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A B S T R A C T   

In this study, in order to investigate the effect of the underlying pore-scale processes on continuum scale sim-
ulations of porous media dissolution, we improve the standard Lattice Boltzmann method using Quadtree grid 
refinement approach to simulate fluid flow and reactive transport through large domain sizes. Our results have 
shown considerable computational improvements up to 80% in simulation time together with increased nu-
merical accuracy. The results and the added value of the new approach are discussed using comparison of our 
model with the conventional LBM. Moreover, we have applied a systematic analysis by increasing complexity 
levels and starting from fluid flow and continuing with tracer transport and reactive transport in single pores, and 
ultimately, reactive transport in dissolving porous structures. For each case, the accuracy and computational 
benefits of the Quadtree models are discussed and dimensionless numbers are used to characterize regimes of 
flow and reaction in each step of comparison. Porosity-permeability variation in a 2D pore structure and mass 
transfer coefficient in a closed-end fracture with porous walls are then evaluated under different flow conditions.   

1. Introduction 

In oil and gas reservoirs, the reactive flow during the acidizing 
process changes the rock pore structure and affects the flow conditions. 
In continuum-scale modelling of such processes, the presence of a large 
concentration gradient at the vicinity of the rock grains and the 
continuous changes in rock-fluid interfaces of the porous medium con-
flicts with the continuum assumption. Therefore, the need for pore scale 
modelling is evident for the effective local mass transport and molecular 
diffusion coefficients. Over the last decade, pore scale studies have 
received considerable attention in scientific communities as well as in-
dustrial applications. They provide opportunities to understand flow 
and transport mechanisms that are operating at the pore scale and how 
they control the macroscopic behaviour of porous media. Liu et al., 
(2021), and Jiang and Xu (2021) are examples of studies that used 
Lattice Boltzmann method (LBM) to investigate pore-scale mechanisms 
of enhanced oil recovery (EOR) and the applications related to reactive 
fluid flow in porous media such as CO2 injection. Zhang et al., (2021) 
developed a geochemical lattice Boltzmann model to model 
multi-component reaction flow in porous media. Vasheghani Farahani 

et al., (2020) investigated heat transfer in multi-phase systems of porous 
media by LBM and Soleimani et al., (2019) studied the effect of the gas 
condensate drop-out on the gas relative permeability values using LBM. 

Lattice Boltzmann Method as a meso-scale approach is a numerical 
solver for Navier-Stokes (NSE) and Convection-Diffusion (CDE) equa-
tions for slightly compressible flow with a second-order accuracy. LBM 
provides simple approaches for simulation of reactive transport with 
complex chemistry. Knutson et al., (2001) investigated pore scale het-
erogeneities and dissolution effects on mass transfer coefficient. They 
used LBM to simulate water flow and solute transport from distributed 
non-aqueous phase liquids in a two-dimensional porous media. Kang 
et al., (2002) proposed a LB model to simulate chemical dissolution in 
porous media. Kang et al. (2014), Yoon et al., (2015) and Min et al., 
(2016) studied the induced change in porosity and permeability of 
porous media by implementing LBM to simulate pore scale dissolution 
and precipitation. More recently, Montemore et al., (2017) used LB 
models to investigate reactive transport in nano-porous catalysts and 
catalytic performances. Gao et al., (2017) proposed a geochemical nu-
merical model for pore scale reactive transport using LB models and 
investigated reactive fluid transport in 3D porous media with different 
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reactive mineral surfaces. On the other hand, there are some studies that 
used a combination of LBM with other numerical methods like Direct 
Numerical Simulation (DNS) or particle tracking (PT) for studying 
reactive or active transport phenomena in porous media. LBM in these 
cases often is used to simulate fluid flow whereas DNS based on 
finite-volume is used to compute concentration fields for reactive 
transport in porous media (Yoon et al., 2012; Chen et al., 2013; Tong and 
He, 2015) and PT is used to compute the transport of particles and 
subsequent deposition or retention (Parvan et al., 2020; Kermani et al., 
2020). 

Although the applications of LBM for flow in porous media mainly 
deal with high resolution of individual grains at the pore scale, but also 
there have been some efforts to extend the simulation domain to larger 
scale. By this approach, pore scale properties may be utilized as the 
continuum scale parameters by upscaling the pore scale results (Lichtner 
and Kang, 2007). It is very well established that LBM can take advantage 
of high degree of parallelism, and scale up on thousands cores. (Succi 
et al., 2019). Besides, LBM can also benefit from the powerful local grid 
refinement approaches that focused on grid density near and/or far from 
solid faces or boundary conditions to increase the computational 
efficiency and attain larger simulation domain size. Quadtree grid 
refinement, as a type of unstructured grid, is constructed by recursive 
subdivision of an initial domain based on a predefined criterion and 
results in square cells of different sizes. Some of the advantages of 
Quadtree grid refinement such as locally high-resolution grids, auto-
matic mesh generation, simple hierarchical data structures and 
dynamically adaptive grids have made it popular in recent years. Crouse 
et al., (2003) adapted LBM on Quadtree grids using the method of Fili-
ppova and Hänel (1998). Originally, Crouse et al., 2003 developed the 
Quadtree LBM based on mesh centred grids and integrated it with a 
linear interpolation for treating the interface. Chen et al., (2011) and, 
Zhang et al., (2016), used Quadtree grids to simulate flow of fluid in 
multiscale porous media. They also adopted the linear interpolation of 
Crouse et al., (2003), but used a back-forth error 
compensation-correction (BEFECC) scheme to achieve second-order 
accuracy. Yu and Fan (2009) also adopted Quadtree grids to simulate 
a bubble rising in a viscous fluid using cell centred approach. Cell cen-
tred Quadtree is based on the scheme developed by Chen et al., (2006) 
and is mass conservative, simple in application, and does not need 
interpolation or change in non-equilibrium density distribution func-
tion. Foroughi et al., (2013) also implemented cell-centred approach 
and volumetric distribution transfer method to simulate fluid flow in 
porous media. Their LB model is integrated with an image reconstruc-
tion algorithm based on Quadtree grids. Their results revealed that 
Quadtree is in good agreement with the regular uniform LB method and 
FEM. They also showed that Quadtree decreases the simulation time 
significantly compared with the regular uniform LB method. 

