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Abstract

The study of location and colocation of economic activities

lies at the heart of economic geography and related

disciplines, but the indices used to quantify these patterns

are often defined ad hoc and lack a clear statistical

foundation. We propose a statistical framework to quantify

location and colocation associations of economic activities

using information‐theoretic measures. We relate the

resulting measures to existing measures of revealed

comparative advantage, localization, specialization, and

coagglomeration and show how different measures derive

from the same general framework. To support the use

of these measures in hypothesis testing and statistical

inference, we develop a Bayesian estimation approach to

provide measures of uncertainty and statistical significance

of the estimated quantities. We illustrate this framework in

an application to an analysis of location and colocation

patterns of occupations in US cities.
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1 | INTRODUCTION

The recognition of differential specialization patterns lies at the heart of economics since the works of Adam Smith

and David Ricardo. Economists studying task assignments (Roy, 1951; Sattinger, 1993), urban economies (Ellison &

Glaeser, 1997; Ellison et al., 2010), or international trade (Balassa, 1965; Krugman, 1991), all stress the fact that

different economic entities specialize in different activities. Scholars in each of these fields have relied on indices

that quantify, for example, the revealed comparative advantage of exports, the specialization of regions, and the

extent of localization and (co‐)agglomeration of industries. However, currently a plethora of such measures exist,

without a principled way of deriving them nor of determining the amount of uncertainty in their measurement, and

they are often validated only by their predictive or explanatory power. Here we take a different approach,

motivated by the idea that the “best”measure is the one that reflects most closely what it intends to measure, given

some underlying model of the data. In this paper, we propose a statistical framework from which measures of

location and colocation can be derived. Although the methodology generalizes immediately to other contexts, to fix

ideas, we focus on economic geography and derive measures of location (the prevalence of an activity in a location),

specialization (the concentration of a location on few activities), localization (the concentration of an activity in few

locations) and colocation (the degree to which different activities are found in the same locations) from a single

statistical framework, revealing the internal connections between these concepts.

To do so, we treat location as the realization of an event that can be described by random variables like a

location and an economic activity. For example, we can consider the city and occupation of a randomly sampled

worker. We use the Pointwise Mutual Information (PMI) to express the association between a location and the

economic activity of a sample in terms of the information that the economic activity of a sample (e.g., a worker's

occupation) gives about its location (e.g., the city where that person works). Next, we show how the PMI can be

used, in turn, to quantify the association between pairs of economic activity, in terms of how much information

observing a particular activity gives about observing another activity in the same location. That is, if we randomly

sample a pair of workers from the same city, how much information does the occupation of one of them provide

about the likely occupation of the other?

Metrics based on Information Theory such as the PMI have found various applications in economics (Theil,

1967), and are uniquely derived from axioms about how information can be gained from probability distributions

(Cover & Thomas, 2005; Shannon, 1948). One of their key properties is that, by taking expectations, they can be

aggregated and decomposed to form well‐defined measures that have an interpretation in terms of information.

This allows the use of the PMI as a building block of information‐theoretic measures that describe properties at the

location, activity, or even economy level.

The resulting measures can be related to well‐known existing indices of localization and specialization. In

particular, at the level of location‐activity pairs—as exemplified in country‐product or city‐industry data—our metric

of association, the PMI, is a transformation of the widely used index of revealed comparative advantage (RCA)

(Balassa, 1965), also known as the Location Quotient in regional science (Isard, 1960).

Despite its widespread application, there has been ongoing debate about the theoretical foundations and

empirical properties of the RCA index, some of which complicate empirical analysis based on these indices (Ballance

et al., 1987; Kunimoto, 1977; Vollrath, 1991; Yeats, 1985). One of the main issues is the distributional skew of the

index, which has led to the proposal of several alternative indices that aim to overcome this issue (Hoen &

Oosterhaven, 2006; Laursen, 2015; Yu et al., 2009). We provide an information‐theoretic motivation for

considering the logarithm of the RCA index and a Bayesian approach to estimating this quantity. This not only

resolves the issue of distributional skew, but also ensures that the measure always attains finite values, and

suggests a natural measure of uncertainty for the estimates.

Building on the PMI, we derive measures on more aggregate levels of analysis, leading to measures of the

localization of economic activities that capture the degree to which economic activities are geographically

constrained. We do so by calculating an activity's expected PMI (i.e., the expected association of the activity with a
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given location) over all locations. This quantity is called Kullback–Leibler divergence, and has been proposed as a

measure of localization by Mori et al. (2005). Likewise, we can calculate the expected location‐activity PMI of a

particular location across all economic activities. This average association of a location with given activities provides

a measure of specialization that is conceptually similar to Krugman's specialization index (Krugman, 1991).

The PMI can be applied to any probability distribution representing joint occurrences. Thus, we show how it can

be applied to the distribution of colocated pairs of economic activity, providing a measure of spatial association

between economic activities. Colocation patterns of economic activities have received increasing attention in urban

economics (Ellison et al., 2010) and studies on the diversification patterns of national economies (Hidalgo et al., 2007).

In the former field, authors have used colocation patterns as a dependent variable to test theories related to

Marshallian externalities (Marshall, 1920). In this literature, the coagglomeration index of Ellison et al. (2010) has

become a de facto standard (Diodato et al., 2018; Faggio et al., 2017). The latter field consists of a growing literature

that uses colocation (or, more generally, co‐occurrence) patterns to construct measures of technological relatedness

or similarity, which are used as independent variables to study the diversification patterns of economies (Hidalgo et al.,

2018, 2007; Neffke et al., 2011). The “proximity”measure introduced in the seminal paper by Hidalgo et al. (2007) has

been applied to study a wide variety of topics, including regional economic development (Boschma et al., 2013),

technological innovation (Boschma et al., 2015), the labor market (Alabdulkareem et al., 2018), the green economy

(Mealy & Teytelboym, 2020) and global science (Miao et al., 2022). Here, we show how information theory can be

used to derive an alternative measure for colocation from first principles, clarifying its underlying assumptions and

statistical properties. We will discuss relations between the PMI, the coagglomeration index, and the proximity

measure, and compare these measures empirically to one another.

As in the case of location–activity pairs, marginalizing the PMIs of colocated activity–activity pairs yields

meaningful measures on the level of activities. Accordingly, the expected spatial association of an activity with all

other activities gives a measure of the spatial “codependence” of an activity. This measure reveals how “picky”

activities are in their tendencies to colocate with other activities. This spatial codependence is low for activities that

locate independently of other activities, whereas codependence is high for activities that are preferentially found in

the presence of certain other activities.

As an empirical illustration, we apply the proposed measures to US city‐occupation employment data, showing

the associations between cities and occupations, and between pairs of occupations. The data reveals clear (co‐)

location patterns. For instance, occupations related to manufacturing strongly concentrate in smaller cities and are

negatively associated to most other occupations, whereas knowledge‐intensive services mostly occur in the largest

cities and are associated with each other. We furthermore compare our colocation association with the

coagglomeration index of Ellison et al. (2010) and the proximity measure of Hidalgo et al. (2007), which are both

widely used in their respective fields. We find substantial differences between each of these measures. Although

the coagglomeration index gives a similar pattern to the PMI for occupation data on an aggregate level, the

measures differ when considering more fine‐grained data, leading to a different ranking for pairs occupations with

the highest colocation. Our measure also significantly differs from the proximity measure. For instance, the latter

tends to assign high proximities to pairs of occupations that have neutral associations according to the PMI. We

show where these differences originate and discuss their implications.

The probabilistic basis that underlies the PMI ensures that the framework is explicit about the null models, priors,

and data‐generating processes we assume. This puts the measurement of location and colocation on a rigorous

statistical footing. Furthermore, we show how the PMI can be estimated in practice. To do so, we use a Bayesian

framework that assumes that the data on the presence of units of economic activities across locations are drawn from

a multinomial distribution. This Bayesian estimation framework resolves some well‐known measurement issues and

provides a measure of uncertainty for the estimated quantities, allowing a test of significance for the resulting

associations. Building on Wolpert and Wolf (1995) and Hutter and Zaffalon (2005), we provide analytical

approximations of the posterior mean and variance of all the measures we propose. We also make available a Python

class that enable users to easily compute all proposed measures (https://github.com/aljevandam/Colocation).
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2 | INFORMATION‐THEORETIC MEASURES OF LOCATION

2.1 | Notation

Consider data on the location of economic activities in the form of an N N×c i dimensional matrix or contingency

table Q , where Nc and Ni are the number of locations and economic activities in the classifications of the data,

respectively. The matrix Q contains the counts of each cell in the matrix, its entries qci denoting the number of

occurrences of activity type i in location c. For instance, qci can be the number of workers employed in a particular

occupation i in a city c, the number of establishments of industry i in region c, or the number of dollars of product i

exported by country c. The total amount of activity of type i and the total activity in location c are given by the

column sums q q= ∑i c ci and row sums q q= ∑c i ci, respectively. Total economic activity is given by q q= ∑c i ci, .

