
Towards Giving Timely Formative Feedback and Hints to
Novice Programmers

Johan Jeuring
∗

Utrecht University

The Netherlands

j.t.jeuring@uu.nl

Hieke Keuning
∗

Utrecht University

The Netherlands

h.w.keuning@uu.nl

Samiha Marwan
∗

University of Virginia

Raleigh, USA

samarwan@ncsu.edu

Dennis Bouvier
†

Southern Illinois University

Edwardsville / US Air Force Academy

USA

djb@acm.org

Cruz Izu

The University of Adelaide

Australia

cruz.izu@adelaide.edu.au

Natalie Kiesler

DIPF Leibniz Institute for Research

and Information in Education

Germany

kiesler@dipf.de

Teemu Lehtinen

Aalto University

Finland

teemu.t.lehtinen@aalto.fi

Dominic Lohr

Friedrich-Alexander-Universität

Germany

dominic.lohr@fau.de

Andrew Petersen

University of Toronto Mississauga

Canada

andrew.petersen@utoronto.ca

Sami Sarsa

Aalto University

Finland

sami.sarsa@aalto.fi

ABSTRACT

Every year, millions of students learn how to write programs. Learn-

ing activities for beginners almost always include programming

tasks that require a student to write a program to solve a particular

problem. When learning how to solve such a task, many students

need feedback on their previous actions, and hints on how to pro-

ceed. For tasks such as programming, which are most often solved

stepwise, the feedback should take the steps a student has taken

towards implementing a solution into account, and the hints should

help a student to complete or improve a possibly partial solution.

This paper investigates how previous research on feedback is

translated to when and how to give feedback and hints on steps a

student takes when solving a programming task. We have selected

datasets consisting of sequences of steps students take when work-

ing on a programming problem, and annotated these datasets at

those places at which experts would intervene, and how they would

intervene. We have used these datasets to compare expert feedback

∗

co-leader

†

The views expressed in this article, book, or presentation are those of the author and

do not necessarily reflect the official policy or position of the United States Air Force

Academy, the Air Force, the Department of Defense, or the U.S. Government.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

ITiCSE-WGR ’22, July 8–13, 2022, Dublin, Ireland

© 2022 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ACM ISBN 979-8-4007-0010-1/22/07. . . $15.00

https://doi.org/10.1145/3571785.3574124

and hints to feedback and hints given by learning environments

for programming.

Although we have constructed extensive guidelines on when and

how to give feedback, we observed plenty of disagreement between

experts. We also found several differences between feedback given

by experts and learning environments. Experts intervene at specific

moments, while in learning environments students have to ask for

feedback themselves. The contents of feedback is also different;

experts often give (positive) feedback on subgoals, which is not

supported by most environments.

CCS CONCEPTS

• Social and professional topics → Computing education;

KEYWORDS

Learning programming, feedback and hints, sequences of program-

ming steps, learning environments, automated feedback

ACM Reference Format:

Johan Jeuring, Hieke Keuning, Samiha Marwan, Dennis Bouvier, Cruz Izu,

Natalie Kiesler, Teemu Lehtinen, Dominic Lohr, Andrew Petersen, and Sami

Sarsa. 2022. Towards Giving Timely Formative Feedback andHints to Novice

Programmers. In 2022 ITiCSE Working Group Reports (ITiCSE-WGR ’22), July

8–13, 2022, Dublin, Ireland. ACM, New York, NY, USA, 21 pages. https:

//doi.org/10.1145/3571785.3574124

1 INTRODUCTION

When learning how to program, students almost always work on

tasks in which they have to develop a program to solve a given

problem. Many students would benefit from feedback on their pro-

gramming actions, and hints on how to proceed. Formative feedback

95

https://doi.org/10.1145/3571785.3574124
https://doi.org/10.1145/3571785.3574124
https://doi.org/10.1145/3571785.3574124

and hints are essential aspects of learning [61]. Intelligent tutoring

systems (ITSs) that provide feedback and hints on steps of students

have shown positive results [43, 44, 69]. For tasks such as program-

ming, which are most often solved step by step, the feedback should

take the steps a student has taken towards implementing a solution

into account, and the hints should help a student to complete or

improve a possibly partial solution. But when in this process do stu-

dents need feedback and hints, and how should it be given? These

questions are addressed in research on feedback [26, 61], but that

research is not specifically about learning to program step by step.

We investigate how can we use this research to give feedback on, or

a hint at, a particular step a student takes when solving a program-

ming task. We want to collect datasets consisting of sequences of

steps students take when working towards a solution to a program-

ming problem, and annotate these datasets at those places at which

we think an expert should intervene, and how the expert wants

to intervene. We create several of such expert-annotated datasets.

These datasets are useful for several purposes: they are concrete

examples of when and how to give feedback while solving program-

ming tasks, they can be used to evaluate the quality of hints and

feedback given by environments for learning programming, they

can inform the design of such environments, but they can also be

used for educational research looking at student behaviour.

RQ1 How should we annotate datasets consisting of steps stu-

dents take towards solving a programming task with infor-

mation about when and how to give feedback and hints?

There are many learning environments that support beginners

learning how to program, including ITSs [14], online environ-

ments
1
, and educational games [23]. Some of these learning envi-

ronments give feedback on potentially partial student solutions, and

hints on how to proceed with a partial solution [22, 43, 44, 52, 56].

Learning environments for programming often differ in the way

they interact with users. This raises the question how learning

environments should interact with novices to support solving a

beginner’s programming problem step by step. One way would of

course be to perform experiments with different environments, and

to compare the learning outcomes. Setting up such experiments

is not easy [4], and if we find a difference we would still like to

know the cause(s) for that difference. One reason that might explain

why some learning environments better support students is the

timeliness and quality of their feedback and hints. To determine

this, we can compare them against expert-annotated datasets [53].

RQ2 How does expert feedback relate to the feedback found in

learning environments for programming?

This paper proposes a method for annotating datasets consist-

ing of steps students take when working towards a solution to a

programming problem. The annotations specify when and how to

intervene at steps. We annotate several datasets using this method.

Then we study learning environments for programming, and in-

vestigate how they support the steps that students take towards

a solution. We also investigate to what extent the feedback deliv-

ered by learning environments complies with the expert hints and

feedback.

1

e.g. Codecademy, Datacamp, Khan Academy, Code.org.

This paper is organised as follows. Section 2 discusses some

relevant background for our research. Section 3 introduces and

discusses the central concept of this paper: steps. Section 4 de-

scribes the characteristics and selection of datasets we use in this

paper. Section 5 introduces the coding we use in annotating the

datasets with expert information about when, and how to intervene

at particular steps in the datasets. This coding is then applied to

the datasets described in Section 4. Section 6 evaluates learning

environments for programming using the results from the previous

sections. Section 7 presents the findings in all aspects of this work.

Section 8 concludes and describes future work.

2 BACKGROUND AND RELATEDWORK

2.1 Feedback

Experts (or learning environments) support students, amongst oth-

ers, by giving feedback and hints [41, 68]. Feedback is backward

looking and usually focuses on negative issues, errors, or missing

parts, which need to be addressed. Sometimes, we can also provide

positive feedback about a program, for example: “the base case is

completed” when writing a recursive function. Positive feedback

could reinforce learning when the student is unsure, by increasing

their confidence and may also prevent weaker students from undo-

ing useful edits that received positive feedback [16, 42, 43]. Feedback

is often not enough for a student to make progress. Thus, further

help in the form of hints will help a student that is stuck [41, 68]. A

next-step hint suggests a next step to take [68].

Hattie and Timperley [26] define four levels at which feedback

operates: task, process, regulation, and self. We are specifically fo-

cused on task and process level feedback. There are several types

of feedback described in the literature. Examples of such types are:

KR ‘knowledge of result’, which simply indicates whether the solu-

tion is (in)correct; KCR ‘knowledge of the correct results’, which

shows the expected solution; and EF ‘elaborated feedback’, which

may consist of various kinds of elaborated feedback messages or

hints. By inspecting existing feedback classifications, Narciss [48]

found that feedback types have multiple characteristics: functional,

content-related, and formal. Narciss proposes a new content-related

classification of feedback messages, aimed at interactive learning

tasks. Keuning et al. [31] have adopted and extended this classifi-

cation for the programming domain. Section 6.1.2 describes this

classification in detail.

Hao et al. [25] found that feedback design has measurable impact

on student performance. More specifically, they found a statisti-

cally significant difference in student performance on programming

assignments between those students that received only pass/fail

results of test cases, and those that received results of test cases with

some explanation. More plainly, providing only pass/fail results

from unit testing is inferior to providing contextual information

regarding the unit tests.

Another result from Hao et al. is equally relevant to our work:

students reported they like positive feedback provided by the sys-

tem. Our experts include positive feedback, when appropriate. The

authors also report that students reported they appreciate that the

system was “unobtrusive”.

ITiCSE-WGR ’22, July 8–13, 2022, Dublin, Ireland Johan Jeuring et al.

96

Dong et al. enumerate six reasons to intervene (i.e., provide a

hint or feedback) with students in the process of programming [18]

(rephrased here):

● missing key components

● using unnecessary components

● misusing needed components

● logical error

● unknown intent

● hint needed

This study also confirmed the need for positive feedback. They

observed that students with correct but incomplete programs undo

their work only to arrive at the same point some time later. By this,

the authors suggest a seventh reason to intervene (not on the above

list): confirming the code has achieved a subgoal. We agree that

feedback that (a) affirms the correctness of the code-state and/or (b)

an intervention when destructive behaviour is observed can assist

the student.

2.2 Previous reviews on programming learning

environments

A number of systematic literature reviews from the past six years

were used as a starting point for the identification of adequate

learning environments and their features [3, 12, 14, 15, 31, 35, 51, 62,

63, 66].We briefly introduce themain points of this (non-exhaustive)

list of references in chronological order starting in 2016. In addition,

we outline their role for the present work.

For example, Souza et al. [63] reviewed thirty assessment tools

with regard to their main characteristics for students’ programming

assignments. Although their analysis yielded a classification of the

tools, the tools, respectively their last publication, date back to the

1980 to early 2010s. In a 2017 review, Kim and Ko [35] analyzed 30

online coding tutorials and emphasized the immature state of many

so-called tutorial tools due to the lack of personalized learning and

explanations of basic concepts as part of the offered feedback. The

tools that allow learners to write code and receive feedback are

considered relevant for the present research.

Another systematic literature review of online tools to support

novice programming with publications between 1998 and 2018 iden-

tifies 34 papers addressing the development phase of CS1 [62]. Of

these, 14 papers describe more recent programming environments

for novice learners, such as the App Inventor, Alice, BlueJ and its

continuation Greenfoot, as well as Scratch, and Snap! However, only

six of them are still available online. Crow et al. [14] analyzed 14

intelligent tutoring systems for programming education and their

adaptive or intelligent feedback. Nonetheless, there is no in-depth

analysis of feedback types. Moreover, only two of the systems (and

their publications) date back to 2016 and 2017 which explains yet

again why many of the systems could not be accessed. The same is

true for the 101 tools with automated feedback for programming

exercises analyzed by Keuning et al. [31]. The detailed overview de-

scribes the applied feedback types, as well as their adaptability and

the techniques used to generate feedback. Thus, the methodology

can be replicated with recently available and accessible tools.

The most recent reviews include Deeva et al. [15] with a de-

tailed literature review of automated feedback technologies pub-

lished between 2008 and 2019. Eleven online learning environments

were identified, five of which with publications in the past five

years [1, 13, 22, 30, 70]. Cavalcanti et al. [12] summarize 63 learning

management systems in the context of computing; 19 of them with

a focus on programming. Few environments with recent publica-

tions (in the last five years) were identified (e.g., MicK tutor [2],

ArTEMiS [37], Online Judge [71]). Furthermore, Paiva, Leal and

Figueira [51] investigate 30 tools and their automated assessment

techniques proposed between 2010 and the first half of 2021. They

analyze, for example, the tools’ feedback elements, and note signif-

icant gaps in pedagogy and the quality of automated assessment

compared to human feedback (see [38, 39, 58]). This is also an

underlying assumption of the present work. The 2022 systematic

literature mapping by Barbosa Rocha et al. [3] aims to understand

the main approaches used for providing and evaluating feedback

in learning environments for novice programmers. The 39 papers

from 2016 to 2021 distinguish six different feedback approaches of

relevant tools, but the report does not provide information on their

availability and accessibility. Strickroth and Striewe [66] provide the

most comprehensive and recent corpus of task-based grading and

feedback systems for learning and teaching programming, although

feedback types are not part of the overview.

To conclude, several systematic literature reviews have been

evaluated, but while the number of tools/learning environments

is rather large, there is no overview of recent, accessible systems.

Some systems are very old and hard to access, and the classifications

in the reviews vary. As we are specifically looking for environments

in the programming context, a recent investigation of online envi-

ronments and their feedback types is required.

2.3 Datasets

In 2015, an ITiCSE working group published a report titled: “Educa-

tional Data Mining and Learning Analytics in Programming” [27].

Their work surveyed the research literature on tools for data collec-

tion, and datasets of students working on programming problems. It

lists 10 programming data collection tools and describes 10 datasets

available at the time (2015). We looked at the two datasets that

were listed as openly available: the Blackbox dataset [10] and the

code.org dataset. Both datasets are unsuitable for our work, because

in the Blackbox data we do not know the task on which a student is

working, and the code.org dataset is not available anymore. The re-

port concludes with a list of “Grand Challenges” for the community.

