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A B S T R A C T   

In dissolution processes, during geometry evolution, the two-phase interface is continuously changed. For 
tracking the position of the interface, the method of combining VOF with curved boundary schemes was pre-
sented in this research. Since the combination would be rather complex, in addition to the original approach, a 
simplified approximate approach was also introduced. Further, for simulating heterogeneous dissolution in 
lattice Boltzmann (LB) framework, the volume of pixel (VOP) method has been widely used by researchers. Since 
the area of the solid-fluid interface is not captured by this method, the study of its validity was also presented in 
this research. For this purpose, simulations of calcium carbonate dissolution by hydrochloric acid in simple and 
complex porous media were performed. In addition to the VOP method, the volume of fluid (VOF) method in 
which the solid-fluid interface is tracked, was also applied for all cases of simulations. The results revealed that 
from a dissolution perspective, the performance of the VOF-curved boundary combination is essentially similar to 
that of the VOF-bounce back combination. However, the algorithm of bounce back was found to be more than 
10% computationally efficient. Also, comparison of the outcomes from VOP and VOF indicated that VOP 
intrinsically overestimates the surface area of reactions by about 25–35%, which fictitiously leads to 20–30% 
higher reaction rates and nearly 20–30% less dissolution times. Hence, it was deduced that the temporal out-
comes of VOP may not be valid. However, from a non-temporal perspective, the dissolution patterns of both 
methods were found to be essentially similar.   

1. Introduction 

Numerical simulation of heterogeneous dissolution/precipitation 
processes is widely used in many (geo-)chemical applications such as 
mining (Fredd and Fogler, 1998), underground water engineering 
(Griebler et al., 2016), geothermal energy (Hoop et al., 2021), and hy-
drocarbon recovery processes (Duquerroix et al., 1990; Han et al., 
2020). Addressing the associated numerical simulation challenges and 
possible improvements have been the subject of several studies (Fogler 
and Hoefner, 1988; Menke et al., 2015; Quintard and Whitaker, 1994). 
Two challenges of simulating heterogeneous reactions include tracking 
the interface and calculating the instantaneous specific surface area of 
the solid-fluid interface (Přikryl et al., 2017). The evolution of interface 
is tracked by several methods such as phase-field (PF) (Tong et al., 
2001), cellular automaton (CA) (Shin and Hong, 2002), level set (LS) 

(Dugast et al., 2020; Tan and Zabaras, 2006, 2007), and volume of fluid 
(VOF) (Rudman, 1997). Despite the reputation of these methods, they 
suffer from several inherent limitations (Scardovelli and Zaleski, 1999). 
For example, in the case of complex geometries such as those of porous 
media, their employment would add complexity to the algorithms and 
can considerably increase the computational costs (Chen et al., 2013; 
Scardovelli and Zaleski, 1999). Due to these limitations, in simulations 
of free-surface and interfacial flows, consideration of more than a few 
droplets or bubbles would be a challenging task (Scardovelli and Zaleski, 
1999). In the lattice Boltzmann method, the employment of such surface 
tracking techniques has not been popular so far, and, alternatively, the 
simple method of volume of pixel (VOP) (Chen et al., 2013) has been 
widely employed (Chen et al., 2013; Liu et al., 2018; Mostaghimi et al., 
2016; Yoon et al., 2015). For example, in 2007, Kang et al. proposed an 
improved lattice Boltzmann model for multicomponent reactive 
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transport and utilized the volume of pixel method to calculate volu-
metric dissolution rates. They found that by applying the new boundary 
condition, the solute mass is strictly conserved by heterogeneous re-
actions that were not observed while using the thermal boundary con-
dition (Kang et al., 2007). Chen et al. (2014) adopted VOP to track the 
fluid-solid interface for simulating diffusion-reaction processes 
involving dissolution and precipitation. Their results revealed that 
precipitation would have opposite effects on the underlying dissolution 
process such that precipitates cover the surface solid-phase; thus, the 
reactive surface is separated from the reactive components (Chen et al., 
2014). In 2018, a thermochemical ablation model of carbon/carbon 
composite based on the lattice Boltzmann method was established by 
Wang and Zhu (2018). In this study, flow, diffusion, chemical reaction, 
and heat transfer were simulated by lattice Boltzmann method (LBM) 
and the VOP was used for the evolution of the solid phase (Wang and 
Zhu, 2018). Carbonate rock dissolution process was studied by Zhou 
et al. (2020), where the flow of two immiscible fluids, solute transport, 
and heat transfer were simulated using the Shan-Chen multiphase 
multicomponent, mass transport, and multicomponent thermal lattice 
Boltzmann models, respectively. In their study, the state of the solid 
phase was updated by the volume of pixel method (Zhou et al., 2020). In 
more recent work, Taahodi et al. (2021) investigated 
porosity-permeability variations under different regimes of 
non-isothermal dissolution in porous media and used VOP to track the 
evolution of the solid phase. In their study, by performing several sim-
ulations, the dependency of dominant dissolution patterns on dimen-
sionless numbers were discussed, which could be wormhole, uniform, or 
face dissolution patterns (Taahodi et al., 2021). Zhang et al. (2022) 
applied LBM to dual-porosity domains to investigate the effect of het-
erogeneity on mineral dissolution and permeability evolution in porous 
media. They adopted the VOP approach for calculating the instanta-
neous solid volumes during chemical reactions. In their study, four types 
of porosity-permeability relationship were observed. In addition, they 
found that the dissolution patterns depend on the pore heterogeneity at 
high Peclet and Damkohler numbers (Zhang et al., 2022). 

When using the VOP method, the orientation and the area of the 
fluid-solid interfaces are not captured and a fixed value of unity is 
assigned to specific surface area of all interface nodes. Although this 
approach provides simplicity and efficiency to the lattice Boltzmann 
method in dealing with complex geometries, the assumption of invariant 
surface area is questionable and its variations can directly affect local 
reaction rates of solid-phase volume changes (Yoon et al., 2015). Thus, 
in this study, we explore the performance of VOP and its comparison 
with surface capturing methods. As the computational costs of surface 
capturing techniques in complex geometries are high (Chen et al., 2013; 
Scardovelli and Zaleski, 1999), special attention was paid to porous 
media and simulation performances with and without capturing surface 
in terms of both accuracy and the efficiency of the methods. We have 
adopted VOF as the surface tracking technique and provided ways for its 
efficient implementation in LBM. We should note that, although not 
common, VOF has been coupled with LBM methods. For example, 
Molins et al. (2020) presented a benchmark problem for the dissolution 
process at the pore scale. For this purpose, they employed five different 
solvers including OpenFOAM-DBS, Vortex, Chombo-Crunch, dis-
solFoam, and a lattice Boltzmann program. In their LBM algorithm, VOF 
was used to capture the area of the fluid-solid interface during the 
dissolution progress. The results of the five codes showed remarkable 
agreement both quantitatively and qualitatively in terms of surface area 
and shape evolution (Molins et al., 2020). In another work, Ju et al. 
(2020) employed VOF to explore the application of a boundary scheme 
for convection-diffusion problems in domains with irregular pore 
structures. Their results were in agreement with analytical solutions 
where a second-order accuracy for a straight wall was found (Ju et al., 
2020). 

LBM is widely used for diverse pore-scale simulations (Guo and Zhao, 
2002; Pan et al., 2006) due to the possibility of employing parallel 

algorithms as well as the simplicity and efficiency of the bounce-back 
boundary condition to be used in complex porous media (Bouzidi 
et al., 2001; Yin and Zhang, 2012). However, the bounce-back boundary 
condition, in contrast to curved boundary methods (Izam et al., 2011), 
cannot accurately reconstruct the smooth solid boundaries and replaces 
the interface with intersecting steps. Some studies (Kao and Yang, 2008; 
Mei et al., 2002; Xu et al., 2016; Yu et al., 2003) have explored the 
undesirable effects of this approximation on momentum transport. 
However, its impacts on mass transport properties and medium disso-
lution patterns have not been explored so far, which is the focus of this 
study. We have adopted Chun and Ladd’s curved boundary method 
(Chun and Ladd, 2007) to perform reactive flow simulations with both 
bounce-back boundary conditions and smooth boundary methods and 
compared the results of these two approaches. Further, as a smooth 
reconstruction of curvatures would be preferred in many dissolution 
problems in engineering applications, the coupling of VOF and curved 
boundary method is also presented and its performance is compared 
with that of the conventional bounce back scheme. 

