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Abstract

We study integrable deformations of two-dimensional non-linear σ-models and present a
new class of classical solutions to critical bi-Yang–Baxter models for general groups. For the
simplest example, namely the SL(2,R) bi-Yang–Baxter model, we show that our solutions
can be mapped to the known complex uniton solutions of the SU(2) bi-Yang–Baxter model.
In general, our solutions are constructed from so-called Sl(2)-orbits that play a central role
in the study of asymptotic Hodge theory. This provides further evidence for a close relation
between integrable non-linear σ-models and the mathematical principles underlying Hodge
theory. We have also included a basic introduction to the relevant aspects of asymptotic
Hodge theory and have provided some simple examples.
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1 Introduction

In general quantum field theories the computation of correlation functions is notoriously difficult

and can often only be performed in perturbation theory. The situation improves significantly if

symmetries constrain the theory. A particularly interesting class of models, known as integrable

models, are constrained by having infinitely many conserved currents. Despite the fact that

integrability poses a strong condition on the theory, a large set of integrable models have

been constructed in the past decades [1, 2]. In this work we will focus on a particular class of

two-dimensional integrable non-linear σ-models and use some of the powerful tools of Hodge

theory in determining their classical solutions. Our finding will further strengthen the connection

between integrable models and this vast field of mathematics first observed in [3].

The class of integrable models considered here are known as bi-Yang–Baxter models, which

were introduced in [4]. To construct these models one starts with the principal chiral model,

which is a non-linear σ-model encoding the dynamics of a field valued in a group G. The

bi-Yang–Baxter model is then defined as a two-parameter deformation that depends on a

Yang–Baxter operator R satisfying a modified classical Yang–Baxter equation. These models

can be abstractly defined for any group G when making sure that an appropriate R-matrix is

constructed, e.g. following the classical work of Drinfel’d–Jimbo [5,6], see also [7]. Despite its

general definition, the study of solutions of such models has so far been restricted to only the

simplest choices of G. In particular, the G = SU(2) bi-Yang–Baxter model has been investigated

in [8]. Our first aim is to provide a new perspective on the classical solutions found in [8] that

allows for a natural generalization to higher-rank groups G.

Our study of solutions to the bi-Yang–Baxter model will be restricted to a special one-

parameter subspace of the two-parameter moduli space, where the symmetries of the model

enhance and additional dualities to other theories emerge [4,9–11]. These models will be referred

to as critical bi-Yang–Baxter models following [8]. In the simplest situation, namely the critical

SL(2,R) bi-Yang–Baxter model, we will show that the equations of motion are solved by the

so-called Weil operator C, which is sometimes also referred to as the Hodge star, associated to a

two-torus. This operator distinguishes complex (1, 0)-forms and (0, 1)-forms and changes upon

varying the complex structure of the two-torus. Hence, to view C as a solution to the σ-model

requires us to identify the complex structure deformation space of the two-torus, namely the

upper half-plane, with part of the two-dimensional space-time.1 Furthermore, it is a general

fact that the Weil operator of a two-torus obeys C2 = −1, and hence that the solutions must

be a special class of all possible solutions. Exactly these types of solutions were called uniton

solutions in the literature on integrable models and were first considered for the SU(N) principal

chiral model in [15]. We explicitly show that the Weil operator is equivalent to a certain complex

uniton solution of the SU(2) bi-Yang–Baxter model that has been constructed in [8], see also [16].

A careful inspection of the Weil operator of a two-torus reveals an intriguing underlying

structure, namely that it can be written as an Sl(2)-orbit. Roughly speaking, this means that

the Weil operator changing over space-time can be written as an orbit of some special fixed Weil

operator. The orbit is derived by picking a distinguished element of SL(2,R) and parameterizing

the transformations by this element with a complex parameter labelling the space-time position.

In the case of the two-torus the appearance of such orbits might not be surprising, but remarkably

1This shift in perspective is key to all approaches [3, 12–14] that use Hodge theory to construct solutions to
two-dimensional σ-models.
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it turns out that this perspective can be generalized to more general groups and that Sl(2)-orbits

are in fact ubiquitous in the study of asymptotic Hodge theory. In practice, it is relatively

straightforward to construct such Sl(2)-orbits and the relevant ingredients are captured by a

so-called horizontal sl(2)-triple. This is simply a standard sl(2)-triple, i.e. three real elements

N+, N−, and N0 in the algebra of G obeying sl(2) commutation relations, that satisfies some

additional commutation relations with respect to another operator Q∞. The latter introduces

an additional grading on the algebra of G and has the property Q̄∞ = −Q∞. Given such a

horizontal sl(2)-triple, we argue that it selects a particular class of R-matrices and we explicitly

show that the associated Sl(2)-orbit solves the equations of motion of the corresponding critical

bi-Yang–Baxter model. In general, the resulting solution satisfies C2 = (−1)D, for some integer

D, and furthermore has finite action. It can therefore be thought of as a generalization of the

complex uniton solution of the SL(2,R) model to groups of higher rank. For illustrative purposes,

we have included an explicit example of a solution to the critical Sp(4,R) bi-Yang–Baxter model

obtained in this manner.

The mathematical significance of Sl(2)-orbits is rooted in one of the deep theorems of Hodge

theory, the Sl(2)-orbit theorem [17,18]. Very roughly, it states that whenever one has a Hodge

structure varying over some parameter space, the behaviour of this variation of Hodge structure

near the boundary of the parameter space is described by an Sl(2)-orbit. As mentioned earlier,

such Sl(2)-orbits can be structured in terms of horizontal sl(2)-triples, and the latter have been

classified in the mathematics literature [19,20]. Therefore, these general mathematical results

provide a concrete classification of uniton solutions of the bi-Yang–Baxter model and further

indicates the significance of Hodge theory in the study of integrable models. In this work, we

do not aim to develop this latter point of view in full, but rather aim to lay the foundations

for further studying this connection. To this end, we provide a comprehensive introduction to

the relevant aspects of asymptotic Hodge theory and illustrate the central ideas with a simple

example.

The paper is organized as follows. In section 2 we introduce the bi-Yang–Baxter model. The

action of this theory depends on the choice of an R-matrix and we recall how the Drinfel’d–Jimbo

solution for R indeed satisfies the classical modified Yang-Baxter equation. We then discuss

the SU(2) example in detail and introduce its uniton solutions. We give a detailed account

on how this solution can be related to the Weil operator of a two-torus and point out that

the solution can be described purely in terms of a horizontal sl(2)-triple. In section 3 the

solution is then extended to higher-rank groups by identifying the group-valued field with the

general Sl(2)-orbit of special fixed Weil operators. We argue that the horizontal sl(2)-triple

selects a particular class of R-matrices and explicitly show that the equations of motion of

the corresponding bi-Yang–Baxter model are solved at the critical point. We also provide an

introduction to the relevant aspects of asymptotic Hodge theory to explain the importance of

Sl(2)-orbits and horizontal sl(2)-triples. We end with an illustrative example and comment

on possible generalizations of the proposed solutions. In the appendix we have included some

computational details and elaborate on some of the expressions used in the example of section 3.4.
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2 The Bi-Yang–Baxter Model and Unitons

In this section we analyze classical aspects of the bi-Yang–Baxter model. In section 2.1 we

introduce the model and establish our notation and conventions. Then, in section 2.2, we study

the SU(2) model in more detail and consider a class of finite action solutions known as unitons.

Finally, in section 2.3 we observe a relation between the complex uniton solution and the Weil

operator of a two-torus. This observation will then lead us to consider more general solutions

for Weil operators of arbitrary variations of Hodge structure in section 3.

2.1 Bi-Yang–Baxter Model

Let us start by introducing the basics of the bi-Yang–Baxter model. The reader who is already

familiar with the topic can safely skip this section. The model was originally introduced by

C. Klimč́ık in [4] as a two-parameter integrable deformation of the principal chiral model. In

particular, it is a non-linear σ-model for a group-valued field

g : Σ→ G , (2.1)

where Σ is the two-dimensional worldsheet and G is a real Lie group, whose Lie algebra will be

denoted by g. We will take the worldsheet to have Euclidean signature, and introduce complex

coordinates z, z̄ with z = x+ iy. Additionally, we will assume g to be simple and denote by

(·, ·) : g× g→ R (2.2)

the (up to an overall scaling) unique invariant symmetric bilinear form on g.

R-matrix

The bi-Yang–Baxter model lies in the class of Yang–Baxter deformations of non-linear σ-models,

all of which involve an object called the (classical) R-matrix. It is an endomorphism of the Lie

algebra g, i.e. a linear map

R : g→ g , (2.3)

satisfying the modified classical Yang–Baxter equation

[RX,RY ]−R ([RX,Y ] + [X,RY ]) = −c2[X,Y ] , ∀X,Y ∈ g , (2.4)

where c2 is a real constant. The word ‘modified’ refers to the fact that c is allowed to be non-zero.

