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ABSTRACT: Mobile measurements are increasingly used to
develop spatially explicit (hyperlocal) air quality maps using
land-use regression (LUR) models. The prevailing design of
mobile monitoring campaigns results in the collection of short-
term, on-road air pollution measurements during daytime on
weekdays. We hypothesize that LUR models trained with such
mobile measurements are not optimized for estimating long-term
average residential air pollution concentrations. To bridge the
knowledge gaps in space (on-road versus near-road) and time
(short- versus long-term), we propose transfer-learning techniques
to adapt LUR models by transferring the mobile knowledge into long-term near-road knowledge in an end-to-end manner. We
trained two transfer-learning LUR models by incorporating mobile measurements of nitrogen dioxide (NO2) and ultrafine particles
(UFP) collected by Google Street View cars with long-term near-road measurements from regular monitoring networks in
Amsterdam. We found that transfer-learning LUR models performed 55.2% better in predicting long-term near-road concentrations
than the LUR model trained only with mobile measurements for NO2 and 26.9% for UFP, evaluated by normalized mean absolute
errors. This improvement in model accuracy suggests that transfer-learning models provide a solution for narrowing the knowledge
gaps and can improve the accuracy of mapping long-term near-road air pollution concentrations using short-term on-road mobile
monitoring data.
KEYWORDS: mobile monitoring, air pollution mapping, LUR modeling, transfer learning

1. INTRODUCTION
Quantifying chronic health effects of air pollution requires
accurate maps of long-term average air pollution at a fine
spatial granularity. Mobile monitoring campaigns have shown
to be suitable to measure detailed air pollution concentrations
on streets. With substantial spatial coverage, mobile measure-
ments are increasingly used to build land-use regression
models (LUR) for estimating air pollution concentrations with
high spatial resolutions for large spatial areas.1−9

Ideally, with multiple repeated measures on roads over a
long period of time, the mean of mobile measurements should
be able to fully represent the on-road long-term concentrations
(e.g., annual average). However, several practical factors
introduce additional biases to this representation when
attempting at mapping residential air pollution using mobile
measurements. Restricted by the length of campaigns and the
number of collection vehicles, usually only a few seconds can
be measured at each location, especially for large study regions.
Chambliss et al.10 argued that the temporal scarcity of mobile
measurements poses a challenge of representing long-term
concentrations. They found only a modest correlation between
mobile and nearby long-term measurements in a large mobile
monitoring campaign in Oakland. In addition to the temporal
difference, since all mobile measurements are on roads, there is

also a spatial difference between on-road measurements and
near-road concentrations. Kerckhoffs et al. found that nitrogen
dioxide (NO2) and ultrafine particle (UFP) predictions made
by LUR models based on mobile monitoring are approximately
15−30% higher than home-outdoor stationary measure-
ments.6,7,11 Moreover, potentially different collection instru-
ments used in mobile campaigns and long-term monitoring
networks also contribute to the systematic difference between
mobile measurements and the target long-term measure-
ments.7,11,12

These spatiotemporal and instrumental differences between
mobile training measurements and the target long-term
concentrations make that the conventional empirical LUR
model contradicts one of the core assumptions of supervised
learning methods. Namely, the training and predicting
instances must be subject to a similar distribution13 (hereafter
referred to as the distribution of data instances over the sample
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space as the domain14). If this assumption is violated, the
knowledge learned from the training domain (i.e., mobile on-
road instances) will differ from the knowledge in the target
application domain (i.e., long-term near-road instances). The
knowledge here refers to the association between covariates
and the response (concentrations). This difference in knowl-
edge between the training and the target domain is defined as
the knowledge gaps. Such knowledge gaps result in models
based on solely mobile training data not being optimized for
prediction accuracy.14−16 This problem is widely recognized as
domain shifts in computer science research.

