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Abstract. We study the maximum geometric independent set and
clique problems in the streaming model. Given a collection of geometric
objects arriving in an insertion only stream, the aim is to find a sub-
set such that all objects in the subset are pairwise disjoint or intersect
respectively.

We show that no constant factor approximation algorithm exists to
find a maximum set of independent segments or 2-intervals without using
a linear number of bits. Interestingly, our proof only requires a set of
segments whose intersection graph is also an interval graph. This reveals
an interesting discrepancy between segments and intervals as there does
exist a 2-approximation for finding an independent set of intervals that
uses only O(α(I) log |I|) bits of memory for a set of intervals I with
α(I) being the size of the largest independent set of I. On the flipside
we show that for the geometric clique problem there is no constant-factor
approximation algorithm using less than a linear number of bits even for
unit intervals. On the positive side we show that the maximum geomet-
ric independent set in a set of axis-aligned unit-height rectangles can be
4-approximated using only O(α(R) log |R|) bits.

Keywords: Geometric independent set · Streaming algorithms ·
Geometric intersection graphs · Communication lower bounds

1 Introduction

The independent set problem is one of the fundamental combinatorial optimiza-
tion problems in theoretical computer science, with a wide range of applications.
Given a graph G = (V,E), a set of vertices M ⊂ V is independent if no two
vertices in M are adjacent in G. A maximum independent set is a maximum
cardinality independent set. Maximum independent set is one of the most well-
studied algorithmic problems and is one of Karp’s 21 classic NP-complete prob-
lems [33]. Moreover, it is well-known to be hard to approximate: no polynomial
time algorithm can achieve an approximation factor n1−ε, for any constant ε > 0,
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unless P = NP [28,39]. Maximum independent set serves as a natural model for
many real-life optimization problems, including map labeling, computer vision,
information retrieval, and scheduling; see [1,6,9].

Geometric Independent Set. In the geometric setting we are given a set of geo-
metric objects S, and we say a subset S ′ ⊆ S is independent if no two objects in
S ′ intersect and we say S ′ is a clique if every two objects pairwise intersect. Let
α(S) be the cardinality of the largest subset S ′ ⊆ S such that S ′ is an indepen-
dent set and ω(S) the cardinality of the largest subset of S ′ ⊆ S such that S ′

is a clique. The geometric maximum independent set and geometric maximum
clique problem ask for a set S ⊆ S of independent objects (that induce a clique)
such that S = α(S) (S = ω(S)).

Given a set S of geometric objects, we define the geometric intersection graph
G(S) as the simple graph in which each vertex corresponds to an object in S and
two vertices are connected by an edge if their corresponding objects intersect.

Stronger results are known for the geometric maximum independent set prob-
lem is known in comparison to general graphs. A fundamental problem is the
1-dimensional case, where all objects are intervals. This problem is also known
as interval selection problem which has applications to scheduling and resource
allocation [7]. For intervals geometric maximum independent set can be solved
in O(n log n) time, by a simple greedy algorithm that sweeps the line from left
to right and at each step picks the interval with the leftmost right endpoint, see
e.g. [34]. In contrast, the geometric maximum independent set problem is already
NP-hard for sets of segments in the plane using only two directions [35], or 2-
intervals [8]. For some restricted classes of segment intersection graphs, such as
permutation [31] and circle graphs [25], the geometric maximum independent set
problem can be solved in polynomial time. Efficient approximation algorithms
exist for example for unit square intersection graphs [21] and more generally for
pseudo disks [15], as well as segments [3,22]. In a recent breakthrough work [37],
it was shown that there exists a constant-factor approximation scheme for max-
imum independent set for a set of axis-aligned rectangles. Very recently, this
factor was improved to 3 [24]. Also, the geometric maximum independent set
problem has been extensively studied for dynamic geometric objects, i.e., objects
can be inserted and deleted [10,12,17,26,29].

Streaming Algorithms. In this paper, we study the geometric maximum inde-
pendent set and geometric maximum clique problems for insertion only streams
of geometric objects. In the streaming model we consider data that is too large
to fit at once into the working memory. Instead the data is dealt with in a data
stream in which we receive the elements of the input one after another in no
specific order and have access to only a limited amount of memory. More specif-
ically, in this model, we have bounds on the amount of available memory. As
the data arrives sequentially, and we are not allowed to look at input data of
the past, unless the data was stored in our limited memory. This is effectively
equivalent to assuming that we can only make one or a few passes over the input
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data. We refer to [36,38] and the lecture notes of Chakrabati [13] for an overview
on the general topic of streaming algorithms.