Our work contributes in particular to the following challenge:

(1) to have researchers and practitioners commit to building

and maintaining a multi-language, multi-institution, multi-

nation learning process data and experiment result database

Price et al. [54] describe five datasets that are either not publicly

available, or contain only final submissions of students.

3 STEPS AND SUBGOALS

Before we attempt any analysis we need to define the term “step"

and to discuss how steps relate to the goal that they are intended

to achieve. Step is a widely-used term that describes “an action,

proceeding, or measure often occurring as one in a series" [64].

Thus, it is common to describe steps in a problem-solving process.

VanLehn found that feedback and hints are most effective when

they are on the level of steps [69]. Though VanLehn’s work is based

Towards Giving Timely Formative Feedback and Hints to Novice Programmers ITiCSE-WGR ’22, July 8–13, 2022, Dublin, Ireland

97

on studies of tutoring systems for other domains (e.g., physics,

math); the granularity at which feedback is provided (i.e., step-

based feedback versus only providing feedback at the conclusion)

is very similar to the granularity at which feedback is provided to

students working on programming problems.

We need to know the context to provide a more specific meaning

to the term “step.” In this paper we analyse activity (event) logs

from environments that capture actions students take while work-

ing on solving programming tasks. As our work begins with the

analysis of programming activity logs, our definition is based on

the programming activities as recorded in the dataset under study.

3.1 Step

We define a “step” as a programming development action taken by

the student. To be more precise, a step is one of

● a code-edit as recorded by the learning environment, which

may range from a simple keystroke to adding a full line or

pasting a code block

● a user-action that triggers an environment action, such as

compile, run, get hint, submit, or show solution

The datasets we study capture sequences of steps students take

when solving a programming task, which in general results in

a sequence of program states. The difference between one code-

state and the next is the addition or deletion of code: a keystroke,

paste event, or cut event. A code-state may be incomplete and/or

syntactically incorrect, so that it cannot be compiled or interpreted.

Although user-actions do not change the program state, they

potentially change the student’s perception of it and provide clues

about their state of mind or intentions. The feedback we give to a

student should take this into account. Consequently, user-actions

are essential for determining when and how to interact with the

programmer, and they sometimes provide a convenient time to

provide a hint with less danger of interrupting a stream of thought.

For example, choosing to run the program indicates the student

is looking for feedback; perhaps because they believe they have

completed a chunk, or simply because they wish to check that their

syntax is legal. Not all environments provide all the user-actions we

listed above, nor is our list exhaustive. Other environment-events

such as syntax error highlighting or given feedback should also be

included as part of the data.

Though in this paper we analyze data from students using text-

based programming languages, the concept of a “step” also applies

in block-based languages. Mouse-events are the dominate means

for making code-edits, but it is the code-edit itself that defines the

step a student makes.

Temporality. In many logs of student steps (e.g., the datasets

used in this work), each event is annotated with the time the event

occurred. In an interactive session, time is considered part of the

event-stream. The utility of timestamps is discussed in Section 5.1.

Step size. The granularity of steps varies. In general, it is possi-

ble to convert from a very fine-grained step size to a more course

granularity but not vice versa, so we prefer finer-grained collec-

tion. Using data with keystroke-level granularity ensures the data

are compatible with other code analysis tools (e.g., CodeProcess

Charts [60]), which can be useful in the investigation of students’

programming processes.

The appropriate level of step-granularity may depend upon sev-

eral factors, such as the student’s ability. For example, a student

starting a CS1 course may find writing an assignment to have

multiple steps, but after a few weeks practice may view the same

assignment as a single step [29].

3.2 Subgoals

A program is a collection of statements, or steps, that collectively

achieve the goal of solving the given task. For all but the smallest

tasks, the goal can be meaningfully divided into subgoals.

“A subgoal represents the purpose of a set of steps" [11].

Decomposition, or breaking down a task into smaller subprob-

lems that are solved individually and then assembled together, is

at the core of most problem solving strategies. Each subproblem

has a clearly identified purpose or subgoal. When writing code,

subgoals support a top-down design by decomposing the algorithm

into smaller steps that are then refined and implemented. Each

subgoal is implemented using a plan [55]. Subgoals and their as-

sociated plans facilitate transfer by helping learners to identify

when a new problem or task shares one or more subgoals with the

already-learned procedure [11, 28].

When learning from worked examples, subgoals help students

to better recognize the fundamental components of the problem

solving process. Subgoal learning can be passive (subgoals are pro-

vided as comments in the code) or active (by asking students to

write or generate those comments) by interpreting the purpose of

the given block [47]. In short, subgoals provide organisation and

help constrain the piece(s) of the procedure on which to focus.

A learning environment could use subgoals to recognise the

intention of a subset of steps and provide targeted feedback for

each subgoal. For example, when solving a recursive problem, we

usually have two subgoals (1) complete the base case, (2) complete

the recursive case. Note each subgoal is achieved by one or more

steps. For example “complete the base case” can include the steps

(1a) write a return statement, and (1b) provide the correct return

value for the base case.

In this study, we use subgoals as a lens to frame student progress

toward a solution, to associate particular steps with a purpose, and

to generate suitable hints. This approach provides a framework

for providing feedback. It supports the generation of more specific

feedback, by identifying completed, missing, or incorrect subgoals,

and it facilitates our ability to scale support from small programs

with one or two subgoals to larger programs with multiple subgoals.

4 DATASETS

A main goal of this work is to collect, analyze, and annotate a

selection of datasets consisting of individual student programming

activity.

We first establish a list of desirable/common characteristics for

the datasets we want to analyze. Then, we present the datasets we

have selected. We publish the datasets we have analysed (either

in full or their annotations only) for the community. Finally, we

describe a tool that can be used to study the datasets.

ITiCSE-WGR ’22, July 8–13, 2022, Dublin, Ireland Johan Jeuring et al.

98

4.1 Dataset characteristics

Our expert-annotated datasets need to have the following charac-

teristics.

Rights. The rights of the datasets should allow for analysing

the dataset, adding annotations to the dataset, and publishing the

annotated dataset under an appropriate license. In some cases we

are not allowed to publish the original dataset, in which case we

publish the annotation separately.

Tasks. Given our focus on providing hints to students, we choose

datasets that include tasks aimed at novice programmers. To give

meaningful hints and feedback, we need to know the specific pro-

gramming problem the student is working on. Thus, for each se-

quence we need to know the corresponding programming problem

and its description. We include solutions when available, and de-

velop correct solutions for exercises where they are not provided.

The programming problems should not be too complicated. We

expect solutions to the problems to consist of a small number of

lines of code, typically in the order of 10 lines. We have looked

at some datasets that contain data from students solving rather

challenging tasks, and noticed that it is hard to annotate steps

when students are deviating far from a desired solution. We have

seen sequences of hundreds of steps that lead nowhere, and for

which it would be very hard to give feedback or hints. Focusing on a

single subgoal at a time could be a way to deal with this complexity,

but this is left for future work.

Sequences. We aim to analyse student steps that lead to a solu-

tion. So we are not looking at datasets containing only final student

submissions to programming tasks, or sequences of such submis-

sions. The analysis of final program submissions is the subject of

other research [19, 63].

Programming languages. A dataset will contain programs in a

particular programming language, but the programming language

might be different for different datasets. We have found datasets

using amongst others Python, Java, and Dart.

An important reason to collect datasets is to use them for evalu-

ating learning environments. So we prefer to collect datasets for

programming languages for which we also have access to learning

environments. However, this is not required for including a dataset.

If we have a learning environment for a particular programming

language for which we have no dataset, we could choose to com-

pare feedback and hints in the learning environment with a dataset

with data from a similar programming language.

Granularity of steps. Code-edits can be recorded (or observed) at

different levels of granularity. The ITiCSE’15 WG identified six dif-

ferent levels of granularity at which data were collected by systems

at that time (2015) [27]. These are:

● keystroke

● line

● file-save

● compile

● execute

● submit

When studying and annotating the datasets we selected, we iden-

tified a seventh level between keystroke and line: token. That is,

the data are collected each time a new token is detected. Token de-

tection varies by programming language; often a token is detected

when whitespace or a delimiter is used.

As one of our goals is to guide the development of systems that

intervene at the best moment, waiting until a line is ‘completed’ may

be too late. As a result, we can use datasets with granularity level

ranging from keystroke to token edits or even more coarse grained.

Since our expert annotators do not feel the need to annotate steps at

the keystroke level, we pre-processed keystroke-level data to token-

level data. First, code states i.e. the source code in the editor at a

given instant must be reconstructed from the individual recorded

keystrokes. Second, the code states that include incomplete tokens

can be filtered so experts only investigate states where complete

program tokens are inserted or removed.

System feedback. If the environment in which the data is col-

lected gives feedback to students, this feedback is either included in

the dataset, or can easily be reconstructed. Note that if an environ-

ment gives feedback beyond basic compiler errors and test results,

the resulting dataset is harder to use to evaluate other learning

environments.

4.2 Selected datasets

We searched for publicly available datasets in the DataShop reposi-

tory (a repository for learning interaction data) [36], by studying

datasets collected in related work [27, 54], and by approaching

peers conducting work in this area.

Our search resulted in a list of five datasets that satisfy the

characteristics described above. Table 1 shows the datasets and

their key features. From now on, we refer to each dataset by their

identifier in teletype.
Below we describe the selected datasets. They are collected using

different learning environments and the environments that were

relevant to this study have been included in our evaluation. Those

environments are described in more detail in Section 6.

CodingBat. CodingBat has been obtained by watching videos

of students developing two programs, returning the factorial or the

fibonacci number of an input number respectively, in CodingBat, a

programming environment for Java. The videos have been used by

the data owner to create a dataset consisting of steps at a slightly

higher level than tokens, called token
+
: sometimes one or more

expressions are entered in a single step. In addition, compile, get

hint, and show solution actions are recorded. The dataset is freely

available for scientific research, but we are not allowed to republish

a fully annotated version of the entire dataset.

FITech. Fitech contains keystroke-level code edit actions as

well as run, submit, and request help actions captured from online

IDE embedded in a course platform for distance learning. The data

is from a course that covers the principles of programming using

Dart language and contains 64 different small programming tasks.

The data we publish includes two simple tasks, reading input until it

matches the required and returning a conditional value depending

on a function parameter.

Towards Giving Timely Formative Feedback and Hints to Novice Programmers ITiCSE-WGR ’22, July 8–13, 2022, Dublin, Ireland

99

Table 1: Datasets considered for annotation.

Identifier Name and Source License Language Granularity Sequences Annotated
1

Mean steps
2

CodingBat Kiesler [32, 33] ©DZHW Java Token
+

16 16 20.1±11.8

FITech FITech 101 Introduction

to Programming

CC BY-SA 4.0 Dart Keystroke 25 25 144.1±120.7

Bielefeld Python Programming

Dataset [50]

GPL Python Pause 75 0 11.2±8.6

Utah 2021 CS1 Keystroke

Data [20]

CC0 Python Keystroke 554 0 796.1±1200.4

iSnap iSnap - Fall 2017

[fixed] [52]

DataShop Snap Block-edit 285 0 565.8±472.2

1

Total number step sequences (one sequence per task for each student)

2

Mean and standard deviation of steps per sequence (after pre-processing)

Bielefeld. Bielefeld takes a snapshot of a student program
after two seconds of inactivity. We call this level of granularity

‘pause-level’. The students had five very structured tasks. The first

task was to program a given mathematical function in Python. A

tutor was present to give guidance and students could only proceed

to the next task once the previous one was completed. The students

proceeded to implement function’s gradient and finally the gradient

descent algorithm.

Utah. Utah records keystroke-level code edits and run actions

from programming environment used in CS1 university course.

Student work is available on 8 different weekly assignments for

programming in Python. All of the tasks involve a relatively abstract

problem, starting from testing which numbers fulfill 6 criteria of

a ‘Fluky’ number and optimizing the program. The second task

requires simulation of described events to extract estimates for

different probabilities.

Unfortunately, we were unable to reconstruct code states from

the keystroke data for 750 sequences i.e. the characters that were

supposedly removed did not exist in the code state at that point.

We have contacted the author of the dataset and some issues may

be fixed by the data owner in updated versions of the Utah dataset.

iSnap. iSnap contains each step of creating a program in a block-

based programming language Snap! as well as get hint actions. The

data is collected from the iSnap learning environment. The tasks

involve drawing in ‘Turtle’ style and a game to guess a random

number. As a property of a block-based language the sequences do

not have syntax errors.

The dataset stores the program state in a textual format. The

described object hierarchy of the program is missing values and

we could not find feasible methods to reconstruct visual program

blocks which makes analysing steps in the iSnap dataset rather

tedious.

The only two datasets that include system feedback beyond com-

piler errors and test results are FITech and iSnap. FITech gives

feedback on code quality, which does not affect the kind of feedback

we aim to give. The iSnap dataset includes get hint actions, which

makes it more difficult to use this dataset to evaluate other learning

environments.

4.3 Tools

We publish the annotated data sets in the well defined ProgSnap2-

format [54], which we expand with custom columns for the anno-

tation. The specification defines that a dataset has a single main

table for all the events. Such common index is useful for machines

reading the data. However, human inspection requires viewing one

student and their sequence of steps for one assignment at a time.

For the datasets we analysed, we split the main table into more

manageable tables that each include a separate sequence.

We developed a data browsing tool that supports navigating

sequences of steps by assignment and student. Furthermore, the

tool allows hiding unnecessary columns and can highlight changes

in code state and elapsed time. Our tool and our annotations of the

datasets are available online
2
.

5 INTERVENTIONS

This section describes how we annotate steps in the datasets we col-

lected in the previous section. In particular, we provide information

about when to give feedback and hints to a student, and what kind

of feedback and hints should be given to the student at that point.