2. Methodology 

2.1. Lattice Boltzmann method 

Convection-diffusion equation (CDE) describes passive scalars 
transport such as temperature in heat transfer or concentration in mass 
problems is defined as (Li et al., 2008): 

∂C
∂t

+∇ ⋅ (uC)=∇⋅(D∇C) (1)  

where, t is time (s), D is the diffusion coefficient (m2/s), C is the con-
centration of a solute (mol/m3) and u is velocity vector (m/s), which 
depends on space and time. LBM is a class of computational fluid dy-
namic methods for simulation of transport processes such as mass 
transport. In LBM, a distribution function g(x,c,t)in the discrete velocity 
space, c, is defined to recover the CDE. The evolution of this distribution 
function with the LBGK model of lattice Boltzmann equation can be 
generally expressed as (Kang et al., 2014): 

gi(x+ ciΔt, t+Δt) − gi(x, t)=
1
τc
[geq

i (C, u) − gi(x, t)] (2)  

where gi(x, t) ≡ g(x, ci, t),τcis the relaxation time which relates to the 
diffusion coefficient by D = (τc − 0.5)RT, C is concentration, ci is the ith 
discrete velocity vector specified as unity (i.e.Ci ≡ ΔX/Δt = 1)., Δt is the 
time step and geq

i is the equilibrium distribution function. In this study, 
the equilibrium model of Ref. (Prasianakis et al., 2017) was employed to 
enhance Galilean invariance. 

geq
i (C, u)=C

∏

α=x,y

(
1 − 2c2

iα
)

2c2
iα

(
c2

iα − 1+ ciαuα +T0
)

(3) 

For the isothermal flow, the temperature is fixed at a constant value 
T0 = RT = c2

s where R is the gas constant, and cs is the speed of sound 
(cs = 1/

̅̅̅
3

√
). In addition,uis the velocity vector of fluid flow, which can 

be calculated from the following lattice Boltzmann equation (LBE) (Kang 
et al., 2014): 

fi(x+ ciΔt, t+Δt) − fi(x, t)=
1
τ [f

eq
i (ρ, u) − fi(x, t)] (4)  

where fi is the particle moving distribution function with velocityci,τ is 
the relaxation parameter that is related to the kinematic viscosity by ν =

(τ − 0.5)RT, and feq
i is the equilibrium distribution function that has the 

following form in the D2Q9 model (Prasianakis et al., 2017). 

feq
i (ρ, u)= ρ

∏

α=x,y

(
2c2

iα − 1
)

2c2
iα

(
c2

iα − 1+ ciαuα + u2
α +T0

)
(5) 
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where ρis the density of fluid and function fi is such that conserves 
quantities ρand J→(similar to gi, which conserves concentration C) (Kang 
et al., 2014). 

ρ=
∑8

i=0
fi (6)  

Jα = ρuα =
∑8

i=0
ciαfi α = x, y (7)  

C=
∑8

i=0
gi (8) 

For the nine-speed LBM model employed in this study, discrete ve-
locities are defined as (Kang et al., 2014) 

ci =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

0, 0 (i = 0)
(

cos
(i − 1)π

2
, sin

(i − 1)π
2

)

(i = 1 − 4)

̅̅̅
2

√
(

cos
[
(i − 5)π

2
+

π
4

]

, sin
[
(i − 5)π

2
+

π
4

])

(i = 5 − 8)

(9) 

Several previous studies (d’Humières and Ginzburg, 2009; Ginzburg, 
2005a; Pan et al., 2006) have shown that the common BGK collision 
operator suffers from viscosity-dependent permeability. For preventing 
this problem and also improving the numerical stability, a double 
multi-relaxation time (MRT) scheme (Cui et al., 2016; Lallemand and 
Luo, 2000) is adopted in this study. 

2.1.1. Reaction boundary condition 
For linear heterogeneous reactions at the macroscopic level, the 

boundary condition is mathematically formulated as (Ju et al., 2020): 

D
∂Cb

∂n
= kr

(
Cb − Ceq

)
(10)  

where Cb and Ceq are the solute concentration at the boundary lattice 
nodes and equilibrium concentration, respectively, kr is the constant 
rate of chemical reaction (m/s) and n is the outward surface normal into 
the fluid domain (m). Eq. (10) describes the balance between the min-
eral dissolution rate and the normal flux due to diffusion into the sur-
face. In this research, this condition in LBM framework was 
implemented by applying the boundary condition presented by Ju et al. 
(2020). According to Ju et al. (2020), the nodes are generally classified 
into three categories of fluid, solid and boundary nodes. For a better 
explanation of the employed boundary method, an arbitrary curved 
boundary is shown in Fig. 1. 

Generally, three types of lattice nodes are defined: nodes that are 
fully occupied by fluid (called fluid nodes), those fully occupied by solid 
and have no neighboring fluid node (called solid nodes), and, finally, 
those that are either partially solid or have at least one fluid node in their 
neighborhood (called boundary nodes). Having determined the node 
types, solute concentrations at boundary nodes (Cb) are calculated as (Ju 
et al., 2020): 

Cb =

2
∑

i∈As

n.cigi’ −
∑

i∈Aff

n.cigi

2
∑

i∈As

n.ciωi + γkr
(11)  

where γ = τc /(τc − 0 • 5), i′ is the reverse direction of i, As include the 
links that come from solid nodes (i.e., unknown links) and the rest of the 
links are included in Aff (which come from the fluid or boundary nodes 
and they are towards a fluid or other boundary nodes). From dot product 
definition, n.ci = |n||ci|cos α,α is the angle between the normal vector of 
the interface and velocity link, which is obtained by VOF method pre-
sented in Section 2.2. After calculating Cb, the bounce-back rule of the 

nonequilibrium distribution function, proposed by He et al. (1998), is 
employed to determine the unknown distribution functions. For 
example, for the boundary node A in Fig. 1 we can write: 

gneq
i (Cb, t)= − gneq

i′
(Cb, t) i= 3, 6, 7 (12)  

which leads to: 

gi(Cb, t)= − gi′ (Cb, t)+ geq
i (Cb, ub) + geq

i′
(Cb, ub) (13)  

where ub is the boundary node velocity assumed to be zero for a stagnant 
solid phase. 

2.1.2. Hydrodynamic boundary treatment 
In this study, two different hydrodynamic boundary schemes, 

including the standard bounce back (BB) scheme (He et al., 1997) and a 
curved boundary method (Chun and Ladd, 2007), were employed. In the 
BB scheme, the populations that leave the fluid node and enter the solid 
node are reflected at the wall surface to their original location in a 
one-time step. Defining the propagation step as: 

fi(x+ ciΔt, t+Δt)= f ′

i(x, t) (14)  

the corresponding BB boundary condition can be expressed as: 

fi′
(
xfb, t+ δt

)
= f ′

i

(
xfb, t

)
(15)  

where f ′ is the post-collision distribution function, i′ is the reverse di-
rection of i, and xfb is a fluid node. Note that although the BB scheme is 
simple and efficient, it has two major drawbacks. First, it does not 
accurately reconstruct a smooth boundary curvature and a stepwise wall 
is used for the approximation. Secondly, several studies (Bouzidi et al., 
2001; Li and Maa, 2017; Ma et al., 2017) have shown that using the 
common BGK collision operator, the position of the walls is not fixed by 
a BB constraint and their imposed locations would be a function of the 
value adopted for the relaxation time. This usually leads to the so-called 
viscosity-dependent permeability problem (Ginzburg and d’Humières, 
2015; Ginzburg and D’Humières, 2003). These drawbacks were 
addressed by proposing curved boundary schemes (Chang et al., 2009; 
Guo et al., 2002; Kao and Yang, 2008; Yu et al., 2003). However, these 
schemes are not local and are computationally less efficient, and often 
require at least two nodes between near solid surfaces to reconstruct the 
smooth curvature of the interfaces. Among these methods, the 

Fig. 1. Schematic of a curved boundary and definition of different types of 
nodes (dashed squares show the boundary of lattice cells and the solid line 
shows the interface). 
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interpolation approach proposed by Chun and Ladd (2007) requires a 
minimum of one grid spacing between the nodes. Thus, this method was 
employed for curved boundary treatment in this study. 