We propose one domain adaptation and one boosting-based
transfer-learning algorithm to bridge the knowledge gaps
between the mobile and the long-term near-road domain in an
end-to-end manner. These methods can directly or indirectly
incorporate long-term measurements with mobile monitoring
data to adapt the training of LUR models. The core idea is to
reweight the training goal from minimizing the loss function in
the mobile domain into optimizing the loss function in the
desired long-term domain and thus efficiently fit machine
learning (ML) models with more appropriate parame-
ters.13,14,17

This paper describes to what extent the end-to-end transfer-
learning LUR model can bridge the knowledge gaps between
the mobile on-road domain and the long-term near-road
domain in order to boost the accuracy of mapping long-term
air pollution near roads. We limited the goal as near-road air
pollution because most long-term routine monitoring sites in
the study area (Amsterdam) were deployed near roads. We
used data from a 10-month mobile monitoring campaign in
Amsterdam, where two Google Street View cars continuously
measured NO2 and UFP.11 Two transfer-learning LUR models
were compared to the mobile LUR model based on random
forest (RF_LUR) and stepwise linear regression (SLR) trained
with mobile measurements only. Prediction accuracy was
evaluated by external long-term near-road validation data
collected by routine monitoring campaigns.

2. DATA AND METHODS
2.1. Short-Term Mobile Training Data. The mobile

measurements used to train the LUR models were collected by
two Google Street View (GSV) cars in Amsterdam from 25
May 2019 to 15 March 2020 (stopped due to COVID
lockdown policy). Briefly, 1-second measurements of NO2 and
UFP were collected on weekdays between 08:00 and 22:00
measured by the CAP sensor and the MiniDiSC sensor,
respectively. Both sensors show a high correlation compared to
the stationary measurements in previous studies.7,18,19 A total
of 5.9 million measurements for each pollutant were recorded,
along with timestamps and geographic coordinates, covering
almost all streets of Amsterdam. Mobile measurements of both
NO2 and UFP were temporally corrected according to one
reference site located in a suburban area of Amsterdam, away
from traffic sources. Details of the data collection and
preprocessing can be found in our previous work.11

The road network in Amsterdam was divided into 50 m road
segments (n = 46,664). The mobile measurement points were
snapped to the nearest road segment (n_NO2= 41,919,
n_UFP = 42,813). The mean value of the snapped measured
points was set as the mobile measurements of the
corresponding road segment. Drive passes were defined as
the number of days that the collection vehicles drove through a
road segment. On average, each street segment consisted of 3−

10 s measurements per drive-pass and eight unique drive-
passes (see the distribution of drive-pass in Appendix Figure
S1).
2.2. GIS Predictors. The predictors used to predict air

pollution concentrations consist mainly of three components:
(1) land use from the Copernicus CORINE 2018 dataset,20

which is a large pan-European land use database; (2) traffic
variables from the national traffic databases in the Netherlands
such as traffic counts and road types;21 and (3) population
density data from the Netherlands Environmental Assessment
Agency.22 The specific variables including evaluated buffer
sizes are summarized in Appendix Table S1.
2.3. External Long-Term Measurements. Long-term

measurements refer to stationary measurements that consec-
utively measure air pollution at a location for a long period of
time. These long-term measurements provide more temporal
coverage but at a smaller number of locations. We use the term
“near-road” here for measurements near all roads including
minor and major roads. We applied these long-term near-road
measurements to validate the accuracy of LUR models in terms
of predicting long-term near-road concentrations and for the
development of the transfer-learning LUR models. For this
purpose, long-term Palmes NO2 measurements collected by
the Dutch Municipal Health Service (GGD) were used.23 This
data consists of repeated 4-weekly average passive measure-
ments by Palmes tubes located on road-side building façades
and lampposts. A total of 82 monitoring sites were located
within 30 m of road segments and had complete data during
the time period of the mobile monitoring campaign. Their
averaged distance to the centerline of the nearest road is about
7 m. For UFP, we used data from the EXPOsOMICS study
encompassing 17 sites (on the house fac ̧ade with the
monitor�MiniDiSCs; on average 12 m to the nearest road
centerline) measured continuously for repeated 24 h on three
different days in different seasons (3 × 24 h) in Amsterdam
from 2014 to 2015.12,24 The average of the measurements from
the 3 days was used. Together with the corresponding
environmental predictors, they represent the long-term near-
road knowledge. The data flow and models used are
summarized in Figure 1.
2.4. Model Development. We implemented and