For maximum independent set Halldórsson et al. [27] studied the problem
for graphs and hypergraps in linear space in the semi-streaming model: Their
model work in poly-logarithmic space, like in the case of the classical streaming
model, but they can access and update the output buffer, treating it as an extra
piece of memory. Kane et al. [32] gave the first optimal algorithm for estimating
the number of distinct elements in a data stream.

Streaming algorithms for geometric data have seen a flurry of results in recent
years; see [2,16,19,23,30]. Note that one can also view a stream of geometric
objects S as a vertex stream, also called implicit vertex stream, of its associated
geometric intersection graph G(S) [18]. Finding an independent, i.e. disjoint, set
of geometric objects in a data stream has been among the most studied problems
in this geometric direction. Emek et al. [20] studied the interval selection prob-
lem, where the input is a set of intervals I with real endpoints, and the objective
is to find an independent subset of largest cardinality. They studied the interval
selection problem using O(α(I)) space. They presented a 2-approximation algo-
rithm for the case of arbitrary intervals and a (3/2)-approximation for the case
of unit intervals, i.e., when all intervals have the same length. These bounds are
also known to be the best possible [20]. Cabello et al. [11] studied the question of
estimating α(I) for a set I of intervals and gave simpler proofs of the algorithms
presented by Emek et al. [20].

Cormode et al. [18] considered unit balls in the L1 and L∞ norms, i.e. squares
in R

2. For a set of such unit balls B they obtained a 3-approximation using
O(α(B)) space and show that there is no 5

2 − ε approximation using o(|B|)
space. Finally, Bakshi et al. [5] considered Turnstile streams, i.e., deletion is also
allowed, of (weighted) unit intervals and disks.

1.1 Our Results

In this paper we investigate several geometric objects that have not been studied
in the context of streaming algorithms. We show in Sect. 2 that there is no
constant-factor approximation in the streaming model for finding an independent
set of n segments using o

(
n
p

)
bits of memory for any constant number p of passes

and this bound holds even if the endpoints of the segments are on two parallel
lines. In other words, our bound holds even when the geometric intersection
graph of the segments is a permutation graph.

Our construction leads to an interesting consequence. Namely, the intersec-
tion graph created in our reduction is not only a permutationa graph, but also
an interval graph and the cardinality of its maximum independent set is not
dependent on the input size. Since there exists a 2-approximation algorithm for
geometric independent set of a set of intervals I in the streaming model that uses
only O(α(I)) space this implies that there is a difference between an interval
graph being streamed as a set of intervals or as a set of segments. We discuss this
implication in Sect. 3. In Sect. 4 we show that for streams of 2-intervals there is



214 S. Bhore et al.

no one-pass algorithm that achieves a constant-factor approximation using less
than o(n) bits. On the positive side we show in Sect. 5 that for n axis-aligned
unit height rectangles there exists a one pass streaming algorithm achieving a
4-approximation of the largest set of disjoint rectangles using O(α(R) log n) bits.

Finally, we show in Sect. 6 that the distinction between segments and inter-
vals observed for the geometric independent set problem does not occur for the
same objects in the geometric clique problem by showing that there does not
exist a p-pass algorithm using less than o

(
n
p

)
bits of memory and achieving a

constant-factor approximation of the geometric clique problem in streams of n
unit intervals. We complement this hardness result by showing how to obtain an
exact solution for the geometric clique problem in streams of n intervals using
only O(n log ω(I)) bits of memory.

2 Independent Sets in Streams of Segments

In this section we establish our lower bound for the memory necessary to approx-
imate the maximum independent set problem to any constant factor on streams
of segments. We employ a lower bound reduction technique that uses multi-party
set disjointness, which gives us space bounds not only for single-pass algorithms,
but also for multi-pass algorithms. The following problem was first studied by
Alon, Matias, and Szegedy [4].

Definition 1 (Multi-Party Set Disjointness). There are t players P1, . . . ,
Pt. Each player Pi has a size n bit string xi. The players want to find out if there
is an index j ∈ [n] where xi

j = 1 for all i. So, Disjn,t(x1, . . . , xt) =
∨n

j=1

∧t
i=1 xi

j.

In our proof we are going to make use of the following result on the commu-
nication complexity of Multi-Party Set Disjointness.