In this work, we constructed a reactive LBM on Quadtree meshes for 
the first time using the cell centred approach and discusses the advan-
tages of the scheme. The D2Q9 Linear Bhatnagar Gross and Krook 
(LBGK) model is implemented for both fluid flow and solute concen-
tration to study reactive systems. To the authors’ knowledge there is no 
other similar work in the literature that studied the reaction and 
dissolution of porous media by Quadtree method. The organization of 
this manuscript goes as follows; first, the LB formulation is briefly 
introduced and its application on Quadtree meshes is described. Several 
validation examples are then presented. Next, the simulation results of 
Quadtree LBM for reactive flow through porous media are discussed as a 
novel technique for this complex case. Furthermore, large domain size 
2D pore structures were considered to simulate porosity-permeability 
variation during reactive flow and to investigate the mass transfer 
coefficients. 

2. Modelling flow and reactive transport using LBM 

In simulating reactive transport, it is commonly assumed that the 

effect of concentrations on flow properties are negligible. Using this 
assumption, the CDE and NSE are decoupled and are represented using 
separate sets of distribution functions in LBM (Ponce Dawson et al., 
1993). Therefore, the velocity field relates the flow domain and the 
concentration domain through the equilibrium distribution function. 

In order to approximate the solution of NSE, the LBGK collision form 
of Lattice Boltzmann Equation (LBE) is used to obtain the flow field 
distribution: 

fi(x+ ei
→Δt, t+Δt) − fi(x, t) = − Δt / τ(fi(x, t) − f eq

i (ρ, u→eq
)) + ΔtFi

Eq. (1)  

where fi is the directional distribution function, f eq
i represents equilib-

rium distribution function, ei is directional lattice velocity and τ is the 
relaxation time. ueq is the equilibrium velocity, ρ =

∑
fi is the fluid 

density, and Fi represents possible source and sink effects. In Eq. (1) the 
term before Fi on the right hand side represents the collision operator 
and the left hand side term operates as streaming of the distributions. 

Fig. 1 shows the collision and streaming steps in D2Q9 LB models 
that utilize 2D lattices and perform with 9 lattice velocities. For D2Q9 
model f eq is determined by: 

fi
eq(x)=wiρ

[

1+
ei
→. u→eq

c2
s

+
(ei
→. u→eq

)
2

2cs
4 −

( u→eq
)

2

2cs
2

]

Eq. (2) 

In Eq. (2) wi is the directional weight factor and cs is the lattice speed 
of sound. 

Guo et al., (2002), provided a scheme for incorporation of an 
external force term, F, where flow velocity is modified to partially 
contribute to the applied body force and therefore, the equilibrium ve-
locity ueq is: 

u→eq
= u→+

F→Δt
2ρ = 1

/

ρ
∑

ei
→fi +

F→Δt
2ρ Eq. (3) 

This form of the velocity may be interpreted as averaging velocity 
before and after the forcing terms to guarantee the accuracy of the 
second-order space-time terms (Krüger et al., 2017). Furthermore, the 
source/since term Fi is calculated by Eq. (4): 

Fi =wi

(

1 −
1
2τ

)(
ei
→− u→

c2
s

+
(ei
→. u→) ei

→

c4
s

)

.F→ Eq. (4) 

To calculate the concentration field, the collision operator is defined 
as the sum of a source term and a nonreactive term, which provide: 

gi(x+ ei
→Δt, t+Δt) − gi(x, t)= − Δt / τs(gi(x, t) − geq

i (C, u→eq
)) + ΔtSi.

Eq. (5) 

In Eq. (5) gi is the directional concentration distribution function, τs 

is the relaxation time for the concentration domain, C is the concen-
tration at any point (C =

∑
gi) and geq

i is the equilibrium distribution 
function which for D2Q9 model is calculated by: 

Fig. 1. D2Q9 model, a) represents the collision and b) shows the stream-
ing step. 
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Eq. (6) 

Since the concentration is a scalar field and the collision term on 
right hand side of Eq. (5) does not conserve the momentum, the 
computational efficiency may be enhanced by considering the linear 
velocity terms of the equilibrium distribution function (i.e., the D2Q4 
model; as it is implemented in studies like: Knutson et al., 2001, Zhang 
et al., 2002, Jiménez-Hornero et al., 2004 and Kang et al., 2007). 
However, the four-speed model brings some drawbacks and affects the 
numerical accuracy and convergence. This issue has been analysed by Li 
et al., (2017) and Krüger et al., (2017). Krüger et al., (2017) provided a 
detailed discussion on the diffusion coefficient stated that the D2Q4 
diffusion coefficient is velocity dependent and the diffusion coefficient 
in D2Q9 model is smaller than the D2Q4 model under similar condi-
tions. As a result, this smaller diffusion results in higher Peclet and 
Damköhler numbers. In the present work, we have implemented the 
D2Q9 model to both flow and concentration calculations. 

The term Si in Eq. (5) represents possible source and sinks which 
originally account for homogeneous reactions. For heterogeneous re-
actions, the reaction boundary condition at the solid boundaries can be 
replaced with a reaction term at the computational nodes adjacent to the 
solid nodes. Patel et al., (2014) adopted this approach by coupling an 
external operator (i.e., geochemical solver PHREEQC). Therefore, the 
heterogeneous reactions at the solid-fluid interface are considered as 
pseudo-homogeneous reactions by including an additional source 
(collision) term. The reaction term can be expressed as (Krüger et al., 
2017): 

Si =

(

1 −
1

2τs

)

wiκ(Cs − C) Eq. (7)  

where κ is the average rate constant with first order kinetics and Cs is the 
equilibrium concentration. 