Note that by a real rescaling of R we may restrict to the cases c ∈ {0, 1, i}. In the following,

we will additionally impose the condition that R is skew-symmetric with respect to the chosen

bilinear form on g. In other words

(RX,Y ) + (X,RY ) = 0 , ∀X,Y ∈ g . (2.5)

Such R-matrices are also referred to as Yang–Baxter operators and have been classified in the

mathematics literature [7], see also [21].
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Drinfel’d–Jimbo R-matrix

There is a standard solution to the modified classical Yang–Baxter equation, given by the

Drinfel’d–Jimbo solution [5,6]. In order to write it down, let us first consider the complexification

gC of g and let h be a Cartan subalgebra of gC. Then gC enjoys a root space decomposition

gC = h⊕
⊕
α

gα , (2.6)

where α ∈ h∗ runs over all the roots and each gα denotes the root space associated to a root

α. A choice of simple roots fixes a notion of positive roots, denoted by α > 0. Let {Hµ, E±α}
denote a Cartan–Weyl basis of gC, where α runs over the positive roots. These generators satisfy

the usual commutation relations

[Hµ, Hν ] = 0 , [Hµ, E±α] = ±α(Hµ)E±α . (2.7)

In terms of this basis, the Drinfel’d–Jimbo R-matrix is defined as2

RHµ = 0 , RE±α = ∓cE±α . (2.8)

One can verify by direct computation that (2.8) solves the modified classical Yang–Baxter

equation (2.4) and that it satisfies the skew-symmetry condition (2.5). However, it is important

to keep in mind that the above R-matrix is defined on the complexified algebra gC. Depending

on the choice of real form g and the constant c, it may happen that R is not a real endomorphism

of g. For further details we refer the reader to the lecture notes of B. Hoare [1].

Action

For a given choice of Yang–Baxter operator R, the action of the associated bi-Yang–Baxter

model is given by

S =

∫
Σ
d2σ

(
g−1∂+g ,

1

1− ηR− ζRg
g−1∂−g

)
, (2.9)

where η and ζ are two constants parametrizing the deformation, and we have introduced the

notation

Rg := Adg−1 ◦R ◦Adg . (2.10)

Clearly, for η = ζ = 0 one recovers the action of the principal chiral model, which enjoys a

global GL ×GR symmetry. Keeping ζ = 0 but letting η be non-zero, the introduction of the

operator R breaks the global GR symmetry down to the U(1)rkG
R subgroup. In this case, one

retrieves the action of the (single-parameter) Yang–Baxter model, which is also referred to as

the η-model [22]. Upon letting ζ be non-zero also the global GL symmetry is broken down to

the U(1)rkG
L subgroup.

There is a special point in the parameter space where the symmetry of the bi-Yang–Baxter

model is enhanced [9]. Indeed, whenever ζ = η, which we will refer to as the critical line

following [8], one has an additional symmetry given by g 7→ g−1. The critical bi-Yang–Baxter

model will play a crucial role in this work, as we will find a set of solutions to the model which

solve the model precisely when ζ = η. There have been a number of observations that indicate

2The overall sign of R is, of course, a matter of convention. Here we have chosen the sign to match with [1].
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that the critical bi-Yang–Baxter model can be related to other integrable models. For example,

the critical SU(2) bi-Yang–Baxter model is equivalent to the coset SO(4)/SO(3) η-model [10,11].

Furthermore, at the conformal point ζ = η = i
2 the target space geometry coincides with that of

the SU(1, 1)/U(1) gauged WZW model with an additional U(1) boson [11].

Equations of Motion

In order to write down the equations of motion of the bi-Yang–Baxter model, it is convenient to

introduce the currents (we follow the conventions of [9])

J± = ∓ 1

1± ηR± ζRg
j± , jµ = g−1∂µg . (2.11)

In terms of J±, the equations of motion read

∂+J− − ∂−J+ − η[J+, J−]R = 0 , (2.12)

where

[X,Y ]R := [RX,Y ] + [X,RY ] , ∀X,Y ∈ g , (2.13)

defines a second Lie-bracket on g, by virtue of the classical Yang–Baxter equation (2.4). It

is referred to as the R-bracket and is central for the underlying Poisson-Lie symmetry of the

bi-Yang–Baxter model, see e.g. [23].

Integrability and Lax Connection

It was shown by C. Klimč́ık in [9] that the bi-Yang–Baxter model is classically integrable. Vital

in this regard is the condition that R satisfies the modified classical Yang–Baxter (2.4) equation

and is anti-symmetric. The integrability condition means that the equations of motion of the

bi-Yang–Baxter model can be reformulated as the zero-curvature condition of a Lax connection

L±(λ) =

(
η(R− i) +

2iη ± (1− η2 + ζ2)

1± λ

)
J± , (2.14)

where λ ∈ C is the spectral parameter. More precisely, introducing the connection

∇± = ∂± + L±(λ) , (2.15)

the zero-curvature condition simply states that

[∇+,∇−] = 0 , (2.16)

for all λ. This is equivalent to the equations of motion (2.12) together with the Bianchi identities

for J±. The flatness of the Lax connection ensures the existence of an infinite tower of conserved

charges. The Hamiltonian integrability of the model, i.e. the condition that all these charges in

fact Poisson-commute with each other, was established in [24].
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2.2 SU(2) unitons

In this section, we restrict to the case where G = SU(2) and study a class of finite action

solutions to the classical theory. These solutions are referred to as unitons, owing to the fact

that they are analogous to instantons and additionally satisfy the requirement that g2 = −1.

They were originally constructed by K. Uhlenbeck as solutions to the SU(N) principal chiral

model [15], and were later extended to the Yang–Baxter and bi-Yang–Baxter models in [8, 16]

for N = 2. Our discussion closely follows the works [8, 16].

su(2) R-matrix

For su(2), the solution to the modified Yang–Baxter equation is essentially unique and is given

by the Drinfel’d–Jimbo solution discussed in the previous section. Let us go through the

construction of the R-matrix in some detail. The complexification of su(2) is sl(2,C), which has

a Cartan–Weyl basis given by

H =

(
1 0
0 −1

)
, E+ =

(
0 1
0 0

)
, E− =

(
0 0
1 0

)
, (2.17)

satisfying

[H,E±] = ±2E± . (2.18)

Using (2.8) we obtain a solution to the modified classical Yang–Baxter equation, at the level of

sl(2,C). In order to see if this descends to a real solution when restricting to the real form su(2),

let us fix a basis of su(2) as Tj = iσj , where σi denote the Pauli matrices. Then one readily

finds that R acts on this basis as

RT1 = −ic T2 , RT2 = ic T1 , RT3 = 0 . (2.19)

In particular, for R to be a real endomorphism we require c = i, in which case R can be

represented as a matrix in the Ti basis as

R =

0 −1 0
1 0 0
0 0 0

 . (2.20)

In the remainder of this section, we will implicitly use this R-matrix.

SU(2) bi-Yang–Baxter Model

We will adopt the following parametrization of the SU(2) group element

g =

(
cos θ eiφ1 i sin θ eiφ2

i sin θ e−iφ2 cos θ e−iφ1

)
, θ, φ1 ∈ [0, π) , φ2 ∈ [0, 2π) . (2.21)

As a non-linear σ-model, the bi-Yang–Baxter model can be characterized by the metric and

B-field it induces on the target space. These follow from inserting the ansatz (2.21) for g,

together with the R-matrix (2.20), into the action (2.9). The resulting metric reads

ds2 =
1

∆

[
dθ2 + cos2 θ

(
1 + (η + ζ)2 cos2 θ

)
dφ2

1 + sin2 θ
(
1 + (η − ζ)2 sin2 θ

)
dφ2

2

]
+

sin2(2θ)

2∆
(η − ζ)(η + ζ)dφ1dφ2 ,
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where we have defined

∆ = 1 + η2 + ζ2 + 2ηζ cos(2θ) . (2.22)

Moving on, the B-field is found to be pure-gauge, and given is by

B = dA , A =
log ∆

4ηζ
[(η − ζ)dφ1 − (η + ζ)dφ2] . (2.23)

The form of the metric and B-field indicate that at the points ζ = η and ζ = −η the model

simplifies significantly. We recall that the point ζ = η is referred to as the critical line. In

contrast, the point ζ = −η is referred to as the co-critical line. As alluded to before, on the

critical line this simplification is due to the emergence of the Z2 symmetry g 7→ g−1. In the

parametrization (2.21) this corresponds to

φ1 7→ −φ1 , φ2 7→ φ2 + π . (2.24)

However, note that for the SU(2) model in particular there is an additional Z2-symmetry given

by the transformations

θ 7→ θ +
π

2
, φ1 ↔ φ2 , ζ 7→ −ζ . (2.25)

This exactly maps the critical line ζ = η to the co-critical line ζ = −η.

Real and Complex Unitons

The unitons are finite action solutions to the classical equations of motion of the SU(2) bi-

Yang–Baxter model, which additionally satisfy g2 = −1. In the parametrization (2.21), this

condition imposes that either θ = π
2 or φ1 = π

2 . We will consider the latter case. There are two

types of unitons, dubbed the real and complex unitons. Both are determined by the choice of a

holomorphic function f(z) of the worldsheet coordinate. The expressions for φ1 and φ2 are the

same for both unitons, and are given by

φ1 =
π

2
, φ2 = π +

i

2
log

(
f

f̄

)
, (2.26)

while the expressions for θ differ and are respectively given by

real uniton : sin2 θ =
4|f |2

(1 + |f |2)2 + (η − ζ)2(1− |f |2)2
, (2.27)

complex uniton : θ =
π

2
+ i arctanh

(
1

2

(
|f |+ 1

|f |

)√
(η − ζ)2 + 1

)
. (2.28)

The nomenclature ‘real’ vs. ‘complex’ is due to the fact that for the real uniton, θ is manifestly

real and hence the group-valued field g indeed lies in SU(2). In contrast, for the complex uniton

θ is complex-valued and hence g takes values in the complexified group SL(2,C).3

3Note that for real x

Im arctanh x =

{
0 , |x| < 1 ,

−π
2

sign(x) , |x| > 1 .