We will consider the matrix Q to be the outcome of an independent sampling process from the underlying

distribution p with probabilities

p P C w c A w i= ( ( ) = , ( ) = )ci (1)

that a samplew (i.e., a worker, an establishment, a dollar) is part of activity i in location c. The matrixQ is considered

to be the outcome of sampling the categorical random variable wq times, where each sample has location C w( ) and

activity type A w( ). The marginal probabilities are given by p p P A w i= ∑ = ( ( ) = )i c ci and p p P C w c= ∑ = ( ( ) = )c i ci . The

location‐activity probabilities pci will be the main object of interest as they hold information on the associations

between locations and activities (Section 2.2).

A similar approach can be taken to study the colocation of economic activities. To this end, we examine the

probabilities pij that a randomly sampled pair of economic activities from the same location has types i and j (Section 3.1).

2.2 | Location association

The dependencies hidden in the joint probabilities pci can now be used to measure the association between an activity

and a location. Information theory provides a framework to quantify these associations explicitly in units of information

(e.g., bits). The association betweenC w c( ) = and A w i( ) = is given by their pointwise mutual information PMI p( )ci (Fano,

1961). The PMI quantifies the association between two outcomes by assessing the information content of the realization

C w c A w i( ( ) = , ( ) = ) relative to the information content when the realization comes from a null model in whichC w( ) and

A w( ) are independent random variables, that is, p p p=ci c i. Intuitively, PMI provides an answer to the question how much

information does observing c provide about the presence of i? PMI has been used in several fields, including economics

(Theil, 1967), administrative sciences (Theil, 1972), and linguistics (Church & Hanks, 1989).

In information theory, the information content or “surprise” of an outcome i is defined as ( )log
p

1

i
. Observing an

event that occurs with small probability leads to a high information content or surprise, whereas highly likely events

contain little information. The difference between the information contents of pci and p pc i gives a measure of the

surprise of observing pci while expecting p pc i. Depending on the base of the logarithm, PMI measures association in

units of bits (base 2) or nats (natural logarithm). This association between outcomes c and i is given by the logarithm

of ratio of the joint probabilities and the null model:







PMI p

p

p p
( ) = log .ci

ci

c i
(2)

PMI p( )ci will be positive when it is more likely to observe c and i together than expected under independence,

that is, p p p>ci c i, whereas PMI p( )ci takes negative values when c and i are less likely to occur together than expected

under the null model of independence, that is, p p p<ci c i. PMI p( ) = 0ci if and only if p p p=ci c i, indicating that c and i
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are independent (i.e., the incidence of an activity is independent of the place). Note that the ratio p

p p
ci

c i
in the PMI can

be interpreted in two alternative ways using conditional probabilities: as p
p
i c

i
or p

p
c i

c
. That is, the probability of

observing i conditional on knowing c relative to the same probability without knowing c, or vice versa, the

probability of observing c conditional on knowing i relative to the same probability not knowing i. The largest values

these ratios can achieve is when p = 1i c (in which case p p=ci c) or p = 1c i (in which case p p=ci i). Thus, the maximum

value of PMI p( )ci is given by ( )( ) ( )max{log , log } = log
p p p

1 1 1

i c ci
, which is attained either when activity i always occurs in

location c, or when activity i is the only activity in location c. PMI p( )ci is not bounded from below, as it tends

to −∞ as the joint probability pci tends to 0.

2.3 | Localization and specialization

Many questions are better answered at more aggregate levels of analysis than the level of location–activity pairs.

For instance, one may want to know which activities are most localized in space, or which locations are most

specialized in terms of their economic activities.

Measuring location associations using PMI naturally leads to measures that describe such associations at higher levels

of aggregation, which can be interpreted as measures of localization (one quantity for each activity) and specialization (for

each location). In the following, we show how such measures follow from the information‐theoretic framework. Table 1

summarizes each of the measures based on the location probabilities pci and the relations among them.

The localization of an activity can be defined as the degree of dissimilarity between the activity's own

geographical distribution and the distribution of the population or of total economic activity across all locations

(Hoover, 1936; Mori et al., 2005). Highly localized activities will be distributed across locations in a very different

way than what one would expect from locations' sizes. Activities with a low degree of localization will be distributed

in proportion to the population of locations.

This can be quantified by comparing how much, on average, the probability that a unit of activity of type i is

located in a location differs from the probability that any unit of activity is located there. Consider, for example, all

the associations of a particular activity with every location. Let p p p= ∕c i ci i be the probability that a sample of

activity i is located in location c, and recall that the probability that a random sample (i.e., regardless of its economic

activity) is located in c is given by pc. The expected location association of a sample with activity i is given by

 

 

∑

∑

KL p p p PMI p

p p p

( ) = ( )

= log( ∕ ).

c i c
c

c i ci

c
c i c i c

Here, KL denotes the Kullback–Leibler divergence (Kullback & Leibler, 1951), which measures the deviation

between the distribution across all locations of a specific activity, given by probabilities pc i, and the overall

distribution of locations, given by the probabilities pc. The resulting metric gives the expected association of a

TABLE 1 Overview of measures following from location probabilities pci

Unit of analysis Measure Formula

Location–activity Association PMI p( )ci

Activity Localization  KL p p PMI p( ) = [ ( )]c i c pc i ci

Location Specialization  KL p p PMI p( ) = [ ( )]i c i pi c ci

System Overall specialization MI C w A w PMI p( ( ), ( )) = [ ( )]pci ci
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location with a particular activity type across all locations. This expected association can be interpreted as a

measure of localization.

A localization that is close to zero indicates that knowing that sample has activity type i does, on average, not

provide much information on where it is located. In other words, the probability distribution for the location of

samples with activity i p, c i, is not very different from the overall distribution of locations pc. In contrast, a high

localization for an activity i shows that observing activity type i provides a lot of information on where we are most

likely to find it, implying that the distribution of probabilities pc i is very different from that of the probabilities pc.

A measure of specialization can be obtained in the same way, by considering the expected PMI across all

locations. More precisely, the expected association of a sample with a particular location can be quantified as the

dissimilarity between the distribution of activities given a location c p, i c, and the overall distribution of activity types

pi. Aggregating the PMI p( )ci to the location level thus leads to a measure of specialization given by

 ∑KL p p p PMI p( ) = ( ).i c i
i

i c ci

It is possible to aggregate even further: taking the expectation over both locations and activities yields the

expected association across location–activity pairs, or equivalently as either the expected localization of activities or

the expected specialization of locations. This can be interpreted as a measure for the overall specialization at the

system level. The resulting quantity is known as the mutual information (MI) (Cover & Thomas, 2005) and quantifies

the dependence between two random variables. In this case, it measures the dependence between the random

variables C w( ) and A w( ), which describe the type and location of a randomly sampled unit of activity. It is given by

∑MI C w A w p PMI p( ( ), ( )) = ( )
c i

ci ci
,

(3)

∑p KL p p= ( )
i

i c i c (4)

∑p KL p p= ( ).
c

c i c i (5)

When MI C w A w( ( ), ( )) = 0, the location of a randomly sampled unit is independent of its activity type, which

implies that all economic activity is distributed proportionally to location size, or equivalently that every location has

an identical distribution of activities. In this situation, there is no specialization in the system in the sense that all

locations have identical activity mixes. The maximum value ofMI C w A w( ( ), ( )) is reached when each location has its

own unique activity, so that each location is maximally specialized and each activity is maximally localized. The

mutual information measure may be used to compare specialization across different systems (e.g., comparing the

degree of overall specialization across countries), or to track the changes over time (e.g., comparing the degree of

overall specialization before and after the establishment of a trade agreement).