Chun and Ladd (2007) suggested an interpolation scheme that uses 
the distance between the fluid node and the wall (shown by q in Fig. 2) 
together with the values of the neighboring distribution functions to 
obtain the unknown distributions. Note that here the employed node 
type classification for hydrodynamic boundary condition is slightly 
different from that presented in Section 2.1.1, and the node is called 
quasi-solid if the volume of the lattice cell is greater than 0.5 and it is a 
quasi-fluid node if the volume is lower than 0.5. A boundary node (xfb) 
on which the boundary condition is imposed is either a quasi-fluid node 
or a fluid node with at least one quasi-solid node in its neighborhood (e. 
g., node A in Fig. 2). Thus, for the fluid boundary nodes, the unknown 
distributions are those that come from quasi-solid nodes, and for 
quasi-fluid nodes, the unknown distribution functions are those that 
arise from solid or quasi-solid nodes. 

Based on formulations shown in Fig. 2, the linear interpolation 
model of Chun and Ladd (2007) is formulated as follows: 

feq
i′
(
xfb, t+Δt

)
= 2q feq

i
(
xfb, t

)
+ (1 − 2q)feq

i
(
xfb − ci, t

)
for q<

1
2

(16)  

feq
i’
(
xfb, t + Δt

)
=

1 − q
q

feq
i
(
xfb, t

)
+

2q − 1
q

feq
i (xw, t) for q ≥

1
2

(17)  

q ≡

⃒
⃒xfb − xw

⃒
⃒

|ci|
(18)  

wherefeq
i (xw, t) ≡ feq

i (ρw, uw), and the density at the surface,ρw, is 
considered as the average fluid density. After computing the equilibrium 
terms of the unknown distribution functions, the nonequilibrium dis-
tributions are obtained from the bounce-back rule (He et al., 1997). 

fneq
i′

(
xfb, t+Δt

)
= fneq

i
(
xfb, t

)
(19) 

Often in LBM studies with curved boundary treatment, unchanging 
solid geometries are considered and therefore fixed values were assigned 
to q (Guo and Zhao, 2002; Izam et al., 2011; Mei et al., 2002; Xu et al., 
2016). However, in dissolution problems, the two-phase interface 
changes over time and therefore q values should be recalculated and 
used for boundary treatment throughout the simulation. Therefore, the 
curved boundary method cannot be employed independently and should 
be coupled with surface tracking techniques. This issue is addressed in 
Section 3.1 and the method of calculating q instantaneously is 
presented. 

2.2. Volume of fluid 

Efficient reconstruction and tracking of the boundary between two 
contacting phases are challenging (Martinez et al., 2006; Pilliod and 
Puckett, 2004). The volume of fluid (VOF) is an effective approach for 
this purpose where the concept of fractional volume (V) is used and the 

two-phase interface in each cell is linked to this quantity. Detail reviews 
of coupling approaches are available in the literature (Pilliod and 
Puckett, 2004; Rudman, 1997; Scardovelli and Zaleski, 1999). An early 
algorithm of VOF was introduced by Noh and Woodward (1976). This 
method, which is known as simple line interface calculation (SLIC), 
neglects the possible orientation of the boundary and simply re-
constructs the interface as a horizontal or vertical line (see Fig. 3 (a)). To 
address this drawback, more modern surface reconstruction methods 
-known as piecewise-linear methods-were introduced in the next years. 
Generally, in these methods, the interfaces are approximated as line 
segments with arbitrary slopes (Fig. 3 (b)). Youngs’s method (1984) and 
the least-squares volume-of-fluid interface reconstruction algorithm 
(LVIRA) of Pilliod and Puckett (2004) are two common approaches of 
this type. In these methods, the position of the boundary is defined as a 
function of the orientation of the interface and the volume of the cell. 
However, as shown in Fig. 3 (b) these methods also suffer from 
discontinuity of interface segments. Although LVIRA minimizes such 
discontinuities, this is achieved at an expense of more complex algo-
rithms and more computational costs compared to Youngs’s model. For 
this study, both approaches were tested and since only marginal dif-
ferences were observed between the results, the method of Youngs 
(1984) was employed and therefore is explained as follows. 

As pointed out, for approximating the boundary interfaces as 
piecewise linear segments, the orientation of the interface should be 
calculated. Different methods (Martinez et al., 2006; Osher and Sethian, 
1988; Pilliod and Puckett, 2004; Rudman, 1997) have been proposed for 
this purpose. The proposed method of Kothe (1991) has shown effi-
ciency and therefore is used here. Assuming fractional volume as the 
ratio of the volume of the solid phase to the total volume of the cell (V), 
the vector of normal (n) to the interface segment is defined as (Kothe, 
1991): 

n=∇V (20) 

According to Kothe (1991), to find the normal vector at the center of 
a cell, the normal vectors at the four neighboring vertices should be 
calculated first. For example for the cell of Fig. 4, discretization of Eq. 
(20) for the normal at (i+1/2, j+1/2) gives (Martinez et al., 2006): 

n
i+

1
2
,j+

1
2

=

{(
Vi+1,j+1 − Vi,j+1

)
δyj +

(
Vi+1,j − Vi,j

)
δyj+1(

δyj + δyj+1
)
δxi+1

/
2

}

î

+

{(
Vi+1,j+1 − Vi+1,j

)
δxi +

(
Vi,j+1 − Vi,j

)
δxi+1

(δxi + δxi+1)δyj+1
/

2

}

ĵ

(21)  

where V is the solid volume of a cell with a lattice node in the center. By 
averaging the normal at the four vertices, the normal at the cell center is 
calculated. For a uniform mesh with δx = δy = 1, the normal vector of 
the cell (i,j) is obtained from Eq. (21) (Martinez et al., 2006) 

Fig. 2. Definition of different node types and their unknown directions in 
distribution functions. 

Fig. 3. Interface reconstruction by VOF method (a) SLIC, and (b) piecewise 
linear approximation. 
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ni,j = −
(
Vi+1,j+1 + 2Vi+1,j +Vi+1,j− 1 − Vi− 1,j+1 − 2Vi− 1,j − Vi− 1,j− 1

)
î

−
(
Vi+1,j+1 + 2Vi,j+1 +Vi− 1,j+1 − Vi+1,j− 1 − 2Vi,j− 1 − Vi− 1,j− 1

)
ĵ

(22)  

whereni,jis multiplied by − 1 to point toward the fluid domain. Having 
found the normal, the slope of the interface is obtained as: 

θi,j = tan− 1
(⃒
⃒
⃒
⃒
nx(i, j)
ny(i, j)

⃒
⃒
⃒
⃒

)

(23)  

whereθi,j ≤ 90. Once the slope of the interface is found, the interface 
location can be calculated. In total, depending on the volume of the solid 
phase and the orientation of the interface, six possible interface types 
can be considered, as shown in Fig. 5. 

Having found the slope and position of the interface, the specific 
surface area can be calculated. After calculating the solid volume frac-
tion of the cell and the orientation of its interface, the corresponding 
interface configurations (shown in Fig. 5) determine values for x and y 
coordinates. Finally, the surface area can be calculated by the Pythag-
orean theorem as av =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
x2 + y2

√
. 