We call this information interventions, which are responses to a

step or a sequence of steps. We draw up guidelines both for when

to intervene and how to intervene. The guidelines are created by

looking at some of the data, and by asking multiple experts to spec-

ify when they would intervene, and discussing the results. After

establishing the guidelines, we use them to annotate several (parts

of) the datasets we selected. The annotation is done by several

experts, in several rounds, as we describe in Sections 5.1.1.

5.1 When to intervene

We draw up guidelines for intervening when a student is working

towards a solution for a programming task. The guidelines should

mimic the way a human expert, being both a programming expert

as well as a pedagogical expert, would intervene in a one-on-one

tutoring session. We aim to describe the guidelines in such a way

that facilitates its automatic application by a learning environment.

Robertson et al. [57] advise learning environment’s designers to

resist the temptation to use immediate interruptions to “help" users

find bugs. This advice aligns with the practice from experienced

2

https://github.com/Programming-Steps-Working-Group-2022/public-datasets

ITiCSE-WGR ’22, July 8–13, 2022, Dublin, Ireland Johan Jeuring et al.

100

https://github.com/Programming-Steps-Working-Group-2022/public-datasets

Table 2: Guidelines that identify when and how to intervene.

Event Example Intervention Point (when) Intervention Action (How)

Compiler error Syntax or type error If a student is not using the com-

piler often, or after the second com-

pilation where the error goes unad-

dressed.

First, suggest that they compile if they have not

done so. Second, offer an explanation.

Semantic error Syntax is correct but

wrong semantics,

e.g. “=” instead of “==”

When a student moves to the next

line, as these errors are hard to

spot/debug.

Highlight the location of the error and offer an

explanation.

Logical error Once a student executes/tests the

code or within 5 minutes if they

choose not to run the code. If the er-

ror would lead to any further code

being incorrect, intervene immedi-

ately.

Indicate the test case(s) that fail due to the error

and provide a hint on how to fix it.

Deviation from

specification

Changing required

function signature

When a student leaves the line. Provide clear statements from the assignment

description as a reminder of the assignment

specifications.

Trial and Error

behaviour

Iterating through condi-

tional operands

Once it becomes clear the edits are

guessing – not experimentation.

Ask a student a question (e.g. an MCQ) about

the purpose of the line. If they respond with a

correct answer, provide a hint. Otherwise, sug-

gest a (sub)goal to complete.

Hint or Feedback

request

Pressing a “Hint” or

“Show solution” button

Immediately when a student re-

quests assistance.

A hint depends on the time a student requests

it. If a student has a semantic/syntax error and

asks for a hint, then offer a clear hint on how

to fix the error. If a student has a logical error

or is stuck in a specific subgoal, then offer a

clear hint on how the subgoal/objective can be

reached.

Subgoal

completion

Correct base case(s) for

recursive function

When a student completes all steps

of a subgoal.

Provide positive feedback specific to the accom-

plishment.

instructors. Thus, we followed such advice by setting two general

rules while reviewing and labelling student data logs. First, we

decided not to interrupt students’ train of thought when making

small errors or writing incomplete lines. Second, we should give

students the possibility (e.g. extra time to complete another step)

to fix minor errors, instead of immediately reporting the errors.

5.1.1 Method. To identify intervention points, we performed a

2-step process. In the first step, three experts
3
reviewed a small set

of logs, discussed opportunities to intervene and drew up a draft

guideline for situations that call for an intervention.

In the second step, we used the resulting draft guidelines to an-

notate a collection of sequences from two datasets: CodingBat and

FITech. This step involved multiple rounds of refinement, valida-

tion, and discussions between one to four experts in each round

(described in detail below). This step resulted in a final list of “When

to Intervene” situations, as shown in Table 2. Table 3 shows the

assignment of experts in the data labelling rounds (all experts are

authors of this paper). In each round, the experts annotated the

3

All experts who reviewed, or labelled data in this work are from the authors’ group.

We chose to name them as “experts” since all of them have a multiple-year experience

in CS education research and in teaching programming classes.

Table 3: Allocation of (E)xperts to data labelling (R)ounds.

Experts

CodingBat dataset FITech dataset

R1 R2 R3 R4 R5 R6

E1 x

E2 x

E3 x x x

E4 x x x x

E5 x x x

E6 x x

sequences of a small number of students (5 - 15), where each has ∼

20 - 400 logs of data (i.e. code edits).

In section 3.2, we explained how we use subgoals to identify

progress towards the main goal and to provide specific feedback.

As subgoals were not documented in the existing task descriptions,

the expert instructors constructed subgoals for each task before

starting the rounds of data annotation.

Round 1 (CodingBat, Factorial exercise, 120 log entries, 6 stu-
dents) annotates the sequences of novices (on average 20

rows of logged data per student) while implementing a re-

cursive Factorial function (shown in Figure 4 in appendix

Towards Giving Timely Formative Feedback and Hints to Novice Programmers ITiCSE-WGR ’22, July 8–13, 2022, Dublin, Ireland

101

A). As this was our first attempt to use the guidelines, we

allocated four experts to independently evaluate the logs.

The experts then met to discuss the guidelines and resolve

any annotation conflicts. We computed the inter-rater relia-

bility by running Fleiss’ Kappa test, which is an adaptation

of Cohen’s kappa for 3 or more raters. The Fleiss’ Kappa

result was 0.563, showing a moderate agreement between

the four experts.

Round 2 (CodingBat, Fibonnaci exercise, 112 log entries, 5

students) contains log entries from novices implementing a

recursive Fibonacci function. (shown in Figure 3 in appendix

A). Two of the previous experts labelled this set. The Co-

hen’s Kappa test result is 0.834, showing an almost perfect

agreement.

Round 3 (CodingBat, Fibonacci exercise, 88 log entries, 5 stu-

dents). Given the perfect agreement in the previous round,

in this round only one expert labelled 88 additional entries

from 5 students solving the Factorial task. It is worth to note

that when the expert found a concern or a new situation,

they discussed it with the experts from round 2 until conflicts

were resolved.

Round 4 (FITech, Temperature exercise, 1k entries, 5 students).

Using the FITech dataset, two experts reviewed data entries

of 5 students for the Temperature exercise (shown in Fig-

ure 2 in appendix A). We computed the inter-rater reliability,

where we found the Cohen’s Kappa test result is 0.71.

Round 5 (FITech, Password exercise, ∼ 800 entries, 5 stu-

dents). Two experts reviewed ∼ 160 code edit on average

per student in the Password exercise (shown in Figure 1 in

appendix A). The Cohen’s Kappa test result is 0.895, showing

a substantial agreement.

Round 6 (FITech, Temperature exercise, ∼ 2k entries, 15 stu-

dents). Finally, three experts reviewed ∼ 2k data logs from 15

additional students solving the Temperature exercise. In this

round, the experts divided the task by students so that each

entry was reviewed by two of the three experts. While the

previous round shows a substantial agreement, in this round

the experts decided to continue labelling the data together

since solutions of these exercises are longer than that of the

CodingBat exercises, showing a larger space of students’ so-
lutions. Overall, in the FITech dataset, the experts reviewed

~200 entries per student, making a total of ~4k data entries.

Early rounds were testing the clarity and validity of the guide-

lines. The final rounds were performed in order to provide a sub-

stantial labelled dataset to the community. In Section 7.2, we discuss

reasons behind experts’ varying opinions while annotating the data,

and how these variations can guide researchers and tool designers

to develop more effective feedback in learning environments.

5.1.2 Results. In this Section, we answer the first part of RQ1:

“How should we annotate datasets consisting of steps students take

towards solving a programming task with information about when
to give feedback and hints”. The answer to this question consists

of the guidelines presented in Table 2, and the annotated datasets

available on GitHub.

The labelling process confirms seven situations in which we

think an intervention is desirable. Six events are remedial: three

address errors introduced in the code (compiler error, semantic

error and logical error) and three address high-level design issues

(deviation from assignment, trial-and-error, hint request). The last

event, subgoal completion, provides positive feedback.

If a student develops a solution by adding correct code line by

line and self-correcting minor issues, then they will only receive

positive feedback.

In the first three events (i.e. compiler error, semantic error, and

logical error), we delay intervention to provide a student an oppor-

tunity to fix the errors without. For example, we only intervene in

case a compiler error is repeated.

However, there are two specific events in which we intervene

immediately: (1) when a semantic error is entered, and (2) when

code edits clearly deviate from the task. Two examples of the lat-

ter behaviour are changing the function header (e.g. adding extra

function parameters) and hard coding the answer.

While labelling the logs, we observed two behaviours at which

we think we should not intervene: exploration (or productive tin-

kering [17]) and print debugging.

While exploring, it may appear that a student does not have a

particular goal in mind; this can be an intentional behaviour to

understand how a new construct or statement works or to try to

build code by tinkering. Note that if tinkering does not eventually

result in progress towards a goal, it will trigger an intervention.

When print debugging, a student adds unnecessary print state-

ments to the code, followed by performing a user-action. Print

debugging differs from tinkering in that a student does not try to

construct code by trial and error, but investigates what the current

code is doing. Again, no intervention is needed unless the print

statements are not commented out when the student completes the

subgoal.

5.1.3 Challenges and Reflections. Experts sometimes labelled

the data differently. In this subsection, we discuss sources for these

labelling conflicts, including examples. In addition, we reflect on

useful log information that helped to define when to intervene.

Labelling conflicts. We describe some scenarios in which we

found labelling conflicts, and we discuss how we addressed or

resolved them.

In the first scenario experts agree onwhen theywant to intervene

(for example, usage of print command instead of return), but they

choose to intervene at different code edits, either directly after the

mistake was made (see Figure 1.(a)) or after it was clear the student

is leaving the mistake by moving to another part of the solution

(as in Figure 1.(b)). This was a frequent conflict caused by different

pedagogical approaches: (a) an early intervention prevents a student

from writing unnecessary code and spending extra time on an

assignment, which may lead to student confusion and frustration,

versus (b) a delayed intervention gives a student a chance to struggle

productively [17, 18], which may improve student learning. We will

discuss how to offer some flexibility in where to intervene in 7.2.

In the second scenario, we found some initial conflicts that were

related to giving positive feedback for completed subgoals. For

example, Figure 2 shows an example of a student working on the

base case (or stopping condition) subgoal in the Fibonacci exercise.

In this case, one expert felt giving positive feedback on subgoal

completion was not required because it felt redundant, while other

ITiCSE-WGR ’22, July 8–13, 2022, Dublin, Ireland Johan Jeuring et al.

102

Figure 1: Example of a when-to-intervene conflict.

Figure 2: Example of amoment to provide positive feedback.

experts provided positive feedback only on completing the task.

This is a minor conflict, as the student has already completed the

task and hence needs no further help. However, we added in the final

guideline to provide positive feedback when completing subgoals,

which is suggested by prior work that providing positive feedback

on subgoals can improve novices engagement and performance in

programming tasks [42, 43].

A third conflict scenario is shown in Figure 3. In this case a

student has made a change in the code to avoid a stack overflow,

but the resulting code is incorrect. One expert wanted to intervene

because “the student just tries out stuff and wants feedback, but

does not know how to set the parameters of the recursive calls",

while another expert interpreted the code edit as a sign of progress,

without requiring intervention.

Figure 3: A student tests code, which results in a stack over-

flow, and then removes the incorrect call.

The fourth and last conflict scenario was when a student asked

for a hint. One expert coded it as "no intervention" - as the sys-

tem already has a hint mechanism in place and would provide a

hint. However, other experts considered giving a hint as part of

the intervention. Thus, we included hint guidelines to reflect this

agreement.

Reflections on the components of the data. The core contents of the

data are the edit steps students take towards solving a programming

task. But besides these steps, we also found that timestamps and

user-actions with their associated feedback results given by the

system in which the data was collected are very informative when

deciding about when to intervene.

Timing information (timestamps or other time references) in

student log items provides experts a better picture of the student’s

current problem solving status. For example, two quick edits could

be a sign of tinkering while the same edits made in a longer time

span could be indicative of struggle.

Furthermore, some datasets recorded user-actions but did not

include the feedback given to the student by the compiler or in-

terpreter. Limited or no feedback information impacts “when to

intervene" in two ways: (1) when a student performs a user-action

that leads to an error message of the system, but the log data does

not include this error message, it is hard to decide for an expert

whether the error message is unclear and an intervention is needed;

(2) when code compiles and runs, a student may receive feedback

from the system on failing test cases; the annotator should not

provide redundant information, and may use this feedback to de-

termine if the next step is reasonable.

Concluding, although it is possible to intervene without either

timestamps or user-actions, their inclusion facilitates a more in-

formed intervention.

5.2 How to intervene

Intervention messages need to be specific, succinct, and phrased

in terms familiar and relevant to the student population [21, 45].

However, since we do not know the students from whom the data

was collected, we cannot provide specific messages; instead, we

give well-defined suggestions for how to intervene, and leave the

construction of specific messages (for example, the explanation for

a semantic error) to those implementing the guidelines in a real

situation. We describe the method to develop and refine the “how to

intervene” guidelines, and discuss challenges found in this process.

5.2.1 Method. The methodology we use to develop guidelines

for how to intervene is similar to the one presented in section 5.1.1,

following the same rounds. Since “how to intervene” depends on the

momentswhere experts decide to intervene, we decided to construct

guidelines for “how to intervene” for each situation in the “when

to intervene” guidelines. The same experts who labeled each round

in the “when to intervene” methods, also labeled the data with the

“how to intervene” guidelines. Note that this methodology is similar

to the two-step process that we conducted above (Section 5.1.1).