Therefore, one finds that for the complex uniton Re θ = π, hence g in fact takes values in SU(1, 1). See also the
discussion in section 2.3.
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For completeness, we also record the metric of the SU(2) bi-Yang–Baxter model when

evaluated on the real and complex unitons. Introducing polar coordinates f = reiα and writing

R = r2 one finds4

ds2 =
1

∆

(
dθ

dR

)2 (
dR2 + 4R2dα2

)
, (2.29)

for both unitons. We see that in the target space the uniton solutions correspond to a squashed

two-sphere inside SU(2). From here it follows from explicit integration that the unitons have

finite action and we refer the reader to [8] for further details. One finds that the on-shell actions

evaluate to (we neglect the overall factor coming from the angular integration)

Sreal uniton =
1

2ηζ
[(η + ζ) arctan(η + ζ)− (η − ζ) arctan(η − ζ)] , (2.30)

and

Scomplex uniton =
1

2ηζ
[(η + ζ) arccot(η + ζ)− (η − ζ) arccot(η − ζ)] . (2.31)

Here we have assumed the domain of integration to be the entire complex plane. In other words,

R ranges from 0 to infinity. In the next section we will encounter a situation where f(z) instead

takes values in the unit disk, in which case R ∈ [0, 1]. One can verify that this only changes the

above results by a factor of 1/2.

2.3 Weil Operator as a Complex Uniton

The unitons discussed in the previous section are solutions to the SU(2) bi-Yang–Baxter model.

In this section, we will instead be concerned with the SL(2,R) bi-Yang–Baxter model. This

model has a solution which naturally arises from the study of variations of Hodge structure,

applied to the simplest example of a torus. More precisely, the solution is given by the so-called

Weil operator which, roughly speaking, corresponds to the Hodge star when viewed as an

operator on the middle de Rham cohomology of the torus. The Weil operator is a function of the

Teichmüller parameter τ of the torus. This parameter is then reinterpreted as the worldsheet

coordinate in the bi-Yang–Baxter model. Interestingly, this solution also satisfies g2 = −1,

which suggests that it might be related to the uniton solutions. Indeed, we show that the Weil

operator can be mapped to the complex uniton, for a particular choice of holomorphic function

f(z), via a Cayley transformation.

Weil Operator

Let us start by introducing the Weil operator of the torus. A convenient description of the torus

T is as a lattice

T = C/(Z + τZ) , Im τ > 0 , (2.32)

4Here we have used the fact that

4R2

(
dθ

dR

)2

= sin2 θ + (ζ − η)2 sin4 θ ,

which holds for both the real and complex uniton and can be verified by explicit computation.
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where τ is the Teichmüller parameter taking values in the complex (strict) upper half-plane. We

parametrize the torus by two periodic coordinates ξ1, ξ2 with ξi ∼ ξi + 1. Then the metric on

the torus can be written as

ds2 =
|dξ1 + τ dξ2|2

Im τ
. (2.33)

Here we have normalized the metric so that the torus has unit volume. The Weil operator is

closely related to the Hodge star operator on the torus. The action of the Hodge star on the

one-forms dξ1 and dξ2 follows directly from the metric (2.33) and is given by

? dξ1 =
Re τ

Im τ
dξ1 +

|τ |2

Im τ
dξ2 , ?dξ2 = − 1

Im τ
dξ1 −

Re τ

Im τ
dξ2 . (2.34)

To obtain the Weil operator, one should view this as an action on the middle de Rham cohomology

of the torus. Indeed, in the basis {[dξ1], [dξ2]}, where [ω] denotes the equivalence class of a

one-form ω, the action of the Hodge star can be represented as a matrix

C(x, y) =
1

y

(
x −1

x2 + y2 −x

)
, (2.35)

where we have set τ = x+ iy. We will refer to (2.35) as the Weil operator of the torus. Note

that it is an element of SL(2,R).

Relation to the Complex Uniton

An interesting property of (2.35) is that it satisfies5

C2 = −1 , (2.36)

which is shared by the unitons solutions discussed in section 2. In fact, we will now argue that

the Weil operator can be viewed as a complex uniton for a specific choice of the holomorphic

function f(z).

As a preliminary remark, we stress that one cannot simply compare the expressions (2.21)

and (2.35), as the two lie in different groups, namely SU(2) and SL(2,R), respectively. There is,

however, a natural two-step procedure to pass between the two groups by combining a so-called

Cayley transformation with an analytic continuation. Let us first elaborate on the former. We

introduce the matrix

ρ =
1√
2

(
1 i
i 1

)
, (2.37)

which is an element of SL(2,C). Then it is straightforward to show that the adjoint action

Adρ : SL(2,R)→ SU(1, 1) (2.38)

is an isomorphism of real Lie groups, which is commonly referred to as a Cayley transformation.

Indeed, it provides an interpolation between the two real forms SL(2,R) and SU(1, 1) of SL(2,C).

For the second step of the proposed procedure, one interpolates between SU(1, 1) and SU(2)

via an analytic continuation. In the parametrization (2.21) this is straightforwardly given by

sending θ 7→ −iθ.
5More generally, the origin of this relation is the fact that ?? evaluates to ±1, with the sign determined by the

degree of the differential form it acts on and the dimension of the spacetime in question.
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We now apply the above procedure to compare the Weil operator of the torus to a generic

element in SU(2). Practically, it is easiest to take the expression in (2.21), analytically continue

it to SU(1, 1) by setting θ = iθ̃ and then apply Adρ−1 to end up in SL(2,R). The result of this

computation is

gSL(2,R) =

(
cosh θ̃ cosφ1 − sinh θ̃ sinφ2 − cosh θ̃ sinφ1 − sinh θ̃ cosφ2

cosh θ̃ sinφ1 − sinh θ̃ cosφ2 cosh θ̃ cosφ1 + sinh θ̃ sinφ2

)
, (2.39)

which is indeed an element of SL(2,R). Comparing (2.35) and (2.39) and solving for θ̃, φ1, φ2 in

terms of x, y gives

φ1 =
π

2
, φ2 = π +

i

2
log

(
f

f̄

)
, θ̃ =

iπ

2
+ arctanh

[
1

2

(
|f |+ 1

|f |

)]
, (2.40)

where f(z) is the following holomorphic function of the complexified worldsheet coordinates

f(z) =
z − i
z + i

, z = x+ iy . (2.41)

Indeed, identifying the Teichmüller parameter τ with the worldsheet coordinate z and recalling

that θ = iθ̃, one sees that this solution is precisely of the form of a complex uniton (2.28)

with additionally ζ = η.6 The function f(z) is a special type of Möbius transformation that

conformally maps the upper half-plane to the unit disc. Note that it is holomorphic on the

upper half-plane, but has a first order pole at z = −i.

In figure 1 we have illustrated the Lagrangian density for the complex uniton defined by the

particular holomorphic function (2.41). It is interesting to contrast this with the plots in [8],

where instead a linear function f(z) = z
2 was used. In both cases there is a clear transition at

the critical point ζ = η. On the other hand, the concentric valley structure in [8] is not present

here. Rather, in our case the density is not rotationally invariant, but only invariant under

reflections x 7→ −x and y 7→ −y. Of course, this can be explained by noting that the Lagrangian

density is a function of |f(z)|.

It is also interesting to recall the Z2-symmetry (2.25) which maps the critical line to the

co-critical line. Indeed, one finds that it acts on the Weil operator as

C(x, y) 7→ i

y

(
−1 −x
x x2 + y2

)
= C(x, y) ·

(
0 i
i 0

)
. (2.42)

Interestingly, the Z2 transformation can be described as a right-multiplication of C(x, y) by an

element in SL(2,C) (even in SU(2)). However, as a result the transformed Weil operator is no

longer real-valued. Therefore, it will define a solution to the co-critical SL(2,C) bi-Yang–Baxter

model, as can be verified by explicit computation.

As a final comment, one can use the result (2.29), taking f(z) as above, to find that the

on-shell metric is given by

ds2 =
4|dz|2

(z − z̄)2 − 4η2(1 + |z|2)2
. (2.43)

Note that in the limit η → 0 one recovers the standard metric on the Poincaré upper half-plane.

6Strictly speaking, an exact match is obtained after sending θ 7→ θ + π, corresponding to C 7→ −C. Of course,
the overall sign of C is simply a convention.
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(a) η = 0.7, ζ = 0.6 (b) η = 0.7, ζ = 0.7 (c) η = 0.7, ζ = 0.8

Figure 1: Plot of the Lagrangian density of the SU(2) bi-Yang–Baxter model evaluated on the
complex uniton solution with f(z) = z−i

z+i , for three values of the deformations parameters (η, ζ).
For η 6= ζ there are two bumps, which coalesce on the critical line η = ζ.

R-matrix revisited

As a result of the identification between the Weil operator and a complex uniton, one expects

that the Weil operator provides a solution to the SL(2,R) bi-Yang–Baxter model. To make

this precise, one should also identify the appropriate R-matrix by taking the SU(2) R-matrix in

(2.20) and translating it to an endomorphism of SL(2,R) via the Cayley transform. Explicitly,

this gives7

RSL(2,R) = Adρ−1 ◦RSU(2) ◦Adρ . (2.44)

One can verify that the resulting R-matrix acts as

RSL(2,R)H = −(E+ + E−) , RSL(2,R)E± =
1

2
H , (2.45)

and is manifestly real. The reader is invited to check that indeed the Weil operator (2.40) is

a solution to the critical SL(2,R) bi-Yang–Baxter model defined by the R-matrix (2.45). One

may wonder how this R-matrix differs from the Drinfeld’d–Jimbo solution we started with. The

answer is that the R-matrix (2.45) is also a Drinfel’d–Jimbo solution, but for a different choice

of Cartan generators. This will be explained further in section 3.1.