3. Simulation procedure 

In studies that have applied the curved boundary method, the solid 
phases seldom evolved over time; thus, the solid-fluid interfaces were 
static and q values were fixed. However, for evolving geometries, the 
values of q are continuously changed and should be recalculated in each 
iteration. As described in Section 2.2, this can be achieved by a com-
bination of VOF and curved boundary methods. The conditions for VOF 
employment in LBM framework are formulated in Section 3.1, where the 
derivation methods are explained and the necessary relations for curved 
boundary-VOF combination are presented. 

For investigating the performance of the volume of pixel method 
(VOP), we perform simulations under different dissolution regimes and 
compare the results with VOF for both simple and complex media (in 
Sections 4.1 and 4.2, respectively). For this purpose, simulation of cal-
cium carbonate dissolution by hydrochloric acid is considered. After 
this, we continue by comparing the performance of the curved boundary 
scheme with the bounce back approach under different dissolution re-
gimes. While the bounce back approach approximates the boundaries as 
staggering steps, the curved boundary scheme accurately reconstructs 
the smooth curvature of the solid interfaces, though at the expense of 
higher computational costs and employing more complex algorithms. 
Thus, a comparison of both approaches for the dissolution process is 
studied in Sections 4.1 and 4.2 for both simple and complex media, 
respectively. 

3.1. VOF formulation and its combination with the curved boundary 
method 

Alteration of the solid phase in heterogeneous reactions is propor-
tional to the reaction flux at the interface. The solid mineral volume 
evolution can be calculated by (Chen et al., 2015): 

∂V(Xb, t)
∂t

= − VmavR (24)  

where Xbis the position of boundary nodes (i.e., quasi-fluid and quasi- 
solid nodes), V is the volume fraction of the dissolved solid phase, Vm 
is the molar volume of the solid phase, av is the specific surface area, and 
R is the reaction flux. For dissolution and precipitation processes, R takes 
positive and negative values, respectively. The value of V is updated 
explicitly at each time step as (Chen et al., 2015): 

Fig. 4. Normal vectors at the four neighboring vertices of a cell.  

Fig. 5. Possible configurations depend on interface orientation and the solid fraction of the cell. The red color lines indicate the interfaces and the shaded parts 
represent the solid phase. (For interpretation of the references to color in this figure legend, the reader is referred to the Web version of this article.) 
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V(Xb, t+Δt)=V(Xb, t) − VmavRΔt (25) 

The specific surface area, av, changes with the evolution of the solid 
phase. However, often LBM simulations neglect the dynamic change of 
av and assume a value of one for simplicity. In this study, for instanta-
neous calculation of av the volume of fluid method (described in Section 
2.2) is employed. However, the common approach for calculating av and 
q (in the curved boundary method) can be rather complicated and 
therefore studies often apply the VOP method by setting av = 1 and using 
the conventional bounce-back boundary condition rather than applying 
the curved boundary scheme. 

Considering the six configurations shown in Fig. 5 the procedure 
includes 1) Checking the neighboring cells and finding the normal vector 
from Eqs. (22) and (2)) calculating the slope of the interface from Eqs. 
(23) and (3)) assuming the solid phase to have a right-angled triangle 
shape, the interface slope and Pythagorean theorem is used to find the x 
and y values (shown in Figs. 5), 4) using the conditional terms in Eq. (26) 
to determine the interface configurations, 5) calculating the interface 
area using Eq. (27). 

0< θi,j ≤ 45

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

Vi.j ≤ 0.5

{
(x&y)≤ 1 → case 1 α= 1 ,(β,λ,γ)= 0

else → case 2 λ= 1 ,(α,β,γ)= 0

0.5<Vi,j < 1

{
(x&y)≤ 1 → case 4 β= 1 ,(α,λ,γ)= 0

else → case 2 λ= 1 ,(α,β,γ)= 0

45< θi,j < 90

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

Vi.j ≤ 0.5

{
(x&y)≤ 1 → case 1 α= 1 ,(β,λ,γ)= 0

else → case 3 γ = 1 ,(α,β,λ)= 0

0.5<Vi,j < 1

{
(x&y)≤ 1 → case 4 β= 1 ,(α,λ,γ)= 0

else → case 3 γ = 1 ,(α,β,λ)= 0

θi,j = 90 → case 5 γ = 1 ,(α,β,λ)= 0

θi,j = 0 → case 6 λ= 1 ,(α,β,γ)= 0
(26)  

a2
v(Xb, t)=

2
tan θ

(
1+ tan2 θ

)
[αV(xb, t)+ β(1 − V(xb, t))] + γ

(

1+
1

tan2 θ

)

+ λ
(
1+ tan2 θ

)

(27)  

where coefficients α, β, λ and γ are calculated in step 4 where depending 
on the signs of nx and ny 4 variations are possible. Such variations for 
case 2 are shown in Fig. 6. Similarly, two variations can be considered 
for cases 5 and 6. 

So far, the procedure for implementing the piecewise linear VOF is 
explained. The bounce back or other approximating boundary condi-
tions considering interface steps can be independently combined with 
this method with no further treatments. However, when accurate 
reconstruction of boundary curvatures is desired, special curved 
boundary schemes should be implemented which adds extra complexity 
to the algorithms. In reactive flows, where the interface location 
continuously changes, q values should be calculated in each iteration by 
intersecting discrete velocity lines, where the interface line segment is 
calculated using the VOF method. Hence, mathematical relations should 

be constructed for the interface line to find xw and q for Eqs. (16)–(18). 
For this purpose, after determining the boundary node type, the inter-
section points of the interface line with cell boundaries should be found. 
In appendix A, an example of q calculation is given. 

Clearly, the combination of VOF methods with curved boundary 
schemes would be more complex than their coupling with step boundary 
schemes such as the common bounce back method. This is mainly due to 
the fact that the curved boundary schemes require all q values in all 
discrete velocity directions to be accurately determined in each time 
step. However, methods such as the common bounce back assume one 
lattice unit distance between the interface and all neighboring fluid 
nodes and hence circumvent the steps required to determinate line 
equations and their intersections. Hence, they generally offer more 
simplicity, but at the risk of lower accuracy. Further, an intermediate 
approach is investigated in this study to look for a tradeoff between the 
acquired accuracy and the computational costs. One option is to 
approximate the distance between the interface and the neighboring 
fluid nodes as a function of the solid content of the cell, i.e.: 

q= 0.5 + [a − V(Xb, t)]
{

a = 1 (If Xb is a quasi − solid node)
a = 0 (If Xb is a quasi − fluid node) (28) 

This implies that the value of q can be estimated as a function of the 
type of the boundary node and its solid volume fraction. This approach 
neither requires the determination of the interface lines nor their in-
tersections with discrete velocity lines. 

3.2. Problem statement 

The performance of VOP and VOF methods and their combination 
with BB and curved boundary schemes in dissolution regimes was 
studied by simulation of the reaction of calcium carbonate with hy-
drochloric acid. The simulation results are compared between the two 
methods. We have considered two different media, one being a simple 
media (Fig. 7) and one a more complex domain (Fig. 8). For both cases, 
the mineral interface was assumed to undergo the following irreversible 

Fig. 6. Variations for case 2 depend on the signs of nx and ny. P denotes the intersection of the interface with cell boundaries.  

Fig. 7. Simulated geometry and the applied boundary conditions to compare 
the performance of VIP and VOF methods using a simple flow domain. 
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heterogeneous reaction: 

CaCO3(s)+H+ → Ca2+ + HCO−
3 (29) 

Considering a first-order reaction rate as a function of the 
H+concentration provides: 

r= kH+ γH+ CH+ (30) 

A comparison between Eqs. (30) and (10) shows that kr = kH+γH+and 
Cb = CH+ , where kH+and γH+are reaction rate constant and activity co-
efficient, respectively. As the instantaneous rate of carbonate dissolution 
depends only on H+concentration, the multicomponent species system 
can be computationally reduced to a single component transport prob-
lem for H+ion transport. 

