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Abstract

We present completeness results for inference in Bayesian networks with respect to two
different parameterizations, namely the number of variables and the topological vertex
separation number. For this we introduce the parameterized complexity classesW[1]PP and
XLPP, which relate toW[1] and XNLP respectively as PP does to NP. The second parameter
is intended as a natural translation of the notion of pathwidth to the case of directed
acyclic graphs, and as such it is a stronger parameter than the more commonly considered
treewidth. Based on a recent conjecture, the completeness results for this parameter suggest
that deterministic algorithms for inference require exponential space in terms of pathwidth
and by extension treewidth. These results are intended to contribute towards a more
precise understanding of the parameterized complexity of Bayesian inference and thus of
its required computational resources in terms of both time and space.

Keywords: Bayesian networks; inference; parameterized complexity theory.

1. Introduction

Close to 35 years ago, Lauritzen and Spiegelhalter (1988) revealed the central role of
treewidth in the complexity of Bayesian inference, by exhibiting what we would call in
modern terminology a fixed-parameter tractable algorithm for inference parameterized by
the treewidth and maximum cardinality of the variables. While various other exact algo-
rithms for inference have been developed since then, treewidth has remained a determining
factor in their complexity, and indeed Kwisthout et al. (2010) has shown that this depen-
dence may well be unavoidable. However, relatively little is currently known about the
precise complexity of inference with respect to treewidth, nor with respect to similar graph
parameters for that matter. In this paper, we take the first steps in remedying this situation
by providing such characterisations with respect to two different parameters, namely the
number of variables (not to be confused with the aforementioned cardinality of individual
variables) and the topological vertex separation number (serving as a proxy for pathwidth).

The main contribution of this paper lies in identifying the parameterized complexity classes
for which the corresponding parameterized inference problems are complete. Most of these
complexity classes have not yet been explicitly considered in the literature, or only recently
as in the case of the class XNLP. The completeness results for the number of variables
as a parameter mostly serve as a more accessible demonstration of the proof techniques
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which we employ for the topological vertex separation number. That said, we believe these
results also have independent value as they offer a valuable perspective on the subsequent
results, the number of variables being in some sense the strongest possible graph parameter.

The completeness results for the topological vertex separation number are certainly of more
direct importance. We introduce this parameter in Section 4 as a straightforward transla-
tion of the vertex separation number to the directed setting, the latter being equivalent to
the pathwidth of a graph as shown in Kinnersley (1992). In particular, we show complete-
ness for (the probabilistic version of) XNLP, a class which was proposed by Elberfeld et al.
(2015) and has been brought to attention in Bodlaender et al. (2021). These results gain
further relevance by relating them to a conjecture put forward in Pilipczuk and Wrochna
(2018), which by the discussion in Bodlaender et al. (2021) can be rephrased as expressing
that XNLP-hard problems cannot be solved under simultaneous restrictions of time and
space. More precisely, they conjecture that no such problem can have a (deterministic)
algorithm which runs in both |x|g(k) time and f(k)|x|c space for some computable functions
f, g and constant c. In other words, if this conjecture holds, no XNLP-hard problem has an
XP-algorithm which uses only a parameterized polynomial amount of space.

Our results therefore imply that, absent any restriction on the cardinality of variables,
inference parameterized by the number of variables lies at what is generally believed to be
the lower bound of parameterized intractability, and (under the aforementioned conjecture)
inference parameterized by the topological vertex separation number cannot be solved ef-
ficiently using only limited space. Though we do not explicitly demonstrate this here, the
idea is that the latter parameter corresponds to the pathwidth of the network, which means
that this result also holds for pathwidth and by extension for treewidth as well.

2. Definitions

In this section we cover the relevant basics from parameterized complexity theory, which
includes definitions of particular kinds of reductions, complexity classes and problems com-
plete for these. The paper’s novel contributions in this area are found in Sections 3 and 4.