In LBM application, the common practice is to implicate the diffusion 
coefficient and kinematic viscosity through dimensional analysis, to 
determine the relaxation times through similar equations, Dm =

c2
s
(
τs −

Δt
2
)

and υ = c2
s
(
τ − Δt

2
)

respectively. 
Schmidt and Sherwood dimensionless numbers are often used to 

characterize mass transfer in porous media. The Schmidt number (Sc) is 
defined as the ratio of kinematic viscosity (i.e., momentum diffusivity) 
to mass diffusivity and characterizes momentum and mass diffusion 
convection processes. The Sherwood number (Sh) which is defined as 
the ratio of advection to diffusion mass transfer, can be estimated using 
the relation proposed by Yoshino and Inamuro (2003) with some 
modification as: 

Sh=
ΔCσ(

Cσ|b
)

in −
(
Cσ|w

)

out

ReSc1/3 L
Stotal

Eq. (8)  

where Cσ|b and Cσ|w represent the concentration of the reactive agent in 
the fluid bulk and at the solid walls, respectively. L is the domain length 
and Stotal is the total surface area of the pore structure with the unit of lu. 
ΔCσ Represents the concentration difference of the reactive agent 
measured between the inlet to the outlet boundaries normalized by the 
minimum and maximum values of concentration (Cσ) within the 
domain. Upon how concentration boundary conditions are defined, the 
outlet concentration may be calculated by averaging all nodes at the 
outlet at different time steps during the simulations. Although, ΔCσ may 
not be a constant, the normalized concentration is rather constant. 

Convection-Diffusion equation may be also used to estimate the 
effective diffusion coefficient of a pore structure. That is the plot of left- 
hand side of Eq. (9) versus concentration Laplacian gives a slope equal to 
De , if the first and second order partial derivative terms are known. 

∂C
∂t

+ u→x
∂C
∂x

=Dex
∂2C
∂x2 Eq. (9) 

The concentration gradient and Laplacian may be calculated by the 
finite difference scheme using the 8 neighbour nodes at each site in the 
D2Q9 model (Huang et al., 2011): 

∂αC=
∑8

i=1

ωi eiα
̅→C(x + eiα

̅→Δt)
c2

s Δt
Eq. (10)  

∂2
αC= 2

∑8

i=1

wi(C(x + eiα
̅→Δt) − C(x))

c2
s (Δt)2 Eq. (11) 

Since velocity, concentration and its first and second-order partial 
derivative terms are space-varying quantities, their values can be aver-
aged over all pore nodes in the domain at different time steps during the 
simulations. On the other hand, as the literature suggests, a linear 
relation may exist between the effective diffusion in a pore structure and 
the Peclet number (Woods, 2015). 

De /Dm = αos + λPe Eq. (12)  

where αos and λ are constants that characterize the pore structure and Dm 
is molecular diffusion. 

Dissolution at the solid boundary is a function of the reaction rate at 
the surface (Kang et al., 2014) such that: 

∂φ
∂t

= − Vmasκ(C − Cs) Eq. (13) 

In Eq. (13) Vm is the solid phase molar volume (i.e., the reactive 
mineral) κ is the average reaction rate constant with first order kinetics 
and as represents the specific surface area. The solid volume fraction φ 
will change at each time using Eq. (13) implemented at the interface 
nodes. When φ reaches zero, the corresponding node will turn into a 
fluid node, and its new adjacent solid nodes will act as the interface 
nodes. At the same time, the flow field is updated to account for the 
changes due to pore structure. 

The Kozeny-Carman equation relates the porosity φ and permeability 
K of a porous bed if it can be considered as a bundle of non-connecting 
tortuous tubes with diameter Dp. 

K =
φ3D2

p

180(1 − φ)2 Eq. (14) 

But in reactive flow conditions, where the pore structure is modified 
by dissolution, the specific surface area is constantly changing. There-
fore, permeability is needed to be correlated with a higher power of 
porosity. By rearrangement of Kozeny-Carman equation, a linear form 
can be derived in terms of 

̅̅̅̅̅̅̅̅̅
K/φ

√
and φz = φ/(1 − φ): 

̅̅̅̅̅̅̅̅̅
K/φ

√
=

̅̅̅̅̅̅̅̅

D2
p

180

√
( φ

1 − φ

)
= b.φz Eq. (15) 

In this form, we can investigate the deviation of porosity- 
permeability relation from the linear Eq. (15) due to the modification 
of the pore structure by dissolution in reactive flow condition. The 
permeability of the flow geometry can be evaluated from the velocity 
field using the Darcy law. 

3. LBM on quadtree 

The drawback to the conventional LB method is the use of spatially 
uniform lattice which cause excess computational load particularly 
when high resolution grid is required next to the solid boundaries. Here, 
we implemented a Quadtree grid refinement method to achieve higher 
resolution near the solid boundaries where detail information of con-
centration gradients become available to improve the simulation accu-
racy. In the next sections, we will discuss the considerable improvement 
of the computational efficiency using this method. The Quadtree scheme 
for domain decomposition usually utilizes a scale index (β) and a 
threshold (α) to control the grid density. While α is a constant, the scale 
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index (β) indicates the fraction of solid-phase pixels (shown using black 
colours in different figures in this study) of a cell. Initially, we begin with 
one large square grid which is assigned to the entire domain (if we as-
sume that the image to be reconstructed is a square). In the next step, the 
number of black pixels is divided by the number of all pixels within the 
square grid (i.e., the scale index β). Next, α, as a threshold parameter, is 
used to control the domain reconstruction, following these three main 
criterions: i) for β > α, the grid value is set to one (i.e. black cells), ii) for 
β < (1 – α), the grid value is set to zero (i.e., white cells), and iii) for cells 
for which the first two criterions is not valid, the grid is divided into four 
cells, each of which represents a new element. Discretization will be 
repeated for these new grids until the initial image is reconstructed. In 
this study, for all domain decompositions we have used a value of 1.0 for 
α to ensure that all curved boundaries will be reconstructed completely 
and without any modification to the primary porosity. 