2.4 | Relations to existing measures

The information‐theoretic approach allows us to understand comparative advantage, localization, and specialization as part

of the same framework. Furthermore, it resolves some known methodological problems of existing measures.

For instance, the location association is equivalent to the logarithmic transformation of the widely used RCA

index (Balassa, 1965). This is easily seen by considering the definition of the RCA. The RCA of a location–activity

pair is given by the ratio of the share of activity i within location c to the share of activity i in the overall economy:

RCA c i
q

q

q

q
( , ) = .

ci

c

i
(6)
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That is, the RCA compares the observed share of activity i in location c in the numerator to share of i in the

economy as a whole in the denominator. Since qi and qc are interchangeable in (6), RCA c i( , ) can be interpreted in

two ways: as a measure of “localization” of activity i in location c, or as a measure of “specialization“ of location c in

activity i. The neutral value is given by RCA c i( , ) = 1, where the share of activity i in location c is equal to the total

share of activity i across all locations.

Consider now the maximum‐likelihood estimate for the multinomial probabilities p̂ =ci
q

q
ci . We can now express

PMI as:

















PMI p
p

p p

q

q

q

q

RCA c i

( ) = log
ˆ

ˆ ˆ

= log

= log( ( , )),

ci
ci

c i

ci

c

i

showing that, conceptually, the PMI equals the logarithm of the RCA index. Our approach stands therefore as a

generalization of the RCA index, showing that there is an information‐theoretic notion of association underlying the RCA.

One of the downsides of the RCA index when computed from data is that it is heavily skewed and asymmetric

around its neutral value. A logarithmic transformation of the index has been suggested as a possible solution. This

makes the metric symmetric around a neutral value of 0 (Vollrath, 1991). However, this transformed index becomes

undefined whenever q = 0ci .

However, seen through the lens of probabilities, the practical problem of having to take the logarithm of zero

when q = 0ci becomes a problem related to miss‐estimating pci. in Section 4, we show how to overcome this

problem using a Bayesian approach to estimate probabilities pci that are always strictly positive.

It is further noteworthy that the localization KL p p( )c i c has the exact same functional form as the measure of

industrial localization put forward by Mori et al. (2005), although the null model implicit in their metric is based on a

location's area. That is, the authors take the probabilities pc to be proportional to the area of that location as

opposed to its population size (i.e., qc).

Ignoring differences in how the distributions are estimated, the localization of an economic activity i can be

written as  KL p p RCA c i( ) = [log( ( , ))]c i c pc i . This shows that localization can be understood as the expected value of

the logarithm of the RCA of the activity over all locations in which it occurs (under the probability distribution pc i).

This holds regardless of the “null model” considered. Hence, one could follow Mori et al. (2005) and use their area‐

based null model to define a measure on the location–activity level that is analogous to the RCA index.

In a similar way, specialization of a location c can be seen as the expected value of the logarithm of the RCA, but

now over activities within the given location:  KL p p RCA c i( ) = [log( ( , ))]i c i pi c . This measure is akin to Krugman's

specialization index (Krugman, 1991), which is given by K c p p( ) = ∑ −i i c i . Like KL p p( )i c i , Krugman's index also

considers the “average deviation” of pi c to pi, but expresses this deviation in terms of absolute differences.

In our framework, the localization of activities and specialization of locations are essentially the same measures,

defined for different units of analysis, and all quantified by aggregating bits of information. The functional forms we

use are dictated by information theory and lead to easy‐to‐interpret measures that are consistently defined across

different units of analysis.

3 | INFORMATION‐THEORETIC MEASURES OF COLOCATION

3.1 | Colocation association

So far, we have studied the probabilities pci, which summarize location patterns of economic activity. Our

framework can however readily be extended to study more complex patterns. Here, we show how it can be applied
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to the distribution of colocated pairs of economic activity, providing a measure of spatial association between

economic activities.

To study colocations within our framework, we examine the probabilities pij that two random samples, w1 and

w2, from the same location have types i and j, respectively. Consider the conditional probability of sampling activity

j in the same location as a given sample of activity i, that is,




 
 



 

∑

∑

∑

∑

p P A w j A w i C w C w

P A w j C w c A w i C w c

P A w j A w i C w c P C w c A w i C w c

P A w j C w c P C w c A w i

p p

= ( ( ) = ( ) = , ( ) = ( ))

= ( ( ) = , ( ) = ( ) = , ( ) = )

= ( ( ) = ( ) = , ( ) = ) ( ( ) = ( ) = , ( ) = )

= ( ( ) = ( ) = ) ( ( ) = ( ) = )

= .

j i

c

c

c

c
j c c i

2 1 2 1

2 1 1 2

2 1 2 1 1 2

2 2 1 1

This means the probability of sampling activities i and j with both samples having the same location is given by

   ∑ ∑p p p p p p p p= = = .ij j i i i
c

j c c i
c

j c ci

Note that the marginal probabilities are given by p p∑ =j ij i and p p∑ =i ij j. Furthermore, p p p≠ij i j in general,

meaning that the probabilities of finding occupations i and j are not independent, and this dependence arises from

the requirement that both samples are drawn from the same location. It is these dependencies that we will quantify

in the following to construct a measure of association between pairs of economic activities.

As with the location–activity associations, the association between activity types can be quantified by the PMI.

The association between two activities is then defined as







PMI p

p

p p
( ) = log ,ij

ij

i j
(7)

where p pi j is the null model that describes a situation where i and j are distributed independently of each other.

What PMI p( )ij captures is that the presence of some activities may increase or decrease the probability that other

activities are present in the same location. Hence, observing a particular type of economic activity holds

information about the likelihood of observing other types of activities in the same location. Economic activities

that are more likely to occur together (“co‐occur”) than expected under independence will have a positive

association, whereas activities that are less likely to co‐occur than expected under independence will have a

negative association. Another way of seeing this, is by noting that PMI p( )ij is positive when p p>j i j , that is, when

we observe that type i increases the probability of observing type j when sampling units of activity from the

same location. Likewise, negative associations indicate that conditional on observing i, the probability of

sampling a unit of activity j in the same location decreases. The PMI p( )ij is symmetric, since p p=ij ji. Computing

this measure for all pairs of activity types thus leads to a symmetric, square matrix that has as entries the

colocation association PMI p( )ij .

The diagonal entries of this matrix hold “self‐associations” PMI p( )ii . Self‐association is high when observing an

activity of type i in a particular region increases the likelihood that a second randomly sampled unit in that location

is also of type i. This is the case when the probability of observing i is above average in a few locations, and below

average in others. The self‐association can thus be interpreted as a measure of geographical concentration. Note

that the self‐association is always positive, that is, PMI p( ) ≥ 0ii , since observing a unit of activity of type i can never

lower the probability of finding another unit of activity of type i (we sample with replacement). The matrix of

colocation associations thus provides a joint estimate of geographic concentration and colocation.
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3.2 | Aggregate measures of colocation

The measures for colocation association are identical to those proposed for location associations, only applied to

different probabilities. Hence, aggregate measures can be obtained in a similar way as for the location associations.

A measure of the average association of an activity j with any other activity is obtained by taking the expectation

over all other activities, leading to

 ∑KL p p p PMI p( ) = ( ).j i j
j

j i ij (8)

We call this measure the codependence of a particular activity. It quantifies the deviation of the distribution of

activity types conditional on having observed activity type i p, j i, with respect to the unconditional distribution of

probabilities pj. When activity type i has, on average, strong colocation associations with other activity types, this

deviation will be large. In other words, activity i “cares” about the type of activity it colocates with. A low value of

KL p p( )j i j on the other hand implies that the distribution of probabilities pj i does not differ much from the distribution

of pj, meaning that activity i is uninformative for the type of activities it colocates with. This implies that activity i

colocates with the “average” distribution of activity types, suggesting it is indifferent to the other activities in a location.

Taking the expectation of the codependence over all activity types, or equivalently taking the expectation of

the colocation association over all activity pairs leads to the mutual information

∑

∑

MI A w A w p KL p p

p PMI p

( ( ), ( )) = ( )

= ( ).

i
i j i j

ij
ij ij

1 2

This is a measure of dependence between A w( )1 and A w( )2 , which each describe the activity types of the member of a

randomly sampled pair from the same location. The overall codependence is thus a system‐level variable that describes

how the types of a randomly sampled pair are on average (spatially) associated. Such a measure may, for example, help

understand how the overall strength of coagglomeration externalities differs across economies or changes over time.