Definition 1 A parameterized reduction from a parameterized problem k1-D1 to a param-
eterized problem k2-D2 is a mapping (x, k) 7→ (x′, k′) such that (x, k) is a Yes-instance
of k1-D1 precisely when (x′, k′) is a Yes-instance of k2-D2, and k2 ≤ g(k1) for some com-
putable function g. A fixed-parameter tractable reduction (fpt-reduction) is a parameterized
reduction which is computable in time f(k)|x|c for some computable function f and constant
c. A parameterized logspace reduction (pl-reduction) is a parameterized reduction which is
computable using space f(k) +O(log |x|) for some computable function f and constant c.

The complexity class W[1] is typically defined as the class of problems fpt-reducible to
Weighted n-Satisfiability for fixed n ≥ 2. Here we instead use the machine charac-
terisation of W[1] which was established in Chen et al. (2005). A more natural complete
problem for W[1] is k-Clique – see e.g. Downey and Fellows (2013) for a proof of this fact.

2



Parameterized Completeness Results for Bayesian Inference

Definition 2 W[1] is the class of parameterized decision problems k-D for which there
exists a computable function f , a constant c and a non-deterministic Turing machine M
which on input (x, k) correctly decides in time f(k)|x|c with f(k) log |x| tail-restricted non-
determininism, i.e. only the last f(k) log |x| steps are allowed to be non-deterministic.

k-Clique
Input: A graph G = (V,E), an integer k.
Parameter: k.
Question: Is there a W ⊆ V such that |W | ≥ k and (u, v) ∈ E for all distinct u, v ∈ W?

Lemma 3 k-Clique is W[1]-complete.

The complexity class XNLP was first introduced under this name in Bodlaender et al.
(2021), where it was shown amongst other things that k-Chained Multicoloured Clique
is XNLP-complete. We will also build on previous work on this class which has been carried
out in Elberfeld et al. (2015), which used the descriptive name N [fpoly, f log] instead.

Definition 4 XNLP is the class of parameterized decision problems k-D for which there
exists a computable function f , a constant c and a non-deterministic Turing machine M
which on input (x, k) correctly decides in time f(k)|x|c, using at most f(k) log |x| space.

k-Chained Multicoloured Clique
Input: A graph G = (V,E), where V is partitioned into sets V1, . . . , Vr such that for every
(u, v) ∈ E, if u ∈ Vi and v ∈ Vj , then |i− j| ≤ 1, and a colouring function f : V → [1, k].
Parameter: k.
Question: Is there a W ⊆ V such that for each i ∈ [1, r − 1], W ∩ (Vi ∪ Vi+1) is a clique,
and for every i ∈ [1, r] and j ∈ [1, k] there is a w ∈ W ∩ Vi with f(w) = j?

Lemma 5 k-Chained Multicoloured Clique is XNLP-complete.

3. Parameterization by the Number of Variables

While the number of variables of the network is an unsuitable parameter in practice, the
results in this section are a useful reminder of the importance of the size of the probability
distributions, which is what prevents tractability with respect to this parameter. In what
follows we will first consider the special case of Positive Inference (i.e. whether the
probability is non-zero) before moving on to the general problem of Bayesian Inference.

3.1 W[1]-completeness of n-Positive Inference

Here we show that n-Positive Inference, formally described below, is W[1]-complete.

n-Positive Inference
Input: A Bayesian network B = (G,Pr), two sets of variables H,E ⊆ V along with joint
value assignments h ∈ Ω(H) and e ∈ Ω(E).
Parameter: The number of variables n = |V |.
Question: Does Pr(h | e) > 0 hold?
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Theorem 6 n-Positive Inference is W[1]-complete.

Proof Our proof proceeds by giving fpt-reductions from and to the W[1]-complete problem
of k-Clique to show W[1]-hardness and membership respectively.