compared four LUR models (summarized in Table 1). As a
baseline, two mobile LUR models were trained using mobile
measurements only and validated on the full set of external
long-term data following previous published work.4,8,10,11 Next,
we implemented two transfer-learning LUR models to mitigate
the knowledge gaps between the mobile and the long-term
near-road domain by incorporating mobile measurements with
information derived from long-term measurements.
2.4.1. Transfer-Learning LUR Models. Transfer-learning

methods can transfer the knowledge learned from a prior task
as a starting point to train a new model on a different but
related task, as this requires less training data.13,26 In this work,
we transferred the prior mobile knowledge extracted from
mobile measurements into the long-term domain represented
by long-term near-road measurements. We explored two
instance-based transfer-learning methods: (1) TrAdaBoost, a
boosting-based transfer-learning algorithm,16 and (2) Pri-
or_RF, a domain adaptation technique.14

TrAdaBoost is implemented as the Two_stage_TraAda-
Boost.R2. TraAdaBoost.R2 is an adapted AdaBoost algorithm
that is a popular boosting-based ensemble learning algorithm.
Ensemble learning is an ML paradigm where multiple models
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(often called “weak learners)” are trained to solve the same
problem and combined to get better results. As an ensemble
learning algorithm, boosting methods are designed to train
these weak learners sequentially in an adaptative way: each
weak learner in the sequence is fitted by giving more weights to
instances in the training dataset that caused higher errors by
the previous weak learner in the sequence. Intuitively, each
weak learner focuses on fitting the most difficult instances in
each boosting iteration. At the end, these weak learners are
combined to form a “strong” model that is accurate at
predicting all the cases learned from the training instances. In
our work, TrAdaBoost.R2 directly merges the mobile
monitoring data (source instances) (xs, ys) with the long-
term observations (target instances) (xt, yt) to form a single
dataset and assign equal initial weights to each instance. These
initial weights will be updated during each boosting iteration,
according to the absolute errors of predicting target instances.
In this way, the source instances that are similar to the target
data are emphasized (larger weights) while the different
instances are de-emphasized.13,16 As an improved version of

TrAdaBoost.R2, Two_stage_TraAdaBoost.R2 adjusts instance
weights in two stages. In the first stage, at each boosting step,
TrAdaBoost decreases the relative weights of source instances
that are different from the target instances. In the second stage,
the weights of all source instances are frozen while the weights
of the target instances that are different from the source
instances are increasing.16

Prior_RF is a domain adaptation method that reweights the
risk function (refers to the expected value of the loss function)
of RF by the ratio that reflects the difference between mobile
(source) and long-term (target) concentrations. The goal of
training a conventional RF model is to identify the parameters
and structures of the model for minimizing the risk function in
the target domain Rt( f) by minimizing the approximated risk
function in the source domain Rs( f). Therefore, the
distributions of the covariates and the response (concentration
measurements) in the sample space between training and
prediction are required to be similar. When they are different,
the domain adaptation algorithms are used to push the Rs( f)
closer to Rt( f) by re-reweighing Rs( f) with the ratio of the
prior probability distribution between source and target
samples (P y

P y
( )
( )

t

s
).14 RuLSIF (relative unconstrained least-squares

importance fitting) is then applied to estimate this ratio
directly from the discrete observations of its numerator and
denominator.25,26 Afterward, the training instances reweighted
by this ratio are fed into the training of the conventional RF
algorithm. Additionally, in this paper, to better compare the
performance between RF_LUR and Prior_RF, the hyper-
parameters of Prior_RF are kept the same as in RF_LUR, such
as number of trees, number of random splitting variables, and
maximum of terminal nodes.
2.4.2. Mobile LUR Models. The mobile LUR model refers to

the LUR model trained exclusively with mobile measurements.
As a linear-regression-based mobile LUR model, the SLR
model was implemented following previously described
criteria.11 The SLR model started with an empty model
(intercept only) and then variables were added based on
adjusted R2.6,7 Variables were only added when the direction of
the association was as predefined, e.g., positive for traffic
intensity (see the directions for each covariates in Appendix
Table S1).