Table 2 gives a summary of the measures that follow from analysis of the colocation distribution pij.

3.3 | Coagglomeration

Colocation patterns have received increasing attention as a dependent variable to test theories onMarshallian externalities

(Diodato et al., 2018; Ellison et al., 2010; Faggio et al., 2017). Here we briefly describe how Ellison et al. (2010) derive their

coagglomeration index. These authors present a location choice model for profit‐maximizing plants (Ellison & Glaeser,

1997; Ellison et al., 2010) in which the (combined) effects of natural advantage and spillovers between activity types

determine coagglomeration patterns. The authors propose the following pairwise coagglomeration index:

TABLE 2 Overview of measures following from colocation probabilities pij

Unit of analysis Measure Formula

Activity–activity Colocation association PMI p( )ij

Activity–activity Geographic concentration PMI p( )ii

Activity Codependence  KL p p PMI p( ) = [ ( )]j i j p ijj i

System Overall codependence MI A w A w PMI p( ( ), ( )) = [ ( )]p ij1 2 ij
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γ

p p p p

p
=
∑ ( − )( − )

1 − ∑
.ij

c c i c c j c

c c
2 (9)

Note that in our notation, activity shares q

q
ci

i
and q

q
c are replaced by probabilities pc i and pc. This makes specific

that we regard the former shares as maximum likelihood estimates of the latter probabilities.

The coagglomeration of all activity pairs can be collected in a matrix with entries γij , completely analogous to the

PMI p( )ij in Section 3.1. The diagonal entries γii contain the agglomeration index of a single activity (Ellison & Glaeser,

1997), when neglecting effects of the plant size distribution. Mori et al. (2005) show that the agglomeration index of

Ellison and Glaeser (1997) can be written as γ a G b= − ≈i i i i
p p

p

∑ ( − )

1 − ∑

c c i c

c c

2

2 . This approximation is valid when plants are

reasonably uniformly distributed, in which case the plant size effect is negligible. The plant size distribution determines

the size of the chunks in which the activity counts are generated by the data generating process. Quantifying the

dependencies that arise from such a data‐generating process is an interesting direction for future research, but for now,

we focus on the simpler case in which information on the chunk sizes (e.g., the plant size distribution) is unavailable.

To facilitate the comparison of the coagglomeration index in Equation (9) to our own colocation association

metric, we rewrite the latter as
































 

 

∑

∑

PMI p
p p p

p p

p

p

p

p
p

( ) = log

= log .

ij
c i c j c c

i j

c

c i

c

c j

c
c

This expression shows that both indices capture how different activities covary in space. In either case, the

intensity of spatial colocation may be generated by a location choice model akin to the one by Ellison and Glaeser

(1997). The difference lies, however, in the functional form used to measure the deviation from the reference

distribution. The colocation association compares probabilities by taking ratios p p∕i c c, whereas the coagglomeration

index considers differences p p−i c c. Furthermore, the colocation association weights each of the differences by pc.

Although the coagglomeration index is derived from an economic model, the measure of concentration that lies

at its heart enters the derivation as an assumption. Our framework provides a principled way to quantify these

deviations, by leveraging information theory. The advantage of such an approach is that it gives insight into

the underlying assumptions on the data generating process, the used reference distribution, and the estimation

procedure with its corresponding uncertainties. For instance, the literature is not entirely consistent in the choice of

the reference distribution that is used in (co‐)agglomeration indices. In some work, the reference distribution is

taken to be the share of total employment in location c, which we denote by pc (Ellison & Glaeser, 1997, 1999;

Faggio et al., 2017). In other work, the reference distribution is given by the average share of employment in

industry i in a location, given by  p pˆ = ∑c i N i c i
1

i
(Diodato et al., 2018; Ellison et al., 2010).

3.4 | Proximity

Other studies make use of colocation patterns as an independent variable (often referred to as “proximity” or

“relatedness”) to study the diversification patterns of economies in terms of trade, production, technology, and jobs

(Boschma et al., 2013, 2015; Hidalgo et al., 2007; Muneepeerakul et al., 2013; Neffke et al., 2011). Relatedness has

been shown to be predictive of how economies will develop in the future. That is, economic activities that enter a

system are typically related to the ones that are already present (Hidalgo et al., 2018). Relatedness has also been

use to construct network representations of these economic systems that reveal these potential diversification

patterns (Hidalgo et al., 2007).
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One of the measures that has become standard is the proximity measure proposed in Hidalgo et al. (2007). As

opposed to considering the relative frequencies of economic activities, this proximity is based on the presence or

absence of economic activities. The presence or absence of an economic activity in a location is defined using the

RCA index, resulting in the presence–absence matrixM that is defined by




M
RCA c i

RCA c i
=

1 if ( , ) > 1

0 if ( , ) ≤ 1,
ci

The entries of this matrix are subsequently modeled as binary random variables Xci which denote the presence

or absence of activity i in location c. The co‐occurrence of economic activities is then quantified by the conditional

probability that an activity j is present given that i is present, that is

P X X
M M

M
( = 1 = 1) =

∑
,i j

c ci cj

j

where M M= ∑j c cj denotes the number of locations that specialize in activity j. To obtain a symmetric proximity

matrix, the proximity between activities i and j is then defined as the minimum of two conditional probabilities

 ϕ P X X P X X= min{ ( = 1 = 1), ( = 1 = 1)}.ij i j j i

At this point we can distinguish two major differences of this approach to the proposed approach using PMI. First,

the underlying model is different, as the proximity measure is based on a presence‐absence matrix, implying a binary

random variable Xci as opposed to a multinomial variable qci. The latter takes into account the intensity of economic

activities (i.e., their quantity), while the former distinguishes only between presence and absence. The motivations behind

thresholding the data using RCA is to appropriately normalize data and to reduce noise (Hidalgo, 2021).

We note that the thresholding procedure can also introduce noise, as activities that are not localized (i.e., those

with RCA c i( , ) ≈ 1 for every location), may arbitrarily be set to 1 or 0 as their counts may be just over or under the

threshold. As a consequence, nonlocalized activities will have a presence in about half of all locations, which is the

maximal number of presences possible under the RCA measure.

A second difference is that the proximity measure is based on probabilities (and thus takes values between 0 and 1),

whereas the PMI is based on information (and thus also takes negative values, and zero is a natural point of reference

indicating the absence of association). Using conditional probabilities as a measure of colocation leads to the questionable

property that the proximity measure is biased toward activities with many presences. This can be seen by considering two

activities that are independent, such that P X X P X( ) = ( )i j i and P X X P X( ) = ( )j i j . In that case, the proximity equals

∝ϕ P X P X M M= min{ ( = 1), ( = 1)} min{ , }ij i j i j (Muneepeerakul et al., 2013). Hence, even though they are independent,

the proximity between activities with many presences can be high. The PMI considers instead not the conditional

probability but the difference in the information content of the conditional and the unconditional probability. Applied to

the presence–absence matrix, this would lead to the measure

PMI X X P X X P X( = 1, = 1) = log( ( = 1 = 1)) − log( ( = 1)),i j i j i

which is inherently symmetric and does not need to be symmetrized using the minimum.

4 | BAYESIAN ESTIMATION

Computing the information‐theoretic measures of colocation requires estimates of the probabilities pci and pij. A

straightforward way to estimate these probabilities is to consider the share of every location–activity pair,

corresponding to the maximum‐likelihood estimate p̂ =ci
q

q
ci . Here we estimate pci using a Bayesian framework, which
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has two major advantages over the maximum‐likelihood approach. First, the Bayesian approach always returns

nonzero probability estimates. This is crucial for the computation of the PMI, as it ensures all values will be finite.

Second, the Bayesian framework yields a full posterior distribution for the estimated probabilities as opposed to a

point estimate. The posterior distribution provides a natural description of the uncertainty in the estimated parameter

values. These can be used, for example, to assess whether estimated associations are significantly nonzero.

Assuming thatQ is generated by an independent sampling process, the probability of its realization is given by a

multinomial distribution

 ∏P
q

q
pQ p( ) =

Γ( + 1)

∏ Γ( + 1)
,

c i ci c i
ci
q

, ,

ci

where p is the matrix containing probabilities pci, with p∑ = 1c i ci, .