In Round 1, experts tagged data from 6 students solving the

Factorial programming assignment from the CodingBat dataset.

The experts labeled 24 entries out of 120 in the 6 files, where these

entries represent the moments the expert decided to intervene.

For this round, the result of the inter-rater reliability test is 0.545,

showing a moderate agreement. The experts then discussed the

resulting annotations to come to consensus on how they wished to

intervene.

Towards Giving Timely Formative Feedback and Hints to Novice Programmers ITiCSE-WGR ’22, July 8–13, 2022, Dublin, Ireland

103

This level of agreement is the result of variations in the strategies

employed by the experts. For example, one expert might prefer to

provide a hint where another prefers to instruct a student on the

underlying problem. In essence, the experts varied in the amount

and directness of the assistance they wished to provide. In addition,

we identified three other factors that affected our experts’ decisions

on “how to intervene”: (1) the type of messages provided by the

compiler of the programming environment, (2) characteristics of

the target audience, and (3) the resources available to the students

from the problem itself. For example, one expert knew that the

programming environment used for a particular dataset provided

feedback on syntax errors – but did not provide useful feedback at

compilation. Their feedback focused on supplementing information

available in the environment.

Because of the impact of these classroom-related factors and

to ensure a higher quality of data labeling, the experts decided to

continue labeling the remaining data together. Whenever a conflict

occurred, the experts discussed it until they reached consensus.

5.2.2 Results. In this section, we answer the second part of RQ1:

“How should we annotate datasets consisting of steps students take

towards solving a programming task with information about how
to give feedback and hints”. The answer to this question consists

of the guidelines presented in the last column of Table 2, and the

annotated datasets available on GitHub.

As mentioned in the previous section, different experts inter-

preted the intentions and problems of students as exhibited in the

student logs in different ways, and had different pedagogical prac-

tices. As a consequence, there was more variation in how experts

annotate how to intervene than in when to intervene.

The amount of information provided or withheld in an interven-

tion message is a well-known assistance dilemma [46]. For events

that require immediate intervention, the response should provide

detailed information: on a semantic error we should provide the

location of the error and an explanation about how to fix it. For

deviation from specification we should remind a student of the ex-

pected outcomes. For other events, experts differ in the granularity

of their advice. Some experts favor high-level (i.e. less granular)

suggestions about the task’s subgoals, while others prefer more

granular advice, such as a specific hint on the next step towards a

subgoal. Our guidelines are flexible in this regard.

Furthermore, when looking at how to proceed at an intervention

point, all experts agree on the importance of knowing the student’s

intent (e.g., asking whether we could provide a specific next-step

hint without knowing exactly what the student was intending to

write). As intent is sometimes implicit, a human tutor will often

open a dialog with the student by asking a question about their

intention. We suggest to follow this approach when intention is

implicit or hard-to-guess. For example at a trial-and-error event,

as shown in Table 2, the experts decided to use multiple choice

questions (MCQs) to ask students about their intent, before giving

a hint.

In situations where a student may receive feedback from the

learning environment (such as compiler errors, or semantic errors),

the experts agreed on providing intervention messages that encour-

age the student to compile or to pay attention to the information

in the editor. However, in cases where a student did so but their

error persisted, the experts agreed on the necessity of providing

an alternate explanation or more informative support. This can be

similar to the enhanced compiler messages suggested by Becker et

al. [6, 7].

Note that the only intervention event triggered by students is

Hint or Feedback request. If such a request is adequately dealt with

by the environment in which the data is collected, then we do not

need to do anything. Otherwise, there presumably is a problem in

the student solution, which will be an instance of one of the other

intervention events.

The response for positive feedback is simple - report which

subgoal is completed. When implemented, the message may add

words of encouragement or may indicate how many subgoals are

left, as suggested by prior work [21, 42].

5.2.3 Challenges. We found two sources of labelling conflicts

in the "how to intervene" phase. First, experts sometimes disagree

on how to interpret particular edit steps or actions, and as a result,

disagree onwhat response is appropriate at a particular location. For

example, one student rapidly deleted and retyped several reserved

words in the language. In one interpretation the student is exploring

different options, in which case the student might benefit from

a reminder of which subgoal might be attempted first. Another

interpretation is that the student is unsure how to implement a

particular subgoal, in which case an expert could either let them

continue to further explore or nudge them towards a solution.

The second labelling conflict is found in the expert responses

to repeated mistakes. The initial guidelines only required to use

recent steps, as this simplifies the process by not keeping previous

feedback history. This means that when a student makes the same

mistake twice, the response will be exactly the same the second time.

We propose to deal with repeated mistakes in two possible ways: (1)

ignore the same mistake and do not intervene or (2) intervene by

providing additional information. For example, if an expert decides

to intervene the second time the student makes the same mistake,

then consider providing an example or more specific guidance

instead of just the (apparently ineffective) feedback message. A

similar scenario occurs when a student repeatedly ask for hints.

In this case, we may change the response into a dialog, such as in

the trial-and-error event, to understand the student’s intent, and

provide them with the kind of feedback or hint they expect.

6 EVALUATING LEARNING ENVIRONMENTS

In this final part of the study, we focus on programming learning en-

vironments, investigating how they support the steps that students

take towards solving a programming problem. We also investigate

to what extent expert hints and feedback align with the feedback

delivered by learning environments.

6.1 Method

We have selected a number of programming learning environ-

ments, categorized the feedback they provide, and attempted to

replay sessions from the student datasets to learn how they would

be supported. This section elaborates on the selection process

(Section 6.1.1) and the coding of the learning environments (Sec-

tion 6.1.2).

ITiCSE-WGR ’22, July 8–13, 2022, Dublin, Ireland Johan Jeuring et al.

104

Table 4: Classification of feedback for programming.

Label Description

Simple feedback

KP Knowledge of performance

KR Knowledge of result/response

KCR Knowledge of the correct results

Elaborated feedback

KTC Knowledge about task constraints

TR Hints on task requirements

TPR Hints on task-processing rules

KC Knowledge about concepts

EXP Explanations on subject matter

EXA Examples illustrating concepts

KM Knowledge about mistakes

(basic or detailed)

TF Test failures

CE Compiler errors

SE Solution errors

SI Style issues

PI Performance issues

KH Knowledge about how to proceed

EC Bug-related hints for error correction

TPS Task-processing steps

IM Improvement hints

KMC Knowledge about meta-cognition

6.1.1 Selection of programming learning environments. We in-

vestigated a number of popular and well-known digital program-

ming learning environments (also referred to as ‘systems’ or ‘tools’)

found online and in the literature. We identified these systems by

a literature study of programming tool reviews (see Section 2.2),

by searching for online systems on Google, and by collecting a

list of systems from ourselves and colleagues. We do not aim for a

complete list, but strive to give a broad overview of current systems.

We set the following inclusion criteria that a learning environment

should adhere to:

General The environment should be specific for learning pro-

gramming. It should support a textual programming lan-

guage, because the programs in our currently annotated

datasets are also textual. The interface of the system should

be available in a language spoken by the researchers.

Features The system should support the following features:

● The student can enter pieces of code, such as a snippet,

method, or class.

● The system can analyze and provide feedback on the code

the student has written. For example, there may be a but-

ton to ask for feedback, or the systemmay deliver feedback

at certain times.

Availability The system should be accessible for downloading

or running it online.

Relevancy We investigate only systems we can currently ac-

cess online, or systems from the last 10 years based on the

latest publication of a paper and/or the software.

6.1.2 Data coding. For each system, we collected information

on the supported exercises, the type of feedback, and the timing of

the feedback it provides. Below we explain this in more detail.

Exercises. We require that students can enter code in some editor.

In the datasets students work on specific tasks, but because we

could not find many accessible systems supporting tasks, we have

also included more open-ended exercise types. We distinguish the

following types:

● Tasks. The student has to solve a specific task that is specified

in the system.

● Examples. The system provides example code that can be

executed and modified.

Feedback type. Narciss [48] proposed a classification of the con-

tents of feedback for computer-based learning environments, in

which several instructional aspects (i.e., task rules, errors, and pro-

cedural knowledge) are considered. This classification has been

extended for the programming domain by Keuning et al. [31] and

has been applied to over 100 programming tools. We use this classifi-

cation, extended with Narciss’ simple feedback components. Table 4

shows the labels used and their short description. Below we de-

scribe in more detail the labels from the classification that we found

in the systems from this study (taken and adapted from Keuning

et al.).

Narciss describes three simple feedback components: ‘Knowl-

edge of performance’ (KP), ‘Knowledge of result/response’ (KR),

and ‘knowledge of the correct results’ (KCR). We do not consider

‘Knowledge of performance’ (KP), because this performance level

feedback is on a sequence of tasks, while we focus on individual

tasks. We include ‘Knowledge of result/response’ (KR), which con-

veys whether a solution is correct or incorrect. In the context of

programming, a correct solution may (1) pass all test cases, (2) be

equal to or similar to a model solution, (3) satisfy a number of con-

straints, or a combination of the preceding. In addition, we consider

‘knowledge of the correct results’ (KCR), which is a description or

indication of a correct solution.

The next main types are elaborated feedback components. Each

type addresses an element of the instructional context.

Feedback with ‘knowledge about task constraints’ (KTC) focuses

on the task itself, and has the following subtypes:

● Hints on task requirements (TR). Examples are messages

indicting to use a particular language construct, or not to

use library methods.

● Hints on task-processing rules (TPR). These static hints pro-

vide some general help on how to approach the exercise, not

taking the student’s current solution into account.

For ‘knowledge about concepts (KC)’ two subtypes are distinguished.

We only foundmessageswith ‘examples illustrating concepts’ (EXA).

‘Knowledge about mistakes (KM)’ is the category found in most

tools in Keuning et al.’s study [31]. KM messages have a type and a

level of detail: basic (such as a numerical value, location, or short

identifier, denoted by �) or detailed (a more elaborate description,

denoted by �). In this study we also distinguish ‘enhanced feedback’
(☀) as a level, indicating that a standard compiler/tool message has

been converted to a more informative, student-friendly message.

There are five different subtypes for KM messages:

Towards Giving Timely Formative Feedback and Hints to Novice Programmers ITiCSE-WGR ’22, July 8–13, 2022, Dublin, Ireland

105

● Test failures (TF). Many tools run test cases on student pro-

grams, presenting their results to students.

● Compiler errors (CE). These messages can point to syntax

errors or semantic errors, and are not specific for an exercise.

● Solution errors (SE).

This type of feedback deals with programs showing incorrect

behaviour for a particular exercise. Examples are runtime

errors, or logic errors (e.g. a loop that is executed one time

more or less than expected).

● Style issues (SI). These issues do not affect the functionality

of a program; however, many teachers consider learning a

good programming style important for novice programmers.

For example: formatting and documentation issues, struc-

tural issues, and problems with algorithm implementations.

● Performance issues (PI). This type could indicate a problem

with the execution time of a program, or using too many

resources.

Feed-forward messages contain ‘knowledge about how to proceed’

(KH). In this study we identified two of three types:

● Bug-related hints for error correction (EC). These messages

clearly focuses on what the student should do to correct an

error.

● Task-processing steps (TPS). These are next-step hints that

should bring the student closer to a solution.

Feedback timing. The feedback given can be provided on demand

or can be provided automatically by the system [48, 49]. We dis-

tinguish the various events from Table 7 as a possible trigger for a

certain type of feedback.

Process. This part of the study was conducted by three authors.

These authors each studied multiple systems and performed the

initial coding. This coding was then checked by one of the other

two authors, until an agreement on the coding was reached. For

some systems, the second checker was an author of the system

we had contacted (and not a member of this working group). In

addition, we replayed a number of student sessions taken from the

data sets and compared the system’s feedback at the intervention

points. Finally, we explored to what extent we could implement the

expert’s feedback into one of the systems.

6.2 Results

In this section we answer RQ2 by showing the results of analysing

automated feedback in several programming learning environ-

ments, and relating that feedback to the expert-authored feedback.

We have selected 18 programming learning environments for anal-

ysis. We show an overview of their characteristics in Table 5. From

now on, we refer to each system by their name in smallcaps. We

distinguish several types of systems, of which the first two types

were taken from Kim and Ko [35].

Interactive tutorials Defined as systems that “require learn-

ers to interact with command window, text editor, or equiv-

alent in order to pass successive stages.” Examples from this

study include DataCamp, Codecademy, and Khan acad-

emy.

Web references These systems “play the role of a ‘dictionary.’

Tutorials under this genre ... help learners properly code

against a library, API, or platform. Some web references

... provide code editors or command windows for learners

who might want extra practice for reference code.” Examples

include W3Schools and LearnPython.

Coding practice systems These systems offer a large set of

programming exercises, often at various levels, to practice

programming. Similar systems are sometimes called online

judges, or drill-and-practice systems. Examples are Code-

Wars and Kattis.

Automated assessment (AA) systems These systems focus

on large scale assessment of programming submissions. This

assessment is often summative (used for grading), but can

also provide formative feedback to help students improve

their submissions. Examples are JACK and GATE.

Another type of system we expected to find is the Intelligent Tu-

toring System (ITS). These systems help students solving problems

step by step with feedback and hints. Although there are several

ITSs for programming [14], we did not find any such systems easily

available.

Table 6 shows the characteristics of the feedback the systems

provide. Only JACK had been classified before [31]; which we have

redone here based on the latest version and by testing the actual

system as opposed to deriving information from publications. In

the remainder of this section, we describe a number of systems

in more detail, as well as the results of replaying student sessions

from the datasets.