The RF_LUR model is based on the conventional RF
algorithm that is a popular tree-based ML algorithm and has
been applied previously in modeling air pollution.1,4 To avoid
overfitting, the mobile training data were divided into a split of
70% training and 30% test data. RF was trained on the 70%
training data based on the fivefold cross-validation. To obtain

Figure 1. Data and methods involved in developing conventional
LUR and transfer-learning LUR models. Two conventional LUR
models were implemented as baseline models, namely, stepwise linear
LUR model (SLR) and standard random forest LUR model
(RF_LUR). Prior_RF and TrAdaBoost are two variants of transfer-
learning LUR models that incorporated external long-term
information into the training of mobile monitoring data. The accuracy
of TrAdaBoost was evaluated using half of the external long-term air
pollution measurements. SLR, RF_LUR, and Prior_RF were validated
using the full set of external long-term measurements.

Table 1. Summary of Models and Comparisons

Models Algorithms Training data Validation data

Mobile LUR
model

SLR Linear regression Mobile data Full external long-term data
RF_LUR Random forest

(RF)
Mobile data Full external long-term data

Transfer-learning
LUR model

Prior_RF Adapted RF Mobile data and the ratio of probability distributions between
mobile and external long-term measurements

Full external long-term data

TrAdaBoost TrAdaBoost.R2 Mobile data and half of the external long-term data Half of the external long-term data
Sensitivity test

SLR_half Llinear
regression

Mobile data Half of the external long-term data

RF_LUR_half Random forest Mobile data Half of the external long-term data
Prior_RF_half Adapted RF Mobile data and the ratio of probability distributions between

mobile and half of the external long-term measurements
Half of the external long-term data
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the best performance, the RF was fine-tuned by the discrete
hyperparameter search. The best model was then applied to
predict the 30% test data. When the training accuracy is similar
to the test accuracy, the model is considered not overfitting.
2.5. Model Comparisons and Sensitivity Tests.

TrAdaBoost requires directly involving a number of long-
term instances as inputs. We input mobile and half of the long-
term measurements (random split) to train the TrAdaBoost
model (nNO2_train = 41; nUFP_train= 9) and used the other half of
the long-term measurements as validation data (nNO2_val = 41;
nUFP_val= 8). However, the random splitting may bring
additional uncertainty to the stability of models, due to the
relatively small size of the validation data especially for UFP.
To incorporate this uncertainty, we repeated the random
splitting 20 times with different random seeds. For each
iteration, TrAdaboost was trained repeatedly.

The other models, i.e., SLR, RF_LUR, and Prior_RF, were
evaluated by the full set of long-term data, because of requiring
no long-term data directly in the training stage. To account for
the model stability, aligned with TrAdaboost, RF_LUR and
Prior_RF models were also trained 20 times with bootstrapped
mobile measurements. Additionally, to demonstrate the effect
of random splitting and to compare the result more directly,
we performed a sensitivity analysis by repeatedly training
RF_LUR and Prior_RF using the half long-term data used in
TrAdaboost (Table 1).

After training, all the abovementioned models were applied
to predict concentrations for all 46,664 road segments. The
mean of the predicted road segments within 30 m of long-term
monitoring stations was compared to the corresponding long-
term external measurements (the parts not used in the training
stage), for estimating the prediction accuracy. Three common
accuracy metrics were used to compare model performance:
(1) the normalized mean absolute error (nMAE), which
normalizes the standard MAE by the mean of the validation
data. This metric is commonly used to indicate the averaged
errors in the prediction tasks; (2) the normalized root mean
square error (nRMSE), which normalizes RMSE by the mean
of validation data; and (3) goodness of fit estimated by squared
Pearson correlation (R2) calculated by the “R2()” function
from the R package “Caret.”27

3. RESULTS AND DISCUSSION
3.1. Differences between Mobile and Long-Term

Measurements. The mobile measurements reflect the levels
of on-road, short-term air pollution during the daytime of
weekdays. The long-term measurements represent the near-
road long-term air pollution concentrations covering all hours
of the day and week. The averaged concentrations of NO2 and
UFP of the mobile measurements (for all 41,919/42,813 street
segments) were higher than those of the external long-term
validation data (at 17−82 sites, Table 2).