The simulation for the simple case (Fig. 7) in this study is similar to 
the benchmark problem reported in Molins et al. (2020). In their work, 
they have performed simulations using five different solvers, i.e., 
OpenFOAM-DBS, Chombo-Crunch, a lattice Boltzmann code, Vortex, 
and dissolFoam and have compared the results. Fig. 7 shows their 
simulated domain and their employed boundary conditions (Molins 
et al., 2020). The problem mainly regards the injection of hydrochloric 
acid into a channel with a calcium carbonate mineral located in the 
center. For acid flow, a uniform velocity at the inlet, a fixed pressure 
boundary condition at the outlet and a no-slip boundary condition at 
lateral walls were applied using the Zou and He method (1997). For 
concentration, the approach of Zhang et al. (2012) was used to impose 
Dirichlet and Neumann boundary conditions at the inlet and outlet 
faces, respectively. The concentration flux across the lateral walls is set 
to zero and a Robin boundary condition (Eq. (10)) at the fluid-solid 
interface is applied (Zhang et al., 2012). 

For finding the appropriate mesh size, the grid independency was 
checked and 128 × 256 mesh size was found as the optimum resolution 
(detailed results not presented here). Table 1 provides the physical and 
LBM unit values of the parameters used for the simulation of the 
dissolution process in the simple domain. 

In engineering applications of porous media, precise tracking of the 
evolution of individual grains is seldom the primary goal and they aim at 
finding average quantities such as porosity, permeability, and the 
dissolution pattern. It is possible that while a given algorithm shows 
weakness in accurately tracking the evolution of a single grain, it still 
offers acceptable performance in simulating medium-averaged quanti-
ties. Accordingly, in addition to the described single grain problem, the 
problem of pore scale dissolution in a porous medium was also examined 
in this study. A porous structure with an initial porosity of 42% is used as 
shown in Fig. 8. The applied boundary conditions were similar to those 

used for the single grain problem. Since the pattern of dissolution in 
porous media depends on various governing dimensionless numbers 
(Fredd and Fogler, 1998; Jiang et al., 2021; Mostaghimi et al., 2016; 
Taahodi et al., 2021) and in order to maintain the generality of the 
problem, simulations were conducted under two different regimes. 
Values for Peclet and DamKöhler numbers were chosen so that face 
dissolution and uniform dissolution patterns could be investigated. 
Table 2 provides the dimensionless numbers used for reactive porous 
medium simulation. 

4. Results and discussion 

4.1. Validation of the algorithms 

For validating the algorithms developed for this work, the results 
from reactive transport using the simple geometry were compared with 
the findings reported by Molins et al. (2020). For comparison purposes 
and to keep similarity between this work and that of Molins et al. (2020), 
the shape and solid content of the grain were assumed constant and thus 
the gradual volume reduction of the solid grain was neglected. Hence, 
convergence into a steady-state flow and concentration field is expected. 
Fig. 9 (a) displays the steady-state contours of H+concentration and 
Fig. 9 (b) illustrates pH values along horizontal and vertical centerlines 
(x = 5 × 10− 4 m, y = 2.5 × 10− 4 m), where pH = − log(γH+CH+ ). Since 
the diffusion coefficient was low, a thin boundary layer forms around 
the grain as shown in Fig. 9 (a). Sharp consumption of H+ is well dis-
played in Fig. 9 (b). Comparison of the results shows an excellent 
agreement between the results of the present work and those of Molins 
et al. (2020). 

4.2. Dissolution of a single grain 

The performance of VOP and VOF methods as well as their combi-
nation with bounce-back and curved boundary schemes were investi-
gated for the problem of the single grain dissolution under four different 
scenarios, where: 1) surface of dissolution was tracked by VOF with 

Fig. 8. Porous media geometry with an initial porosity of 42% was used as a 
complex pore structure to compare the performance of the VOP and 
VOF methods. 

Table 1 
The physical and LBM unit values of parameters used for the dissolution simu-
lation of a single carbonate grain in a simple domain.  

Parameter Symbol Physical value LBM value 

Width of channel w 0 • 05× 10− 2m 128 
Length of channel L 0.001 m 256 
Radius of grain R 0.0001 m 25.6 
Fluid density ρ 1000 kg/m3 1 
Kinematic viscosity ϑ 10− 6 m2/s 0.167 
Diffusion coefficient D 10− 9 m2/s 1 • 67 × 10− 4 

Inlet velocity u 0.0012 m/s 7 • 8× 10− 4 

Inlet concentration CH+ 10 mol/m3 10− 5 

Reaction rate constant KH+ 10− 0.05 mol/m2s 5 • 8× 10− 4 

Activity coefficient γH+ 10− 3 m3/mol 1 
Calcite molar volume Vm 36.9× 10− 6m3/mol 36.9 
Reynolds number Re =

uw
ϑ 

0.6 0.6 

Peclet number Pe =
uw
D 

600 600 

DamKöhler number Da =
KH+ γH+ 2R

D 
178 178  

Table 2 
Dimensionless numbers and their values were used for reactive porous medium 
simulation.  

Dimensionless numbers Face dissolution Uniform dissolution 

Re =
uw
ϑ 

0.2 0.2 

Pe =
uw
D 

0.065 6.5 

Da =
KH+ γH+ w

D 
10 0.01  
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bounce-back used as the hydrodynamic boundary condition, 2) surface 
of dissolution was tracked by VOF with curved boundary approach 
employed for the hydrodynamic boundary condition, 3) surface of 
dissolution was tracked by VOF with an approximate curved boundary 
approach (Eq. (28)) utilized for the hydrodynamic boundary condition, 
and 4) no surface tracking technique was employed (i.e., the VOP 
approach) with bounce-back applied as the hydrodynamic boundary 
condition. As the comparison of curved and step hydrodynamic 
boundary conditions as well as the study of their impacts on momentum 
and velocity fields have been the subject of several previous studies 

(Chun and Ladd, 2007; Ginzburg, 2005b; Mei et al., 2002; Xu et al., 
2016; Yu et al., 2003) in this study we focus on their impacts on reaction 
characteristics and concentration fields. 

The initial radius of the grain was set 10− 4 m, which corresponds to 
the initial area of 6.28 × 10− 6 m2. Injection of acid into the channel 
causes gradual dissolution of the carbonate grain with its surface area 
diminishing over time. Fig. 10 displays the variations of the surface area 
with time for the four mentioned scenarios. Since Molins et al. (2020) 
concluded that the OpenFOAM-DBS method had the least deviation 
from the experimental data, their OpenFOAM-DBS results, in addition to 

Fig. 9. (a) Contour of H+ concentration (b) the left and the right figure show pH values along horizontal and vertical centerline respectively.  

Fig. 10. Variation of the dissolving grain’s surface area with time for the 4 different scenarios.  
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their LBM findings, are presented in Fig. 10 to make comparisons with 
our simulations. Fig. 10 indicates that scenarios 1, 2, and 3 where 
instantaneous reaction area was tracked, provided a good agreement 
with the results of Molins et al. (2020). However, for the fourth scenario, 
the time variation of the surface area shows a different trend and with 
sharper gradients. Indeed, despite the larger value calculated for the 
initial surface area of the fourth scenario (29% more than the real 
value), its value diminished more rapidly, particularly as the grain 
became smaller. This is mainly because at the later stages of dissolution 
of a boundary cell, although the specific surface area of the cell would be 
almost zero yet (unless the entire solid content of the cell is dissolved), 
the VOP method would assign a fixed value of 1 to this variable. Hence, 
it causes a higher rate of dissolution by VOP. Fig. 10 also indicates that 
the type of hydrodynamic boundary condition would not have a major 
influence on the instantaneous values of the total surface area of the 
dissolving grain. 

Furthermore, for comparing the geometrical evolutions, the total 
surface area is shown versus medium porosity in Fig. 11 (a). As depicted 
in Fig. 11 (a), while the calculated surface areas of scenario 1, 2 and 3 
are essentially similar, the calculated values for scenario 4 is almost 
always higher than the other cases. However, upon increasing porosity 
the difference gradually decreases, suggesting by once the solid volume 
diminishes, the absolute difference between the VOF and VOP methods 
becomes smaller. To further scrutinize this observation, plots of the 
absolute difference and relative percent difference between the surface 
area of VOP and VOF methods are presented in Fig. 11 (b). Although 
with increasing porosity, the absolute difference between the two 
methods decreases, this reduction cannot be interpreted as an indication 
of increased accuracy for VOP method and in fact this is mainly due to 
the smaller number of pixels being analyzed. This argument is supported 
by the plot of a relative percent difference, which reveals that generally 
the VOP method approximates the surface area about 30% higher than 
the VOF method does. 