An underlying Sl(2)-orbit

Let us return to the Weil operator (2.35) to elucidate a very particular underlying structure,

which may not be immediately apparent from its matrix representation. Indeed, note that the

Weil operator can be factorized in the following way

C(x, y) = h(x, y)C∞h(x, y)−1 , (2.46)

where we have introduced

h(x, y) =
1
√
y

(
1 0
x y

)
, C∞ =

(
0 1
−1 0

)
. (2.47)

7One can check that the R-matrix remains unchanged under the analytic continuation from SU(2) to SU(1, 1).
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More abstractly, both h(x, y) and C∞ can be written in terms of sl(2,R)-valued objects as

h(x, y) = exN
−
y−

1
2
N0
, C∞ = (−1)Q∞ , (2.48)

where we have chosen to change our notation for the sl(2,R) generators to

N± = E± , N0 = H , (2.49)

and introduced another operator

Q∞ =
i

2

(
0 −1
1 0

)
, (2.50)

for which iQ∞ is valued in sl(2,R). At this point, there are a number of interesting observations

we can make. First, the operator h(x, y) in (2.47) is of the form of a so-called Sl(2)-orbit, which

features prominently in the study of variations of Hodge structure, as will be explained further

in section 3. Second, there is the appearance of the operator Q∞, which in previous works has

been referred to as a charge operator. One can verify that it satisfies the following commutation

relations with the real sl(2) triple N+, N0, N−

[Q∞, N
0] = i

(
N+ +N−

)
, [Q∞, N

±] = − i
2
N0 . (2.51)

Such sl(2)-triples are referred to as horizontal sl(2)-triples and we will discuss them in more

generality in section 3. There is an intimate relationship between such horizontal sl(2)-triples

and Sl(2)-orbits, which will be elaborated upon in section 3.3.

As a final comment, one may compare (2.51) with the R-matrix (2.45) to find that

RSL(2,R) = adiQ∞ . (2.52)

In other words, we have found that the solution we have obtained for the critical SL(2,R)

bi-Yang–Baxter model can be completely characterized by an operator Q∞ and an sl(2,R)-triple

N+, N0, N− that is horizontal with respect to Q∞. It turns out that by studying the abstract

properties of horizontal sl(2)-triples one can greatly generalize the simple solution we have

considered here to groups of larger rank. This is the topic of the next section.

3 Horizontal sl(2)-triples and Sl(2)-orbits

In the previous section we have argued that the Weil operator of the torus provides a solution

to the critical SL(2,R) bi-Yang–Baxter model. In this section we show that this solution can

be generalized to arbitrary groups as long as they admit at least one horizontal sl(2)-triple.

In section 3.1 we define the latter in more detail and discuss how it defines a particular class

of R-matrices. Given a horizontal sl(2)-triple we then write down the generalized solution in

section 3.2 and show explicitly that it solves the equations of motion of the bi-Yang–Baxter

model associated to the mentioned class of R-matrices. The solutions we consider originate

from the study of variations of Hodge structure and correspond to the so-called Sl(2)-orbit

approximation of the Weil operator. For the interested reader we have included in section 3.3 a

basic introduction to the field of asymptotic Hodge theory, where we discuss the Hodge-theoretic

interpretation of the Sl(2)-orbit and its relation to horizontal sl(2)-triples. Finally, in section

3.4 we have included a very explicit example of a horizontal sl(2)-triple in sp(4,R) and the

associated Sl(2)-orbit approximation of the Weil operator.
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3.1 Horizontal sl(2)-triples

Let gR be a real Lie algebra. Then a standard sl(2)-triple is a set of three elements in gR,

denoted by {N+, N0, N−}, satisfying the commutation relations

[N0, N±] = ±2N± , [N+, N−] = N0 . (3.1)

For classical Lie algebras gR, there is a classification of sl(2)-triples in gR in terms of signed

Young diagrams, see e.g. [25]. One can think of a horizontal sl(2)-triple as a standard triple

with some additional properties which we will now discuss.

Charge Operator

The additional properties that a horizontal sl(2)-triple must satisfy are most easily described

in terms of an element Q∞ ∈ gC which will be referred to as a charge operator. The charge

operator should satisfy two important properties. First, it should be purely imaginary-valued,

i.e.

Q̄∞ = −Q∞ , (3.2)

where the bar denotes complex conjugation. Second, Q∞ should be a so-called grading element.

This means that the adjoint action adQ∞ has only integer eigenvalues. This definition of the

charge operator has its origin in the study of Hodge structures. Indeed, as discussed in e.g. [26],

one can think of a charge operator Q∞ as an infinitesimal Hodge structure. For the purpose of

this section, however, it will not be necessary to employ this Hodge-theoretic interpretation.

As a first example, one can verify that the Q∞ defined in (2.50) defines a charge operator

in sl(2,C). However, we stress that for a given Lie algebra gR there can be many inequivalent

charge operators. Indeed, taking the algebra sp(4,R) as a more non-trivial example, one can

verify that the following elements

i

2


0 0 0 −3
0 0 −1 0
0 1 0 0
3 0 0 0

 ,
i

2


0 −2 −1 0
2 0 0 −1
1 0 0 −2
0 1 2 0

 ,
i

2


0 −3 0 0
1 0 −2 0
0 2 0 −1
0 0 3 0

 (3.3)

all define charge operators.8 A general classification of horizontal sl(2)-triples was given by

C. Robles in [19], see also [20].

Horizontality

Given a standard sl(2)-triple and a charge operator Q∞, we say that the triple is horizontal

(with respect to Q∞) if it satisfies the following commutation relations

[Q∞, N
0] = i

(
N+ +N−

)
, [Q∞, N

±] = − i
2
N0 . (3.4)

At first sight, these particular commutation relations are not very illuminating. One way to gain

some insight on their meaning is to map the sl(2)-triple to su(1, 1) using the Cayley transform.

In general, this can be written as

ρ = e
iπ
4 (N++N−) , (3.5)

8The symplectic pairing used in each of these cases differs, we refer the reader to [3] for more details.
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which reduces to (2.37) for the fundamental representation. Let us then introduce the complex

triple

Lα = ρNαρ−1 , α = 1, 0,−1 . (3.6)

By explicit computation using the commutation relations (3.1) one finds

L±1 =
1

2

(
N+ +N− ∓ iN0

)
, L0 = −i(N+ −N−) . (3.7)

Furthermore, the relations (3.4) can be written in terms of the Lα as

[Q∞, Lα] = αLα . (3.8)

Importantly, we see that L0 commutes with Q∞. In fact, defining Q̂∞ = Q∞ − 1
2L0, one

immediately sees that Q̂∞ commutes with all Lα. One similarly sees that Q̂∞ commutes with all

the Nα and that iQ̂∞ is real. Therefore, one can think of the existence of a horizontal sl(2)-triple

as an underlying SL(2,R)×U(1) symmetry. For this reason we refer to Q∞ as a charge operator,

as it can be interpreted as parametrizing an additional U(1) symmetry. The reverse statement,

however, is not necessarily true. Indeed, having an additional U(1) symmetry does not guarantee

that the corresponding charge operator is really a grading operator. Furthermore, there are

examples of horizontal sl(2)-triples for which the operator Q̂∞ vanishes.

R-matrix from horizontal sl(2)-triples

In the next section, we will argue that a horizontal sl(2)-triple provides a solution to the

critical bi-Yang–Baxter model, for a particular class of R-matrices. These R-matrices must be

compatible with the sl(2)-triple in the sense that they must act in the same way as we found in

the simple example of section 2.3. Let us make this more precise.

Given a charge operator Q∞ and a horizontal sl(2)-triple in a Lie algebra g, we impose that

the R-matrix acts as

RQ∞ = 0 , RN0 = −(N+ +N−) , RN± =
1

2
N0 . (3.9)

One readily checks that the modified classical Yang–Baxter equation is then satisfied for this

sl(2)-triple. In terms of the complex generators Lα, it acts as

RQ∞ = 0 , RL0 = 0 , RL±1 = ±iL±1 . (3.10)

Comparing this to (2.8), we see that this choice of R-matrix is nothing but the Drinfel’d–

Jimbo solution, where we have chosen L0 and Q∞ as the generators of a Cartan subalgebra

of sl(2,C)× u(1) and L±1 correspond to the positive and negative roots. However, in general

this does not yet specify the full R-matrix, as its action on the remaining generators of g is

not yet fixed. Indeed, if the rank of g is greater than two, one must identify additional Cartan

generators beyond L0 and Q∞ to complete the full Drinfel’d–Jimbo solution.

3.2 Sl(2)-orbits and generalized unitons

In this section we will introduce a generalization of the Weil operator of the torus discussed in

section 2.3 using purely the data of a horizontal sl(2)-triple. Hodge-theoretically, the operators
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we discuss correspond to so-called Sl(2)-orbits. This point of view is expanded upon in section 3.3.

In the following, however, we will purely use the abstract properties of the horizontal sl(2)-triple

to show that such operators also solve the critical bi-Yang–Baxter model and therefore provide

a generalization of the complex unitons to groups beyond SU(2).

Sl(2)-orbits

In section 2.3 we highlighted a particular underlying structure in the Weil operator of the torus

in terms of two elements h(x, y) and C∞, see (2.47) and (2.48). The idea is simply to generalize

this to arbitrary horizontal sl(2)-triples. In other words, we introduce

h(x, y) = exN
−
y−

1
2
N0
, C∞ = (−1)Q∞ (3.11)

and define

g(x, y) = h(−1)Q∞h−1 . (3.12)

We will refer to (3.12) as simply the Weil operator. To be precise, one should refer to g(x, y) as

the Sl(2)-orbit of a boundary Weil operator, see section 3.3. Similarly h(x, y) should be referred

to as the Sl(2)-orbit approximation of the period map. However, we will loosely refer to all

these objects as Sl(2)-orbits. Note that g(x, y) satisfies a ‘twisted boundary condition’

g(x+ 1, y) = eN
−
g(x, y)e−N

−
, (3.13)

which is similar to the adiabatic reduction used in [8] to reduce the SU(2) bi-Yang–Baxter model

to a model of quantum mechanics.