Applying Bayes' rule, the posterior distribution for the matrix of probabilities p is then given by

∝ P P Pp Q Q p p( ) ( ) ( ),

where P p( ) represents the prior distribution. A conjugate prior for the multinomial distribution is the Dirichlet

distribution

 ∏α αP Dir
α

α
pp( ) ~ ( ) =

Γ( )

∏ Γ( )
,

c i ci c i
ci
α

, ,

−1ci

where α α= ∑c i ci, . This gives the distribution of p given hyperparameter α. The posterior distribution for p given the

data Q and hyperparameter α is then given by

∝ ∏α αP Dir pp Q Q( , ) ~ ( + ) .
ci

ci
q α+ −1ci ci

An estimate for the parameters pci is then given by the expectation of the marginals of the posterior

distribution, so that

 αp p
q α

q α

q

q
Qˆ = [ , ] =

+

+
=

˜

˜
,ci ci

ci ci ci

where we write q q α˜ = +ci ci ci and q α q˜ = + . The hyperparameter α can be interpreted as a matrix of

“pseudocounts”, giving the assumed number of observed units of activity for every c i, pair before seeing the

data Q .

4.1 | Estimation of the posterior mean and variance of PMI

For the measurement of (co‐)location, one could use the estimate p pˆ = [ ]ci ci directly to compute PMI p(ˆ )ci and

PMI p(ˆ )ij . However, this will induce a systematic bias due to Jensen's inequality, which states that

⋛PMI p PMI p[ ( )] ( [ ])ci ci  depending on whether PMI p( )ci is concave or convex. One needs instead an estimate of

PMI p( )ci , which itself is a random variable the distribution of which is determined by the posterior distribution of pci.

To this end, we approximate the mean and variance of the posterior distribution of PMI p( )ci , which will yield

estimates of the expected location–activity association and the uncertainty around that estimate, respectively. Our

approach is based on Wolpert and Wolf (1995) and Hutter and Zaffalon (2005), who discuss the estimation of

information‐theoretic quantities using a Bayesian approach in depth.

First, we approximate the posterior distribution of PMI p( )ci by using its Taylor expansion around the mean p̂ci.

Letting p pΔ = − ˆci ci ci, and noting the fact that  Δ < 1ci , yields
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( )

∑

∑

PMI p PMI p PMI p

p p
PMI p

( ) = (ˆ ) + Δ ( )

+
Δ

2

∂

∂ ∂
( ) + Δ

ci ci
c j

c j
p

ci

c j

ci

c j c k
ci ci

′
′

∂
∂

′

2 2

′ ″

3

c j′

(10)

Note that [Δ ] = 0ci and thus p p[Δ Δ ] = Cov[ ]ci c j ci c j′ ′ , where expectations are taken with respect to the posterior

distribution of pci. Furthermore, Hutter and Zaffalon (2005) show that q[Δ ] = (˜ )ci
3 −2 . It follows that (see Appendix A.1.1)









∑PMI p PMI p
p p

p p
PMI p

PMI p
q p p p

[ ( )]≈ (ˆ ) +
Cov[ ]

2

∂

∂ ∂
( )

= (ˆ ) +
1

2( + 1)

1

ˆ
+

1

ˆ
−

1

ˆ
− 1 .

ci ci
c jc k

c j c k

c j c k
ci

ci
c i ci

′ ″

′ ″
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′ ″


(11)

The second term accounts for systematic bias in the estimate of PMI p( )ci .

The variance of PMI p( )ci can be obtained by subtracting (11) from (10), leading to (see Appendix A.1.1)
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q p p p
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(12)

Equation (12) provides a measure for the uncertainty around the point estimate PMI p[ ( )]ci . In Section 4.3, we

show how we evaluate the significance of an estimate using this information.

Approximations for the posterior expectation and variance of the KL divergence and MI are obtained using a similar

approach. The full derivations are provided in Appendix A, and the results for location measures are shown inTable A1.

The estimates for the posterior distribution of PMI p( )ij can be obtained by replacing pci with pij, although the

computation of pVar[ ]ij is more involved as pij is not Dirichlet distributed. The results for colocation measure are

shown in Table A2.

We compare the analytical approximations to numerical simulations in Appendix B.2, showing the accuracy of

the approximations of the posterior expectation and variance. Python code enabling computation of the posterior

expectation and variance of all proposed information‐theoretic quantities is available at https://github.com/

aljevandam/Colocation.

4.2 | Choice of prior

The Bayesian estimation requires a choice for the prior distribution. Given the Dirichlet prior amounts to choosing a

suitable matrix of pseudocounts α. Before going into the shape of the prior, it is worth noting that there is a close

relation between the Bayesian estimate p̂ci and the maximum likelihood estimate ( )given by 
q

q
ci . This becomes clear

by rewriting p̂ci as







 


 


p

q

q α

q

q

α

q α

α

α
ˆ =

+
+

+
,ci

ci ci

showing that for large sample sizes relative to the total number of pseudocounts, that is, ≪α q, the Bayesian

estimate and the maximum‐likelihood estimate are nearly identical. The importance of our prior in the final estimate

is given by α

α q+
, a quantity we will refer to as the prior weight.

However, even for low prior weights the effect of the prior for a particular p̂ci may be substantial if ≪q αci ci, and may

lead to considerable differences between the Bayesian estimate and the maximum‐likelihood estimate for cells with a low
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number of observations. Note that in many applications, this is not uncommon because typical examples of the matrixQ

are very sparse. That is, they contain few cells with many counts and many cells with no or very low counts.

What is an appropriate prior for the problem at hand? A popular choice is to set all α = 1ci , leading to a uniform

prior. The uniform prior can be considered to be an uninformative prior as it gives equal probability to any

probability distribution p. However, in count‐data that cover several orders of magnitude (like the occupational data

considered in the current paper), adding a constant pseudocount to cells with the fewest observations can have a

large effect on the resulting estimates.

Here, we opt instead for a prior that assumes that the pseudocounts hold no information on associations in the

data, that is, we choose a prior distribution such that PMI p(ˆ ) = 0ci and PMI p(ˆ ) = 0ij before seeing any data. This is

accomplished by setting α α=ci
q q

q

c i
2 , so that p α[ ] =ci

q q

q

c i
2 . We will refer to this as the “proportional prior” as it sets

the number of pseudocounts proportional to the product of the marginals qc and qi in each cell. The parameter α

controls the weight of the prior.

In Appendix C we study the effect of both the uniform prior and the proportional prior empirically, along with

the effect of different prior weights. We find that the proportional prior exhibits practical properties: it allows

smoothing the data by adding counts to the cells with zero observations, while keeping the estimated associations

for other cells mostly in place. This allows to select a prior weight such that the estimated associations for cells with

zero observations are of the same order of magnitude as the associations of the other cells.

4.3 | Significance testing

The Bayesian approach provides a measure of uncertainty for each estimate through the variance of the posterior

distribution, allowing for statistical inference. For example, we can determine which of the estimated (co‐)location

associations is significantly nonzero using the “probability of direction”, which can be considered as the Bayesian

equivalent of the p value (Makowski et al., 2019).

The probability of direction determines the probability that an association is strictly positive or negative, which

is given by proportion of the posterior distribution that is of the median's sign (Makowski et al., 2019). We compute

this probability by assuming normality of the posterior distribution, and take an association to be significantly

nonzero if this probability is less than some threshold ϵ. In Appendix B.3 we explain this in more detail and justify

the normal approximation numerically.

The significance of an estimate will thus depend on the variance of the posterior distribution, which in turn depends

on the assumptions made regarding the data‐generating process. The more fine‐grained the counts, the less variance in

the estimated quantities (this is shown mathematically for pci in Appendix B.3). The reason is that the data generating

process is assumed to create the data at the level of counts, so that more‐fine grained units represent more observations.

Hence, the assumed units in the data‐generating process will determine the significance of estimates. In the

context of (co‐)agglomeration of industries, for example, the relevant unit of analysis ideally matches the one at

which location decisions are made. A plausible candidate for this is the plant, suggesting an analysis of data

containing plant counts by industry for a given location. However, the relative uncertainty of estimates p̂ci is

independent of the units of Q, as the variance is affected by the granularity of the data in the same way across

activities and locations if units have uniform sizes.