Next, the Lattice Boltzmann algorithm on cell-centred Quadtree is 
constructed by the following procedure (Chen et al., 2006):  

• The collision-streaming calculations on the coarse grid at any time 
step have their corresponding two time-step calculation on the fine 
grids.  

• For the interface grids, where a coarse grid is adjacent to a fine grid, a 
transfer function is implemented across the two grids. The interface 
belongs originally to the coarse grid, and, later, in the post collision 
state, the interface grids turn into components belonging to the fine 
grids. Fig. 2 shows such interface grids using a shaded colour.  

• The interface grids, in post-collision state, break into four fine grids. 
Subsequently, the distribution data of the coarse interface grid 
(which are called parent grids) are associated with the fine grids 
(which are called child grids). This simply means that the four fine 
grids will have the same f and g values as the corresponding course 
grid.  

• In the next stage, the streaming step is performed on the fine and 
children grids of the interface.  

• The collision-streaming process is performed for the second time in 
the fine grid and the distribution data at the parent interface grids is 
recovered by averaging the distribution data of the children grids at 
the location of the interfaces.  

• The final stage is the streaming step implemented at the coarse grid 
to reach the pre-collision state 

In adaption of LBM on Quadtree grids the following criterions are 
needed to be considered:   

• Both fine and coarse lattices should operate using the same speed (i. 
e., speed of sound which in D2Q9 is equal to). For a domain with two 
lattice sizes, the velocity term c = Δx/Δt, provide the corresponding 
time step which is Δtc = nΔtf , where n is the ratio of the coarse to 
fine grid size.  

• Both fine and coarse lattices should provide the same viscosity. This 
criterion requires rescaling of the relaxation time for fine and coarse 
grids as τf =

(
τc − Δtc

2
)
+

Δtf
2 , with τc and τf being relaxation times of 

coarse and fine grids, respectively.  
• The same density should be resulted from both lattices. As density 

and velocity are the same in fine and coarse grids, the force term 
should be modified to account for the grid type. This leads the gravity 
to be gf = gc/n where n is the size ratio between coarse and fine grids. 

Fig. 3 illustrates the change of distributions in the interface cells for 
the volumetric algorithm by Chen et al., (2006). 

Fig. 4 shows two discretised porous media domains with 2 and 3 
mesh sizes obtained using Quadtree method. For the case with more 
than 2 grid sizes (i.e., the 3 mesh quadtree) to simplify the calculations 

Fig. 2. The state of interface grids in Quadtree decomposition. The shaded 
colour shows the interface grids, each of which break into four fine grids in 
post-collision state. 

Fig. 3. Schematic of the change of distributions in the interface cells for the volumetric algorithm by Chen et al., (2006). A pair of distributions are shown. The 
‘‘pre-collision” distributions are the arrows pointing toward the cell centre while the ‘‘post-collision” distributions are the arrows pointing away from the cell centre. 
Therefore, No. 2: collision in fine and coarse cells. No. 3: the breaking of the interface cell into 4 cells. No. 4: streaming in fine cells. No. 5: collision in inner fine cells 
and no. 6: streaming in fine and coarse cells to end up to state 7 (or 1) by recovering the coarse interface. 
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at the grid interface, and to provide a smooth transition of the macro-
scopic variables across interfaces with different grid levels, only one size 
change between coarse cells and their fine neighbours is permitted 
(Fig. 4, b). 

This criterion is implemented by adding an extra step to the domain 
decomposition algorithm. In this step, we seek for any large size cells 
with unsuitable difference level, which have sides or corners located at 
the boundaries of the fine grid, and we divide each of them into four new 
elements. 

4. Model validation 

In this section, we start validating the developed Quadtree scheme 
against a benchmark problem for which analytical solutions exist 
together with results obtained using the conventional LBM. Next, we 
tackle a series of progressively complex flow and transport simulations 
including fluid flow, tracer transport, and reactive transport in single 
pores, and reactive transport in dissolving porous media. 

4.1. Fluid flow in a 2D channel 

At the first validation step, we use the developed Quadtree scheme to 
simulate flow in a 2D channel which can be described using Poiseuille 
formula. The fine grid model operates on a domain size of 128 × 128 
grids, and hence the coarse grid size is 64 × 64 grids. In the 2-mesh 
Quadtree model, the grid sizes are fine close to the channel walls with 
a dimension of 48 × 128 grids. The coarser grids are located within the 

channel bulk space and have a dimension of 16 × 64 grids. This simu-
lation implemented periodic and bounce back boundaries at the inlet/ 
outlet and the top/bottom walls, respectively. With the Guo et al., 
(2002) scheme, the applied body force is 4 × 10− 5 mu/(lu.ts2). Under 
the same flow conditions, the fine and coarse grid models are compared 
with the quadtree results as well as the analytical solution. 

Fig. 5 shows an excellent agreement between LBM results and the 
analytical solution based on Poiseuille formula. The error analysis of the 
calculated velocity profile regarding the analytical solution of the flow is 
provided in Table 1. Comparison of different lattice types clearly shows 
that the Quadtree model is able to reproduce the analytically obtained 
velocity profile with high accuracy. The simulation based on 2-mesh 
Quadtree resulted in an error less than 1.0% relative to the analytical 
solution which indicates that quadtree model has a precision between 
the fine- and the coarse-grid models. 

Fig. 4. a) 2-mesh Quadtree and b) 3-mesh Quadtree discretised porous media domains.  

Fig. 5. a) fluid flow velocity profiles of flow calculated by different methods. The solid line indicates the analytical solution; the dotted line shows the fine-grid LBM 
and the dashed line (QT-2) corresponds to one-level refinement (or 2-mesh) Quadtree LBM results. b) 2-mesh Quadtree lattice of the channel where grid sizes are fine 
close to the top and bottom channel walls (with a dimension of 48 × 128 grids) and coarser grids are located in the middle of the channel (far from walls) with a 
dimension of 16 × 64. 