Table 2. Summary of Concentrations from Mobile and Long-Term Monitoring Data

Dataset Source Number sites Concentrations 1st Qu. Mean 3rd Qu./unit

Mobile measurements Mobile points aggregated to 50-m road segments 41,919 NO2 18.6 27.4 32.0 μg/m3

42,813 UFP 11,480 21,901 26,614 particles/cm3

Long-term measurements Palmes23 82 NO2 20.9 26.1 30.5 μg/m3

EXPOsOMIC24 17 UFP 15,367 18,584 21,419 particles/cm3

Figure 2. Differences in density distributions between mobile and long-term measurements for NO2 and UFP at long-term validation sites. The
mean values were marked.

Table 3. Model Performance of Predicting Long-Term Air Pollution Validated by External Long-Term Data (Mean and 95%
CI)

NO2 UFP

Models nMAE nRMSE R2 nMAE nRMSE R2

SLR 0.19 0.23 0.49 0.22 0.27 0.20
RF_LUR 0.29 (0.29,0.30) 0.38 (0.38,0.39) 0.53 (0.52,0.54) 0.26 (0.25, 0.27) 0.35 (0.35,0.37) 0.15 (0.13,0.16)
Prior_RF 0.24 (0.22,0.25) 0.31 (0.29,0.32) 0.62 (0.61,0.63) 0.19 (0.19,0.20) 0.25 (0.24,0.26) 0.28 (0.23,0.33)
TrAdaBoost 0.13 (0.11,0.15) 0.18 (0.16,0.21) 0.54 (0.47,0.60) 0.21 (0.18,0.23) 0.25 (0.23-0.29) 0.25 (0.18,0.31)

Sensitivity test (mean and 95% CI)
RF_LUR_half 0.28 (0.27-, 0.30) 0.38 (0.35-, 0.40) 0.54 (0.49, 0.60) 0.26 (0.22,0.30) 0.35 (0.3, 0.40) 0.23 (0.12, 0.34)
Prior_RF_half 0.24 (0.22,0.26) 0.31 (0.29-, 0.33) 0.64 (0.60, 0.68) 0.18 (0.16, 0.20) 0.22 (0.18, 0.26) 0.29 (0.14, 0.43)
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Table 4. Improvement in Percentage of Transfer-Learning LUR Models Compared to Conventional Mobile LUR Modelsa

SLR RF_LUR

NO2 models nMAE nRMSE R2 nMAE nRMSE R2

TrAdaBoost −31.6% −21.7% +10.2% −55.2% −52.6% +1.9%
Prior_RF +26.3% +34.8% +26.5% −17.2% −18.4% +17.0%

UFP models
TrAdaBoost −4.6% −7.4% +25.0% −19.2% −28.6% +66.7%
Prior_RF −13.6% −7.4% +40.0% −26.9% −28.6% +86.7%

aImprovement in percentage is calculated using (median_of_transfer_learning − median_of_conventional)/median_of_conventional.

Figure 3. Density plot of predictions and measured long-term concentrations at validation sites. For each method, a model was selected whose
performance was the median of the repeated cross-validation performance.

Figure 4. Map of predicted long-term NO2 concentration (μg/m3) based on various GIS predictors. SLR is one of the conventional linear LUR
model. RF_LUR is one of the traditional ML-based LUR models. Prior_RF and TrAdaBoost are two transfer-learning based LUR models that
integrate long-term observations with mobile measurements in the training phase.
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A weak to moderate correlation was observed for UFP (R2 =
0.08) and NO2 (R2 = 0.45) when comparing the long-term
with mobile measurements within 30 m of the external long-
term sites. The NO2 value of mobile measurements distributes
on a wider range as compared to the long-term measurements
when plotting the density distribution of measurements at the
locations where both mobile and long-term measurements
were available (Figure 2). Although the mobile and long-term
measurements of UFP distribute in a similar range, the
accuracy metrics show they are in a lower correlation than that
of NO2.
3.2. Model Performance. 3.2.1. Overall Performance.