5 | EMPIRICAL EXAMPLE

As an example of an application of the proposed (co‐)location measures, we apply them to US employment data

from 2016, provided by the Bureau of Labor Statistics. These data are available at https://www.bls.gov/oes/special.

requests/oesm16ma.zip. Using these data, we construct a matrix Q that contains the number of employees qci in a
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particular occupation group i for every Metropoliton Statistical Area (MSA) c, where the occupations groups are

defined at two levels of aggregation (major and detailed). After excluding all MSA's located in Puerto Rico, all

occupations in the major group “Farming, Fishing and Forestry”, and removing the 10% smallest detailed

occupations groups, the data consists of 387 MSA's, 21 major occupations groups, and 720 detailed occupation

groups. In the following, we will refer to MSA's and occupations groups as “cities” and “occupations”, respectively,

distinguishing between major en detailed occupation groups where necessary.

The minimal number of counts found in the data equals 10. This suggests a data‐generating process that assigns

occupations per 10 workers. To this end, we divide the counts in the data by 10 to illustrate how the sizes of

sampled units matter. The prior is taken to be the “proportional” prior as discussed in Section 4.2, setting the prior

weight such that it represents 5% of the total counts. With this prior strength, the location associations are all of the

same order of magnitude (see Appendix C).

5.1 | (Co‐)location patterns of occupations in the US

Figure 1a shows the location association of each city and major occupation group. The rows and columns are sorted

by size of each city and occupation respectively, putting the largest occupations in the bottom rows and the largest

cities in the columns on the right‐hand side. Recall that apart from differences in the estimation procedure, these

associations are equivalent to the log‐transformed RCA or Location Quotient. Indeed, the Spearman rank

correlation between the two measures is 0.99. Figure 1b shows the localization of each occupation, that is, the

average location association of each occupation, given by KL p( )c i . The localization shows for each occupation,

represented by a row of the association matrix, how much its distribution deviates from the city‐size distribution.

The matrix of associations shows in which cities these deviations take place.

The largest occupations are generally the least localized and have associations close to zero for all cities.

This implies that these occupations are distributed proportional to city size, that is, their relative frequency is

equal in each city. These occupations consist mostly of nontraded services, including “Office and

Administrative Support”, “Sales and Related” and “Food preparation and serving.” The occupations with high

localization show varying patterns of association, showing that the nature of localization can differ across

occupations. For example, “Production” has a strong association with small‐ and middle‐sized cities, and has

weak or negative associations with the largest cities. “Computer and Mathematical” on the other hand is

mainly associated with the largest cities. A similar pattern is found for other localized occupations such as

“Arts, Design, Entertainment, Sports and Media” and “Legal.” These occupations represent typical “big city”

occupations, which seem to consist mostly of knowledge‐intensive services. “Life, Physical and Social

Sciences” occupations are highly localized but associated with cities of varying size—a pattern that is possibly

driven by university towns of varying sizes.

Figure 1c,d show the colocation associations and codependence of each occupation, revealing a pattern that is

consistent with the location patterns. The most codependent occupations are “Production”, “Computer and

Mathematical” and “Life, Physical and Social Sciences.” “Production” has positive associations only to

“Transportation and Materials Moving and Installation”, “Maintenance and Repair” and “Architecture and

Engineering”, and negative associations with most other occupations. “Computer and Mathematical” is positively

associated with other knowledge‐intensive services such as “Business and Financial Operations”, “Life, Physical and

Social Sciences” and “Architecture and Engineering.” “Life, Physical and Social Sciences” has the strongest self‐

association, although it is also positively associated with most other knowledge‐intensive services. The least

codependent occupations, that is, those having on average a neutral association with other occupations, consist

mostly of nontraded services such as “Protective service”, ‘Food Preparation and Serving’ and ‘Personal Care and

Service’.
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5.2 | Comparison to existing colocation measures

How do these results compare to other measures of colocation? Figure 2 shows the colocation patterns of

major occupation groups using PMI (A), the Ellison–Glaeser (EG) coagglomeration measure (B), and Hidalgo

et al.'s proximity measure (C). The colocation association and coagglomeration measures give at first sight a

similar pattern, whereas the proximity measure yields rather different results. Proximity assigns high values to

occupations that generally have low colocation associations, such as “Community and Social Service”,

“Personal Care and Service”, and “Healthcare Practitioners.” Furthermore, the distinct pattern for

“Production”, showing a negative association to most other occupations, seems to be washed out by the

thresholding procedure and is not visible in the proximity measure, where it shows a pattern that is similar to

the nontraded services.

Figure 3 compares the three measures for both major occupations groups (top row) and detailed occupation groups

(bottom row). Even though the PMI and EG give a similar pattern overall (their rank correlation is 0.84), results for specific

F IGURE 1 (a) Location associations of city–occupation pairs. Columns represent cities, sorted by size with
the largest city on the right. Occupations sorted by size with smallest on top. (b) Localization of occupations.
(c) Colocation association for occupation pairs. (d) Codependence of occupations.
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occupation pairs can differ substantially between the two measures. Figure 3a shows that there exist occupations pairs

with a positive colocation association but a negative coagglomeration and vice versa. Furthermore, Table 3 shows that the

top and bottom ranking occupation pairs can differ a lot for both measures. There are even some pairs whose association is

insignificant according to the PMI, but rank quite high in the EG measure (see Table 4).

F IGURE 2 Heatmaps of PMI (a), Ellison‐Glaeser coagglomeration (b), and proximity (c). Occupations are sorted
by size (smallest on top/left).

F IGURE 3 Scatter plots of the colocation of occupation pairs, excluding self‐associations. (a) PMI against the
coagglomeration for major occupation groups. (b) PMI against proximity for major occupation groups. (c) PMI
against the coagglomeration for major detailed occupation groups. (d) PMI against proximity for detailed occupation
groups. Orange markers indicate significance according to the Bayesian estimation procedure. Insets in top left
show the Spearman rank correlation.
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Figure 3c shows that the discrepancy between the colocation association and coagglomeration

becomes even more pronounced for the detailed occupation groups. Both measures produce a completely

different top 10 (Tables 5 and 6). The highest colocation associations are assigned to occupations in the

textiles industry, while the highest coagglomeration is assigned to pairs involving “Political Scientists” and

“Railroad Conductors and Yardmasters.” These differences may have profound consequences for empirical

analyses.

A similar analysis is shown for the proximity measure (Figure 3b,d). With rank correlations of 0.58 for major

occupations groups and 0.34 for the detailed occupation groups, the PMI and proximity are very different. Major

occupation groups with insignificant associations have a wide range of proximities, and among them are some of

the occupation pairs with the highest proximity (seeTable 7). Also, some of the pairs with the strongest associations

have low proximities, as shown in Table 3.

The fact that occupation pairs with small colocation associations get assigned high proximities can be

understood through the properties of the proximity measure described in Section 3.4. Occupation pairs

consisting of occupations with low localization, that is, PMI p( ) ≈ 0ci for most locations, will also have low

colocation association. That is, they offer little surprise in the information‐theoretic sense. Yet when

constructing the presence matrix, these occupations may be assigned many presences by the thresholding

procedure used (since RCA c i( , ) ≈ 1). Figure 4a shows that this is the case empirically for the detailed

occupation groups. These presences can in turn lead to high proximities, since the conditional probability of

occurrence for an independent occupation equals the marginal probability of occurrence, which is

proportional to the number of presences of an occupation. Indeed, Figure 4b shows that occupation pairs

with many presences have high proximities. Hence, the least localized occupations can end up being the most

proximate. This effect is clearly visible in Figure 2, in which occupations pairs with neutral colocation

association are assigned high proximities.

This effect can be particularly important when considering network representations based on the proximity

measure that show only the edges with highest proximity: for data containing many activities with low localization,

these networks will emphasize precisely the edges between activities that have a neutral association as measured

by PMI.