For the reduction from k-Clique we create k variablesX1, . . . , Xk each of which is uniformly
distributed over the n vertices of the graph G. For every pair Xi, Xj we create an additional
binary variable Xi,j as its common child, such that Pr(Xi,j = True | Xi = u, Xj = v) = 1

if (u, v) ∈ E and Pr(Xi,j = True | Xi = u, Xj = v) = 0 otherwise. This adds
(
k
2

)
≤ k2

additional variables, each with conditional probability tables with n2 entries.

Finally, we create a binary variable XC with all variables Xi,j as its parents, such that
XC is True with probability 1 whenever all Xi,j are True, and False with probability 1

otherwise. This means that XC will have a conditional probability table with at most 2k
2

entries. Thus we have created a Bayesian network with O(k2) variables and total description
size O(2k

2
+k2n2) with the property that Pr(XC = True) > 0 if and only if G has a k-clique.

For the reduction to k-Clique we create for every variable X a vertex for each tuple of
assignments to π+(X) which is assigned non-zero probability in its conditional probability
table. Let S(X) be the set of these vertices. If X,Y are two different variables, add an
edge between u ∈ S(X) and v ∈ S(Y ) unless there is some variable Z ∈ π+(X) ∩ π+(Y )
to which the corresponding tuples assign different values. Now Pr(x1, . . . , xn) > 0 implies
that

⋃n
i=1{(x1, . . . , xn)

∣∣
π+(Xi)

} is an n-clique in the graph constructed in this way.1

Conversely, an n-clique can only arise by choosing one vertex from each set S(Xi) such
that the corresponding tuples are consistent and hence give rise to a joint value assignment
(x1, . . . , xn) with its probability the product of n non-zero probabilities. To restrict to the
question whether Pr(H = h | E = e) > 0, we furthermore remove all vertices from the graph
for which the corresponding tuple assigns different values toH and E than those specified.

We now move on to the general problem of Bayesian Inference.

3.2 W[1]PP-completeness of n-Bayesian Inference

We begin by introducing the PP-equivalent of W[1], which we call W[1]PP following the
naming convention proposed in Elberfeld et al. (2015), or alternatively PFPT[1] according
to the notation of Montoya and Müller (2013).

Definition 7 W[1]PP is the class of parameterized decision problems k-D for which there
exists a computable function f , a constant c and a probabilistic Turing machine M which on
input (x, k) halts in time f(k)|x|c, using at most f(k) log |x| tail-restricted non-deterministic
steps, with probability strictly more than 1

2 of giving the correct answer.

1. Note that the number of variables n is now our parameter k for the resulting graph which serves as an
instance of k-Clique, whose number of vertices will be in the order of the number of entries across all
conditional probability tables in the Bayesian network.
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As is the case for PP, this definition is equivalent to the one where we also allow the
probability of rejecting a No-instance to be exactly 1

2 . As we can use this fact to streamline
some of the upcoming proofs, we will formally establish this as the following lemma.

Lemma 8 Definition 7 yields the same complexity class when M accepts Yes-instances
with probability strictly more than 1

2 and No-instances with at probability at most 1
2 .

Proof Suppose we have such a machine M. Since M takes at most f(k) log |x| non-
deterministic steps, we know that its probability of accepting Yes-instances will be at least
1
2 + |x|−f(k). We can modify M to obtain a machine M′ which works like M up until it
would halt. At this point, M′ preserves rejections, but where M would accept it takes
another f(k) log |x|+1 non-deterministic steps in order to achieve a probability of 1

2 |x|
−f(k)

of changing the acceptance into a rejection. As a result, M′ accepts Yes-instances with
probability at least 1

2 + 1
4 |x|

f(k) and No-instances with probability at most 1
2 − 1

4 |x|
f(k).

Moreover, this modification does not violate the limitations of the tail-restricted bounded
non-determinism, which shows the two definitions to be equivalent.