The performance of all models tested is summarized in Table
3. In general, transfer-learning LUR models were more
accurate at estimating long-term near-road air pollution
concentrations than conventional LUR models trained on
mobile data only. The accuracy improvement in percentage
was quantified as shown in Table 4 and calculated using
(median_of_transfer_learning − median_of_conventional)/
median_of_conventional. TrAdaBoost improved performance
by 55.2% and 31.6% over RF_LUR and SLR, evaluated by
nMAE for NO2. As for UFP, the accuracy gains of Prior_RF
were greater in R2, which were 40% and 86.7% as compared to
RF_LUR and SLR models.

The performance of TrAdaBoost fluctuated more than that
of Prior_RF for both NO2 and UFP over the 20 iterations
(wider 95CI range in Table 3). Part of the fluctuations can be
explained by the fact that only half of the long-term
measurements were used to calculate the performance of
TrAdaBoost, as the 95CI of both Prior_RF_half and
RF_LUR_half (validated on 50% of long-term sites) were
also larger than those of Prior_RF and RF_LUR (validated on
all sites) in the sensitivity test.

RF_LUR was less accurate than SLR for both NO2 and
UFP, with the only exception of the R2 for NO2 (Table 3). The
training accuracy of RF_LUR in terms of R2 was 0.75 evaluated
by the 70% mobile training data for NO2 (training R2 = 0.54
for UFP). The test accuracy was similar to the training
accuracy (testing R2 = 0.73 for NO2, R2 = 0.53 for UFP,
evaluated by the other 30% mobile test data).
3.2.2. Density Plot of Predictions. The visual evaluation of

the density plots shows that SLR predictions were generally in
a narrower range than the desired long-term range, especially
for UFP (Figure 3). The predictions of RF_LUR were
similarly distributed to the mobile measurements that served as
training data but wider than the measured long-term data. In
contrast, the predictions of both transfer-learning LUR models
were closer to the long-term validation observations than the
SLR and RF_LUR models.
3.2.3. Variable Importance and Spatial Distribution

Patterns. The selected predictors and corresponding coef-
ficients of the SLR model are presented in Appendix Table S2.
Traffic variables were the most important predictors, followed
by population and port-related features. Similarly, traffic-
related variables were also the main and most important
variables for RF_LUR and both transfer-learning models (see
Appendix Figure S2). Transfer-learning LUR models consid-
ered additionally the population and other environmental
contextual information such as the water area and the urban
green space. All NO2 and UFP maps show that the ring road of
Amsterdam is the most polluted area as compared to other
locations (Figure 4 and Figure S3 in Appendix).

Comparing the spatial differences among the tested models,
Prior_RF and TrAdaBoost generally predicted lower NO2
concentrations than SLR and RF_LUR at residential locations,
especially in the city center (Figure 5). In contrast, at major

Figure 5. Spatial differences in NO2 predictions (μg/m3) between transfer-learning LUR and mobile LUR models.
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road locations, TrAdaBoost and Prior_RF predicted higher
NO2 concentrations than SLR and similar levels to RF_LUR.
For UFP, Prior_RF predicted lower concentrations than SLR
and RF_LUR for most locations. TrAdaBoost predicted higher
UFP concentrations than SLR on the ring road and in the city
center than RF_LUR (Appendix Figure S4).
3.3. The Issue of Knowledge Gaps in Conventional

Mobile LUR Models. When applying mobile measurements
to estimate long-term air pollution concentrations near roads,
empirical mobile LUR models are hampered by the
spatiotemporal and instrumental differences between the
training and the application domains. First, mobile measure-
ments often consist of just a few seconds of observations per
road segment. In our GSV campaign, two cars collected
daytime air pollution on weekdays for 10 months and
measured on average 8 drive-passes for each 50 m road
segment. In contrast, long-term measurements measure air
pollution over a longer period including all hours and days
during the study period. Second, in our mobile monitoring
campaign, the on-road air pollution is measured. However,
significant differences in (traffic-related) air pollution concen-
trations by the spatial distance to the road have been
reported.11 In addition, different sensors used in mobile
campaigns and regular monitoring networks often bring a
certain number of extra differences, although calibrations and
collocations are performed.