Note that due to the different approaches employed by the VOP and 
VOF methods for the surface area calculation, unequal values are 
observed for the grain’s initial surface area in Figs. 10 and 11. While the 
VOF method approximates the interface as piecewise linear segments 
and uses it to calculate the surface area of every individual interface 
node, VOP maps the geometry into a staggering step body and assumes 
each interface node to have surface area of unity. The latter approach, 
despite its simplicity, overestimates the surface area, thus leading to 
higher volume reduction rates in comparison to VOF (see Appendix B for 
more details). 

In addition, the time-averaged surface area (A) for the dissolving 

grain from the initial time to the moment of complete disappearance is 
calculated by A =

∫
A(t)dt /Δt. The A calculated using VOF and VOP has 

been 3.93 × 10− 6 m2 and 5.18 × 10− 6 m2, respectively. Assuming the 
VOF results as the more accurate values, the comparison reveals that for 
the circle geometry, VOP overestimates the surface by 32%. 

Due to the different approaches of VOP and VOF methods in 
handling surface area and their similarities in volume calculations, a 
comparison of the methods from a volumetric perspective is useful. 
Variations of the grain’s volume over time and its disappearance rate 
have been studied with Fig. 12 depicting the volume change from its 
initial value (3.14× 10− 10m3) up to its complete disappearance. All 
cases started with the same initial value, while the volume reduction 
rate of scenario 4 was more pronounced with nearly 23% faster disap-
pearance. The sharper trend in scenario 4 in comparison with the other 
cases indicates that the assumption of constant value of unity for reac-
tion surface area would be (on average) relatively larger than the true 
physical value. The closeness of the other trends is in agreement with the 
results of Fig. 10, suggesting that the choice of hydrodynamic boundary 
condition would have no major impact on volumetric aspects of the 
dissolution. 

In addition to surface and volume evolutions, the trends of average 
dissolution rate per unit area (R) are also depicted in Fig. 13. For this 
purpose, the volume changes of the grain at each time step were 
multiplied by its molar volume: 

R = − Vm
dV
dt

(31) 

Fig. 13 (a) reveals the variations of dissolution rate versus porosity. 
The dissolution rate using the VOP method is always greater than that of 
the other three VOF cases, and clearly, the main cause is the difference in 
their corresponding surface area. As the VOP overestimates the surface 
area on which the heterogeneous reaction occurs, this method would in 
turn overestimate the average dissolution rates by a factor of f =

AVOP/AVOF. Thus, if the dissolution rates are normalized by their corre-
sponding surface area, essentially similar trends are expected for all 
cases, as confirmed by plot of Fig. 13 (b). 

Fig. 13 (c) illustrates the variations of the average H+ concentration 
at the outlet of the medium with variations of the porosity. At the early 
injection times, the concentration of H+ at the outlet face grows sharply 
with the injection of H+ at the inlet, after which the H+ concentration 
gradually rises due to the decline in its rate of consumption. Fig. 13 (b) 
and (c) also show that the choice of concentration boundary conditions 
had no major effect on the concentration field. It could be argued that 
the differences observed between the results of VOP and VOF in previous 

Fig. 11. (a) Variation of the grain’s area by porosity for the 4 different methods (b) Relative percent difference and the absolute difference between the surface area 
values calculated by VOP and VOF methods. 
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figures could be (at least partially) due to their different method of 
concentration implementation on the grain’s boundary. However, 
Fig. 13 disproves this possibility and shows the similarity of the two 
concentration boundary conditions. 

Fig. 14 shows that an overestimation of 32% in surface area when 
using the VOP method has led to about 30% higher reaction rates and 
thus about 30% faster disappearance of the grain. In total, Figs. 10–14 
indicate that the VOP method may heavily impact the temporal aspects 
of the dissolution problem, even though the non-temporal aspects are 
not impacted extensively. 

For comparing the geometry evolutions for the four cases, grain 
profiles at the same values of solid volume are illustrated in Fig. 15. In 
this figure, V0 is the initial volume of the solid phase. Although with 
progression of the dissolution, the differences between the geometries 
become more pronounced, to compare the performance of the methods, 

the complete evolutionary history of each case should be considered. As 
displayed in this figure, for volume magnitudes of V0/2, V0/4, and V0/8, 
grain shapes for scenarios 1, 2, and 3 are nearly similar. However, the 
VOP application in scenario 4 has led to a less smooth shape with 
sharper edges, which could be due to the binary nature of the surface 
area in this method. Looking at the history of the geometry evolution of 
the solids, the solid shape of the simplified curved-boundary scenario (i. 
e., case 3) would be essentially similar to that of the original curved 
boundary method (i.e., case 2). The dissolution times of cases 1, 2, and 3 
have no considerable difference. However, for case 4, shorter times are 
observed which is in agreement with the points noted on Figs. 10, 12 and 
14. 

Fig. 12. Variation of the grain’s volume over time for the 4 different scenarios.  

Fig. 13. Variation of (a) the dissolution rate (b) dissolution rate per area (c) the average outlet concentration with porosity changes.  
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4.3. Dissolution of porous media 

In this section, we explore the simulation of reactive transport in 
complex porous media structure. Due to the substantially higher 
amounts of surface area in aggregated geometries, more pronounced 
averaged behavior is expected. Dissolution of porous media under two 
different regimes, named face dissolution and uniform dissolution re-
gimes, are explored in this section. From surface area perspective, these 
two regimes lie on two opposite extremes. While the face dissolution 

mainly acts on the front face of the medium (and fewer grains are 
involved in dissolution) the uniform dissolution affects the whole me-
dium simultaneously. For guaranteeing the development of these re-
gimes, high Damköhler/low Peclet numbers (causing face dissolution) 
and low Damköhler/high Peclet numbers (causing uniform dissolution) 
should be maintained (Fredd and Fogler, 1998; Kang et al., 2003; 
Mostaghimi et al., 2016; Taahodi et al., 2021; You and Lee, 2021). In the 
two following subsections, the importance of tracking the solid-fluid 
interfaces in porous media and the choice of hydrodynamic boundary 

Fig. 14. Variation of the dissolution rate over time for the 4 different methods.  

Fig. 15. Comparison of the grain’s geometry evolution for the four different methods. The associated time of dissolution is provided below each profile.  
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conditions were investigated. Since comparison of the performance of 
the methods is the main goal of this section and physical interpretation 
of the underlying transport phenomena is not intended here, all out-
comes of the simulations are presented in lattice units. 

4.3.1. Face dissolution regime 
For comparing the 4 algorithms under the face dissolution regime, 

simulations were conducted at Pe = 0.065 and Da = 10 where low flow 
rate and high reaction rate prevent downstream dissolution before the 
front face is dissolved. Fig. 16 shows the dissolution patterns and 
simulation time steps at 60, 80, and 95% porosity values for the 4 cases. 
Results showed that despite some marginal geometrical differences, the 
observed face dissolution patterns for all cases are similar. However, the 
necessary time steps for the 4th case to reach the target porosities are 
considerably different from the other three cases. In other words, 
although the computation of the reactive area affected the temporal 
dissolution characteristics it had no clear effect on the dissolution pat-
terns. Furthermore, results show that the choice of hydrodynamic 
boundary treatment (i.e., stair-step approximation or curved boundary) 
did not affect the dissolution pattern or the dissolution time. Therefore, 
the results demonstrate that despite the underlying approximation in the 
bounce-back method, this method provides nearly the same perfor-
mance in comparison with the more accurate (but less efficient) curved 
boundary scheme. 