TABLE 5 Top 10 colocation pairs by EG for detailed occupations, excluding self‐associations

Occupation 1 Occupation 2 PMI p( )ij EG Proximity

Economists Political scientists 2.873 0.481 0.067

Rail‐track laying and maintenance

equipment operators

Railroad conductors and yardmasters 1.844 0.427 0.111

Subway and streetcar operators Railroad conductors and yardmasters 1.821 0.419 0.333

Barbers Railroad conductors and yardmasters 1.707 0.363 0.250

Political scientists Artists and related workers, all other 2.613 0.360 0.133

Fashion designers Railroad conductors and yardmasters 1.668 0.339 0.091

Railroad conductors and yardmasters Costume attendants 1.611 0.325 0.053

Grounds maintenance workers, all other Railroad conductors and yardmasters 1.500 0.280 0.043

Railroad conductors and yardmasters Fabric and apparel patternmakers 1.479 0.263 0.111

Fabric and apparel patternmakers Makeup artists, theatrical and
performance

1.753 0.260 0.222
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6 | DISCUSSION

Information theory offers a unified way to estimate location and colocation associations using PMI. This yields

measures that are similar to the well‐known RCA index Balassa (1965) or Location Quotient (Isard, 1960) and the

coagglomeration index (Ellison et al., 2010). However, our measures have important advantages over these existing

measures.

First, by deriving these metrics from a unified framework, we were able to show the intrinsic connections

between hitherto seemingly unrelated measures. This is not only satisfying from a methodological point of view, but

allows exploring the relations between concepts like revealed comparative advantage, specialization, localization,

concentration, and colocation.

Second, the proposed measures are derived from a formal framework (information theory) in a way that is

explicit in the assumed data generating process, the chosen null models, and the estimation procedures. Different

choices for these assumptions lead to different results. However, the afforded transparency allows constructing

arguments against and in favor of such alternatives that take into consideration aspects of the specific context at

hand. Such a discussion can be framed in terms of an underlying model, rather than ad hoc specificities of a

particular index. For instance, we used a null model based on the assumption that neutral associations imply a

distribution of location‐activity pairs that is proportional to the sizes of locations and activities (Hoover, 1936). The

assumption that activities are distributed proportional to the area of a location (Mori et al., 2005) leads to a different

null model. Another possibility is to determine the expected number of (co‐)occurrences on the basis of external

factors that could drive the distribution of activities over locations, using for instance a regression model

(Jara‐Figueroa et al., 2018; Neffke et al., 2011).

Third, the framework provides uncertainty estimates for all the information‐theoretic quantities involved which

can be used to make statistical inferences. The significance test presented here is just one example of many

possibilities. Most currently used indices are applied without any notion of uncertainty. Using these uncertainties in

practice however may present some challenges, as the Bayesian estimation procedure leaves room for the selection

of different priors, prior weights, and granularity of the data generating process. Here, for reasons of practicality, we

applied a Dirichlet prior with parameters chosen such that the associations before seeing data are zero. However, in

some contexts, alternative priors may be natural choices. An example of this is the maximum entropy prior (Wolpert

& Wolf, 1995). When choosing non‐Dirichlet priors, posterior distributions may be obtained through numerical

simulation. Setting the granularity of the data (i.e., the total number of observations) will determine the absolute

magnitude of the uncertainty in the estimates. This simply reiterates that inferences should always be made with an

F IGURE 4 Relation between localization and ubiquities (a), and presences and proximities (b) for detailed
occupation groups
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underlying data‐generating process in mind. In spite of this, we can still make statements about the relative

magnitudes of uncertainties, which are independent of the granularity of the data generating process. Future

research could expand the underlying probabilistic model to incorporate more specific models of location choice,

including heterogeneity in the “chunk size” of observational units in the data generating process, as in the case of

the nonuniform plant size distribution of Ellison and Glaeser (1997).

Finally, it is important to note that the information‐theoretic approach can be readily extended to move beyond an

analysis of pairwise colocations, as it also allows analyzing multivariate associations. For instance, one could analyze

associations between multiple variables (e.g., occupations, cities, and industries) or multiway colocations (such as the

colocation of triplets instead of pairs of activities). The PMI between three economic activities i j k, , is given by

( )PMI p( ) = logijk

p

p p p

ijk

i j k
. Such higher‐order associations could be further analyzed using the information‐theoretic concepts

of redundancy and synergy (Finn & Lizier, 2018). This may help disentangle different types of associations, corresponding

to different economic interactions. For instance, the association between a pair of economic activities could be conditional

on the presence of (a specific combination of) other activities, or be driven by the mutual dependence on a (combination

of) other economic activities or on some external variable such as the presence of a natural resource. Further development

of this analytical framework could help reveal such higher‐order relations among economic activities.
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APPENDIX A: DERIVATIONS OF POSTERIOR MEAN AND VARIANCE

A.1. Location estimates

As described in the main text, the Dirichlet prior leads to a Dirichlet posterior for the matrix of probabilities p̂ci, for

which exact values of the mean and variance of the marginals are easily written down. In the following, we show

how we approximate the mean and variance of the posterior distribution of the information‐theoretic measures

applied to these probabilities, following the approach suggested in Wolpert and Wolf (1995) and Hutter and

Zaffalon (2005). An overview of the results that follow is given in Table A1.

It should be noted that although we approximate the moments of the posterior distributions of PMI p( )ci here, it

is in this specific case possible to obtain exact results for the moments of the posterior distributions, since the

moments of logarithmically transformed Dirichlet random variables are known and given by the digamma function

(see Wolpert & Wolf, 1995 and Hutter & Zaffalon, 2005). For example, the expectation is given by

PMI p ψ q ψ q ψ q ψ q[ ( ] = (˜ ) − (˜ ) − (˜ ) + (˜)ci ci c i . Nevertheless, we use the approximation approach here since it

generalizes to the case where the variables are not Dirichlet distributed, such as in case of colocation probabilities

pij or when using non‐Dirichlet priors.

A.1.1 The posterior mean and variance of PMI (p )ci

To obtain an approximation for the posterior distribution of PMI p( )ci , we closely follow Hutter and Zaffalon (2005),

computing its Taylor expansion around the p̂ci. Writing p pΔ = − ˆci ci ci, and noting the fact that  Δ < 1ci , this gives
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TABLE A1 Overview of approximations of the posterior mean and variance for location measures
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Note that [Δ ] = 0ci and thus p[Δ ] = Var[ ]ci ci
2 and p p[Δ Δ ] = Cov[ , ]ci c j ci c j′ ′ , where expectations are taken with respect

to the posterior distribution of pci. Furthermore, (Hutter & Zaffalon, 2005) show that q[Δ ] = (˜ )ci
3 −2 . It follows that
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where we used that p pCov[ , ] =c j c k

δ δ p p p
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c c jk c j c j c k′ ″ ′ ′ ″
since the matrix of pci Dirichlet distributed.

The variance of PMI p( )ci can be obtained by subtracting (A1) from (A1):
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Writing out all the terms within the above expectation yields product of Δ , Δci i, and Δc. Since p p,ci i, and pc are

mutually independent we have that [Δ Δ ] = [Δ ] [Δ ] = 0ci c ci c   , and this holds for all cross‐terms. For the square

terms we have p[Δ ] = Var[ ]ci ci
2 and likewise for Δc and Δi, so that
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A.1.2 The posterior mean and variance of KL p p( )c i c

To examine the localization KL p p( )c i c , we compute the Taylor expansion around p̂c i and pc. Note that these

variables are independent. First consider the posterior of pc i, the conditional probability that a sample has location c

given it has activity type i. Following the same Bayesian estimation procedure as for pci, it is readily seen that the vector

of pc i's for given i follows a Dirichlet distribution with as parameter the vector of q̃ci 's for a given i. We then have

p
q

q
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˜

˜
c i
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i

and the (co‐)variance given by
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Now computing the first and second derivatives of KL p p( )c i c with respect to pc i gives
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where  PMI p p p( ) = log( ) − log( )c i c i i . The second derivative is given by
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Writing   p pΔ = − ˆc i c i c i and p pΔ = − ˆc c c, the Taylor expansion is given by
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Taking expectations then leads to
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The variance is given by
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where we used that [Δ Δ ] = 0c i c . The results for KL p p( )i c i are obtained by symmetry in the indices c and i.

A.1.3 The posterior mean and variance of MI p( )ci

For estimating the mutual information we follow the same strategy as for the pointwise mutual information,

following the derivation given in Hutter and Zaffalon (2005). Note that we have
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where δcc′ is the Kronecker delta.