All of these knowledge gaps originating from space, time,
and instruments are at odds with the core assumption of
supervised learning methods. Consequently, trained exclusively
with mobile measurements, the training accuracy of mobile
LUR models (estimated by mobile measurements) is often not
equal to their performance in predicting long-term near-road
air pollution when validated by long-term near-road measure-
ments.4,28 In our study, RF_LUR showed a decrease from its
training accuracy (cross-validation based on mobile measure-
ments; R2 = 0.75 for NO2; R2 = 0.54 for UFP) to the
application accuracy (validated by the long-term measure-
ments; R2 = 0.53 for NO2; R2 = 0.15 for UFP). This is not an
overfitting issue, since the training accuracy was similar to the
test accuracy when only mobile data were used (R2 = 0.73 for
NO2; R2 = 0.53 for UFP, evaluated by the other 30% mobile
test data). The similar accuracy between the training and the
test mobile data indicates that the model learned from the
mobile instances generalized well to other datasets in the same
domain (mobile domain).When the application domain shifts
into another domain (e.g., the long-term domain), the
predictions accuracy will not necessarily be equal to the
training accuracy.

Both the RF_LUR model and SLR face the same issues, as
both are supervised learning algorithms trained solely with
mobile measurements. However, RF_LUR was less accurate
than SLR (Table 4). This suggests that ML-based LUR models
tend to be more impacted by the knowledge gaps than linear-
LUR models. Several recent mobile studies also found no
significant improvement of ML and even, in some cases,
worsening of model performance in mapping long-term
concentrations compared to linear regressions.4,28,29 ML
models consist of a more complex structure with a larger
number of parameters that need to be optimized based on the
training samples. The mobile training data made the model
fully delineate the mobile knowledge. However, this mobile
knowledge did not translate to the long-term domain.
Consequently, the advantage of ML, namely, accurate fitting,

turns out to be the major limitation when the prediction
domain shifts away from the training domain.
3.4. Transfer-Learning LUR Models Can Narrow the

Knowledge Gap. Despite the complex spatiotemporal and
instrumental differences between the mobile and long-term
concentrations, with a limited amount of target (i.e., long-
term) information, our proposed transfer-learning LUR models
were able to narrow the knowledge gap by transferring
learnings from the mobile domain into the long-term domain
in an end-to-end paradigm. This end-to-end paradigm was
implemented by assigning smaller weights to the mobile
training instances that were different from the target long-term
near-road instances and emphasizing the target instances that
are different from mobile instances to adjust the risk function
of LUR models. This pushed the LUR model to learn more
from the long-term near-road instances while still optimally
utilizing the mobile instances to capture the detailed hyperlocal
variations at the same time. Compared to mobile LUR models
trained with mobile instances only, transfer-learning LUR
models achieved smaller errors in predicting long-term near-
road air pollution concentrations (Tables 3 and 4). This
comparison is more straightforward when comparing Prior_RF
and RF_LUR models, since they are both based on the RF
algorithm with the same hyperparameters. The only difference
is with and without the adaptation of long-term near-road
information.

The mobile measurements were higher than the long-term
near-road measurements (Table 2), due to the on-road
measurements during the daytime of weekdays (generally
busier than other timeslots) as well as more repeats on major
roads. This resulted in overestimations of air pollution by
mobile LUR models, especially on residential roads. The lower
estimations of NO2 and UFP from TrAdaBoost and Prior_RF
predictions suggest that transfer-learning LUR models can
correct this biased trend (see the prediction differences in
Figure 5 and Figure S4 in Appendix).