6.2.1 Overview of Feedback in Learning Environments. In this

section we present the learning environments with the most distin-

guishing features in terms of feedback and hints.

Codewars. Codewars is an online system for practicing and

improving programming skills in a large number of programming

languages. Programming challenges are offered by a big community

and provide test-based feedback and the opportunity to compare

own solutions with solutions from other (e.g. more experienced)

programmers. The tasks are divided into different levels of difficulty

and topics and allow the learner to practice specific topic areas. The

quality and scope of the feedback depends on the unit-tests pro-

vided by the task creator. The feedback provided automatically by

the system is KM-CE after clicking on a test button (run code). The

same event gives information about the results of the public tests

(KM-TF-d), if they were provided by the task creator. In addition to

the event Test, there is a possibility to Submit the solution. If Secret

Tests have been provided, the learner will receive information about

the results of these tests (KM-TF-d). The system itself does not gen-

erate additional feedback, however it is possible for the learner to

receive additional feedback through community discussions about

the tasks and code comparison. Codewars relies heavily on gamifi-

cation. Each successfully completed code challenge increases the

experience points of the user’s profile, which are associated with a

certain skill level. This public information provides guidance for

other programmers when comparing code. A special feature of the

platform is that after successfully solving programming tasks, the

learner can see the code of all other members for this task (i.e., re-

ceive KCR feedback) and compare it with his own or get inspiration

for more efficient or smarter solution approaches.

ITiCSE-WGR ’22, July 8–13, 2022, Dublin, Ireland Johan Jeuring et al.

106

Table 5: General characteristics of learning environments.

Name Type URL Languages

Codewars Coding practice codewars.com > 20

Codecademy Interactive tutorial codecademy.com ~15

Coderbyte Coding practice coderbyte.com ~10

CodingBat Coding practice codingbat.com Java, Python

DataCamp Interactive tutorial datacamp.com Python, R

FITech 101 Coding practice fitech101.aalto.fi Dart

FreeCodeCamp Interactive tutorial freecodecamp.org JavaScript

Funprogramming Web reference funprogramming.org Processing

GATE [65] Automated assessment gate.ifi.lmu.de Java

HackInScience Coding practice hackinscience.org Python

JACK [67] Automated assessment jack3-alpha.paluno.uni-due.de/demo/ Multiple

Kaggle Coding practice kaggle.com/learn Python

Kattis Coding practice open.kattis.com/problems 22

Khan Academy Interactive Tutorial khanacademy.org/computing JavaScript

LearnJS/Java/C Web reference learn-js.org JS, Java, C

LearnPython Web reference learnpython.org Python

Python Tutor [24] Visualisation tool pythontutor.com Java, Python, JS, C, C++

W3Schools Web reference w3schools.com Python, JS, Java, C++, and more

Codecademy. Codecademy is an online platform that offers cod-

ing classes for beginners and advanced programmers. The learning

environment is based on a modular system where small learning

units are combined to Skill Paths. If a learner finishes one of those

units, multiple Skill Paths will be updated. The learning units are

already divided into sub-goals, which must be worked through in

a given sequence. Besides KR and KCR, a static hint is provided

for each subgoal (KTC-TPR). When pushing the Run Button the

system provides full compiler messages (if the submitted code has

compile errors) (KM-CE R-d) and some additional hints on task

processing rules (KTC-TPR) which are static and do not depend on

the code of the learner. For each task it is possible to ask for a full

solution and show the differences between the written code and the

expected solution (see Figure 4). Since this is not only a comparison

of the solution and the submitted code, but the differences were

also highlighted by visual feedback, we have classified this as basic

KM-SE.

Figure 4: Screenshot of the Compare Solution Feature in

Codecademy.

.

CodingBat. Codingbat is an online coding practice system. It

offers several programming problems to solve in Java or Python,

in various categories and levels, typically by writing one method.

When clicking on the ‘go’ button, several public and hidden test

cases are run on the solution, and the results are shown to the

student (KR, KM-TF, KM-CE).

The Codingbat dataset was collected in this system. The re-

sponses from the system are also recorded in the dataset, so replay-

ing these can simply be done by inspecting the dataset. Figure 5

shows a screenshot of the feedback on a student step from the

dataset, in which a list of passed and failed test cases is shown.

Clicking on ‘show hint’ shows a predefined hint that does not take

the current code status into account, referring to subgoals of es-

tablishing a base case and adding a recursive call (KTC). However,

not all feedback types (e.g., KCR) are available for all tasks [34].

Below each task, additional material (e.g., similar, worked examples

and solutions) is available as support. However, we deliberately did

not classify this as KM-EXA, as it does not represent feedback on

actions in the learning platform.

Figure 5: Screenshot of the feedback in Codingbat.

Towards Giving Timely Formative Feedback and Hints to Novice Programmers ITiCSE-WGR ’22, July 8–13, 2022, Dublin, Ireland

107

https://www.codewars.com/
https://www.codecademy.com/
https://coderbyte.com/
https://codingbat.com/
https://www.datacamp.com/
https://fitech101.aalto.fi
https://www.freecodecamp.org
https://funprogramming.org
https://gate.ifi.lmu.de/submissionsystem/
https://www.hackinscience.org/
https://jack3-alpha.paluno.uni-due.de/demo/
https://www.kaggle.com/learn
https://open.kattis.com/problems
https://www.khanacademy.org/computing
https://www.learn-js.org/
https://www.learnpython.org/
https://pythontutor.com/
https://www.w3schools.com/

Table 6: Feedback characteristics of learning environments. The columns are described in Section 6.1.2. Table 7 shows the

legend for the other letters and symbols used. We have omitted the feedback types we did not find in tools.

Simple KTC KC KM KH

Name Exercises KR KCR TR TPR EXP EXA TF CE SE SI PI EC TPS IM

Codewars Tasks sb sl r→� r→�
Codecademy Tasks r sl h, r r→� sl→ �
Coderbyte Tasks r sl r→� r→�
CodingBat Tasks sb sl h h r→� r→�
DataCamp Tasks sb sl h r→� r, sb→� sb sb

FITech 101 Tasks sb sb→� p, r→� p→�
FreeCodeCamp Tasks r→� p→� r→�
Funprogramming Examples r→�
GATE Tasks sb sb→☀ sb→� sb→� sb→� sb→�
HackInScience Tasks sb sl sb sb→☀ sb→� sb

JACK Tasks sb sb→☀ sb→� sb→� sb→�/☀
Kaggle Tasks f+ r f+ r f+ r r→� r→�
Kattis Tasks sb→� sb→� sb→�
Khan Academy Tasks p→�, h→☀ p→� p

LearnJS/Java/C Tasks, examples r sl r→�
LearnPython Tasks, examples r sl r r→�
Python Tutor Examples r r→�
W3Schools Examples r→�

Table 7: Legend for feedback coding.

Symbol Meaning

p Code

r Run

c Compile

sb Submit

h Ask for hint

sl Ask for solution

f Function call

→ leads to

� basic feedback

� detailed feedback

☀ enhanced/extended feedback

DataCamp. DataCamp is a popular online coding tool that offers

several courses containing exercises to practice coding in Python

and R. The system provides several options for help. Hints and

solutions are limited by a points system. Correct solutions increase

the amount of points. Using a hint decreases the amount of points.

It is only possible to get a full solution if you have asked for a hint

before. Moreover, detailed KM-TF, is displayed, but it is limited to

one (the first) failed test case. The feedback is presented in two

areas: the shell and a separate frame after submitting the solution.

It is also possible to rate the helpfulness of the feedback given by

the system. Figure 6 is a screenshot of the system showing feedback

on an incorrect submission.

It was impossible to fully test our datasets because the freely

available courses inDataCamp do not deal with recursion. However,

based on the tasks examined, we conclude that the implementation

of expert feedback in this system is possible but limited to generic

hints that do no not relate to a user’s input.

Figure 6: Screenshot of the feedback in DataCamp

FITech 101. FITech 101 is an e-book course platform developed

by Aalto University. It offers a series of courses that are mainly

targeted for lifelong learners. The content is offered only in Finnish

and it covers introduction level courses for basic programming,

databases, and web and mobile development. Dart is used as the

ITiCSE-WGR ’22, July 8–13, 2022, Dublin, Ireland Johan Jeuring et al.

108

programming language, and Flutter is the framework used for mo-

bile development. Programming exercises are embedded within

the e-book materials of the courses and incorporate a customised

version (added support for entering input) of DartPad
4
. The FITech

101 dataset was collected from this platform.

Dartpad is a browser-based IDE built by the Dart tools team as

an online playground for Dart that also supports Dart for web and

Flutter programming. The Dartpad environment allows executing

Dart code directly in the browser (the Dart code is compiled to

JavaScript for browser execution) and, similar to a desktop IDE,

provides realtime feedback on syntax errors (KM-CE) and code

quality (KM-SI) such as unused variables or dead code.

Task related feedback is received by submitting an exercise so-

lution and the feedback is given by unit tests (KM-TF). Besides

the DartPad IDE for code quality feedback and unit tests for task

feedback, the learning platform provides an option to request help

via a button next to the programming environment. These help re-

quests are responded to by the course teachers within the learning

platform. Learners may view their help requests, their responses

and respond to teacher responses in a separate view in the course

platform.

GATE. GATE is a web-based, platform-independent system for

improving programming education and supporting tutors. Syntax

and functional tests, as well as special tests for UML tasks, enable

automatic correction and the provision of automated feedback. A

special feature of the system is that feedback can only be requested

in limited numbers (e.g. once). When submitting their answer, the

students can choose between (a) only submit and (b) submit with

feedback (limited to 1 request). Another special feature of the GATE

system is that it is possible to provide randomized tasks. This means

that variables can be used in tasks, which are assigned with indi-

vidual values for each student. This allows learners to discuss tasks

without having to worry about plagiarism for which the GATE

system checks by means of an automatic plagiarism checker.

JACK. JACK is an e-assessment system that provides automated

feedback to exercise solutions using different means of static and

dynamic program analysis. Besides the ability to pass all compiler

messages to the student (KM-CE) the system can execute test cases

as white-box-tests and record all steps and variable values occurred

during execution. From these data it can also detect unused code

in terms of lines of code that are not reached by any test case and

can create visualization of data structures. The system can execute

teacher-defined test cases and provide both arbitrary feedback on

test results and generic feedback on Java runtime exceptions (KM-

TF). It can perform teacher-defined rule-based checks on the syntax

graph of a solution and provide feedback on unwanted or missing

code structures (KTC-TR, KM-SI). Static checks are formulated

using the GReQL query language, which is based on the GRAL

graph specification language. Learners can ask for hints, but they

are predefined and not based on the actual state of the code (KTC-

TPR)[67].

Kaggle. While in most of the learning environments studied by

the working group hints, solutions and test results were provided

via buttons, in Kaggle they have to be requested via a function call

4

https://dart.dev/tools/dartpad

(see Figure 7). If a learner wants a hint for the task q3 they have to

call the hint-function (q3.hint()). These functions print a simple

static message. If there are unit-tests provided, then their results

can be checked via qr.check(). When a student is stuck, or wants

to compare their solution against a good solution, they can call the

function q3.solution() to receive this information.

Figure 7: Screenshot of Kaggle.

Khan academy. Khan academy is a learning platform that offers

courses on a range of subjects, such as maths, economics, arts and

humanities. For the subject of computer science a JavaScript course

is available containing programming exercises on drawing and

moving objects. Usually the student needs to expand starter code to

achieve a certain goal. What stands out in this system is the timing

of the feedback. Right after typing something incorrect, a green

blob character, shown below the editor, responds with ‘hmm. . . ’

(shown in Figure 8). Clicking on it leads to enhanced compiler

error messages (KM-CE-e) and by clicking on ‘show me where’ the

location (line) is highlighted in the editor (KM-CE-b). The system

is also able to give more detailed feedback on specific errors in the

student solution.

Figure 8: Screenshot of the feedback in Khan Academy.

Python Tutor. The Python Tutor by Philip Guo [24] is an online

system that focuses on visualizing code. Students can write code in

several languages or select a program from a list of examples. The

system gives standard compiler error messages (KM-CE) when the

user presses “visualize execution.” When the program compiles, the

user can execute it step by step. We classified this feedback as KC-

EXA, ‘examples illustrating concepts’. Although slightly different,

it can prove to be a valuable support in understanding a program

and identifying problems to fix.

Towards Giving Timely Formative Feedback and Hints to Novice Programmers ITiCSE-WGR ’22, July 8–13, 2022, Dublin, Ireland

109

We used a session from the Codingbat dataset for the Factorial

exercise to replay in this system. A screenshot from the replay

is shown in Figure 9. First, a class and main method need to be

written, and the method needs to be called. The first snapshot

that can be compiled can be stepped through. The student would

see that the return value remains 1. In a subsequent snapshot the

student extends the code with another recursive call, leading to 48

steps instead of 16 for factorial(3). When stepping through, it is

shown that the step limit has been reached by calls with a negative

parameter. The student then goes back to the previous state and

later adds the correct calculation, showing the correct execution.

Figure 9: Screenshot of the visualisation in PythonTutor.

6.2.2 Human-authored vs Automated Feedback. In the following,
we illustrate how some of the examined systems differ from the

experts’ consensus and guidelines on when and how to intervene.

From inspecting the annotated datasets, we can conclude that dif-

ferent experts choose (based on clues like previous behaviour, code

state, or timestamps) to give feedback at different locations in/-

times during the programming process. This does not match with

how learning environments provide feedback; these environments

mostly leave it to the learner to perform an action (run, compile,

or a hint button), after which feedback or a hint is shown. When

students exhibit hint-avoiding behaviour, they are not helped in any

way by the system. We propose that learning environments con-

sider our guidelines for giving timely feedback, taking into account

the previous actions of the student.