Again writing p pΔ = ˆ −ci ci ci, the Taylor expansion around p̂ci is given by
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Now noting that [Δ ] = 0ci and p p[Δ Δ ] = Cov[ , ]ci c j ci c j′ ′ , taking expectations gives
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The variance can be obtained by computing
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A.2. Colocation estimates

Estimation of quantities involving the colocation probabilities pij is more involved than those based on the location

probabilities pci, since the pij are not Dirichlet distributed, so we do not have expressions for their mean and

variance. In the following, we first show how to obtain p[ ]ij and pVar[ ]ij by expressing them in terms of Dirichlet

distributed variables. We then use these quantities to obtain estimates for information‐theoretic measures of

colocation. An overview of the results is given in Table A2.
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To obtain an explicit expression for p[ ]ij , we rewrite it as
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Here we used the fact that pj c and pci are independent and Dirichlet distributed.

We compute pVar[ ]ij as
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Likewise, the covariance p pCov[ , ]ij kl can be computed as

TABLE A2 Overview of approximations of the posterior mean and variance for colocation measures
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A.2.1 The posterior mean and variance of pj i
For the conditional probabilities, we have
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A.2.2 The posterior mean and variance of PMI p( )ij

The estimation of PMI p( )ij is analogous to that of PMI p( )ci , leading to
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(A8)

The variance is derived in a similar manner as in (A3), leading to
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Again, the cross terms [Δ Δ ]ij i and [Δ Δ ]ij j are equal to zero but we now have that p p[Δ Δ ] = Cov[ , ]i i i j . This

leads to
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A.2.3 The posterior mean and variance of KL p p( )j i j

For the colocation case, following (A5) gives
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For the variance, we follow (A6) and obtain
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A.2.4 The posterior mean and variance of MI A w A w( ( ), ( ))1 2

For the case of colocation, we get
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APPENDIX B: NUMERICAL RESULTS

B.1. Python class

Wemake available the Python code enabling computation of the proposed (co‐)location measures at https://github.

com/aljevandam/Colocation. The posterior expectation and variance of all proposed information‐theoretic

quantities are available, with exception of the standard deviation of MI A w A w( ( ), ( ))1 2 as this becomes

computationally costly for large data sets. We leave the efficient computation of MI A w A w( ( ), ( ))1 2 as a topic for

future research.

B.2. Numerical simulations of posterior estimates

Here we compare the analytical approximations to simulated posterior distributions. Figures B1 and B2 compare

the analytical approximations for the posterior mean and variance to the mean and variance of a numerically

sampled posterior distribution, for a generated data set containing multinomially distributed counts. Figures B3 and

B4 show the same comparison for the BLS major occupations groups described in the main text. The code that

generated these figures is available at https://github.com/aljevandam/Colocation.

F IGURE B1 Comparison of analytical approximations with numerical simulations for multinomial mock data.
Location measures. Zero prior.
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B.3. Significance test

As mentioned in the main text, we evaluate the significance of associations using the “probability of direction”,

which is defined as the proportion of the posterior distribution that is of the median's sign, and can be interpreted

as the probability that an estimated parameter is strictly positive or negative (Makowski et al., 2019).

To compute the probability of direction, first consider the shape of the posterior distribution. From our

approximations we have the estimates for the posterior PMI p μ[ ( )] =ij and PMI p σVar[ ( )] =ij
2. Under the

Bernstein‐von Mises theorem we expect the posterior of PMI p( )ij to be approximately normally distributed with

F IGURE B2 Comparison of analytical approximations with numerical simulations for multinomial mock data.
Colocation measures. Zero prior.

F IGURE B3 Comparison of analytical approximations with numerical simulations for BLS major occupation
groups. Location measures. Prior strength 0.05.
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mean μ and variance σ2. We confirm this normality numerically in Figure B5, which shows a random selection of the

sampled posterior distributions of (co‐)location associations. All posteriors show a bell‐curved shape.

The probability of direction gives the probability that PMI p( )ij is of a different sign than μ. We then state that

PMI p( )ij is significantly nonzero if for a given threshold ϵ we have that P PMI p( ( ) < 0) < ϵij when μ > 0 and

P PMI p( ( ) > 0) < ϵij when μ < 0. This implies that for a posterior distribution with mean close to zero and a large

variance, the estimate μ will turn out to be insignificant, whereas the μ will be significant when the variance is small

relative to the absolute value of the mean.

APPENDIX C: PRIOR DISTRIBUTION

We analyze the effect of the prior of the resulting estimates empirically using the data on major occupation groups.

We compare three cases:

• using a “zero prior”, that is, setting the pesudocounts α = 0ci everywhere. This leads to the maximum‐likelihood

estimate p̂ =ci
q

q
ci .

• using a uniform prior, setting α =ci
α

N Nc i
.

F IGURE B4 Comparison of analytical approximations with numerical simulations for BLS major occupation
groups. Colocation measures. Prior strength 0.05

F IGURE B5 Eight randomly selected simulated posterior distribution of location associations (left panel) and
colocation association (right panel).
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• using the “proportional” prior, setting α α=ci
q q

q

c i
2 .

Here, α determines the prior strength, and equals the total number of pesudocounts in the prior. Setting α N N= c i

amounts to a single observation for each cell (which makes the uniform prior uninformative in the sense that is gives

equal probability to any probability distribution). For the data set we consider here, α N N= c i amounts to a prior

strength of 0.0007, meaning it represents 0.07% of the total amount of counts q α+ (Figure C1).

To get an idea of how the prior strength affects results, we consider three prior strengths:

• α N N≈ ≈ 0.0007c i , so that the uniform prior is uninformative.

• α = 0.05, which is the value we used in the empirical analysis and makes sure that the lowest location

associations are of the same order of magnitude as other associations.

F IGURE C1 Location associations of major occupations groups for different priors. The vertical axes of the
histograms have a log scale. Colors indicate which cells have zero observations in the data. The prior weight is
0.0007.
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• α = 0.5, so that the prior information and the data weigh equally.

Figures C2, C3, and C4 show the results for location association for different priors and prior weights. Cells for

which q = 0ci , in which the counts are entirely determined by the prior, are colored blue in each figure. For the case

of the zero prior, values of log(0) are omitted.

The scatter plots show the influence of the prior on the estimated associations. For low prior strengths, the

difference with the zero prior is negligible as the prior gets washed out by the data. The cells without observations

in the data however can be seen to differ for the uniform and proportional prior. As the prior strength increases, the

estimates for the uniform prior becomes increasingly different from the maximum likelihood estimate. The

proportional prior can be seen to keep the estimates in cells with observations mostly in place.

The diagonals show histograms of the associations. The vertical axis has a log scale, to better show the bins

with few counts. For small prior strengths, the zero‐valued cells can be seen to have strongly negative associations.

F IGURE C2 Location associations of major occupations groups for different priors. The vertical axes of the
histograms have a log scale. Colors indicate which cells have zero observations in the data. The prior weight is 0.05.
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For the zero prior, their theoretical value is minus infinity. As the prior strength increases, the associations in the

cells get spread get spread out over a wide range of values under the uniform prior, as for small cells the effect of

adding a constant pseudocounts may be very large. The proportional prior adds pseudocounts proportional to the

marginals in each cell, moving them closer to the other observations but keeping them below the associations for

which we have data.

It seems that the proportional prior has practical properties for the estimation of associations: it keeps the

associations for which we have plenty observation in place even for large prior strengths, while enabling us to deal

with cells in which we have very few or no observations.

For the colocation associations, we show a similar analysis. For the major occupations groups we do not have a case

where p̂ = 0ij for the zero prior—hence one could use the zero prior without any difficulties (but this is in general not the

case). Again, we find that the proportional prior keeps most values in place, even for large prior strengths, while the

uniform prior shows increasingly large deviations from the maximum likelihood estimate (Figures C5 and C6).

F IGURE C3 Location associations of major occupations groups for different priors. The vertical axes of the
histograms have a log scale. Colors indicate which cells have zero observations in the data. The prior weight is 0.5.
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F IGURE C4 Colocation associations of major occupations groups for different priors. The vertical axis of the
histograms has a log scale. The prior weight is 0.0007.
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F IGURE C5 Colocation associations of major occupations groups for different priors. The vertical axis of the
histograms has a log scale. The prior weight is 0.05.
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F IGURE C6 Colocation associations of major occupations groups for different priors. The vertical axis of the
histograms has a log scale. The prior weight is 0.5.
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