Table 1 
Error analysis of the velocity profile of flow calculated by different lattice type 
for Poiseuille flow.  

Lattice type Ave relative error RRMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1/n
∑

(ui − û)2
/(û)2

√

2- mesh Quadtree 0.004 0.0093 
Fine grid 0.002 0.0054 
Coarse grid 0.008 0.0165 

* RRMSE indicates the Relative Root-Mean-Squared Error with respect to the 
analytical solution. 
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4.2. Diffusive reactive transport in a 2D channel 

For this section, we use the example reported by Kang et al., (2007) 
to simulate a diffusive-reactive problem. The simulation domain is a 
rectangular pore in which reaction takes place at the top boundary. The 
right and bottom boundaries are at zero flux condition. A constant 
concentration is considered at the left boundary which diffuses into the 
domain during the simulation. Such a diffusive reactive problem can be 
presented by Laplace’s equation. 

∂2C
∂x2 +

∂2C
∂y2 = 0 Eq. (16) 

Initially, the occupying fluid solution in the domain is not reacting 
with the solid phase. Upon beginning of the simulation, the concentra-
tion value at the left boundary is set to C0 = 1.0 which begins to diffuse 
into the domain and react with the solid phase located at the top 
boundary. The simulation domain for the uniform fine grid model is 
equal to 80 × 100 grids. In the Quadtree model, the grids adjacent to the 
reacting wall are fine, providing a dimension of 14 × 100 grids. The 

coarse section of the domain has a dimension of 33 × 50 grids. The 
uniform coarse grid model has a dimension equal to 40 × 50 grids. 
Similar to other studies (Kang et al., 2014; Mostaghimi et al., 2016; Yoon 
et al., 2015; Machado, 2012), we use the relative influence of reaction 
over diffusion to be the same as the value used by Kang et al., (2007) i.e., 
the Damköhler number, Da = κL/Dm = 48 where L is the characteristic 
length corresponds to the left side of the domain, Dm = 0.16 lu2/ts and 
κ = 0.1 lu/ts. 

Fig. 6 demonstrates the boundary conditions that were applied to the 
model and shows typical simulation result. The analytical solution and 
the calculated concentration profile by quadtree model are shown in 
Fig. 7. 

Table 2 provides the analysis of the simulation. We should note that 
the spatial distribution of a specific concentration C = 0.5 was used to 
evaluate the error. Fig. 7 and Table 2 show that the Quadtree model 
successfully generated the correct concentration profile and provided 
results very close to that of analytical solution. 

4.3. Advective-diffusion reactive transport in a single pore 

In this section, we use the verification problem used by Kang et al., 
(2007) who applied the thermal-hydrologic-chemical Finite Difference 
model, PFLOTRAN, developed by Lichtner (1999) for model verifica-
tion. In this test, a prescribed Poiseuille velocity profile is established in 
a single pore with a Peclet number Pe = UL/Dm = 12, where L is the 
characteristic height of the domain, Dm = 0.16 lu2/ts and U is the 
average fluid velocity. The simulation size for the uniform fine grid 
model, is 60 × 400 grids. In the Quadtree model, the grids are finer near 
the reacting surfaces providing a dimension of 6 × 400 grids and the 
coarse middle part of the domain has a dimension of 24 × 200 grids. For 
the uniform coarse grid model, the dimensions equal to 30 × 200 grids. 

Fig. 6. Boundary conditions and the typical result by Quadtree method.  

Fig. 7. Concentration profile for a diffusive-reactive simulation carried out in a rectangular domain of size 80 × 100 grids. The lines show the analytical solution of 
the laplace equation. 

Table 2 
Error analysis of the spatial concentration distribution calculated by different 
lattice types for the diffusive-reactive transport in a rectangular pore.  

Lattice type Ave relative error RRMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1/n
∑

(yi − ŷ)2
/(ŷ)2

√

2-mesh Quadtree 0.12 0.18 
Fine grid 0.09 0.13 
Coarse grid 0.16 0.21  
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The top and bottom boundaries act as no-flow boundaries. Initially, the 
fluid is not reacting with the solid walls (Cs = 0.1). At the start of 
simulation, a solution with a concentration of C = 1 × 10− 8 is injected 
from the left boundary and reaction takes place at the walls. The outlet is 
maintained at a zero-concentration gradient. 

Fig. 8 shows the established concentration profiles, calculated by fine 
grid and Quadtree LBM models for the flow with Da = κL/Dm = 75 
where κ = 0.2 lu/ts. Table 3 provides the error associated with different 
lattice types by considering the spatial distribution of a specific con-
centration C = 0.08. The results show a very good agreement with the 
numerical concentration profile reported by Kang et al., (2007). 

5. Results and discussions 

In this section, we use the developed Quadtree model to simulate 
reactive transport in a porous media in form of solid phase dissolution. 
We characterize the porous media using dimensionless parameters 
including Reynolds, Peclet, Damköhler, and Sherwood numbers. We will 
discuss the effectiveness and accuracy of the Quadtree simulations with 
different resolutions using both uniform and Quadtree LBM. 

5.1. Time efficiency of the quadtree method 

In order to investigate the efficiency of the computational time 
quantitatively, a reactive transport model for a pore scale channel with 
the reactions taking place at the solid walls is considered. In this simu-
lation, no dissolution of the solid phase is taken into account. In the next 
case, a more complex, porous structure, domain is selected where 
similar boundary conditions are applied including constant velocity/ 
pressure boundary at the inlet/outlet, respectively, together with the 
periodic boundary conditions at the top and bottom boundaries. The 
standard bounce-back method is applied at the solid surfaces. For solute 
transport, constant concentration is applied at the inlet, and zero 
diffusive flux is applied at the outlet boundary. The computer codes for 
Quadtree mesh generation and flow simulation were developed using 

Fig. 8. Concentration profile for Convection, Diffusion and Reaction in an open channel with Da = 75. The lines represent the numerical solution of PFLOTRAN 
generated by Kang et al., (2007). 