The experts’ suggestion when and how to intervene in the

CodingBat dataset related, for example, to positive feedback on the

reached subgoals, such as writing the base case(s) with a viable if

and return statement. Moreover, experts would intervene as soon as

students falsify their code (e.g., B02, Fibonacci task), and when they

change the given, correct code (e.g., B03, Fibonacci task). Experts

further agree to intervene when observing tinkering behavior or

continuous try-and-error submissions without a concept (e.g., B03,

Fibonacci). In this context, experts suggest additional feedback ad-

dressing students’ motivation to avoid dropouts. After long pauses

without a student input, experts further suggest a question like “Do

you need help?” (e.g., B05, Fibonacci). Codingbat, however, neither

intervenes, nor does it offer these types of feedback. It thus com-

pletely relies on students requesting feedback. The only positive

feedback provided by CodingBat refers to the positive output of

the unit tests. In contrast to that, experts would combine correct

unit test results with hints, as students do not seem to fully un-

derstand the display of the unit test results (e.g., A01, factorial).

Similarly, experts would paraphrase and enhance compiler mes-

sages to (e.g., A05, factorial), but they have different views on how

much assistance they want to provide.

In the FITech dataset, experts intervened early on when students
were merely working towards the test cases and not aiming for

a universally applicable solution. They pointed out that there are

also hidden test cases and that a solution that only addresses the

public test cases would not be effective. However, in some cases it

is questionable whether it is really coding to the test or if a special

case is used in a first step to build up the code structure and then

adapt the algorithm in a second step. It also happened that learners

deleted the main() method at the beginning, making any feedback

in the FITech system impossible. The experts pointed this out with

a short feedback message, but were still able to provide further

feedback on the method to be written, which was no longer pos-

sible for the system. While the system only provides the compiler

message pointing out a missing return statement, the experts used

targeted feedback to draw attention to the difference between a

print statement and a return statement.

6.2.3 Implementing the Experts’ Feedback. The working group

investigated the extent to which the guidelines developed by the

experts (see Table 2) can be implemented in the learning platforms

and what problems arise in making expert feedback available in

an automated manner. Most of the learning environments listed

in Table 5 have predefined sequences of tasks including feedback

and do not allow adding own tasks to the system or implementing

extra feedback. This was only possible for us in codewars, FItech,

GATE and JACK. Among the systems studied, the JACK system

was the most suitable for this exploration because it offers many

different ways to generate feedback. Moreover, it was the most

accessible due to a close exchange with the developer. For the

exploration, the programming task "Fibonacci" from the codingbat

dataset was recreated in the JACK System so that the original

feedback (unit tests and compiler messages) would be identical to

the feedback messages in the dataset. Subsequently, the annotated

expert feedback from the datasets was mapped to the systems’

feedback options based on the elaborated feedback rules (see Table

2).

When implementing the feedback, the following two limitations

were noted. First, the dynamic and static checks used to provide

automated feedback only run when the code can be compiled with-

out any errors. Thus, it must first always be ensured that there are

no syntactic errors in the solution. However, in a context of teach-

ing novice programmers, it is sometimes better to ignore syntax

errors in a first step and address e.g. an critical logical error with

valuable feedback first. The second limitation is the timing of the

feedback. The experts guidelines in Table 2 when to intervene refer

to the amount of compilation where the error goes unaddressed.

Since JACK, like many e-assessment systems, is based on solution

submission, no information is available to the system about how

many times the code was compiled between two submissions.

ITiCSE-WGR ’22, July 8–13, 2022, Dublin, Ireland Johan Jeuring et al.

110

Besides these limitations, it was possible to implement the expert

feedback into the system. Figure 10 shows two of the GReQL rule

sets (static code checks) which we have entered into the JACK

system as part of the working group. The first rule checks whether

recursion (as a requirement of the task) is used in the submitted

answer. The second rule checks if there are print statements in the

response and indicates that values must be returned and not output

to the console. Similarly, other rules could be written which, for

example, check whether a base case is in the solution and then give

positive feedback.

Figure 10: Static code checks in the JACK System using

GReQL.

7 DISCUSSION

7.1 Datasets

We found five datasets with the desired characteristics. The datasets

use multiple programming languages, and have varying levels of

granularity. It was surprisingly hard to find such datasets. Datasets

mentioned in previous work were either not available anymore,

like the code.org dataset, or unsuitable for various reasons.

We discarded multiple datasets because the level of granular-

ity was too high. For example, the submission data from the 2nd-

CSEDM data challenge
5
, available on DataShop, does not give us

enough information at the desired level of detail about the progress

of students.

Another common problem is that we cannot find the problem

descriptions for the tasks students worked on, which makes it hard

to for example give hints. For this reason we did not include the

BlackBox [10] dataset.

The ITAP dataset (‘ICER - All Attempts - All Steps - ITAP Goal’),

available on DataShop, contains sequences of steps of students

programming in the ITAP learning environment for programming

in Python [56]. The dataset contains a bit more than 25,000 steps,

from interactionswith 89 students. This is an interesting dataset, but

5

https://sites.google.com/ncsu.edu/csedm-dc-2021/home

we discarded it because we could not determine complete sequences

of students from starting to work on a solution to completing it.

7.2 Interventions

In this paper, we designed interventions from a human expert

perspective. The experts aimed to develop feasible intervention

guidelines, when and how, by setting simple rules while also trying

to provide as much meaningful feedback as possible. As expected,

it is a significant challenge to design such a system.

All our experts (authors of this paper) have extensive program-

ming experience over many years with several languages. They

all have taught programming to novice students but they vary in

their pedagogical experience. They often chose to provide feed-

back at different locations/times (e.g., when the student paused

versus immediately), at different levels of specificity (e.g., about a

particular line versus about a concept), and using different tone

and language (e.g., recommendations, requests, reflection prompts).

These variations in feedback are artifacts of differences in peda-

gogical philosophy and/or differing assumptions about the context

of the learning and are not unlike the differences between experts

reported by Dong et al. [18] such as disagreeing on “which issue

to fix first”. Most differences were attributed to “preferences in

tutoring style” [18].

For a number of datasets we have little knowledge about the

context in which the data was collected. Besides the task prompts,

the context and the sub-goals that are relevant for the task are very

useful for providing feedback. While knowledge about the students

could be derived from earlier data, experts typically only get to

consider a student’s ability at the moment they look at particular

steps.

The guidelines tend to delay intervention (except when a hint

is explicitly requested) but allow for flexibility on how long to

wait. Most interventions are triggered by identified struggles, such

as when a student is struggling to complete a subgoal. However,

positive feedback was provided when a subgoal is completed (i.e.

when an achievement takes place). Positive feedback plays two roles:

it provides encouragement to a student, and it helps students that

are unsure about their work, and reduces the chance that they undo

correct steps [16, 42]. Furthermore, positive feedback enhances

self-efficacy [59], although he also noted that “this increase will be

temporary if subsequent efforts turn out poorly".

Immediate and extensive feedback is not always the best way

to learn. According to Bjork et al. [8] desirable difficulties, such as

delayed feedback, may lead to better learning.

Our guidelines give students a chance to process the system’s

feedback on their own, to learn how to deal with syntax and logical

errors, for example. When they fail to do so, the feedback from

the system (as a result from a run-action) should not be duplicated

but complemented. To be able to do this, datasets should log the

feedback from the system given to the students.

The annotater variation in intervention locations/times is an op-

portunity, both for researchers who can directly compare different

intervention points and methods, and for tool developers, who have

flexibility in implementing “human-like” feedback. We urge further

work in this area to help guide tool designers to providing effective

methods for feedback.

Towards Giving Timely Formative Feedback and Hints to Novice Programmers ITiCSE-WGR ’22, July 8–13, 2022, Dublin, Ireland

111

https://sites.google.com/ncsu.edu/csedm-dc-2021/home

7.3 Learning environments

Research vs practice. In our literature study, we found several

systems that are considered Intelligent Tutoring systems. However,

none of these systems could be easily reviewed in practice. In the

reviews (e.g., [31]) we found many examples of feedback aimed at

identifying logical errors and providing hints on how to correct

them, usually by employing static analysis methods. However, in

practice, we see only a few systems that actually integrated this

type of feedback. Also, we observe that only a few systems provide

feedback on code style and quality.

Finally, studies have shown that binary (correct/incorrect) feed-

back is not very effective or could even have an adverse effect [25,

38]. We note that most systems we investigated go slightly beyond

simple binary feedback, but there is still room for improvement.

Accessibility. We are aware of but did not review several systems

that support students taking steps towards a solution by providing

hint and feedback on steps. We were unable to include them in

this study, because they were not (easily) accessible to us. For in-

stance, ITAP
6
uses data-driven hints and is available on GitHub, but

has no instructions on how to deploy it. The CloudCoder project
7

ended in early 2022. In fact, although several papers refer to public

repositories, demoing or deploying such systems is challenging. In

addition, the corresponding systems found in the literature studies

were too old or did not provide a link to download or access the

system. These problems have been raised by other researchers, and

we found this was still the case. For example, another 2022 working

group studies problems related to the accessibility, discoverability,

and dissemination of various tools [9].

A second issue when evaluating learning environments is related

to the types of exercises that are (not) offered. Students often work

on specific tasks to practice programming, and our datasets contain

student steps for solving specific tasks. Ideally, we would like to

investigate all of the programming tools using the same task – to

be able to add the tasks from our dataset. However, we found that

this was not trivial: very few tools made access as a problem author

easy.

Feedback. Several well-known and widely used systems provide

limited feedback to students. For example, the web referenceW3-

schools has the option to try out code snippets and provides a

console with extended compiler messages and backtraces. This

kind of feedback might be discouraging and difficult to interpret for

novices learning to program. We refer to the extensive research on

compiler error messages for an in-depth analysis (see e.g., Becker

et al. [5]).

In many systems, hints and a solution are readily available to

students. We have also noticed an increase in the introduction of

credit systems: in DataCamp every user has an amount of ‘XP’

(experience points). XPs are defined as “a way of measuring your

engagement within DataCamp. It calculates automatically based

on courses, exercises, or other content that you complete.” When

asking for a hint or solution, the user loses points. The GATE system

even allows only one request for feedback. Students must first test

their code themselves and can then request feedback once.

6

https://github.com/krivers/ITAP-django

7

http://cloudcoder.org/

The working group’s examination of learning platforms also

shows that the provided feedback is primarily focused on symp-

toms and does not focus on the cause of errors. Research shows

that students view the latter as an important criterion for valuable

feedback [40].

7.4 Threats to validity

We observe the following threats to validity related to the datasets.

First of all, the selection of datasets constitutes a limitation. As

discussed, several reasons lead to the selected datasets, as others

were not available, or did not provide the required details. How-

ever, more data would certainly increase validity. Second, although

experts’ ratings were confirmed and evaluated by other coders in

terms of intercoder-reliability, the annotated datasets exhibit the

biases of our experts. Third, the exercises in the annotated datasets

were small and relatively simple. We expect annotating student

steps to be more difficult and perhaps less reliable when exercise

difficulty increases.

Another aspect is that only a few student submissions per prob-

lem have been analyzed due to the extensive effort required for

qualitative analysis. More comparable student data for the same

tasks/problems would help increase the results’ validity. This chal-

lenge is reflected in the wide range of learning environments, which

do not all offer the same tasks/problems, or even type of practice.

Moreover, the access to learning environments was in many cases

restricted, preventing us from reviewing more systems and corre-

sponding feedback.

For some of the datasets, we do not have the complete knowledge

about the context in which the data was collected. For instance, the

Codingbat dataset was recorded in a usability laboratory and others

were not, so the impact of such conditions had to be ignored in this

study. Therefore, while our expert-annotated datasets represent

our best effort by our panel of experts, we would not want to call

these datasets ‘Golden Datasets’.

8 CONCLUSIONS AND FUTUREWORK

This section revisits and answers the research questions formulated

in the introduction, and describes future work.

RQ1 How should we annotate datasets consisting of steps stu-

dents take towards solving a programming task with infor-

mation about when and how to give feedback and hints?

To answer this question, we first looked for datasets with fine-

grained steps, that is, datasets that have steps denoting progress

towards final submissions. In the process, we identified several

of these datasets of different granularities. The finest granularity

was that of keystroke level, which we found too fine-grained for

annotating steps manually. For this reason, we converted keystroke

level steps into token level steps, using a tool developed as part

of this work (see Subsection 4.3). Besides keystroke level data, we

also found datasets with steps at pause level, token
+
level, and

block-edit level (in block-based languages) granularity.

Based on the literature and experts’ recommendations, we de-

signed guidelines for when to give feedback and hints, and how to

do that. We used these guidelines to annotate several sequences of

student steps from several datasets. In most cases, the different an-

notators reached a reasonable agreement on the annotations of the

ITiCSE-WGR ’22, July 8–13, 2022, Dublin, Ireland Johan Jeuring et al.

112

https://github.com/krivers/ITAP-django
http://cloudcoder.org/

dataset. The annotated datasets have been made publicly available,

together with a tool for browsing through the datasets more easily.

RQ2 How does expert feedback relate to the feedback found in

learning environments for programming?

We analysed multiple recent learning environments and cat-

egorised them by the types of feedback they provide and when

they provide the feedback. We then compared the feedback in the

annotated datasets against that provided by the analysed learn-

ing environments. We found that experts tend to provide timely

feedback based on student behaviour while learning environments

mostly wait for a student explicitly requesting feedback via e.g. a

hint button. Furthermore, if possible and available, experts take

context into account when constructing feedback, and try to iden-

tify the strategy of the students and possible misconceptions. We

did not find learning environments that would provide such per-

sonalised feedback. We note, however, that there was plenty of

disagreement between experts on when to intervene and also some

disagreement on how to intervene.