Another canonical W[1]-complete problem is Short Turing Machine Acceptance –
we again refer to Downey and Fellows (2013) for a proof. We show next that the analogous
problem of Short Turing Machine Majority Acceptance is W[1]PP-complete, so
that we can subsequently use it in a reduction in order to demonstrate W[1]PP-hardness.

Short Turing Machine Majority Acceptance (STMMA)
Input: A non-deterministic Turing machine M, a string x, an integer k.
Parameter: k.
Question: Does M accept on x within k steps with probability strictly greater than 1

2?

Proposition 9 STMMA is W[1]PP-complete.

Proof For membership we simulate the first k steps of M on x using O(k log n) steps of
non-determinism, accepting in case M accepted x within that time and rejecting otherwise.

To establish hardness, we consider the majority acceptance problem for an arbitrary W[1]-
machine M (i.e a Turing machine which terminates in f(k)|x|c steps with f(k) log |x| tail-
restricted non-deterministic steps) on input x. The parameterized reduction from this
problem to STMMA can be characterised in terms of simulation followed by compression.

Since M’s non-determinism is tail-restricted, it is possible to deterministically simulate
its execution on |x| as part of the parameterized reduction up until the point where the
computation enters its non-deterministic tail of f(k) log |x| steps. To eliminate this factor
log |x|, the second part of the reduction compresses M’s alphabet and transition functions,
so that the resulting machine needs only g(k) steps to complete the computation.

Thus the parameterized reduction transforms M, x into an instance M′, x′ of STMMA
where M′ is a compressed version of M initialised to match M′s state upon entering the
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non-deterministic tail, and similarly x′ corresponds to the compressed tape contents at that
point, with the parameter value being the number of non-deterministic steps g(k). Given
that the simulation and compression are fixed-parameter tractable and the correctness is
directly ensured through its construction, this yields a valid fpt-reduction.

At this point one may wonder why we did not consider the majority variant of a sat-
isfiability problem, as is perhaps more commonly done. Indeed, given that Weighted
2-Satisfiability is canonically W[1]-complete, surely we could have consider Weighted
Majority 2-Satisfiability instead? The issue however is that this problem appears not
to be W[1]PP-hard.2 We believe that the recent results on Majority k-Satisfiability in
Akmal and Williams (2021) and subsequent work point to an underlying reason for this fail-
ure. This may possibly be addressed in future work – for now, we proceed with establishing
theW[1]PP-completeness of n-Bayesian Inference, which refers to the following problem.

n-Bayesian Inference
Input: A Bayesian network B = (G,Pr), two sets of variables H,E ⊆ V along with joint
value assignments h ∈ Ω(H) and e ∈ Ω(E) and a probability threshold q ∈ Q. We require
that all probabilities (including q) are represented as a unary fraction, and furthermore that
the probabilities of any specific distribution have the same denominator.
Parameter: The number of variables n = |V |.
Question: Does Pr(h | e) > q hold?

Theorem 10 n-Bayesian Inference is W[1]PP-complete.

Proof For membership, we provide a straightforward and commonly-used argument which
generates a single instantiation of the network by means of forward sampling.

We sample each variable according to a topological ordering by randomly generating an
assignment according to the local probability distribution (conditioned on the relevant pre-
viously generated assignments where necessary). That is, if we wish to sample from a
probability distribution Pr(X) such that for every xi its probability is stored as a unary
fraction with denominator D, we non-deterministically generate an integer s ∈ [1, D] and
take the assignment xk where k is the largest value such that Σi<kPr(xi) <

s
D ≤ Σi≤kPr(xi).

Because of the unary representation of D, generating s can be done using logarithmic space
as required. Once this procedure is completed, we have a full instantiation of the network.

In the case without evidence we accept with probability 1− q
2 if the sample agrees with h,

and with probability 1
2 −

q
2 if it does not, which requires additional non-deterministic steps

based on the size of q. This process leads to a probability of acceptance of 1
2 +

1
2(Pr(h)−q),

hence we accept with probability more than 1
2 precisely when Pr(h) > q as required.