3.2.1 Generalized Unitons

We now explicitly show that the Weil operator g in (3.12), together with the R-matrix defined in

(3.9) solves the equations of motion of the critical bi-Yang–Baxter model. Here we will focus on

the main steps in the calculation, and refer the reader to appendix A where further details are

given. More precisely, throughout the calculation it is necessary to know how Adh, Adh−1 and

Adg act on the sl(2,R)-triple. This can be straightforwardly computed using the commutation

relations, and the results are listed in equations (A.2)-(A.7) and (A.14)-(A.16).

To start, it will be most convenient to present the equations of motion in real coordinates

x, y in terms of which they read

∂xJy − ∂yJx − η[Jx, Jy] = 0 , (3.14)

where we recall the R-bracket in (2.13) and denote

Jx = J+ + J− , Jy = −i (J+ − J−) , (3.15)

with J± defined in (2.11). For clarity of presentation, we will divide the main computation into

three steps.
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Step 1: jµ

As a first step, let us compute the simpler objects

jµ = g−1∂µg . (3.16)

Using (3.12) one has

jµ = h
[
(−1)adQ∞h−1∂µh− h−1∂µh

]
h−1 . (3.17)

Then, using the expression (3.11) for h, one readily computes

h−1∂xh =
1

y
N− , h−1∂yh = − 1

2y
N0 . (3.18)

Therefore, to compute jµ it remains to apply the commutation relations (3.4) and evaluate the

action of Adh. For the first step we use the relations (A.9)-(A.11) and for the second step we

use (A.2)-(A.4). The result of this computation is

jx = − 1

y2

[
N+ − xN0 − (x2 − y2)N−

]
, (3.19)

jy =
1

y

[
N0 + 2xN−

]
. (3.20)

Step 2: Jµ

To proceed, we would like to compute the currents Jµ, for which we must know the action of

R and Rg on the currents jµ. The general action of these two operators on the sl(2)-triple

follows from the definition (3.9) and the action of Adg on the sl(2)-triple, which we record in

(A.14)-(A.16). Applying this to jx and jy gives

(ηR+ ζRg) jx = η
α

y

[
N0 + 2xN−

]
+
ζ − η
y2

[
xN+ +

(α
2
− x2

)
N0 + x(1 + 2α)N−

]
, (3.21)

(ηR+ ζRg) jy = η
α

y2

[
N+ − xN0 − (x2 − y2)N−

]
(3.22)

+
ζ − η
y3

[
−(1 + x2)N+ + x(1 + x2)N0 + (x2 + x4 − y4)N−

]
.

where we have introduced

α = α(x, y) =
1 + x2 + y2

y
. (3.23)

Crucially, one sees that the result simplifies considerably when evaluated on the critical line

ζ = η and becomes

(R+Rg) jx =
α(x, y)

y

[
N0 + 2xN−

]
, (3.24)

(R+Rg) jy =
α(x, y)

y2

[
N+ − xN0 − (x2 − y2)N−

]
, (3.25)
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The main observation is now the following. Comparing the above result with the expressions

(3.19)-(3.20) for jx and jy, we see that

(R+Rg)jx = α(x, y) jy , (R+Rg)jy = −α(x, y) jx . (3.26)

In other words, for this particular choice of g the currents j+ and j− are eigenvectors of R+Rg.

As a result, computing Jx and Jy is straightforward and gives

Jx = β(x, y)jy , Jy = −β(x, y)jx , (3.27)

where we have introduced the function

β(x, y) =
1

i− α(x, y)η
. (3.28)

Step 3: equations of motion

For the final step, we show that (3.27) solves the equations of motion

∂xJy − ∂yJx − η[Jx, Jy] = 0 . (3.29)

Indeed, inserting (3.27) one effectively needs to show that

β (∂xjx + ∂yjy) + (∂xβjx + ∂yβjy + η[jx, jy]R) = 0 . (3.30)

This follows from straightforwardly using the definition of β(x, y), inserting our results for jx
and jy, see (3.19)-(3.20), and evaluating the R-bracket using (2.13) and (3.9). In fact, the two

terms in brackets vanish separately. Note that for the first term this is simply the statement

that the one-form ?j is exact, i.e.

d ? j = 0 . (3.31)

Stated differently, g also solves the principal chiral model. This is of course not surprising

if one expects the solution to hold for all values of η, since in the limit η → 0 the critical

bi-Yang–Baxter model reduces precisely to the principal chiral model.

3.2.2 Discussion

To summarize, we have shown that for any real Lie group G whose Lie algebra g contains a

horizontal sl(2)-triple, the Weil operator defined in (3.12) provides a solution to the critical

bi-Yang–Baxter model associated to the class of R-matrices satisfying (3.9). As this constitutes

the main result of this work, let us make some additional comments.

Finite Action

As a first remark, we note that it is straightforward to show that our solutions have finite action.

Indeed, one finds that

Son−shell ∼
∫
d2σ β (j+, j−) , (3.32)

where we recall that β is defined by (3.28). We stress that our solution is completely defined

in terms of the horizontal sl(2)-triple and the pairing (j+, j−) is independent of the particular

representation of the triple, except for possibly an overall coordinate-independent factor. There-

fore, it suffices to compute the on-shell action for the fundamental representation, where it was

shown that the result is finite, as discussed in section 2.2.
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Multiple sl(2)-triples

As a second remark, we note that it is entirely possible that g contains multiple inequivalent

(commuting) sl(2)-triples that are all horizontal with respect to the same charge operator.

Of course, one can construct a corresponding Weil operator as in (3.12) for each of these

triples and obtain multiple inequivalent solutions to the corresponding bi-Yang–Baxter models.

Interestingly, in Hodge theory the presence of multiple sl(2)-triples gives rise to so-called

multi-variable Sl(2)-orbits, which take the similar form

g = h(−1)Q∞h−1 , (3.33)

but with h given by

h(x1, . . . , xn, y1, . . . , yn) =
n∏
i=1

hi(xi, yi) , hi(xi, yi) = exiN
−
i y
− 1

2
N0
i

i , (3.34)

where i enumerates the various horizontal sl(2)-triples. Of course, to view this as a solution of

the bi-Yang–Baxter models one has to view one of the coordinates ti = xi + iyi, for a fixed i, as

the worldsheet coordinate and the others as some additional parameters. In this case one readily

sees that this also defines a solution by exactly the same arguments above, as the transformation

g 7→ a · g · a−1 , R 7→ Ada ◦R ◦Ad−1
a , a ∈ G , (3.35)

is a global symmetry of the bi-Yang–Baxter model. It would, however, also be interesting to see

if there exists a natural extension of the model to higher dimensions for which the multi-variable

Sl(2)-orbits provide a solution.

Generalizations and relations to other integrable models

As a third remark, we would like to stress that we have shown that the Weil operator solves

the critical bi-Yang–Baxter model, i.e. when ζ = η. Additionally, it is straightforward to check

that it does not solve the non-critical model, as we showed explicitly in section 2.3 for the Weil

operator of the torus. However, it is possible that by a suitable generalization of the ansatz

one can also find solutions of the non-critical model. For example, for the SU(2) model one can

apply the Z2-symmetry (2.25) to obtain instead a solution of the co-critical model and the same

can be done for the SL(2,R) model. It would therefore be interesting to see if this symmetry, or

an appropriate generalization thereof, also applies for the bi-Yang–Baxter model based on other

groups.

Another point that is worth emphasizing is the fact that the critical bi-Yang–Baxter model is

related to other integrable models. A trivial example is the limit η → 0, for which it reduces to

the principal chiral model. As mentioned earlier, since our solution holds for any value of η, this

implies that the Weil operator also solves the principal chiral model, for which the equations of

motion are simply the harmonicity condition (3.31). Relations to other integrable models have

been established as well in the literature. For example, as mentioned before, the critical SU(2)

bi-Yang–Baxter model is equivalent to the coset SO(4)/SO(3) η-model [10,11]. Furthermore,

at the conformal point η = i
2 it coincides with the SU(1, 1)/U(1) gauged WZW model with an

additional U(1) boson [11]. Therefore the Weil operator (of the torus) also provides a solution
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to these models. There has also been work on relating the bi-Yang–Baxter model to generalized

λ-deformations via Poisson-Lie T-duality. This was first worked out for the SU(2) model in [23]

and later proved in general in [27], see also [28–30]. Therefore, via this duality it is reasonable to

expect that our solution can be mapped to solutions of generalized λ-deformations. This points

to the striking idea that Hodge theory allows one to construct solutions to many integrable

models.

Indeed, as a last comment let us compare the results obtained in this work with our previous

work [3]. There it was shown that the Weil operator of an arbitrary variation of Hodge structure

solves the λ-deformed G/G model when |λ| = 1. Indeed, in [3] we considered the ansatz

g = h zQ∞h−1 , (3.36)

where h reduces to (3.11) in the Sl(2)-orbit approximation. In that case, when also z = −1,

the expression (3.36) coincides with (3.12). Furthermore, one can easily check that what was

referred to as the ‘horizontality condition’ in [3] reduces to the condition that the sl(2)-triple is

horizontal with respect to Q∞. It would be interesting to investigate how the relation among

the solutions translates into a relation of the underlying integrable models.

3.3 Hodge-theoretic origin of Sl(2)-orbits

In this section we provide a basic introduction to the field of asymptotic Hodge theory and the

origin of Sl(2)-orbits. Let us first sketch the main ideas before we go into the details. The main

idea is to generalize some of the structures that appeared in our discussion of the torus in section

2.3. The central ingredient is a number of vector spaces varying over some base. In the example

of the torus, the vector spaces are the cohomology groups and the variation is parametrized by

the Teichmüller parameter τ . More generally, the vector spaces need to define a Hodge structure.