Although the performance of TrAdaBoost was validated on a
half of the long-term measurements, it is still reasonable to be
compared with other LUR models that were validated on the
full dataset. In the sensitivity test, validated on only half of the
long-term data, the averaged performances of Prior_RF_half
and RF_LUR_half were similar to the mean of Prior_RF and
RF_LUR for both air pollutants. These similar mean
performances estimated on the full and half versions indicate
that the mean value of the separated half validation data can
represent the full validation data. Thus, the averaged
performance of TrAdaBoost can be directly compared to the
models validated by the full set of validation data.
3.5. The Comparison of Transfer-Learning LUR

Models. The performance of transfer-learning models was
found to be limited by the number of long-term measurements
that can be included in the training phase. Prior_RF is less
sensitive to the number of long-term data than TrAdaBoost. In
more data-rich situations such as NO2, 41 long-term
measurements could be used in training to approximate the
long-term knowledge. This makes TrAdaBoost stable and
accurate to transfer the learned mobile knowledge toward long-
term knowledge. In our result, TrAdaBoost achieved better
nMAE and nRMSE than Prior_RF for NO2 (see Figure 3). In
contrast, only nine long-term instances were included in the
training of TrAdaBoost for UFP. Given the size of Amsterdam,
the low number of long-term instances makes it challenging to
approximate the long-term knowledge from these nine
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instances for TrAdaBoost. In contrast, Prior_RF is based on
the ratio of the probability distribution between the mobile
and the long-term domains and thus all long-term data could
be used to estimate this ratio (n = 17). Therefore, it is less
affected by a limited number of long-term instances. With few
UFP long-term measurements, Prior_RF achieved better
nMAE and nRMSE than TrAdaBoost (see Table 3).

Prior_RF can generally obtain a better R2 than TrAdaBoost.
This may be due to their different strategies of determining
weights. TrAdaBoost is designed to adjust the weights of
individual instances based on their similarities (defined by the
absolute error) to the long-term instances. Thus, TrAdaBoost
can better transfer the mobile knowledge toward long-term
knowledge in terms of absolute errors. In contrast, Prior_RF
reweights the risk function by the ratio of the probability
distribution between mobile and long-term measurements. In
this way, Prior_RF predictions can obtain a better correlation
with the long-term data, which is reflected in the higher R2

observed for Prior_RF as compared to the TrAdaBoost model
(Table 3).
3.6. Strengths and Limitations. Although transfer-

learning LUR models outperform the mobile LUR methods,
a certain level of long-term knowledge in the study area is
required. An advantage of selecting Amsterdam as the study
area is the large number of long-term NO2 regulatory
monitoring sites (n = 82). In contrast, the number of the
long-term UFP measurements used is relatively small (n = 17)
and could not temporally cover the entire study period. The
number and quality of long-term observations directly
influence the performance of transfer-learning LUR models.
However, at this point, it is not clear how many long-term
measurements are sufficient. It will depend on various factors,
such as the choice of hyperparameters, the feature space, and
the size of study area. According to the study described in this
work, it seems that Prior_RF has higher robustness to the
number of long-term data than TrAdaBoost. Transfer learning
methods in this work focus on modeling long-term average
concentrations. Future work could evaluate transfer learning
methods for shorter-term exposures (e.g., modeling hourly
concentrations).

Our Google Street View campaign extensively measured air
pollution at a spatially fine granularity. Together with the
external long-term monitoring data, Amsterdam provides a
unique opportunity to evaluate empirical LUR methods on the
ability of estimating long-term average air pollution concen-
trations using short-term on-road mobile measurements.
Although our collection cars have traveled around Amsterdam
for about 10 months and collected air pollution at 1.7 million
locations (an average of 8 drive-passes per road segment), such
an intensive mobile dataset still lacks temporal coverage for
each location and inherently only measures on-road air
pollution as compared to the desired long-term concentrations.
We emphasized that the spatiotemporal and instrumental
differences cause the mobile knowledge learned by empirical
mobile LUR models to deviate from the long-term near-road
knowledge. By augmenting the mobile data with temporally
rigorous long-term and near-road measurements, our proposed
transfer-learning LUR methods showed promising ability to
narrow these knowledge gaps. These spatiotemporal and
instrumental differences likely exist in most long-term air
pollution mapping work when using mobile monitoring data.
More attention to these knowledge gaps is needed when

applying empirical LUR models to map long-term residential
air pollution with mobile monitoring data.
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