Theorem 1 (Chakrabarti et al. [14]). For an error probability 0 < δ < 1/4,
to decide Disjn,t the players need Ω( n

t log t ) bits of communication, even for a
family of instances (x1, . . . , xt) satisfying the following properties

|{j : xi
j = 1}| = n/2t ∀i ∈ [t] (1)

|{i : xi
j = 1}| ∈ {0, 1, t} ∀j ∈ [n] (2)

|{j : |{i : xi
j = 1}| = t}| ≤ 1 (3)

We can use Theorem 1 by having t players use a streaming algorithm to
answer Disjn,t. The players construct the stream by creating some part of the
stream and giving it to the algorithm, and then passing the memory state of
the algorithm to the next player who does the same. This way, the space used
by the algorithm must abide to the lower bound on the communication between
the players. We can use the t players (rather than just 2) to create a bigger gap
between the yes and no answer, excluding the possibility for any constant factor
approximation algorithms.
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Fig. 1. Lower bound for Independent Set in permutation graphs, with t = 3 players.
Here the independent set has size t, by the j-th group, where xi

j = 1 for all i ∈ [t].

Lemma 1. For any p ≥ 1, t ≥ 2, any algorithm for geometric maximum inde-
pendent set that can distinguish between instances with an independent set of
size 1 and t and succeeds with probability at least 3/4 on segment streams using
p passes must use at least Ω( n

p·t log t ) bits of memory, even when the segment
endpoints lie on two parallel lines.

Proof. Let (x1, . . . , xt) be an instance of Disjointness with t players, each with
n bits. We construct a permutation graph depending on the input to Disjoint-
ness, as illustrated in Fig. 1 for t = 3. Let the permutation graph have n groups
of t points both on the top, labelled 1, . . . , n from left to right. On the bottom
do the same, but we label from n to 1 from left to right. For i ∈ [t], j ∈ [n],
player i creates a segment from the i-th point in group j at the top to the i-th
point in group j at the bottom when xi

j = 1. This creates a permutation graph
with n′ = n/2 vertices by Property 1 of Theorem 1.

The players construct the segment stream for some algorithm for Max-
Clique as follows, starting from player 1, player i inputs all their n/2t segments,
then passes the memory state of the algorithm to player i+1, and this continues
until all players have input their segments.

We claim that the graph will contain an independent set of size t if exactly
Disjn,t(x1, . . . , xt) = 1, and otherwise the maximum independent set size is 1.

First notice that any segment inserted to a group j ∈ [n] intersects all other
segments in the graph, except for segments inserted to group j, as these segments
are parallel to it. Hence, any independent set can only contain vertices that
correspond to segments inserted to the same group j, for some j ∈ [n], and the
size of the independent set is the number of 1’s present over all players at index
j. Now by Property 2 of Theorem 1, any independent set can have only size 1 or
t in the graph. And indeed, an independent set of size t implies that all t players
inserted a segment for some group j ∈ [n], and hence all have a 1 for index j.

Now it follows from Theorem 1 that any algorithm for maximum independent
set on a permutation graph with n′ vertices that can discern between indepen-
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dent set size 1 and t with probability at least 3/4 using p passes over the stream
must use at least Ω( n

p·t log t ) = Ω( n′
p·t log t ) bits of memory. �	

We now use Lemma 1 to give a general hardness statement for approximation
geometric maximum independent set in segment streams.

Theorem 2. Any constant-factor approximation algorithm for geometric max-
imum independent set that succeeds with probability at least 3/4 on segment
streams using p passes must use at least Ω(n/p) bits of memory, even when it
is known that the segments correspond to a permutation graph.

Proof. Let us be given some constant-factor approximation algorithm for geo-
metric maximum independent set that succeeds with probability at least 3/4
on segment streams of permutation graphs in p passes. Then there exists some
c ≥ 2 such that the algorithm can distinguish between an independent set of
size 1 or c in a given graph. But then we can apply Lemma 1 to get that this
algorithm must use at least Ω( n

p·c log c ) = Ω(n/p) bits of memory. �	

3 Intervals and Segments are Different

When we consider the intersection graph G of the set of segments constructed in
the proof of Theorem 2 one can see that it has a straight-forward representation
as a set of intervals whose intersection graph is isomorphic to G. Also, notice that
the size of the independent set of the construction is not dependent on the length
of the bit strings, but only on the number of players. For example, we can rule
out the existence of a 2-approximation streaming algorithm using any constant
number p of passes and o(n/p) bits of memory, already when t/2 ≥ 2 ⇐⇒ t ≥ 4
players are used in the construction presented in Lemma 1.