Fig. 17 illustrates a temporal variation of the normalized porosity 
(Fig. 17 (a)), surface area (Fig. 17 (b)) and solid volume (Fig. 17 (c)) of 
the porous medium. Except for the 4th case, which shows a faster 
dissolution, all the other cases show similar evolution. As shown in 
Fig. 17 (b), although the initial surface area of case 4 was 25% more than 
that of the other three cases, the dissolution took place almost 23% faster 
due to the higher specific surface area considered in the VOP method. 
Therefore, in agreement with the previous results, employing the VOP 
method and neglecting the variation of solid-fluid interfaces may highly 
affect the temporal characteristics of the phenomenon of dissolution in 
porous media. 

The non-temporal aspects of the dissolution problem are perused in 
Fig. 18 (a), in which trends of surface area as a function of porosity are 
illustrated. As the results of cases 1, 2 and 3 were similar, they are shown 
using one single plot labeled as VOF. The variation of surface area in the 
face dissolution regime shows an almost linear trend for both VOP and 
VOF methods. Similar to grain dissolution trends, the calculated surface 
area by VOP is always higher than that of the VOF method. However, by 

reduction of the volume of the solid phase (i.e., by increasing porosity) 
the surface area calculated by VOP becomes closer to that of the VOF 
method. This trend is illustrated in Fig. 18 (b) which shows that by 
increasing porosity the absolute difference between the trends of VOP 
and VOF becomes smaller while the VOP method still significantly 
(about 25%) overestimates the surface area. 

Fig. 19 (a) shows the variation of dissolution rate (using Eq. (31)) 
over time for the 4 cases. No clear difference between the results of cases 
1, 2 and 3 is observed. The overestimation of the surface area in case 4 
has led to higher dissolution rates which in turn provides an almost 23% 
faster disappearance rate. Fig. 19 (b) shows the variation of dissolution 
rate versus porosity changes. For all porosities, the higher calculated 
area of case 4 (shown in Fig. 18 (a)) has led to higher dissolution rates. 
However, as it is illustrated in Fig. 16, face dissolution mainly operates 
at the front face of the medium and therefore a lesser amount of surface 
area is involved in the reaction. This causes the trend of dissolution rate 
of case 4 to be similar to that of the other cases in comparison with the 
uniform dissolution which affects the whole interface of the medium 
simultaneously (see Fig. 23 (b) for comparison). In Fig. 19 (c), the effect 
of the surface area is excluded by normalizing dissolution rates using the 
surface area. The agreement between trends shows that surface area 
creates the major reason for the deviation between the VOP and VOF 
methods and the choice of hydrodynamic boundary condition had no 
major impact on the transport of species in porous media. 

4.3.2. Uniform dissolution 
Under a high Peclet/low Damköhler (Pe = 6.5 and Da = 0.01) 

regime, a reaction-limited transport (Mostaghimi et al., 2016) known as 
uniform dissolution is expected. In such dissolution regimes, almost all 
solid grains dissolve simultaneously and therefore in comparison with 
face dissolution a considerably larger number of grains would be 
involved in the reaction. Fig. 20 shows dissolution patterns and their 
corresponding time steps for all four cases for porosity values of 60, 80 
and 95%. All cases show similar uniform dissolution patterns and only 
marginal differences can be observed between the shapes of some grains. 
However, the corresponding time steps for the 4th case are considerably 
different from the others which are mainly due to the higher specific 
surface area calculated by the VOP method. Therefore, similar to the 
face dissolution regime, a significant difference in temporal aspects of 
simulations is observed. Furthermore, results show that the choice of 
hydrodynamic boundary treatment did not considerably affect dissolu-
tion patterns or time steps and the results were similar. 

Fig. 16. Profiles of the dissolving porous medium at 60, 80, and 95% porosities for the 4 algorithms at Pe = 0.065 and Da = 10.  
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Fig. 21 shows the temporal evolution of the normalized porosity 
(Fig. 21 (a)), the surface area (Fig. 21 (b)) and the solid volume (Fig. 21 
(c)) of the porous medium during the dissolution process. All cases 
except the 4th scenario show similar trends while the faster dissolution 
of case 4 is obvious. It should be noted that the similarities between the 4 
trends at large time steps in Fig. 21 (a) are mainly due to the asymptotic 
nature of the uniform dissolution and should not be misinterpreted as an 
equivalence of the methods at this extreme. By using the VOP method 

the medium dissolves almost 21% faster, at any instant of time in plots of 
Fig. 21, the calculated porosity using the VOP method would be sub-
stantially different from the other three cases. Therefore, the same time 
steps in these figures refer to different stages of dissolution for the VOP 
and the VOF method and their comparison should be performed with 
care. 

Variation of the surface area with porosity change is shown in Fig. 22 
(a). As the results from the three VOF cases were nearly the same only 

Fig. 17. Evolution of (a) the normalized porosity, (b) the surface area, (c), and volume of porous media as a function of time step during face dissolution reac-
tive transport. 

Fig. 18. (a) Variation of surface area versus porosity by VOF and VOP method (b) absolute difference and relative percent difference of surface area of VOP relative 
to VOF method in face dissolution. 
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two trends labeled as VOF and VOP are shown. The calculated surface 
area of the VOP method is clearly higher than that of the VOF method at 
the same stage of dissolution (i.e., at the same porosity values) following 
the trend of a decreasing polynomial of the second degree. Fig. 22 (b) 
shows the absolute and relative percent difference between the calcu-
lated surface area by the VOF and the VOP methods. Although the 

absolute difference between the two methods reduces by increasing 
porosity their relative difference increases almost linearly with an 
average value of 31%. This indicates that under this dissolution regime, 
the difference between the VOP and the VOF methods would be more 
pronounced compared to the surface dissolution regime. We should note 
that the relative difference for a uniform dissolution regime has a strictly 

Fig. 19. Variation of dissolution rate with time (a) and porosity (b) together with the variation of dissolution rate (normalized by surface area) with porosity (c) in 
the face dissolution regime. 

Fig. 20. Dissolution patterns and their associated time steps at 60, 80, and 95% porosity values for the four cases at Pe = 6.5 and Da = 0.01.  
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increasing trend which shows that by the progress of the dissolution the 
temporal errors of the VOP method increase. 

Fig. 23 (a) shows the variation of dissolution rate over time. As ex-
pected, a larger surface area when using the VOP method led to sharper 
peaks of dissolution rate and 21% faster dissolution. In addition, Fig. 23 
(b) shows the variation of dissolution rate versus porosity which is in 
agreement with previous results. At similar stages of dissolution (i.e., 
similar porosities) the VOP method provides higher dissolution rates 
while no considerable difference between the results of the other cases is 
observed. The departure among the trends of Fig. 23 (b) is substantially 
due to surface area effects. Since there is no meaningful difference 

among the four cases as seen in Fig. 23 (c), which represents the 
normalized dissolution rates by their associated surface area. This also 
indicates that despite the dramatic effects of surface tracking on tem-
poral results, the tracking surface area and the choice of hydrodynamic 
boundary conditions do not impact the shape and pattern of 
dissolutions. 

5. Computational time 

In this section, we explore the computational time of the algorithms. 
We should note that various factors including the language of coding, 

Fig. 21. Evolution of (a) the normalized porosity, (b) the surface area, and (c) the solid volume of the porous medium as a function of time step under the uniform 
dissolution regime. 

Fig. 22. (a) Variation of the surface area with porosity by VOF and VOP methods (b) absolute difference and relative percent difference of surface area of VOP 
relative to VOF method in uniform dissolution regime. 
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depth and method of parallelization, employed hardware, and memory 
management would also significantly affect the performance of the al-
gorithms. Such an in-depth analysis is beyond the scope of this study and 
we report the CPU times associated with each algorithm. A computing 
system equipped with CPU intel i7-4790 k (4.00 GHz), 32.0 GB RAM and 
Windows 7 ultimate operating system was prepared and intel FORTRAN 
was used as the programming language. Dissolution simulations for both 
single grain and porous medium were tested for 106 iterations and their 
corresponding times are provided in Table 3. As the VOP method is 
popular in LBM framework for simulating heterogeneous dissolutions, 
all computation times were compared with that of the VOP method (i.e., 
case 4). 