Table 3 
Error analysis of the spatial concentration distribution calculated by different 
lattice types for the advective-diffusion-reactive transport in a single pore. The 
unit of the error is lattice unit.  

Lattice type Ave relative error RRMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1/n
∑

(yi − ŷ)2
/(ŷ)2

√

2-mesh quadtree 0.05 0.12 
Fine grid 0.03 0.09 
Coarse grid 0.08 0.15  

Fig. 9. Different pore structures for comparison of the simulation time using Quadtree method.  
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the MATLAB software and simulated with an intel core i7-740QM 2.5 
GHz processor with 4 GB DDR3 1333 MHz RAM. 

Fig. 9 shows the applied simulation pore structures and Table 4 
provides the computational times required to perform 1000 time steps. 

In Table 4, the column “Fine/Coarse grids” indicates the ratio of the 
number of fine grids to the number of coarse grids within the pore space. 
For the pore structure “A” this ratio is equal to 1 when it is decomposed 
by a 2-mesh Quadtree lattice (or Qt-2) and equal to 4 if 3-mesh Quadtree 
(or Qt-3) is implemented. The difference in Qt-3 is due to the number of 

larger grids which makes the denominator of this ratio to be smaller. In 
general, it is expected that as the number of coarse grids approaches 
those of fine grids or becomes greater, the computational time will 
decrease. 

Table 4 shows the clear computational advantages of applying 
Quadtree mesh refinement. The results show that the Qt-2 is computa-
tionally more efficient compared to simulations using the fine grid. The 
level of acquired efficiency depends on the pore structure where the Qt-2 
showed up to three times speedup compared to LBM simulations using a 

Table 4 
Computational time required to perform 1000 time steps using the fine grid and the Quadtree model with one and two-level refinement (2-mesh and 3-mesh lattice 
types respectively). The pore structures A-to-F are shown in Fig. 9.  

Pore 
Structure 

Dimension Porosity Fine grid 
time 

2-mesh 
Quadtree 

Fine/Coarse 
grids 

Qt-2/fine time 
ratio 

3-mesh 
Quadtree 

Fine/Coarse 
grids 

Qt-3/fine time 
ratio 

A 512 × 512 54% 2689 s 1155 s 1 0.43 1075 s 4 0.40 
B 256 × 256 63% 790 s 317 s 0.84 0.40 275 s 3.2 0.35 
C 128 × 128 73% 212 s 98 s 1 0.46 84 s 4 0.40 
D 128 × 128 45% 131 s 54 s 0.83 0.41 60 s 4 0.46 
E 68% 198 s 65 s 0.4 0.33 55 s 1.78 0.28 
F 92% 274 s 82 s 0.37 0.30 52 s 0.92 0.19  

Fig. 10. Reactive transport in porous media. The first column shows the concentration contours obtained using the fine grid LBM; the second column shows similar 
results using the 2-mesh Quadtree model; the third column shows results using the 3-mesh Quadtree method. The fields show concentration distributions of the 
reactive agent after 5000 time steps in simulation, using a solution with Da = 100. The colour bar demonstrates the concentration distribution from 0 to 1. 
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uniform grid. When using the Qt-3, we have obtained up to five times 
speedup relative to using a regular fine grid, which indicates a major 
improvement in the computational efficiency. For the case of porous 
media structures, i.e., structures A and B, Table 4 implies that for larger 
domain sizes the time efficiency becomes more significant as the fine 
grid model took 2700 s to complete while Qt-3 consumed about 1000 s. 
In case of porous media structure with low porosity values, higher res-
olution images of the porous media are required for which the Qt-3 
becomes more efficient relative to the 2-mesh Quadtree method. 

5.2. Dissolution reactions in porous media using the quadtree method 

In order to simulate a complex problem where both reaction and 
dissolution are simultaneously occurring, we apply a complex porous 
media structure with curved boundaries. The Quadtree decomposition 
used in this study is not dynamic and adaptive over time. Therefore, as 
chemical dissolution proceeds, the simulation continues with the initial 
domain decomposition. Here we select different parts of the pore 
structure A in Fig. 9 with the sample dimensions equal to 256 × 256 
grids to compare the quadtree performance on different lattices but in 
the next section, we will implement large simulation dimensions to 
achieve representative results. The flow and concentration boundary 
conditions are the same as previous section but the dissolution is now 
active and considered to modify the pore structure. Reaction and zero 
flux boundaries are applied at the solid surfaces. The results for both 
uniform and Quadtree LBM with 2 and 3 mesh sizes are presented in 
Fig. 10 and Table 5. 

For comparison between different numerical schemes, three cases 
are provided in Fig. 10: i) fine uniform lattice (F-X), ii) 2-mesh Quadtree 
(Qt-2-X), and iii) 3-mesh Quadtree (Qt-3-X) lattices. The results show 

similar behaviours among different models, however, there is a slight 
difference between models for the dissolved solid phases. The visuali-
zation of concentration distributions (according to the shown concen-
tration colour bar) in Fig. 10 are also affected by model resolutions (e.g., 
between Quadtree and coarse-grid models) because different models 
apply different grid sizes. We consider the results obtained using the 
fine-grid LBM as the most numerically accurate results. Quantitative 
simulation results are provided in Table 5 which verify the consistency 
of Quadtree models. Table 5 reports the amount of reactive solid sur-
faces and the corresponding fraction of dissolved solid phases for two 
different Damköhler numbers of Da = 20 and Da = 100. The fraction of 
solid interface nodes (which affect dissolution and the reaction rate) is 
determined by the ratio of total solid interface nodes to all solid nodes. 
The fraction of dissolved solid can be simply obtained by subtracting the 
final porosity from initial porosity. Table 5 also compares the results of 
fine-grid LBM with Quadtree method for each structure. It is clear that 
the Quadtree could successfully predict the dissolution of the structures 
in agreement with fine-grid LBM. 