Future work. An important contribution of this working group is

that we found that there is still much work to be done to determine

what kind of feedback to give, how to assess the feedback given by

learning environments, and ultimately how to improve these envi-

ronments. There are several directions for future work. First, since

we think the expert-annotated datasets are a very useful resource,

we encourage researchers to annotate more data. Second, we want

to use the expert-annotated datasets to generalize how experts give

feedback and hints on steps students take when working on pro-

gramming tasks. These insights will be used to describe the design

of a system giving automated feedback on student steps. Third, we

also want to annotate steps students take when working on slightly

larger tasks. Since possibilities to go off track are larger here, we

need to think of a method to deal with this, probably involving

connecting student steps to subgoals of a task. Fourth, we want to

study what kind of feedback students expect at the various steps

they take, and how this compares against the feedback specified by

experts.

REFERENCES

[1] Haiyang Ai. 2017. Providing graduated corrective feedback in an intelligent

computer-assisted language learning environment. ReCALL 29, 3 (2017), 313–

334.

[2] Hugo Arends, Hieke Keuning, Bastiaan Heeren, and Johan Jeuring. 2017. An

intelligent tutor to learn the evaluation of microcontroller I/O programming

expressions. In Proceedings of the 17th Koli Calling International Conference on

Computing Education Research. 2–9.

[3] Hemilis Joyse Barbosa Rocha, Patrícia Cabral De Azevedo Restelli Tedesco, and

Evandro De Barros Costa. 2022. On the use of feedback in learning computer pro-

gramming by novices: a systematic literature mapping. Informatics in Education

(2022).

[4] Joseph E. Beck, Kai Min Chang, Jack Mostow, and Albert Corbett. 2008. Does

help help? Introducing the Bayesian Evaluation and Assessment Methodology.

In Proceedings of the International Conference on Intelligent Tutoring Systems.

[5] Brett A. Becker, Paul Denny, Raymond Pettit, Durell Bouchard, Dennis J. Bouvier,

Brian Harrington, Amir Kamil, Amey Karkare, Chris McDonald, Peter-Michael

Osera, Janice L. Pearce, and James Prather. 2019. Compiler Error Messages Con-

sidered Unhelpful: The Landscape of Text-Based Programming Error Message Re-

search. In Proceedings of the Working Group Reports on Innovation and Technology

in Computer Science Education (ITiCSE-WGR ’19). Association for Computing Ma-

chinery, New York, NY, USA, 177–210. https://doi.org/10.1145/3344429.3372508

[6] Brett A Becker, Graham Glanville, Ricardo Iwashima, Claire McDonnell, Kyle

Goslin, and Catherine Mooney. 2016. Effective compiler error message enhance-

ment for novice programming students. Computer Science Education 26, 2-3

(2016), 148–175.

[7] Brett A Becker, Kyle Goslin, and Graham Glanville. 2018. The effects of enhanced

compiler error messages on a syntax error debugging test. In Proceedings of the

49th ACM Technical Symposium on Computer Science Education. 640–645.

[8] Elizabeth Bjork and Robert Bjork. 2011. Making things hard on yourself, but in a

good way: Creating desirable difficulties to enhance learning. Psychology and the

Real World: Essays Illustrating Fundamental Contributions to Society 2 (01 2011),

56–64.

[9] Jeremiah Blanchard, John R Hott, Vincent Berry, Rebecca Carroll, Bob Edmison,

Richard Glassey, Oscar Karnalim, Brian Plancher, and Seán Russell. 2022. Lever-

aging Community Software in CS Education to Avoid Reinventing the Wheel.

In Proceedings of the 27th ACM Conference on on Innovation and Technology in

Computer Science Education Vol. 2. 580–581.

[10] Neil Christopher Charles Brown, Michael Kölling, Davin McCall, and Ian Utting.

2014. Blackbox: A Large Scale Repository of Novice Programmers’ Activity. In

Proceedings of the ACM Technical Symposium on Computer Science Education

(SIGCSE).

[11] Richard Catrambone. 2012. Subgoal Learning. Springer US, Boston, MA, 3230–

3233. https://doi.org/10.1007/978-1-4419-1428-6_55

[12] Anderson Pinheiro Cavalcanti, Arthur Barbosa, Ruan Carvalho, Fred Freitas, Yi-

Shan Tsai, Dragan Gašević, and Rafael Ferreira Mello. 2021. Automatic feedback

in online learning environments: A systematic literature review. Computers and

Education: Artificial Intelligence 2 (2021), 100027. https://doi.org/10.1016/j.caeai.

2021.100027

[13] Helder Correia, José Paulo Leal, and José Carlos Paiva. 2017. Enhancing Feedback

to Students in Automated Diagram Assessment. In 6th Symposium on Languages,

Applications and Technologies, SLATE 2017, June 26-27, 2017, Vila do Conde, Por-

tugal (OASICS), Vol. 56. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik.

https://doi.org/10.4230/OASIcs.SLATE.2017.11

[14] Tyne Crow, Andrew Luxton-Reilly, and Burkhard Wuensche. 2018. Intelligent

Tutoring Systems for Programming Education: A Systematic Review. In Proceed-

ings of the 20th Australasian Computing Education Conference (ACE ’18). ACM,

New York, USA, 53–62. https://doi.org/10.1145/3160489.3160492

[15] Galina Deeva, Daria Bogdanova, Estefanía Serral, Monique Snoeck, and Jochen De

Weerdt. 2021. A review of automated feedback systems for learners: Classification

framework, challenges and opportunities. Computers & Education 162 (2021),

104094. https://doi.org/10.1016/j.compedu.2020.104094

[16] Barbara Di Eugenio, Davide Fossati, Stellan Ohlsson, and David Cosejo. 2009.

Towards explaining effective tutorial dialogues. InAnnual Meeting of the Cognitive

Science Society. Citeseer, 1430–1435.

[17] Yihuan Dong, Samiha Marwan, Veronica Catete, Thomas W. Price, and Tiffany

Barnes. 2019. Defining Tinkering Behavior in Open-ended Block-based Pro-

gramming Assignments. In Proceedings of the 50th ACM Technical Symposium on

Computer Science Education. ACM, 1204–1210.

[18] Yihuan Dong, Preya Shabrina, Samiha Marwan, and Tiffany Barnes. 2021. You

Really Need Help: Exploring Expert Reasons for Intervention During Block-Based

Programming Assignments. In Proceedings of the 17th ACM Conference on Interna-

tional Computing Education Research (Icer 2021). Association for Computing Ma-

chinery, New York, NY, USA, 334–346. https://doi.org/10.1145/3446871.3469764

[19] Christopher Douce, David Livingstone, and James Orwell. 2005. Automatic test-

based assessment of programming: A review. Journal on Educational Resources in

Computing (JERIC) 5, 3 (2005), 4–es.

[20] John Edwards. 2022. 2021 CS1 Keystroke Data. https://doi.org/10.7910/DVN/

BVOF7S

[21] Davide Fossati, Barbara Di Eugenio, Stellan Ohlsson, Christopher Brown, and Lin

Chen. 2015. Data Driven Automatic Feedback Generation in the iList Intelligent

Tutoring System. Technology, Instruction, Cognition and Learning 10, 1 (2015),

5–26.

[22] Alex Gerdes, Bastiaan Heeren, Johan Jeuring, and L Thomas van Binsbergen.

2017. Ask-Elle: an adaptable programming tutor for Haskell giving automated

feedback. International Journal of Artificial Intelligence in Education 27, 1 (2017),

65–100.

[23] Andreas Giannakoulas and Stelios Xinogalos. 2020. A review of educational

games for teaching programming to primary school students. Handbook of

Research on Tools for Teaching Computational Thinking in P-12 Education (2020).

[24] Philip J Guo. 2013. Online python tutor: embeddable web-based program visual-

ization for cs education. In Proceeding of the 44th ACM technical symposium on

Computer science education. 579–584.

[25] Qiang Hao, David H Smith IV, Lu Ding, Amy Ko, Camille Ottaway, Jack Wilson,

Kai H Arakawa, Alistair Turcan, Timothy Poehlman, and Tyler Greer. 2022.

Towards understanding the effective design of automated formative feedback for

programming assignments. Computer Science Education 32, 1 (2022), 105–127.

[26] John Hattie and Helen Timperley. 2007. The Power of Feedback. Review of Edu-

cational Research 77, 1 (2007), 81–112. https://doi.org/10.3102/003465430298487

arXiv:https://doi.org/10.3102/003465430298487

[27] Petri Ihantola, Arto Vihavainen, Alireza Ahadi, Matthew Butler, Jürgen Börstler,

Stephen H. Edwards, Essi Isohanni, Ari Korhonen, Andrew Petersen, Kelly Rivers,

Towards Giving Timely Formative Feedback and Hints to Novice Programmers ITiCSE-WGR ’22, July 8–13, 2022, Dublin, Ireland

113

https://doi.org/10.1145/3344429.3372508
https://doi.org/10.1007/978-1-4419-1428-6_55
https://doi.org/10.1016/j.caeai.2021.100027
https://doi.org/10.1016/j.caeai.2021.100027
https://doi.org/10.4230/OASIcs.SLATE.2017.11
https://doi.org/10.1145/3160489.3160492
https://doi.org/10.1016/j.compedu.2020.104094
https://doi.org/10.1145/3446871.3469764
https://doi.org/10.7910/DVN/BVOF7S
https://doi.org/10.7910/DVN/BVOF7S
https://doi.org/10.3102/003465430298487
http://arxiv.org/abs/https://doi.org/10.3102/003465430298487

Miguel Ángel Rubio, Judy Sheard, Bronius Skupas, Jaime Spacco, Claudia Szabo,

and Daniel Toll. 2015. Educational Data Mining and Learning Analytics in

Programming: Literature Review and Case Studies. In Proceedings of the 2015

ITiCSE on Working Group Reports (ITICSE-WGR ’15). Association for Computing

Machinery, New York, NY, USA, 41–63. https://doi.org/10.1145/2858796.2858798

[28] Cruz Izu, Violetta Lonati, AnnaMorpurgo, andMario Sanchez. 2021. An Inventory

of Goals from CS1 Programs Processing a Data Series. In 2021 IEEE Frontiers in

Education Conference (FIE). 1–8. https://doi.org/10.1109/FIE49875.2021.9637360

[29] Cruz Izu, Amali Weerasinghe, and Cheryl Pope. 2016. A Study of Code Design

Skills in Novice Programmers Using the SOLO Taxonomy. In Proceedings of the

2016 ACM Conference on International Computing Education Research (ICER ’16).

Association for Computing Machinery, New York, NY, USA, 251–259. https:

//doi.org/10.1145/2960310.2960324

[30] Samantha Jiménez, Reyes Juárez-Ramírez, Víctor H Castillo, Guillermo Licea,

Alan Ramírez-Noriega, and Sergio Inzunza. 2018. A feedback system to provide

affective support to students. Computer Applications in Engineering Education 26,

3 (2018), 473–483.

[31] Hieke Keuning, Johan Jeuring, and BastiaanHeeren. 2018. A Systematic Literature

Review of Automated Feedback Generation for Programming Exercises. ACM

Trans. Comput. Educ. 19, 1, Article 3 (sep 2018), 43 pages. https://doi.org/10.1145/

3231711

[32] Natalie Kiesler. 2022. Dataset: Recursive problem solving in the online learn-

ing environment CodingBat by computer science students. Online. https:

//doi.org/10.21249/DZHW:studentsteps:1.0.0 Datenerhebung: 2017. Version:

1.0.0. Datenpaketzugangsweg: Download-SUF. Hannover: FDZ-DZHW. Datenku-

ratierung: İkiz-Akıncı, Dilek.

[33] Natalie Kiesler. 2022. Daten- und Methodenbericht Rekursive Problemlösung in

der Online Lernumgebung CodingBat durch Informatik-Studierende. Technical Re-

port. https://metadata.fdz.dzhw.eu/public/files/data-packages/stu-studentsteps$/

attachments/studentsteps_Data_Methods_Report_de.pdf

[34] Natalie Kiesler. 2022. An Exploratory Analysis of Feedback Types Used in Online

Coding Exercises. https://doi.org/10.48550/ARXIV.2206.03077

[35] Ada S. Kim and Amy J. Ko. 2017. A Pedagogical Analysis of Online Coding Tuto-

rials. In Proceedings of the 2017 ACM SIGCSE Technical Symposium on Computer

Science Education (SIGCSE ’17). Association for Computing Machinery, New York,

NY, USA, 321–326. https://doi.org/10.1145/3017680.3017728

[36] K.R. Koedinger, R.S.J.d. Baker, K. Cunningham, A. Skogsholm, B. Leber, and J.

Stamper. 2010. A Data Repository for the EDM community: The PSLC DataShop.

In Handbook of Educational Data Mining, C. Romero, S. Ventura, M. Pechenizkiy,

and R.S.J.d. Baker (Eds.). CRC Press: Boca Raton, FL.

[37] Stephan Krusche and Andreas Seitz. 2018. Artemis: An automatic assessment

management system for interactive learning. In Proceedings of the 49th ACM

technical symposium on computer science education. 284–289.

[38] Angelo Kyrilov and David C Noelle. 2016. Do students need detailed feedback

on programming exercises and can automated assessment systems provide it?