For the case with evidence, we need to distinguish between q ≥ 1
2 and q < 1

2 . If q ≥ 1
2 , we

accept with probability 1
2q if the sample agrees with both h and e and with probability 1

2

2. A similar failure of a majority satisfiability problem to be hard for what would initially appear to be the
corresponding parameterized complexity class was observed in Donselaar (2019).
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whenever the sample does not agree with e, rejecting otherwise. This leads to a probability
of accepting equal to 1

2 +
Pr(e)
2q (Pr(h | e)− q). If instead q < 1

2 , we accept with probability 1

if the sample agrees with both h and e, with probability 1−2q
2−2q if the sample agrees with e but

not with h, and with probability 1
2 whenever the sample does not agree with e. This leads

to a probability of accepting equal to 1
2 + Pr(e)

2−2q (Pr(h | e) − q). Under both circumstances

we again accept with probability more than 1
2 precisely when Pr(h | e) > q as required.

To establish hardness we shall provide a Cook-style construction similar to the one used
in Donselaar (2019), reducing from the problem STMMA. Since we essentially want to
simulate the machine M for at most k steps, as a consequence we will use at most k space.
Thus we can explicitly represent the full computation by tracking the k tape cells across all
k+1 time steps for a total of O(k2) variables. We describe the network in more detail below.

First of all, we have for every i ∈ [0, k] and j ∈ [1, k] a node Si,j which tracks for the
i-th time step whether the tape head is currently at the j-th tape cell, what the contents of
this cell are, and which state the machine is locally “believed” to be in. For all j ∈ [1, k] and
i ̸= k, the node Si,j has a single child Ti,j which stores the new contents and state, and fur-
thermore an instruction for moving the head out of {−, left, stay, right}. Each node Ti,j has
up to three nodes as its children, namely Si+1,j−1, Si+1,j and Si+1,j+1. Finally, the nodes
Sk,j have a single child Dj which can be either True or False; any Dj is also a parent of Dj+1.

The nodes S0,j are initialised with the correct information, i.e. contents, head location
and state. If Si,j indicates that the head is not currently at that cell, the distribution
for Ti,j is such that it will deterministically copy the symbol σ and state A and add the
instruction −. However, if Si,j indicates that the head is currently at that cell, Ti,j will
randomly select one of the possible transitions by taking on the resulting symbol σ′, state
A′ and instruction from {left, stay, right} (or simply ‘stay’ in the accepting state).

For any i ̸= 0, the distribution for Si,j is defined first of all to copy over the symbol
from Ti−1,j . Furthermore, if Ti−1,j−1 contains the instruction ‘right’, Ti−1,j contains ‘stay’
or Ti−1,j+1 contains ‘left’, Si,j will note the head is now at its location and copy over the
state information from the corresponding T -variable. In all other cases, Si,j will note the
head is not currently at its location and copy the state from Ti−1,j .

The preceding construction only guarantees that the state information is correct at nodes
where the head is located at that time. Thus Dj is defined to be True precisely when Sk,j

has the head and is in the accepting state or Dj−1 is True (if it exists), and False otherwise.
This ensures that Pr(Dk = True) is the probability of M accepting on x within k steps,
hence to complete the reduction we need to set q = 1

2 . To see that this is an fpt-reduction,
note that the graph has 2k(k+1) variables with indegree at most 3 and which take a value
out of at most twice the number of states times the size of the tape alphabet many options.
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4. Parameterization by the Topological Vertex Separation Number

For an intuition behind the topological vertex separation number, suppose we want to
efficiently use working memory while generating a sample of a Bayesian network. One trick
we can use is to only keep the sampled value of a particular variable in working memory
until we assigned values to all of its children, at which point we can write off this value to
storage memory. This is essentially how a logspace transducer operates: it has a read-only
input tape, a read/write work tape of logarithmic size, and a write-only output tape. Now
the topological vertex separation number of a directed acyclic graph defined below expresses
the upper bound on the number of variables for which we need to have its value stored at
any point while generating the sample. As we shall demonstrate in this section, we can use
it to derive a parameterized logspace bound on the space required to perform inference.