Furthermore, as we remember the Poiseuille reactive flow in a single 
pore in Fig. 8, it is clear that the concentration distribution is highly 
affected by the flow velocity field. However, while the concentration 
profiles illustrate dependency on the local velocity, the velocity depends 
on the flow path in fluid flow through porous media. Fig. 11 compares 
the velocity profiles for Qt-2 and Qt-3 models in pore structure 1 of 
Fig. 10 and outlines the flow path effect on the velocity. The colour bar 
demonstrates the velocity distribution from 0 to 0.12 lu/ts. Therefore, 
the similar concentration profiles in each pore structure in Fig. 10 imply 
the presence of a similar velocity field. 

5.3. Investigation of mass transfer coefficients 

Here we consider two pore structures shown in Fig. 12 to investigate 
the variation of Sherwood number. The simulation parameters and their 
dimensional analysis are summarized in Table 6. The value of Cσ|b at the 
inlet is set to 0.1 and Cσ|w which represents the concentration at the solid 
walls will be the minimum value at the outlet. The boundary conditions 
are constant concentration at inlet and zero concentration gradient at 
outlet. In this simulation, the rate of dissolution is slow (Da = 0.1) and 
the pore structure is almost constant. 

Eq. (8) suggests that the log-scale plot of ShSc− 1/3 versus Re provides 
a linear relation. This linear relation can be used as a measure of the 
model robustness, as the experimental data in Yoshino and Inamuro 
(2003) approve the linear correlation of Sherwood and Reynolds 
numbers. 

Fig. 13 compares the calculated results obtained from fine-grid LBM 
(which is considered the accurate response) and the 2-mesh Quadtree 
model for different simulation cases. The results show that the Quadtree 

Table 5 
Comparison of dissolution of porous media for different pore structures and at 
different Damköhler numbers.  

Lattice type- 
pore 
structure 

Porosity fraction of 
solid interface 
nodes 

fraction of 
dissolved solid 
phase (Da = 20) 

fraction of 
dissolved solid 
phase (Da =
100) 

F- 1 0.66 0.136 0.139 0.278 
Qt-2 - 1 0.152 0.275 
Qt-3 - 1 0.136 0.274 

F- 2 0.58 0.108 0.080 0.139 
Qt-2 - 2 0.084 0.153 
Qt-3 - 2 0.080 0.151 

F-3 0.55 0.124 0.121 0.212 
Qt-2 - 3 0.122 0.206 
Qt-3 - 3 0.119 0.238  

Fig. 11. Comparison of the velocity field for Qt-2 and Qt-3 models in pore structure 1. The colour bar demonstrates the velocity distribution from 0 to 0.12.  
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model is consistent with the calculated Sherwood number by the fine 
grid model under different Reynolds numbers. Moreover, as Fig. 13 
suggests, in addition to the Reynolds number which emphasizes the role 
of advection in mass transfer, the change in the pore structure may affect 
the mass transfer coefficient considerably. The pore structure shown in 
Fig. 12b has coarser grains and higher permeability which results in 
larger Sherwood. The consistent linear relation that is obtained for the 
different structures (a) and (b) in Fig. 12, demonstrates the quadtree 
model robustness. 

Fig. 14 plots the effective diffusion coefficient (dispersion) against 
the Peclet number obtained by the Quadtree model for the pore structure 
in Fig. 12a. This plot measures the model’s ability in demonstrating the 
expected macro-scale behaviour defined by Eq. (12). The results show 
that the Quadtree model is clearly producing a linear relation that can be 
used to obtain the parameters α and λ of the pore structure. 

The quadtree model is then implemented to investigate the alteration 

of porosity-permeability relation by the reactive flow. The pore structure 
in Fig. 12a is implemented with the dimension of 512 × 1024 grids. 
Furthermore, Da = 400 and Peclet numbers of 10, 50 and 100 are 
considered. This range of Peclet produces three different dissolution 
patterns: Pe = 10 yields face dissolution, Pe = 50 creates wormhole and 
Pe = 100 results in ramified or uniform dissolution. In the latter two 
cases, the alteration of porosity-permeability is considerably high while 
in the first case with low Peclet flow, the pore structure experiences a 
minimum modification. Fig. 15 plots RQI =

̅̅̅̅̅̅̅̅̅
K/φ

√
versus φz = φ/(1 − φ)

during 40,000-time steps of the simulation. The values of RQI (Rock 
Quality Index) and φz were calculated at different time steps during the 
simulation. The results show that higher flow rates by forcing more acid 
into the pore structure can cause a major difference in the porosity- 
permeability relation where the deviation from the linear trend im-
plies deviation from the Kozeny-Carman equation. While Pe = 50 shows 
more increase in RQI, a major increase of φz occurred in case of Pe =

100, and both cases show deviation from linearity. In case of Pe = 100 

Fig. 12. The two flow geometry structures used for investigation of the mass transfer coefficient. The dimension of the flow domain is 128 × 256.  

Table 6 
Dimensional analysis of LBM parameters for modelling simultaneous reaction 
and dissolution.  

Parameters Physical system LBM Conversion 
factor 

Length 1 [cm] 128 lu CL = Lreal/LLB 

Kinematic 
viscosity 

0.01 [cm2/s] 0.35 lu2/ts Cυ = υreal/υLB 

Flow velocity 0.1 [cm/s] 0.027 lu/ts Cu = Cυ/CL 

Time 1 [Sec.] 500 ts Ct = CL
2/Cυ 

Reaction constant 0.01 [cm/s] 0.0027 lu/ts Cr = Cu 

Diffusivity 0.003 [cm2/s] 0.105 lu2/ts Cdif = Dreal/DLB 

Concentration 1 wt% 1 wt% – 
Specific surface 

area 
44 [cm2/ 

cm3] 
0.34 lu/lu2 Ca = 1/CL 

Density 1 [g/cc] 1 mu/ 
lu2 

Cρ = ρreal/ρLB  

Fig. 13. Comparison of computed ShSc− 1/3 versus Re in a domain of size 128 ×
256 for fine-grid LBM and 2-mesh Quadtree model. In this simulation, no 
dissolution of the solid phase is taken into account. The consistent linear 
relation that is obtained for different pore structures (a) and (b) in Fig. 12, 
demonstrates the quadtree model robustness. 