For both single grain geometry and complex porous medium geom-
etry, employment of the VOF method with bounce-back boundary 
conditions has led to about 4–5 percent increase in the computational 
times. However, the use of the simplified curved boundary or the full 
curved boundary scheme would almost double or triple the increase, 
respectively. This finding and the previous results indicate that as long 
as a very accurate reconstruction of solid curvatures is not required, the 
most efficient and reliable method of simulating a dissolving medium is 
to employ the VOF method and use the standard bounce back approach 
as the hydrodynamic boundary condition. 

6. Conclusions 

In this study, for implementing curved boundary condition in a 
heterogeneous dissolution process that involved geometry evolution, a 
method of combining VOF with curved boundary schemes were pre-
sented. Since the combination of the full curved boundary method with 
VOF would be rather complex, in addition to the original approach, a 
simplified approximate approach was also introduced, which would 
require less computational time and offer almost similar accuracy. It was 
concluded that the employment of curved boundary had no considerable 
impact on the concentration field and the algorithm of bounce back 
method was found to be 10% more efficient. Further, the performance of 
VOP method was compared with that of the VOF surface capturing 
technique. It was found that VOP method in comparison with VOF 
overestimated the surface area of the reactions by about 25–35%. This 
overestimation would lead to artificially 20–30% higher dissolution 
rates and nearly 20–30% shorter dissolution times, suggesting that from 
a temporal point of view, the results from VOP method would be invalid. 
However, from a non-temporal point of view, the patterns of dissolu-
tions of VOF and VOP approaches were found to be essentially similar. 
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Fig. 23. Variation of dissolution rate with time (a) and the porosity (b) together with the variation of dissolution rate, normalized by surface area, with porosity 
change (c) in a uniform dissolution regime. 

Table 3 
Computation time necessary for 106 iterations of a dissolving grain and dis-
solving porous medium. Values in parenthesis are the increase in time relative to 
VOP method.   

Time (minutes) 

Case 1 Case 2 Case 3 Case 4 

Grain 119.4 (3.8%) 130.1 (13.1%) 123.3 (7.2%) 115 
Porous medium 284.8 (4.9%) 316.6 (16.6%) 298.3 (9.8%) 271.6  
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Appendix 

A. Calculation of q

Fig. A.1. Pup, Pdown and xw for cell (i,j).  

This appendix explains how q is calculated. As an example consider the cell (i,j) in Fig. A1. 

Pup :

⎧
⎪⎨

⎪⎩

x = i − 0.5 +
1

2 tan θi,j
− Vi,j

y = j − 0.5
Pdown :

⎧
⎪⎨

⎪⎩

x = i − 0.5 −
1

2 tan θi,j
− Vi,j

y = j − 1.5
(A.1)  

where P represents the intersection points of the interface line with cell boundary and Vi,j is the solid volume of the cell. Accordingly, the interface 
equation would be: 

y= tan θi,j

[

x − i+ 0.5+
1

2 tan θi,j
+Vi,j

]

+ j − 1.5 (A.2) 

One of the challenges of this method is that for the interface nodes with 100% solid fraction, no interface line can be considered. In this case, to 
work the algorithm properly, a possible approach is to assign a value slightly less than 1 (e.g., 0.9999) to the initial solid volume of such cells. 

Once the interface equation is found, the length of intersection of discrete velocity lines with the interface line should be calculated (q). The method 
of calculating q and xw for the geometry of Fig. A.1 is as follows: 
⎧
⎪⎨

⎪⎩

y = tan θi,j

[

x − i + 0.5 +
1

2 tan θi,j
+ Vi,j

]

+ j − 1.5, interface at cell(i, j)

y = − tan 45(x − i + 1) + j + 1, line parallel with f6 and passing center of cell (i − 1, j + 1)
(A.3) 

Intersecting these two lines gives 

xw = −

tan θi,j

(

− i + 0.5 +
1

2 tan θi,j
+ Vi,j

)

− 2.5 + tan 45(1 − i)

tan 45 + tan θi,j

yw = − tan 45

⎡

⎢
⎢
⎣ −

tan θi,j

(

− i + 0.5 +
1

2 tan θi,j
+ Vi,j

)

− 2.5 + tan 45(1 − i)

tan 45 + tan θi,j
− i + 1

⎤

⎥
⎥
⎦+ j + 1

(A.4) 

Finally, the length of the line segment connecting the center of the cell (i-1,j+1) with xw (i.e., length of q6 (i-1,j+1)) can be calculated and therefore 
q (Eq. (18)) is calculated as follows: 

q=

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

(xw − (i − 1))2
+ (yw − (j + 1))2

√

̅̅̅
2

√ (A.5)  

E. Kashani et al.                                                                                                                                                                                                                                



Journal of Petroleum Science and Engineering 216 (2022) 110754

18

B. Pixelizing geometry 

This appendix explains the effect of pixelizing on the surface area. Some sample geometries are illustrated in Fig. B.1. As shown in this figure, 
generally the curves not parallel to the Cartesian meshes are pixelized into shapes with surface areas higher than their true physical values. For 
example, in Fig. B.1 (a) and (b), while the true values for the length of the hypotenuse of the triangle and the arc of the quarter circle are 6.71 and 6.28, 
respectively, the VOP algorithm would allocate 10 and 7 to their area, respectively. This indicates that the percent error of pixelizing may even reach 
values of around 54%. Even pixelizing straight line segments parallel to the horizontal or vertical Cartesian meshes are not guaranteed to be free of 
inaccuracies. For example, as shown in Fig. B.1 (c), while both the upper and the lower lines have equal lengths, the lower one is mapped to a greater 
number of pixels due to its partial length share with neighboring cells. Hence, the only case in that VOP does not overestimate the surface area, would 
be a straight line parallel to horizontal or vertical Cartesian meshes with no imperfect occupation of the cells.

Fig. B.1. Four geometries (a, b, c, and d) with a different surface area (black lines) and their pixelized representation (shaded cells).  

The presented argument further leads to the inference that for regular shapes with straight boundaries, the dissolution trends of both methods 
should be closer to each other. For validation of this inference, a second case similar to that of Fig. 7 was also simulated with the same parameters as 
Table 1. But this time the circular grain at the center of the channel was replaced by a square of side length 0.0002 m. The results of this case are shown 
in Fig. B.2. As shown, the trend lines are closer in comparison to those of Fig. 11 (a), confirming the deduction.

Fig. B.2. Variation of the surface area of a square-shaped grain with porosity.  

It should be noted that the same presented arguments cannot be generally applied to the grain’s total volume. In fact, for volume, both VOP and 
VOF methods allocate the same values to the initial volume of the pixels and therefore the algorithms start from the same initial conditions. In this 
case, the initial volume of the interface pixels can be either calculated algebraically with no approximation included (mainly applicable for regular 
shapes) or should be approximated by assigning 1 to the initial volume of the interface pixels (the common approach for irregular arbitrary shapes like 
that of Fig. B2 (d)). 
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Corrigendum to “Lattice Boltzmann study of dissolution in porous media: 
Comparison of VOP with VOF-curved boundary coupling” [J. Petrol. Sci. 
Eng., 216 (2022) 110754] 

Elham Kashani a, Ali Mohebbi a, Amir Ehsan Feili Monfared b,*, Amir Raoof c 

a Department of Chemical Engineering, Faculty of Engineering, Shahid Bahonar University of Kerman, Kerman, Iran 
b Department of Chemical Engineering, Graduate University of Advanced Technology, Kerman, Iran 
c Environmental Hydrogeology, Department of Earth Sciences, Utrecht University, Utrecht, the Netherlands 

The authors regret that there is a mistake in equation (31). The 
correct form of equation (31) in section 4.2 is R = − 1

Vm
dV
dt 

Also, the supporting sentence above equation (31) should be cor-
rected as: 

“For this purpose, the volume changes of the grain at each time step 
were divided by its molar volume”. 

The authors would like to apologise for any inconvenience caused. 
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