Definition 11 Let G = (V,A) be a directed acyclic graph. Given a topological ordering T of
V , define VT (i) = {u ∈ V | T (u) < i∧∃v((u, v) ∈ A∧T (v) ≥ i)}. Let tT (G) = maxi|VT (i)|.
The topological vertex separation number t(G) of G is given by minT tT (G).

This definition translates that of the vertex separation number for an undirected graph
to directed acyclic graphs, with the added requirement that the permutation is a topological
ordering. Note that the usual definition of vertex separation requires T (u) ≤ i and T (v) >
i instead: writing WT (i) for the corresponding set, we see WT (i) = VT (i + 1). As a
consequence, the topological vertex separation number of a directed acyclic graph is an
upper bound on the vertex separation number of its moralization.3 By Kinnersley (1992), it
is known that the vertex separation number of an undirected graph is equal to its pathwidth,
and in turn pathwidth is an upper bound on treewidth. Thus all of the hardness results
in this section also apply with relation to these graph parameters – we aim to identify the
corresponding complexity classes for the parameterization by treewidth in future work.

4.1 XNLP-completeness of t-Positive Inference

As in Section 3, we first study Positive Inference for this parameterization before pro-
ceeding with inference in its full generality. That is, we consider the following problem:

t-Positive Inference
Input: A Bayesian network B = (G,Pr), two sets of variables H,E ⊆ V along with joint
value assignments h ∈ Ω(H) and e ∈ Ω(E).
Parameter: The topological vertex separation number t(G).
Question: Does Pr(h | e) > 0 hold?

Theorem 12 t-Positive Inference is XNLP-complete.

Proof Similar to the proof of Theorem 6, we proceed by giving pl-reductions from and to
the XNLP-complete problem of k-Chained Multicoloured Clique.

3. Suppose the moralization added an edge (T (i), T (j)); let i < j without loss of generality, so that T (i)
occurs in WT (s) for all s ∈ [i, j − 1]. This edge is only added if there is some l > j > i such that
(T (i), T (l)), (T (j), T (l)) ∈ A, hence T (i) already occurred in these sets before the moralization.
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For the reduction from k-Chained Multicoloured Clique, we create a network as
follows. Write Si,j = {v ∈ Vi | f(v) = j} and Si =

⋃k
j=1 Si,j . First, we create variables Xi,j

which are uniformly distributed over Si,j . Let (i, j) < (i′, j′) if i < i′ or i = i′ and j < j′.
For every pair of variables Xi,j , Xi′,j′ from Si ∪Si+1 such that (i, j) < (i′, j′) we now create
a variable Ci,j,i′,j′ such that Pr(Ci,j,i′,j′ = True | Xi,j = u,Xi′,j′ = v) = 1 if (u, v) ∈ E and
Pr(Ci,j,i′,j′ = True | Xi,j = u,Xi′,j′ = v) = 0 otherwise. We order the variables such that
Ci,j,i′,j′ < Ca,b,a′,b′ if (i

′, j′) < (a′, b′), or (i′, j′) = (a′, b′) and (i, j) < (a, b).

We then create variables Di,j,i′,j′ , which we order similarly, as ANDs of Ci,j,i′,j′ and the
preceding D-variable (D1,1,1,2 has a single parent C1,1,1,2). This construction ensures that
Pr(Dr,k−1,r,k = True) > 0 precisely when the original graph contains a chained multi-
coloured clique. Moreover, consider the following topological ordering T :

� Xi,j <T Xi′,j′ if (i, j) < (i′, j′).