Fig. 14. Computed dispersion coefficient at different Peclet numbers for the 
pore structure in Fig. 12a by Quadtree model. In this simulation, no dissolution 
of the solid phase is taken into account. 

Fig. 15. Comparison of the computed variation in RQI versus φz at different 
Peclet numbers at Da = 400. The simulation conducted for 40,000 time steps. 
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or ramified dissolution, the pore structure undergoes severe dissolution 
as the change of φz from 15 to 60 percent highlights it. 

These examples of quadtree application clearly prove the capability 
of quadtree grid refinement in reactive flow simulation. The interesting 
outcome is the macroscopic properties that can be scaled up from the 
pore structure directly. In the following we apply the developed model 
to a closed-end fracture with porous walls to evaluate the dispersion and 
Sherwood. A large domain size of 1280 × 2560 grids is chosen to have 
sufficiently up-scaled and average properties extracted. We also 
consider slow rate of dissolution to have minimum modification of the 
pore structure and obtain state dependent properties, i.e., Da = 50 and 
Pe = 50 with the inlet concentration equal to 0.03. Fig. 16 shows the 
developed flow in the fracture after 40,000 time steps. 

According to Eq. (9) the effective diffusion coefficient equals to the 
slope of the plot of the left-hand side (sum of the concentration differ-
ence per time step and product of velocity and concentration gradient) 
versus concentration Laplacian. As we mentioned earlier, velocity, 
concentration and its partial derivatives are averaged over all pore 
nodes in the domain at different time steps during the simulations. The 
result plot in Fig. 17 interestingly shows three distinct values illustrated 
with three different colours. At the early flow time, when the flow in-
trudes the fracture, the dispersion is large due to the high advection 
effect. At mid time, when the pressure gradient the fracture’s tip imposes 
flow into porous walls, a decrease in dispersion occurred due to the 
tortuosity effect. And ultimately at the late time the net fracture-porous 
walls act as a unified medium with lower value for effective diffusion 
coefficient. 

The prescribed three flow behaviours also affect the Sherwood 
number as Fig. 18 clearly shows the initial, transitional and the final 
effect due to the different flow conditions imposed in the medium. 

Therefore, the great point of Quadtree models is the ability to study 
the pore scale mechanisms with the acquired efficiency and a step for-
ward to perform large-size pore scale simulation. This step is needed to 
incorporate the effect of the underlying micro-scale processes into 
continuum scale simulations of porous media dissolution. 

6. Conclusions 

In this study, we have developed a Quadtree model decomposition to 
increase the computational efficiency of the lattice Boltzmann model in 
simulating fluid flow and reactive transport at the pore scale. The 
developed method was verified against several benchmark problems 
with different levels of complexity. The accuracy and the computational 
benefits of the developed scheme were discussed in detail by comparing 
the Quadtree model against fine-grid LBM and coarse-grid LBM simu-
lations. As main conclusions:  

• The Quadtree model reconstructs the bulk pore spaces using coarse 
grids where high resolution is maintained adjacent to the solid 
phases by applying local fine-grid mesh. The Quadtree model uses a 
cell-centred approach based on the scheme developed by Chen et al., 
(2006) which is mass conservative and simple to be applied since it 
requires no interpolation or change in non-equilibrium density dis-
tribution function to acquire second order accuracy. We have applied 
a D2Q9 LB model, for both flow and solute transport, with additional 

Fig. 16. The developed flow in a closed-end fracture with porous walls, size 
1280 × 2560 grids at Da = 50 and Pe = 50 after 40,000 time steps. 

Fig. 17. Comparison of different dispersion effects during flow through a closed-end fracture with porous walls. Green indicates early time advection, blue shows the 
transition from fracture advection to porous medium flow, and red correspond to the net flow in fracture-porous walls. 

Fig. 18. Comparison of different Sherwood values during flow through a 
closed-end fracture with porous walls. The net flow at the late time, shows 
lower Sherwood. 
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terms applied at the nodes neighbouring the solid phases to simulate 
reactive transport.  

• In order to validate the Quadtree method, several flow and transport 
problems were simulated including Poiseuille flow in a 2D channel, 
reactive-diffusive transport in a rectangular domain, and advective- 
diffusive-reactive flow and transport in a 2D channel. While the first 
case provides analytical solutions to verify the numerical scheme, the 
latter two cases are used by Kang et al., (2007) to validate their 
reactive LBM model. For each simulation, the results from both 
fine-grid LBM and Quadtree method were presented and discussed in 
terms of their accuracy and computational benefits. The results have 
shown major improvements in computational time while the accu-
racy of the model remained high and close to that of fine LBM which 
took much longer to perform the simulations under similar 
conditions.  

• For reactive transport, the 3-mesh Quadtree method could provide 
up to five times simulation speedup depending on the porous media 
structure. Also, the 3-mesh Quadtree method provided more effi-
ciency for simulations using high resolution digital images. The 2- 
mesh Quadtree method showed to be up to three times faster than 
the regular technique. Finally, we have shown the efficiency of the 
Quadtree method to simulate reactive transport with dissolution of 
the solid phases and change of pore structures. The results were 
further used to estimate porous media macroscopic properties using 
average mass transfer coefficients which can be used for upscaling 
from pore scale to the continuum scale. 

• The Quadtree model was applied to two different large-scale do-
mains to investigate the porosity-permeability deviation from 
Kozeny-Carman relation during dissolution at different Peclet 
numbers and moreover, to study the average mass transfer co-
efficients in a fractured porous media during reactive flow. The 
simulation results clearly highlight the Quadtree ability to study the 
pore scale mechanisms in reactive flow through porous media. 
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