods appear to work well for
growth prediction, but the current model has not been validated on a large dataset. Ex-
plainability of such a growth prediction model could be investigated using explainable
Al techniques. Models using handpicked morphology measurements should also be
compared. Eventually, a growth prediction model including morphology and/or UIA
meshes and patient demographics could be developed.

Growth prediction is considered a proxy for rupture prediction, and this is some-
thing that was not studied in this thesis. Future models could consider UIA outcome,
including rupture, however, data is limited as few patients have aneurysm rupture
during follow-up. Collaborations with other centres studying 3D quantified UIA mor-
phology and aneurysm rupture could aid in developing a 3D volume definition for
aneurysm rupture and models for aneurysm instability including growth and rupture.

All of the methods and studies presented in this thesis, from detection to growth
assessment and prediction, would be improved by including more patients and also
patients from other institutions and populations. In the future, a large collaboration,
such as was performed for ELAPSS or PHASES, should be performed including the
TOF-MRAs/CTAs and UIA morphological measurements.

8.2.5 Conclusion

This thesis presented methods using image analysis techniques to detect, quantify
and characterise UIAs for use in growth assessment. Although, 3D volumetric and
morphological measures are not currently accepted for clinical use, the work of this
thesis clearly demonstrates their usefulness in aiding reliable growth assessments and
prediction alongside known growth risk factors. By assessment in further clinical
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studies, the added value of UIA volume and morphology for clinical UIA growth and
rupture risk assessment can be determined. The growth prediction model presented in
this thesis was a feasibility study with promising results. It is important that automatic
UIA segmentation methods and growth prediction models have a higher accuracy than
intra- or interobserver errors in current clinical assessment. Such a high performance
would be required for these models to become trusted and applicable for use in clinical
research and workflows. This could result in a fully automatic UIA characterisation
tool, which determines volume and morphology of the UIA and provides potential
growth prediction scores. This information could aid the treating clinicians greatly in
the final treatment decision of the patient and overall improve patient outcome.
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Dit proefschrift presenteert beeldanalysetechnieken voor het opsporen en kwantifi-
ceren van niet-gebarsten hersenaneurysma’s. Met behulp van dergelijke technieken
kunnen er betrouwbare metingen van groei worden gemaakt, die worden meegewo-
gen in de beslissing om al dan niet over te gaan op behandeling. Hoofdstukken 2-4 van
dit proefschrift bevatten verschillende methoden voor het automatisch detecteren en
segmenteren van aneurysma’s op basis van hersenscans, specifiek op Time-of-Flight
Magnetische Resonantie Angiografie (TOF-MRA) en Computed Tomography Angio-
grafie (CTA) scans. Hoofdstukken 5 en 6 van dit proefschrift behandelen de relatie
tussen het volume en de morfologie van aneurysma’s en de beoordeling van aneurys-
magroei. Tot slot presenteert Hoofdstuk 7 een predictie model voor groei van hersen
aneurysma’s op basis van TOF-MRA’s.

HOOFDSTUK B beschrijft de opzet van een internationale wedstrijd voor biomedische
beeldanalysetechnieken: de zogeheten Aneurysm Detection en segMentation (ADAM)
challenge. Deze wedstrijd werd georganiseerd als onderdeel van het MICCAI 2020 con-
gres. Ten behoeve hiervan zijn er meer dan honderd geannoteerde TOF-MRA’s vrijge-
geven. Deelnemende teams hebben hun methode voor automatische aneurysmaseg-
mentatie ingediend, welke werd beoordeeld aan de hand van een achtergehouden, ge-
heime dataset. De methode die verkozen is als winnaar van de wedstrijd is sindsdien
verder ontwikkeld tot een vrij te gebruiken (open-source), zelfstandig model voor de-
tectie van objecten in medische beelden (nnDetectie). De wedstrijd blijft geopend als
een belangrijk ijkpunt voor detectie- en segmentatiemethoden van aneurysma’s.

HOOFDSTUK E beschrijft een nieuwe studie over de uitvoerbaarheid van een me-
thode voor de detectie van onregelmatigheden in de hersenen. Deze methode maakt
gebruik van een kunstmatige intelligentie techniek (Variational Autoencoder) en is ge-
traind op een dataset met TOF-MRA afbeeldingen van gezonde hersenen. De gerecon-
strueerde TOF-MRA’s van patiénten met bevestigde aneurysma’s hadden een lagere
Structural Similarity Index Measure (SSIM) dan TOF-MRA’s van hersenen zonder aneu-
rysma. SSIM is mogelijk te gebruiken als maatstaf voor onregelmatigheden/aneurysma
detectie. Een interessante uitkomst van het onderzoek was dat, naast de verschillen in
structuur en vorm binnen de scans, ook de verschillen in intensiteit belangrijk zijn
voor detectie van aneurysma’s.