If furthermore the variation of this Hodge structure over the base satisfies a particular criterion,

then it is referred to as a variation of Hodge structure. In asymptotic Hodge theory, one is

in particular interested in the general features of such variations in asymptotic regions of the

parameter space, e.g. when considering the limit τ → i∞ for the torus. The striking fact is that

the asymptotic behaviour of a variation of Hodge structure is universal, and (in a precise sense)

asymptotes to an Sl(2)-orbit.

3.3.1 The Torus Revisited

As a warm-up, let us revisit the example of the torus. First, recall the decomposition of the

middle de Rham cohomology

H1(T,C) = H1,0 ⊕H0,1 , H0,1 = H1,0 , (3.37)

into holomorphic and anti-holomorphic harmonic one-forms. The decomposition (3.37) is referred

to as a Hodge decomposition. In the basis of {[dξ1], [dξ2]} the subspaces can be represented as

H1,0 = spanC

(
1
τ

)
, H0,1 = spanC

(
1
τ̄

)
. (3.38)

In particular, while the full vector space H1 is of course τ -independent, the two subspaces H1,0

and H0,1 do depend on τ . In fact, the dependence is such that (3.37) defines a variation of

Hodge structure. This will be properly defined shortly.
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Hodge Filtration

However, to do so it will be convenient to introduce a slight reformulation. Indeed, consider the

following two vector spaces

F 1 = H1,0 , F 0 = H1,0 ⊕H0,1 , (3.39)

which clearly define a decreasing filtration

F 1 ⊆ F 0 . (3.40)

The spaces F p are collectively referred to as a Hodge filtration. They are an equivalent way of

packaging the data of a Hodge decomposition. Indeed, one can recover the decomposition (3.38)

by

Hp,q = F p ∩ F̄ q . (3.41)

For this particular example, one easily verifies the following relations

∂

∂τ
F 1 ⊆ F 0 ,

∂

∂τ̄
F 1 ⊆ F 1 . (3.42)

Let us explain the notation here. F 1 is a vector space spanned by the vector (1, τ). This vector

can be differentiated with respect to τ to yield a new vector (0, 1), which clearly does not lie in

F 1 but does lie in F 0. Similarly, differentiating with respect to τ̄ yields (0, 0), which does lie in

F 1 as it is the zero vector. The two relations (3.42) together are referred to as the horizontality

condition. It is exactly this condition that will later be taken as the definition of a variation of

Hodge structure (with an appropriate generalization).

Asymptotic Behaviour

Before moving on to such generalizations, let us consider the limit τ → i∞. From the point of

view of the Hodge decomposition (3.37) it appears difficult to make sense of this limit, as the

vectors in (3.38) diverge. However, in terms of the Hodge filtration, one can make the following

observation9

F p = eτNF p0 , (3.43)

where

F 1
0 = spanC

(
1
0

)
, F 0

0 = spanC

{(
1
0

)
,

(
0
1

)}
, (3.44)

and

N =

(
0 0
1 0

)
. (3.45)

Note that N is exactly the standard lowering operator in sl(2,R). This is a particular feature of

the torus, due to its simplicity. In more complicated examples N will be related to a lowering

operator, but not exactly equal to it. What is, however, a general feature is that the matrix N

is nilpotent. Indeed, in this case we have N2 = 0.

9The reason for the notation F p0 is because, heuristically, it can be viewed as evaluating the filtration F p at
the point τ = 0.
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The point of the rewriting (3.43) is that there is a very natural way to make sense of the

limit τ → i∞. Indeed, since all the τ -dependence is captured by the exponent eτN , one defines

the limiting filtration by simply stripping off this factor

lim
τ→i∞

e−τNF p = F p0 . (3.46)

There is, however, one issue that arises from this construction. Indeed, applying (3.41) to define

a tentative limiting Hodge decomposition associated to F p0 , one finds

H1,0
0 = H0,1

0 = spanC

(
1
0

)
. (3.47)

In particular, H1,0
0 ⊕H0,1

0 no longer returns the full vector space H1. In other words, just the

vector spaces F p0 are not sufficient to define an actual Hodge structure associated to the limit

τ → i∞. The missing ingredient, as one may have expected, is the matrix N in (3.45). Indeed,

note that

N

(
1
0

)
=

(
0
1

)
, (3.48)

which is the piece which is not captured by H1,0
0 and H0,1

0 . Therefore, it is natural to expect

that one should combine N and F p0 in some way to define an actual Hodge structure. It turns

out that the following definition does the job

F p∞ = eiNF p0 . (3.49)

Indeed, applying (3.41) one finds

H1,0
∞ = spanC

(
1
i

)
, H0,1

∞ = spanC

(
1
−i

)
, (3.50)

which does define a proper Hodge decomposition. Hence, we have successfully associated a

Hodge structure to the limit τ → i∞, for which the decomposition (3.37) still holds. To connect

a bit with our discussion in section 2.3, we note that one can also describe the spaces H1,0
∞ and

H0,1
∞ as the eigenspaces of the operator

Q∞ =
i

2

(
0 −1
1 0

)
, (3.51)

which also appeared in (2.50). To be precise, elements in H1,0
∞ and H0,1

∞ will have eigenvalues 1
2

and −1
2 respectively.

Appearance of the Sl(2)-orbit and Weil operator

As a final question, one may wonder if it is possible to recover the full variation of Hodge

structure from the boundary Hodge structure. In other words, we search for an operator, denoted

by h, such that

Hp,q = h ·Hp,q
∞ , (3.52)

for all p, q. The map h is referred to as the period map. In this particular example this is

relatively straightforward to obtain, and the result is

h = exNy−
1
2
N0
, τ = x+ iy , (3.53)
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where again

N0 =

(
1 0
0 −1

)
(3.54)

is the standard grading operator in sl(2,R). Note that (3.53) is exactly what was considered in

section 2.3. This is where the name Sl(2)-orbit comes from. Indeed, we have found that the

variation of Hodge structure defined by the middle de Rham cohomology of the torus can be

viewed as the orbit of the boundary Hodge structure associated to the limit τ → i∞ under an

element of SL(2,R). Note that this relation is exact. Strikingly, it turns out that the appearance

of Sl(2)-orbits is a universal feature of variations of Hodge structure. In a precise sense, they

characterize the leading order behaviour of the Hodge decomposition in the asymptotic regions

of the parameter space.

To end this example, we also explain the role of the Weil operator. Given a Hodge structure

Hp,q, the Weil operator C associated to this Hodge structure is defined by

Cv = ip−qv , v ∈ Hp,q . (3.55)

Naturally, given the relation (3.52) one can write it as

C = hC∞h
−1 , (3.56)

where C∞ is the Weil operator associated to the boundary Hodge structure Hp,q
∞ . It is straight-

forward to show that C∞ = (−1)Q∞ .

3.3.2 General Variations of Hodge Structure

Let us now generalize the above discussion to more general variations of Hodge structure. For

simplicity, we will restrict to one-parameter variations, and denote the parameter by z = x+ iy.

Let H be a complex vector space. Then a weight D Hodge structure can be described by a

Hodge decomposition

H = HD,0 ⊕ · · · ⊕H0,D =
⊕

p+q=D

Hp,q , Hq,p = Hp,q , (3.57)

where each of the vector spaces Hp,q depends on z. As a motivating example, one may consider

the primitive middle de Rham cohomology of a D-dimensional Kähler manifold, or more generally

of families of algebraic varieties [31–33]. Indeed, in our original discussion of the Weil operator of

the torus in 2.3 we started from the action of the Hodge star on differential forms. Of course, this

requires knowledge of the metric on the torus. For arbitrary Kähler manifolds, however, this is

in general very difficult. On the other hand, considering instead the action of the Weil operator

on the cohomology turns this into a problem of linear algebra and group theory. Indeed, it turns

out that one can learn much from studying just the abstract properties of the corresponding

Hodge structure, without making any reference to some underlying geometry.

Horizontality

Let us now return to z-dependence of the subspaces Hp,q. To characterize it, one introduces the

Hodge filtration F p as

F p = HD,0 ⊕ · · · ⊕HD−p,p =
⊕
q≥p

Hq,D−q . (3.58)
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This defines a decreasing filtration

FD ⊆ FD−1 ⊆ · · · ⊆ F 0 = H , (3.59)

satisfying

Hp,q = F p ∩ F q , H = F p ⊕ FD−p+1 . (3.60)

The condition we now impose on how the Hodge structure depends on the parameter z is the

direct generalization of (3.42)

∂

∂z
F p ⊆ F p−1 ,

∂

∂z̄
F p ⊆ F p , (3.61)

and is referred to as the horizontality condition.

Asymptotic Behaviour

Now let us consider the limit z → i∞.10 According to the nilpotent orbit theorem of W. Schmid

[17], any variation of Hodge structure is approximately described by a so-called nilpotent orbit

F p ≈ F pnil = ezNF p0 , (3.62)

where N is a nilpotent matrix and is referred to as the log-monodromy matrix, since it is

associated with a monodromy transformation z 7→ z + 1. In general there will be corrections to

(3.62) which scale as e2πiz and are therefore exponentially suppressed in the limit z → i∞. The

approximation (3.62) is called the nilpotent orbit approximation. Note that in the example of

the torus, this relation is exact and there are no exponential corrections.

The filtration F p0 is again identified as the limiting filtration. However, as was already

apparent in the example of the torus, it will generically not define a Hodge filtration. Instead, it

can be shown that, together with the monodromy matrix N , it defines a so-called mixed Hodge

structure. For the purpose of this introduction, it will not be necessary to delve into the exact

details here, but refer the reader to [17, 18, 34–36] for further details. However, let us comment

on its main relevance with regards to the Sl(2)-orbit approximation.