� Ci,j,i′,j′ <T Ca,b,a′,b′ whenever (i
′, j′) < (a′, b′), or (i′, j′) = (a′, b′) and (i, j) < (a, b).

� Di,j,i′,j′ <T Da,b,a′,b′ whenever (i
′, j′) < (a′, b′), or (i′, j′) = (a′, b′) and (i, j) < (a, b).

� Xi,j <T Ca,b,a′,b′ (same for Da,b,a′,b′) if (i, j) ≤ (a′, b′).

� Ci,j,i′,j′ <T Xa,b (same for Di,j,i′,j′) whenever Xa,b ̸<T Ci,j,i′,j′ .

� Ci,j,i′,j′ <T Da,b,a′,b′ whenever Ci,j,i′,j′ <T Ca,b,a′,b′ or (i, j, i
′, j′) = (a, b, a′, b′).

� Di,j,i′,j′ <T Ca,b,a′,b′ whenever Ca,b,a′,b′ ̸<T Di,j,i′,j′ .

We see that VT (T (Xi,j)) consists of those Xi′,j′ such that (i−1, 1) ≤ (i′, j′) < (i, j) plus the
most recent D-variable. Similarly, VT (T (Ci,j,i′,j′)) and VT (T (Di,j,i′,j′)) consist of at most of
those Xa,b such that (i′ − 1, 1) ≤ (a, b) ≤ (i′, j′) plus the preceding D-variable. Thus the
topological vertex separation number of the underlying graph is 2k. By constructing the
instance according to the given topological ordering, each individual variable can be con-
structed using at most O(k log n) space (though obviously it cannot be represented using
logarithmic space), which means this is indeed a pl-reduction.

For the reduction to k-Chained Multicoloured Clique, given an instance of t-Positive
Inference, let T be a topological ordering such that tT (G) = t. For every i ∈ [1, n], let
V ∗
T (i) be obtained from VT (i) by adding the number of copies of the variable X such that

T (X) = i which is needed to ensure that |V ∗
T (i)| = t + 1 (to guarantee that at least one

copy is added). We number the variables from 1 to t+ 1 according to their order in T .

For every variable X from V ∗
T (i) we create a vertex for each tuple of assignments to π+(X)

which is assigned non-zero probability in its conditional probability table. These vertices
receive the colour j which is the number just given to X in V ∗

T (i). Let Vi be the set of these
vertices. For every pair of differently coloured vertices u, v ∈ Vi, add (u, v) to E unless there
is some variable to which u and v assign different values. We do the same for every pair of
vertices u ∈ Vi and v ∈ Vi+1, regardless of their colours.
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As a consequence, Pr(x1, . . . , xn) > 0 implies that the set which arises from taking for
every X the vertices corresponding to the tuple (x1, . . . , xn)

∣∣
π+(Xi)

is a chained multi-

coloured clique in the graph (V1, . . . , Vn, E) with t + 1 colours. Conversely, any chained
multicoloured clique in this graph can only arise in this way. To restrict to the question
whether Pr(H = h | E = e) > 0, we once again omit from the graph all vertices for which
the corresponding tuple assigns different values to H and E than those specified. This is
again a pl-reduction as t limits the number of variables on the basis of which we construct
an individual vertex or edge of the resulting graph.

4.2 XLPP-completeness of t-Bayesian Inference

Our approach here is much like in the previous section: we introduce the class XLPP, show
that it is well-behaved, and define a machine acceptance problem which can serve as an
intermediate step in the proof that t-Bayesian Inference is hard for this class.

Definition 13 XLPP is the class of parameterized decision problems k-D for which there
exists a computable function f , a constant c and a probabilistic Turing machine M which on
input (x, k) halts in time f(k)|x|c, using at most f(k) log |x| space, with probability strictly
more than 1

2 of giving the correct answer.

Once again, this definition is equivalent to the one where we also allow the probability
of rejecting a No-instance to be exactly 1

2 .