Journal of Computing Sciences in Colleges 31, 4 (2016), 115–121.

[39] Abe Leite and Saúl A Blanco. 2020. Effects of human vs. automatic feedback on

students’ understanding of AI concepts and programming style. In Proceedings of

the 51st ACM Technical Symposium on Computer Science Education. 44–50.

[40] Dominic Lohr and Marc Berges. 2021. Towards Criteria for Valuable Automatic

Feedback in Large Programming Classes. (2021).

[41] SamihaMarwan. 2021. Investigating Best Practices in the Design of Automated Hints

and Formative Feedback to Improve Students’ Cognitive and Affective Outcomes.

PhD. North Carolina State University.

[42] Samiha Marwan, Bita Akram, Tiffany Barnes, and Thomas W Price. 2022. Adap-

tive Immediate Feedback for Block-Based Programming: Design and Evaluation.

IEEE Transactions on Learning Technologies (2022), 406–420.

[43] Samiha Marwan, Ge Gao, Susan Fisk, Thomas W. Price, and Tiffany Barnes.

2020. Adaptive Immediate Feedback Can Improve Novice Programming Engage-

ment and Intention to Persist in Computer Science. In Proceedings of the ACM

Conference on International Computing Education Research (ICER).

[44] Samiha Marwan, Joseph Jay Williams, and Thomas Price. 2019. An Evaluation of

the Impact of Automated Programming Hints on Performance and Learning. In

Proceedings of the International Computing Education Research Conference.

[45] S. Marwan, N. Lytle, J. J. Williams, and T. W. Price. 2019. The Impact of Adding

Textual Explanations to Next-step Hints in a Novice Programming Environment.

In Proceedings of the 24th Annual ACM Conference on Innovation and Technology

in Computer Science Education, ITiCSE19 (forthcoming).

[46] Bruce M. Mclaren, Tamara Gog, Craig Ganoe, David Yaron, and Michael Karabi-

nos. 2014. Exploring the Assistance Dilemma: Comparing Instructional Support

in Examples and Problems. In 12th International Conference on Intelligent Tutoring

Systems - Volume 8474 (ITS 2014). Springer-Verlag, Berlin, Heidelberg, 354–361.

https://doi.org/10.1007/978-3-319-07221-0_44

[47] Briana B. Morrison, Lauren E. Margulieux, and Mark Guzdial. 2015. Subgoals,

Context, and Worked Examples in Learning Computing Problem Solving. In

Proceedings of the Eleventh Annual International Conference on International Com-

puting Education Research (ICER ’15). Association for Computing Machinery, New

York, NY, USA, 21–29. https://doi.org/10.1145/2787622.2787733

[48] Susanne Narciss. 2008. Feedback strategies for interactive learning tasks. Hand-

book of research on educational communications and technology (2008), 125–144.

[49] Susanne Narciss. 2020. Feedbackstrategien für interaktive Lernaufgaben. Hand-

buch Bildungstechnologie, 369–392.

[50] Benjamin Paaßen. 2019. Python Programming Dataset. (2019). https://doi.org/

10.4119/unibi/2941052 Bielefeld University.

[51] José Carlos Paiva, José Paulo Leal, and Álvaro Figueira. 2022. Automated Assess-

ment in Computer Science Education: A State-of-the-Art Review. ACM Trans.

Comput. Educ. (jan 2022). https://doi.org/10.1145/3513140 Just Accepted.

[52] Thomas W. Price, Yihuan Dong, and Dragan Lipovac. 2017. iSnap: towards

intelligent tutoring in novice programming environments. In Proceedings of the

ACM SIGCSE Technical Symposium on computer science education.

[53] ThomasW. Price, Yihuan Dong, Rui Zhi, Benjamin Paaßen, Nicholas Lytle, Veron-

ica Cateté, and Tiffany Barnes. 2019. A comparison of the quality of data-driven

programming hint generation algorithms. International Journal of Artificial

Intelligence in Education 29, 3 (2019).

[54] Thomas W. Price, David Hovemeyer, Kelly Rivers, Ge Gao, Austin Cory Bart,

Ayaan M. Kazerouni, Brett A. Becker, Andrew Petersen, Luke Gusukuma,

Stephen H. Edwards, and David Babcock. 2020. ProgSnap2: A Flexible For-

mat for Programming Process Data. In Proceedings of the 2020 ACM Confer-

ence on Innovation and Technology in Computer Science Education (ITiCSE ’20).

Association for Computing Machinery, New York, NY, USA, 356–362. https:

//doi.org/10.1145/3341525.3387373

[55] Robert S. Rist. 1991. Knowledge Creation and Retrieval in Program De-

sign: A Comparison of Novice and intermediate Student Programmers.

Human–Computer Interaction 6, 1 (1991), 1–46. https://doi.org/10.1207/

s15327051hci0601_1 arXiv:https://doi.org/10.1207/s15327051hci0601_1

[56] Kelly Rivers and Kenneth R Koedinger. 2017. Data-driven hint generation in

vast solution spaces: a self-improving Python programming tutor. International

Journal of Artificial Intelligence in Education 27, 1 (2017).

[57] T. J. Robertson, Shrinu Prabhakararao, Margaret Burnett, Curtis Cook, Joseph R.

Ruthruff, Laura Beckwith, and Amit Phalgune. 2004. Impact of Interruption

Style on End-User Debugging. In Proceedings of the SIGCHI Conference on Human

Factors in Computing Systems (CHI ’04). Association for Computing Machinery,

New York, NY, USA, 287–294. https://doi.org/10.1145/985692.985729

[58] Manuel Rubio-Sánchez, Päivi Kinnunen, Cristóbal Pareja-Flores, and Ángel

Velázquez-Iturbide. 2014. Student perception and usage of an automated pro-

gramming assessment tool. Computers in Human Behavior 31 (2014), 453–460.

[59] Dale H. Schunk. 1995. Self-Efficacy and Education and Instruction. Springer US,

Boston, MA, 281–303. https://doi.org/10.1007/978-1-4419-6868-5_10

[60] Raj Shrestha, Juho Leinonen, Arto Hellas, Petri Ihantola, and John Edwards. 2022.

CodeProcess Charts: Visualizing the Process of Writing Code. In Australasian

Computing Education Conference. Association for Computing Machinery, New

York, NY, USA, 46–55. https://doi.org/10.1145/3511861.3511867

[61] Valerie J. Shute. 2008. Focus on formative feedback. Review of Educational

Research 78, 1 (2008).

[62] Tze Ying Sim and Sian Lun Lau. 2018. Online tools to support novice program-

ming: A systematic review. In 2018 IEEE Conference on e-Learning, e-Management

and e-Services (IC3e). IEEE, 91–96.

[63] Draylson M Souza, Katia R Felizardo, and Ellen F Barbosa. 2016. A systematic

literature review of assessment tools for programming assignments. In 2016

IEEE 29Th international conference on software engineering education and training

(CSEET). IEEE, 147–156.

[64] Step. 2022. In Merriam-Webster.com. https://www.merriam-webster.com/

dictionary/step

[65] Sven Strickroth and Florian Holzinger. [n. d.]. Supporting the Semi-Automatic

Feedback Provisioning on Programming Assignments. Methodologies and Intelli-

gent Systems for Technology Enhanced Learning ([n. d.]).

[66] Sven Strickroth and Michael Striewe. 2022. Building a Corpus of Task-based

Grading and Feedback Systems for Learning and Teaching Programming. The

International Journal of Engineering Pedagogy (2022).

[67] Michael Striewe. 2015. Automated analysis of software artefacts-a use case in

e-assessment. Ph.D. Dissertation. Duisburg, Essen, Universität Duisburg-Essen,

Diss., 2014.

[68] Kurt VanLehn. 2006. The behavior of tutoring systems. International journal of

artificial intelligence in education 16, 3 (2006), 227–265.

[69] Kurt VanLehn. 2011. The Relative Effectiveness of Human Tutoring, Intelligent

Tutoring Systems, and Other Tutoring Systems. Educ. Psych. 46, 4 (2011).

[70] Burkhard CWünsche, EdwardHuang, Lindsay Shaw, Thomas Suselo, Kai-Cheung

Leung, Davis Dimalen,Wannes van der Mark, Andrew Luxton-Reilly, and Richard

Lobb. 2019. CodeRunnerGL-An interactive web-based tool for computer graphics

teaching and assessment. In 2019 International Conference on Electronics, Infor-

mation, and Communication (ICEIC). IEEE, 1–7.

[71] Wenju Zhou, Yigong Pan, Yinghua Zhou, and Guangzhong Sun. 2018. The frame-

work of a new online judge system for programming education. In Proceedings of

ACM Turing Celebration Conference-China. 9–14.

ITiCSE-WGR ’22, July 8–13, 2022, Dublin, Ireland Johan Jeuring et al.

114

https://doi.org/10.1145/2858796.2858798
https://doi.org/10.1109/FIE49875.2021.9637360
https://doi.org/10.1145/2960310.2960324
https://doi.org/10.1145/2960310.2960324
https://doi.org/10.1145/3231711
https://doi.org/10.1145/3231711
https://doi.org/10.21249/DZHW:studentsteps:1.0.0
https://doi.org/10.21249/DZHW:studentsteps:1.0.0
https://metadata.fdz.dzhw.eu/public/files/data-packages/stu-studentsteps$/attachments/studentsteps_Data_Methods_Report_de.pdf
https://metadata.fdz.dzhw.eu/public/files/data-packages/stu-studentsteps$/attachments/studentsteps_Data_Methods_Report_de.pdf
https://doi.org/10.48550/ARXIV.2206.03077
https://doi.org/10.1145/3017680.3017728
https://doi.org/10.1007/978-3-319-07221-0_44
https://doi.org/10.1145/2787622.2787733
https://doi.org/10.4119/unibi/2941052
https://doi.org/10.4119/unibi/2941052
https://doi.org/10.1145/3513140
https://doi.org/10.1145/3341525.3387373
https://doi.org/10.1145/3341525.3387373
https://doi.org/10.1207/s15327051hci0601_1
https://doi.org/10.1207/s15327051hci0601_1
http://arxiv.org/abs/https://doi.org/10.1207/s15327051hci0601_1
https://doi.org/10.1145/985692.985729
https://doi.org/10.1007/978-1-4419-6868-5_10
https://doi.org/10.1145/3511861.3511867
https://www.merriam-webster.com/dictionary/step
https://www.merriam-webster.com/dictionary/step

A TASK DESCRIPTIONS

Figure 1: Prompt and solution for the Password problem.

Translated from Finnish.

Write a one -parameter function askPassword. When

the function is called , it asks the user for a pass -

word until the user enters the correct password.

The correct password is given to the function as

a parameter. When the user enters the correct

password (i.e., the user 's input corresponds to the

value received as a parameter), the program prints

the message 'Thank you!' To ask for a password ,

use the string 'Enter password.'

Below is an example of the function when the function

is called in the form askPassword('turnip ');

Enter password.

< cauliflower

Enter password.

< carrot

Enter password.

< turnip

Thank you!

askPassword(correct) {

while (true) {

print('Enter password .');

var input = stdin.readLineSync ();

if (input == correct) {

break;

}

}

print('Thank you!');

}

Figure 2: Prompt and solution for the Temperature problem.

Translated from Finnish.

Write a one -parameter function named explanation

that , when called , returns information about whether

the number given as a parameter is positive , neg -

ative , or zero. If the number is positive , the func -

tion should return the string 'Positive!' If the

number is negative , the function should return the

string 'Negative!' Otherwise , the function should

return the string 'Zero!'

explanation(number) {

if (number > 0) {

return 'Positive!';

} else if (number < 0) {

return 'Negative!';

} else {

return 'Zero!';

}

}

Figure 3: Prompt and solution for the Fibonacci problem.

The Fibonacci sequence is a famous bit of mathe -

matics , and it happens to have a recursive defi -

nition. The first two values in the sequence are 0

and 1 (essentially 2 base cases). Each subsequent

value is the sum of the previous two values , so

the whole sequence is: 0, 1, 1, 2, 3, 5, 8, 13, 21

and so on.

Define a recursive fibonacci(n) method that re-

turns the nth fibonacci number , with n=0 repre -

senting the start of the sequence.

fibonacci (0) -> 0

fibonacci (1) -> 1

fibonacci (2) -> 1

public int fibonacci(int n) {

if (n==0) return 0;

if (n==1) return 1;

return fibonacci(n-1)+ fibonacci(n-2);

}

Figure 4: Prompt and solution for the Factorial problem.

Given n of 1 or more , return the factorial of n,

which is n * (n-1) * (n-2) ... 1. Compute the result

recursively (without loops).

factorial (1) -> 1

factorial (2) -> 2

factorial (3) -> 6

public int factorial(int n) {

if (n == 1)

return 1;

else

return n * factorial(n - 1);

}

Towards Giving Timely Formative Feedback and Hints to Novice Programmers ITiCSE-WGR ’22, July 8–13, 2022, Dublin, Ireland

115

	Abstract
	1 Introduction
	2 Background and related work
	2.1 Feedback
	2.2 Previous reviews on programming learning environments
	2.3 Datasets

	3 Steps and SubGoals
	3.1 Step
	3.2 Subgoals

	4 Datasets
	4.1 Dataset characteristics
	4.2 Selected datasets
	4.3 Tools

	5 Interventions
	5.1 When to intervene
	5.2 How to intervene

	6 Evaluating learning environments
	6.1 Method
	6.2 Results

	7 Discussion
	7.1 Datasets
	7.2 Interventions
	7.3 Learning environments
	7.4 Threats to validity

	8 Conclusions and future work
	References
	A Task descriptions