Nilpotent orbit vs. Sl(2)-orbit

In the example of the torus, we saw that the nilpotent orbit approximation and Sl(2)-orbit

approximation coincide, and furthermore describe the full variation of Hodge structure exactly.

In general, neither of these statements is true. Indeed, it turns out that for more complicated

examples the proposal (3.49) does not work. Instead, one first defines a rotated version of F p0 by

F̃ p0 = eζeiδF p0 . (3.63)

The operator δ plays an especially important role, and is referred to as the phase operator. The

operators δ, ζ can be constructed uniquely from the mixed Hodge structure defined by N and

F p0 , see e.g. [35, 36] for further details. Roughly speaking, they are necessary to identify the

10Strictly speaking, one usually starts by considering a variation of Hodge structure that is locally defined over
a punctured disk. Then z is introduced as the covering space coordinate, so that the puncture corresponds to the
limit z → i∞.
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sl(2)-triple from which the Sl(2)-orbit will be built. Indeed, given the filtration F̃ p0 and the

monodromy matrix N one can uniquely construct an sl(2)-triple {N+, N0, N−} which acts on

the limiting mixed Hodge structure in a particular way. From here the discussion proceeds as

for the torus, but using F̃ p0 instead of F p0 . One defines the boundary Hodge structure by

F p∞ = eiN F̃ p0 . (3.64)

We stress that it is already a non-trivial statement that F p∞ indeed defines a Hodge filtration. In

exactly the same manner as we did in the example of the torus, one may associate a boundary

charge operator Q∞ to the boundary Hodge structure Hp,q
∞ via the eigenspace decomposition.

This in turn defines a boundary Weil operator C∞ = (−1)Q∞ . Also, using the fact that p+q = D,

one sees that

C2
∞ = (−1)D . (3.65)

Indeed, for the torus we have D = 1 and hence recover the familiar condition C2
∞ = −1.

The Sl(2)-orbit corresponding to F p∞ is then similarly defined by

F pSl(2) = exN
−
y−

1
2
N0
F p∞ . (3.66)

However, there is an important difference with respect to the torus example. There we found

that F pnil = F pSl(2). In contrast, for more complicated examples this is only true to first order in

y−1. In this sense, one can think of the Sl(2)-orbit (3.66) as the first order approximation in

y−1 to the full variation of Hodge structure. In general, one instead has

F pnil = exN
−
(

1 +
g1

y
+
g2

y2
+ · · ·

)
y−

1
2
N0
F p∞ , (3.67)

where the operators gi encode (infinitely many) subleading corrections in powers of y−1. The fact

that any variation of Hodge structure is asymptotically described by an Sl(2)-orbit comprises

the first part of the famous Sl(2)-orbit theorem [17,18]. However, perhaps even more strikingly,

the second half of the theorem provides an algorithmic procedure to compute the corrections

gi in (3.67). The theorem even applies when considering multi-parameter variations of Hodge

structure. However, this is extremely non-trivial and goes beyond what is necessary in this work.

For a concrete application in the physics literature we refer the reader to [14], where the full

tower of corrections has been explicitly computed and resummed for all one-parameter variations

of Hodge structure arising in Calabi–Yau threefolds with a single complex structure modulus.

3.4 Example: Type IV1

The preceding discussion has been rather abstract, so let us end this section by providing an

explicit example of a horizontal sl(2)-triple in sp(4,R) and write down the corresponding solution

to the bi-Yang–Baxter model. We also end with some speculative comments regarding the

nilpotent orbit approximation discussed in section 3.3. We refer the reader to [14] for further

details on this example.
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Charge Operator and Boundary Hodge Structure

The charge operator is given by11

Q∞ =
i

2


0 −3 0 0
1 0 −2 0
0 2 0 −1
0 0 3 0

 . (3.68)

For the reader interested in the Hodge-theoretic interpretation, we note that the eigenspace

decomposition of this charge operator induces the following weight three Hodge structure

C4 = H3,0
∞ ⊕H2,1

∞ ⊕H1,2
∞ ⊕H0,3

∞ , (3.69)

where

H3,0
∞ = spanC


1
i
−1
−i

 , H2,1
∞ = spanC


1
i
3
1
3
i

 , (3.70)

with H1,2
∞ and H0,3

∞ obtained by complex conjugation.

Horizontal sl(2)-triple

The sl(2)-triple is given by

N+ =


0 3 0 0
0 0 2 0
0 0 0 1
0 0 0 0

 , N0 =


3 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 −3

 , N− =


0 0 0 0
1 0 0 0
0 2 0 0
0 0 3 0

 . (3.71)

One readily checks that the commutation relations (3.4) are satisfied. From a Hodge-theoretic

perspective, this particular horizontal sl(2)-triple defines a type IV1 limiting mixed Hodge

structure. Geometrically, it arises for example in the large complex structure limit of a Calabi–

Yau threefold with a single complex structure modulus.

Weil Operator

The Weil operator corresponding to this horizontal sl(2)-triple via (3.12) is explicitly given by

g(x, y) =
1

y3


−x3 3x2 −3x 1

−x2
(
x2 + y2

)
3x3 + 2xy2 −3x2 − y2 x

−x
(
x2 + y2

)2 (
x2 + y2

) (
3x2 + y2

)
−3x3 − 2xy2 x2

−
(
x2 + y2

)3
3x
(
x2 + y2

)2 −3x2
(
x2 + y2

)
x3

 . (3.72)

By our general arguments, the operator (3.72) together with the R-matrix (3.9) provide a

solution to the critical sp(4,R) bi-Yang–Baxter model, as can be verified by explicit computation.

For some further details on how we constructed a full R-matrix for sp(4,R) we refer the reader

to appendix B, see in particular (B.6).

11We refer the reader to appendix B for some details on the algebra sp(4,R).
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Nilpotent Orbit Approximation

We end this example with an observation regarding the nilpotent orbit approximation discussed

in section 3.3. As a rough summary, it was mentioned that for general variations of Hodge

structure, the Sl(2)-orbit approximation (3.72) will only provide the first order approximation

of the full variation of Hodge structure. To obtain a better approximation one must consider

the nilpotent orbit approximation (3.67) by incorporating an infinite tower of y−1 corrections.

In [14] this was done explicitly for this particular example. The resulting Weil operator is given

by (we have set x = 0 for simplicity)

g(y)

N(y)
=


0 −9y2χ 0 8y3 + χ

−3
2y(2y3 + χ)χ 0 − (2y3+χ)(8y3+χ)

2y 0

0 y(8y6 − y3χ+ 2χ2) 0 −3y2χ
−1

2(2y3 + χ)(8y6 − y3χ+ 2χ2) 0 −9
2y(2y3 + χ)χ 0

 ,

with

N(y) =
1

(4y3 − χ)(2y3 + χ)
. (3.73)

The parameter χ appearing in g(y) is what drives the corrections. Indeed, in the limit χ→ 0

one recovers the Sl(2)-orbit result (3.72). From the Hodge-theoretic point of view, it arises

precisely in the step (3.63), where the limiting filtration F p0 is rotated to F̃ p0 . This step is crucial

in order to identify the sl(2)-triple (3.71). Indeed, the phase operator δ is given by

δ =


0 0 0 0
0 0 0 0
0 0 0 0
χ 0 0 0

 . (3.74)

In the geometric setting, when this boundary Hodge structure arises in the large complex

structure regime of a Calabi–Yau threefold Y3, the parameter χ is proportional to the Euler

characteristic of Y3.

The curious reader may wonder whether also the expression (3.4) solves the bi-Yang–Baxter

model, since it at least does so in the χ→ 0 limit. If one naively takes the same R matrix (B.6)

as was used for the Sl(2)-orbit approximation, one will find that it does not provide a solution.

However, it is an interesting possibility that an appropriate dependence of R on the parameter

χ alleviates this issue, thus promoting the full nilpotent orbit approximation to a solution of

the associated bi-Yang–Baxter model. If this is indeed the case, this would imply a remarkable

connection between the R matrix and the phase operator δ.

At present, there is no concrete evidence that this will indeed be the case. There are, however,

two indications. The first is that sometimes the nilpotent orbit and Sl(2)-orbit are related

in a rather simple manner. Indeed, it was found in [14] for the type I1 and II0 boundaries,

that after appropriately resumming the corrections in the nilpotent orbit approximation, the

two are related by a simple coordinate shift y 7→ y + y0. Of course, such a shift will not spoil

the solution. The second indication is that in an earlier work [3] it was shown that in fact

the full Weil operator (hence also the nilpotent orbit approximation) solves the equations of

motion of the λ-deformed G/G model. Therefore, there is already an established relationship

between objects appearing in Hodge theory and deformations of integrable non-linear σ-models.
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It appears plausible, then, that this relation runs deeper and also applies to the bi-Yang–Baxter

model beyond just the Sl(2)-orbit approximation. This is, however, still rather speculative and

we hope to return to this question in future work.

4 Conclusions

In this work, we have presented a new class of solutions to the critical bi-Yang–Baxter model.

Although this model is integrable, writing down explicit solutions to its equations of motion is

still a non-trivial task. It was shown in [8] that for the simplest case of the SU(2) bi-Yang–Baxter

model it is possible to obtain a subset of special solutions by appropriately deforming the

so-called uniton solutions of the principal chiral model found in the seminal work [15]. However,

this procedure relies on manipulations that explicitly involve the target space coordinates and is

therefore not feasible to extend to higher-dimensional groups. Instead, we have introduced a

class of solutions that does not require a coordinate-dependent formulation, but which is instead

described purely in terms of group-theoretic objects. As a result, our solutions are very general

and can be written down for groups of arbitrary dimension.