Lemma 14 Definition 13 yields the same complexity class when M accepts Yes-instances
with probability strictly more than 1

2 and No-instances with at probability at most 1
2 .

Proof The argument is essentially the same as for the proof of Lemma 8: though the
minimum bound away from 1

2 is smaller, we can simply take f(k)|x|c +1 non-deterministic
steps, as we have more than enough space to keep track of how many we took.

As with STMMA, we arrive at a suitable machine acceptance problem by taking the
majority version of a problem shown to be complete for XNLP in Elberfeld et al. (2015).

Timed Space-bounded Turing Machine Majority Acceptance (TSTMMA)
Input: A non-deterministic Turing machine M, unary integers s, t.
Parameter: s.
Question: Does M accept with probability strictly greater than 1

2 within t steps on an
initially empty tape using at most s tape cells?

Proposition 15 TSTMMA is XLPP-complete.

Proof We refer to Theorem 4.4 in Elberfeld et al. (2015) for a proof that the problem
Timed Space-bounded Turing Machine Acceptance (there called ps-Timed NSC)
is XNLP-complete. One can easily observe that said proof requires no essential adjustments
in order to be suitable for our current purposes (cf. the proof of Proposition 9).
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All that is left at this point is to present the definition of t-Bayesian Inference and
the proof that it is XLPP-complete. For membership we again require that the probabilities
are represented as unary fractions – we will return to this point in the conclusions.

t-Bayesian Inference
Input: A Bayesian network B = (G,Pr), two sets of variables H,E ⊆ V along with joint
value assignments h ∈ Ω(H) and e ∈ Ω(E) and a probability threshold q ∈ Q. We require
that all probabilities (including q) are represented as a unary fraction, and furthermore that
the probabilities of any specific distribution have the same denominator.
Parameter: The topological vertex separation number t(G).
Question: Does Pr(h | e) > q hold?

Theorem 16 t-Bayesian Inference is XLPP-complete.

Proof The argument for membership proceeds along the same lines as in the proof of
Theorem 6, although now we need to manage our space more carefully. While sampling
according to a topological ordering T such that tT (G) = t, we check after every new value
whether the sample thus far still agrees with h and e respectively. This allows us to forget
values of variables once their children have been assigned values as well, which ensures that
we need at most t log |x| space at any point during the construction of the sample.

To establish XLPP-hardness, we reduce from TSTMMA again using mostly the same con-
struction as in the proof of Theorem 6. The only difference (apart from the variables S0,j

being initialised as empty) is that we have variables for i ∈ [0, t] and j ∈ [1, s], hence there
are 2s(t+1) variables in total. By choosing the straightforward topological ordering which
orders the variables within each row in ascending order before proceeding to the next row,
we see that t(G) ≤ s + 1 as required. To see that this is indeed a pl-reduction, note that
in particular we can compute the correct probabilities using only logarithmic space by em-
ploying a more efficient (binary) representation before writing them out in unary.

5. Conclusions

The XNLP-completeness of t-Positive Inference (Theorem 12) can be considered the
primary result of this paper for a number of reasons. From a negative point of view, the
XLPP-completeness of t-Bayesian Inference (Theorem 16) may be considered somewhat
artificial due to the technical requirement that the probabilities are represented in unary,
which was necessary to ensure parameterized logspace computability. However, from a
positive point of view, the XNLP-completeness of t-Positive Inference tells us far more
than may be obvious at first glance. Combined with the observation that the topological
vertex separation number of a graph is an upper bound on the pathwidth and in particular
the treewidth of the moralized graph, and the conjecture from Pilipczuk andWrochna (2018)
regarding the deterministic space complexity of XNLP-hard problems, this result suggests
a superpolynomial lower bound (with respect to any of these graph parameters) on the
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space required to perform even a limited form of inference. Our hope is that this insight
contributes to an increased understanding of the (parameterized) complexity of Bayesian
inference, and that it serves as a starting point for further investigations along these lines.
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