At the same time there exists a 2-approximation one pass streaming algo-
rithm for independent sets of intervals that uses only O(α(I) log |I|) bits of
memory where I is the set of input intervals [11,20]. Hence, these algorithms
find a 2-approximation of the independent set of the intersection graph con-
structed in the proof of Lemma 1 using only O(log n) bits of memory if the
graph was given as a set of intervals. This leads to the following corollary.

Corollary 1. Given a stream of segments S whose intersection graph G(S) is
in the intersection of permutation and interval graphs, there is no algorithm that
uses o(n/p) bits of memory and p ≥ 1 passes and computes a stream of intervals
I such that G(I) is isomorphic to G(S).

4 Independent Sets in Streams of c-Intervals

A c-interval is a set of non-overlapping intervals {I1, . . . , Ic} on the real line. We
say two c-intervals intersect if at least two of their intervals have one point in
common. We call a family of c-intervals separated if the intervals can be split into
independent groups of intervals, each containing at most one interval from each
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c-interval, without changing which c-intervals intersect. Since we only consider
2-intervals we can talk of left and right intervals. Formally, let T = {L,R} be
a 2-interval such that the startpoint of L is left of the startpoint of R, then we
denote L as the left interval of T and R as the right interval of T .

For the reduction we use the Chaint communication problem which was
introduced by Cormode et al. [18].

Definition 2 (Cormode et al. [18]). The t-party chained index problem
Chaint consists of t − 1 n-bit binary vectors {xi}t−1

i=1, along with correspond-
ing indices {σi}t−1

i=1 from the range [n]. We have the promise that the entries
{xi

σi
}t−1

i=1 are all equal to the desired bit z ∈ {0, 1}. The input is initially allo-
cated as follows:

– The first party P1 knows x1

– Each intermediate party Pp for 1 < p < k knows xp and σp−1

– The final party Pt knows just σt−1

Communication proceeds as follows: P1 sends a single message to P2, then P2

communicates to P3, and so on, with each party sending exactly one message to
its immediate successor. After all messages are sent, Pk must correctly output z,
succeeding with probability at least 2/3. If the promise condition is violated, any
output is considered correct.

Cormode et al. [18] showed the following result in the same paper.

Theorem 3 (Cormode et al. [18]). Any communication scheme B which
solves Chaint must communicate at least Ω( n

t2 ) bits.

In the following we use the Chaint to show that there is no one-pass stream-
ing algorithm that computes a constant-factor approximation of the maximum
independent set for a family of separated 2-intervals using o(n) bits of memory.

Remark 1. For Chaint we may assume that party i > 1 knows all indices before
σi−1. To realize this, just assume that every party i appends all i − 1 previous
indices to its message. This uses only O(t log n) bits in each such message and
hence O(t2 log n) bits in total. As this is a lower order term with respect to the
bound in Theorem 3 we retain the linear communication bound of Ω( n

t2 ).

We define an interval stack as a set of intervals I1, . . . , In on the real line
where first all startpoints appear in order of the indices and then all endpoints,
again in order of the interval indices. We denote as left-gap the space between
the startpoint of Ii and Ii+1 for i = 1, . . . , n−1 and the startpoint of In and the
endpoint of I1. Observe that any interval containing a point of the left gap of Ii

intersects all intervals Ij with 1 ≤ j ≤ i. As for independent sets of segments we
first show a technical lemma.

Lemma 2. For any t ≥ 2, any algorithm for geometric maximum independent
set that can distinguish between instances admitting an independent set of size 1
and t and succeeds with probability at least 2/3 on streams of 2-intervals must use
at least Ω( n

t3 ) bits of memory, even if the union of the 2-intervals is separated.
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Fig. 2. Left intervals created for party i in the construction of Lemma 2. The intervals
in the grey box are for party i, the intervals outside are of party i − 1, and the boxes
mark the left gap spaces for party i + 1. The red interval is the interval corresponding
to a 1 bit at σi. Dotted intervals and boxes are not actually inserted by the parties. The
shown coordinates are the local coordinates for the interval stack inserted by party i.
(Color figure online)

Proof. Given an instance of Chaint with n
t -length bit strings xi and indices

σj . Let N = n
t and will assume for simplicity that n

t is a whole number. We
create one 2-interval T i

j = (Li
j , R

i
j) for each 1 bit at index j of bit string i

and one additional 2-interval for party t. In the following we first describe the
construction of the left intervals. See Fig. 2 for an illustration.