More specifically, the solutions we have presented correspond to Sl(2)-orbits and were

originally motivated by considering the action of the Hodge star operator on the middle de Rham

cohomology of a two-torus. Indeed, on the one hand, we have argued that the latter explicitly

solves the critical SL(2,R) bi-Yang–Baxter model. In fact, it was shown that it can be identified

with a special complex uniton solution of the SU(2) bi-Yang–Baxter model at the critical point

ζ = η, where the two deformation parameters are equal and the symmetry of the model enhances.

On the other hand, the Hodge star operator, viewed as an operator on the middle cohomology,

is an example of an important Hodge-theoretic object called the Weil operator. In the case of

the two-torus, the Weil operator is exactly described by an Sl(2)-orbit. Crucially, the concept of

an Sl(2)-orbit is much more general and can be written down for higher-dimensional groups.

Practically, the relevant information required to construct such orbits is fully encoded in terms

of a horizontal sl(2)-triple inside the algebra of the group under consideration. The main result

of this work is now the following: using the properties of the horizontal sl(2)-triple, we (1)

identify a subset of R-matrices compatible with the triple, i.e. satisfying (3.9), and we (2)

show that the Sl(2)-orbit (3.12) corresponding to the triple solves the equations of motion of

the critical bi-Yang–Baxter model defined by this subset of R-matrices. The solutions thus

constructed have finite action and satisfy C2 = (−1)D and therefore provide a generalization

of the complex uniton solutions of the SU(2)-model. Importantly, since horizontal sl(2)-triples

have been classified in the mathematics literature [19, 20] the corresponding generalized unitons

and R-matrices are also classified.

A first question, which is of immediate interest, is whether our proposed solutions can be

generalized further. Here the underlying Hodge theory provides a very natural candidate for

such a generalization. Indeed, as was explained in section 3.3, one can think of the Sl(2)-orbit

as the first-order approximation to an arbitrary variation of Hodge structure, which is valid

near the boundary of the parameter space over which the variation is defined. A natural

question, therefore, is whether possible corrections to the Sl(2)-orbit would spoil the solution

to the bi-Yang–Baxter model. This is a very non-trivial question, as the computation of such

corrections is already rather involved and constitutes the second part of the celebrated Sl(2)-orbit

theorem [17,18]. The resulting orbit, including all these corrections, is referred to as the nilpotent
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orbit. Despite the complexity of the algorithm, in examples the corrections can be explicitly

computed, see e.g. [14], and hence the fate of our proposed solutions can be tested. We expect

that the R-matrix will play an especially important role and that, in order for the corrections

to not spoil the solution, it might need to be constructed using the additional information

associated to a nilpotent orbit. We hope to return to this question in future work.

Another question that arises is how much the concepts in Hodge theory underlie the study

of solutions to integrable non-linear σ-models in general. Indeed, it is now clear that the Weil

operator plays a special role in this regard, as it can be used to construct solutions to the

critical bi-Yang–Baxter model as shown in this work, and also for the λ-deformed G/G model

as shown in our previous work [3]. Furthermore, via Poisson–Lie T-duality one expects that the

solutions can be mapped to the dual models. It would be interesting to investigate how far our

proposed solutions extend across the duality web of integrable field theories. Of perhaps even

greater importance is to establish the exact relevance of integrability in this regard. We expect

that there is a special type of integrability that makes models amenable to a treatment with

Hodge-theoretic techniques.

The connection of Hodge theory to integrable models also gives another way of highlighting

how tame geometry enters physics. It has recently been suggested that tameness is a general

property of physical theories, such as effective theories compatible with quantum gravity [37]

as well as conformal field theories and certain classes of quantum field theories [38,39]. Tame

geometry is currently a very active field of mathematics, which is, in part, due to some striking

developments that reveal the underlying tame structures in Hodge theory, see [40–42]. Indeed,

it has been shown that the period map and the Weil operator of a general variation of Hodge

structure are tame. Applied to the bi-Yang–Baxter or λ-deformed G/G model, it implies that

some of its solutions are tame functions. This requires a careful specification of the global

properties of the solutions. Furthermore, we expect that the integrable models that we considered

here can also be studied further at the quantum level, see e.g. [8, 43]. They can thus serve as a

testing ground for the general tameness conjectures put forward in [39] that claim the tameness

of the correlation functions varying with the parameters of the theory and over space-time.

As a last point, we would like to ponder the possibility of coupling the bi-Yang–Baxter model

to gravity, e.g. along the lines of JT-gravity [44, 45]. Indeed, one of the original motivations of

our work was to establish a proper σ-model formulation of Hodge theoretic objects such as the

period map and Weil operator, as was suggested in [13], see also [12]. However, an object that

has remained rather mysterious in this regard is the so-called Weil–Petersson metric. While this

metric arises very naturally in the context of string compactifications, its precise significance

from a Hodge-theoretic point of view is not much explored. It was suggested in [13] that the

Weil–Petersson metric emerges as the classical solution to a non-linear σ-model coupled to

gravity. It would be interesting to see if this can be achieved using the bi-Yang–Baxter model.

This would also open the possibility to develop a holographic description of the two-dimensional

gravity theory as envisioned in [13].
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A Overview of Formulae

In this section we have collected some formulae that are used in the computations of section 3.2.

Action of Adh and Adh−1

In the Sl(2)-orbit approximation, the period map is given by

h = exN
−
y−

1
2
N0
. (A.1)

Using the commutation relations (3.1), it follows by direct computation that

AdhN
+ =

1

y
N+ − x

y
N0 − x2

y
N− , (A.2)

AdhN
0 = N0 + 2xN− , (A.3)

AdhN
− = yN− . (A.4)

In a similar fashion, one finds

Adh−1N+ = yN+ + xN0 − x2

y
N− , (A.5)

Adh−1N0 = N0 − 2x

y
N− , (A.6)

Adh−1N− =
1

y
N− . (A.7)

Action of (−1)adQ∞

It will be convenient to denote

O† = −(−1)adQ∞O . (A.8)

Then using the commutation relations (3.1) and (3.4), one finds(
N+
)†

= N− , (A.9)(
N0
)†

= N0 , (A.10)(
N−
)†

= N+ . (A.11)

Action of Adg

We recall that

g = h(−1)Q∞h−1 , (A.12)

so that

Adg = −Adh ◦ † ◦Adh−1 . (A.13)
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In order to compute the action of Adg on the sl(2)-triple, we can use our earlier results (A.2)-(A.7)

as well as (A.9)-(A.11). Then one finds

AdgN
+ =

1

y2

[
x2N+ − x(x2 + y2)N0 − (x2 + y2)2N−

]
, (A.14)

AdgN
0 =

2

y2

[
xN+ −

(
x2 +

y2

2

)
N0 − x(x2 + y2)N−

]
, (A.15)

AdgN
− = − 1

y2

[
N+ − xN0 − x2N−

]
. (A.16)

Note that since g2 = ±1, we also have Adg = Adg−1 .

B R-matrix for type IV1

In this section we explicitly write down the R-matrix used in section 3.4, where the type IV1

Weil operator is discussed. Recall that sp(4,R) consists of real 4× 4 matrices X satisfying

XT · S + S ·X = 0 , (B.1)

where S is a non-singular skew-symmetric matrix and T denotes the transpose. In this particular

example we have made the following (non-standard) choice

S =


0 0 0 −1
0 0 3 0
0 −3 0 0
1 0 0 0

 . (B.2)

A basis of sp(4,R) is given by

Tk =
1

k!

(
adN+

)k (
N−
)3
, k = 0, . . . , 6 , (B.3)

together with

T7 = N+ , T8 = N0 , T9 = N− , (B.4)

with N+, N0, N− given in (3.71). Note that this particular embedding of sl(2,R) into sp(4,R)

corresponds to the 10 = 3⊕ 7 representation.

With the charge operator Q∞ in (3.68) at hand, it is straightforward to define an R-matrix

that furthermore satisfies the condition (3.9). Indeed, one simply demands that R commutes

with Q∞ and L0 and acts as ±c on the eigenvectors of adQ∞ with positive/negative eigenvalues,

respectively. In other words, we put

RQ∞ = 0 , RL0 = 0 , ROq = c sign(q)Oq , [Q∞,Oq] = qOq . (B.5)

For this particular example, these equations have a unique solution if one furthermore demands

that R is anti-symmetric, as is required in the bi-Yang–Baxter model. Of course, the resulting
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solution is essentially the Drinfel’d–Jimbo solution.12 In the basis of {Tk} it reads

R = ic



0 5
16 0 1

16 0 1
16 0 0 0 0

−15
8 0 3

8 0 1
8 0 3

8 0 0 0
0 −15

16 0 9
16 0 5

16 0 0 0 0
−5

4 0 −3
4 0 3

4 0 5
4 0 0 0

0 − 5
16 0 − 9

16 0 15
16 0 0 0 0

−3
8 0 −1

8 0 −3
8 0 15

8 0 0 0
0 − 1

16 0 − 1
16 0 − 5

16 0 0 0 0
0 0 0 0 0 0 0 0 1

2 0
0 0 0 0 0 0 0 −1 0 −1
0 0 0 0 0 0 0 0 1

2 0


. (B.6)

One may verify that (B.6) satisfies the modified classical Yang–Baxter equation (2.4). Further-

more, one sees that when c = i the R-matrix is indeed a real endomorphism of sp(4,R). By

examining the 3× 3 block on the bottom right-hand side, one verifies that it acts on the real

sl(2)-triple as required by (3.9). In contrast, it acts on the remaining 7 × 7 block in a more

complicated fashion.
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