De methode voor detectie van hersenaneurysma’s in HOOFDSTUK H, maakt gebruik
van het verschil tussen het vaatoppervlak van een aneurysma en de omliggende bloed-
vaten. De hersenvaten zijn gesegmenteerd uit de TOF-MRA’s en van deze segmentaties
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zijn driedimensionale (3D) oppervlakte-modellen gemaakt. Een zogeheten mesh neu-
raal netwerk, specifiek voor deze oppervlakte-modellen, is getraind op de gesegmen-
teerde hersenvaten om hersenaneurysma’s te herkennen op basis van afwijkingen in
het vaatoppervlak ten opzichte van gezonde vaten. Deze detectiemethode is onafthan-
kelijk van de beeldvormingsmodaliteit, met vergelijkbare prestaties bij TOF-MRA’s en
CTA’s. Tevens zijn de prestaties vergelijkbaar met detectiemethodes waarbij voxels
worden gebruikt als input.

Automatische detectie en segmentatie van hersenaneurysma’s uit TOF-MRA’s, zo-
als beschreven in Hoofdstukken 2-4, dragen bij aan het automatisch meten van allerlei
eigenschappen van een aneurysma. Deze metingen zijn te gebruiken voor betrouwba-
re beoordeling van aneurysmagroei en voor risicomodellen voor het barsten van een
aneurysma.Deze metingen zijn te gebruiken voor betrouwbare beoordeling van aneu-
rysmagroei en risico op barsten.

De betrouwbaarheid van de beoordeling van groei van een aneurysma met be-
hulp van zowel tweedimensionale (2D) oppervlaktegroei als 3D volumemetingen is
onderzocht in HOOFDSTUK E 3D beoordeling van aneurysmagroei bleek betrouwbaar-
der dan beoordeling aan de hand van 2D metingen, met kleinere verschillen tussen
beoordelaars en consistentere resultaten over alle aneurysma locaties. De kleinst de-
tecteerbare verandering in 2D groei (1,5 mm) is echter groter dan de huidige klinisch
geaccepteerde definitie van groei: 1 mm. Dit kan leiden tot onduidelijkheid tussen de
kleinst meetbare waarde en de huidige standaard voor 2D groei.

Kwantitatieve morfologische metingen van 3D hersenaneurysma’s - zoals vlak-
heid, vorm en kromming - zijn geintroduceerd in HOOFDSTUKB en hun relatie tot aneu-
rysmagroei is onderzocht. Continue groei van hersenaneurysma’s is gerelateerd aan
een toename in oppervlak en vlakheid, en een afname in vorm en kromming. Zelfs
in niet-groeiende (stabiele) aneurysma’s veranderde de morfologie, wat de suggestie
wekt dat niet-groeiende aneurysma’s mogelijk ook instabiel kunnen zijn. De kwanti-
ficatie van morfologische verandering zou in acht genomen kunnen worden bij het
beoordelen van de groei van hersenaneurysma’s en risico op barsten.

Tot slot is in HOOFDSTUKH de groeivoorspelling van hersenaneurysma’s op basis
van TOF-MRA’s onderzocht. De technische concepten over hersenaneurysma detec-
tie, morfologie en groei die in de voorgaande hoofdstukken zijn geintroduceerd, zijn
gecombineerd tot een groeipredictie model voor hersenaneurysma’s. Het model is ge-
baseerd op een mesh neuraal netwerk. Het model levert vergelijkbare prestaties ten op-
zichte van bestaande patiént-demografische en anerysma gerelateerde modellen voor
groeipredictie (ELAPPS). In de toekomst kunnen mesh en/of morfologische modellen
gecombineerd worden met bovenbeschreven patient en aneurysma gerelateerde mo-
dellen, om zo een meer compleet hersenaneurysma groeipredictie model te creéren.

In conclusie, dit proefschrift levert een compleet overzicht van het opsporen en
kwantificeren van hersenaneurysma’s uit TOF-MRA’s, door middel van computerge-
stuurde technieken. Automatische detectie en segmentatie van hersenaneurysma’s uit
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TOF-MRA’s en CTA’s geeft de mogelijkheid voor automatisering van betrouwbare her-
senaneurysma metingen. 3D volume en morfologische metingen komen van pas in
de beoordeling van groei en vormverandering van hersenaneurysma’s. Klinische ge-
accepteerde definities van groei en aneurysma instabiliteit, gebaseerd op 3D volume
en morfologische veranderingen, evenals de waarde van groei predictiemodellen op
basis van 3D gekwantificeerde aneurysma morfologie moet worden onderzocht. De-
ze voorspellingsmodellen krijgen een grotere rol in de klinische praktijk naarmate
de betrouwbaarheid en nauwkeurigheid toeneemt. Dit kan resulteren in een volledig
automatisch hulpmiddel voor de bepaling van het volume, de morfologie en de groei-
predictie van hersenaneurysma’s. Dit zou bijdragen aan een complete beoordeling en
voorspelling van de groei van hersenaneurysma’s, wat behandelaars kan bijstaan in
het maken van behandelkeuzes en daarmee het verbeteren van patiéntenzorg.
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