Create an interval stack Li = {Li
j | ∀j ∈ [N ] : xi has a 1 bit at index j}. To

simplify the presentation we assume that all n
t intervals are present in T i. When

actually constructing the intervals in a stream party i simply does not add an
interval when the jth bit is set to 0, but still shifts the coordinates accordingly.
We initially place the intervals of L1 and then place Li for i > 1 in the left gap
of Li−1

σi−1
. For player t we add one interval Lt

1 in the left gap of Lt−1
σt−1

. Let L be
the union of all Li.

To complete the construction we create the same construction using the
reversed bit strings for each party. This creates the interval stacks Ri, i = 1, . . . , n
and with Ri

j we denote the right interval inserted by the ith party for the 1 bit
at index j in the non-reversed bit string xi. Let R be the union of all Ri. Finally,
we create a set of 2-intervals as T = {(Li

j , R
i
j) | Li

j ∈ Li and Ri
j ∈ Ri}.

Consider a 2-interval T i
j = (L,R) inserted for bit string xi such that j �= σi

for any i ∈ {1, . . . , t−1}. Then, L is contained in all intervals La
b with a < i and

b < σa. Moreover, L contains every La
b with a > i and b < σi. Similarly, R is

contained in all intervals Ra
b with a > i and b > σj and contains every Ra

b with
a > i and b > σi. Consequently if T i

j is part of an independent set I ⊆ T we can
only add 2-intervals T a

b to I with a < i and j = σa.
If the answer bit is 0 then no 2-interval corresponding to some σi index exists

and hence by the above argumentation the largest independent set has size one.
If the answer bit is 1 then there is a 2-interval T i

σi
for every σi with i = 1, . . . , t

and all t of them are independent. Hence, the largest independent set in this
case has size t.
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It remains to describe the precise coordinates of the intervals and argue that
we only need O(log n) bits to represent the construction for every fixed t. For
each party i = 1, . . . , t let Si be the length of the left interval stack. Since for
party t we insert only one 2-interval we set St = 2. Let T be the set of 2-
intervals created as above. In the following we consider only the left intervals of
every T i

j ∈ T . The calculation and placement works analogously for the right
intervals after reversing every xi. Let Li

j be a left interval for party i and index
j. We put the startpoint of Li

j at position 1+(j −1) · (Si+1 +1) and its endpoint
at j + N · (Si+1 + 1). Hence, for party i its left interval stack has length at most

Si = N + N · (Si+1 + 1) = N · (Si+1 + 2).

This can be written as a closed formula

Si = 4N t−i · 2
t−(i+1)∑

j=1

N j = 4N t−i · 2
(

N t−i − N

N − 1

)
.

Now, party i places its left stack at

Pi = 1 +
i−1∑
j=1

((σj − 1) · (Sj+1 + 1) + 1) .

The last party places an interval of length two at position Pt. Since every left
interval placed by a party i > 1 is nested by the intervals inserted into the
stream by the first party we can conclude that S1 ∈ O

(
N t−1

)
. This number can

be represented using O(t log N) = O(t log n
t ) bits. Since t can be treated as a

constant we get that we only require O(t log n
t ) = O(log n) bits. �	

We conclude Theorem 4 from Lemma 2 in the same way as for Theorem 2.

Theorem 4. Any constant-factor approximation algorithm for geometric max-
imum independent set that succeeds with probability at least 2/3 on streams of
2-intervals requires at least Ω(n) bits of memory, even if the 2-intervals are
separated.

5 Independent Sets in Streams of Unit-Height Rectangles

In this section, we study the independent set problem for a stream of unit height
arbitrary width rectangles. To conform with previous work we assume in this
section that one cell of memory can store one rectangle, i.e., one cell of memory
has Θ(log n) bits where all coordinates of the rectangles are assumed to be in
O(n). Cabello and Pérez-Lantero [11] studied the independent set problem for
streams of intervals on the real line and achieved the following result.

Theorem 5 (Theorem 5 [11]). Let I be a set of intervals in the real line
that arrive in a data stream. There is a data stream algorithm to compute a
2-approximation to the largest independent subset of I that uses O(α(I)) space
and handles each interval of the stream in O(log α(I)) time.
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Using Theorem 5 we obtain a constant-factor approximation for finding the
largest independent set of rectangles in a stream of axis-aligned unit height
rectangles in one pass using O(α(R)) space. The below notation is similar to the
one used by Cabello and Pérez-Lantero [11].

We divide the y-axis into size two intervals. Similar to [11] we define windows
W� = [
, 
 + 2). Then, we form two partitions W0 and W1 of the y-axis as
Wz = {Wz+2i | i ∈ Z} for z ∈ {0, 1}. We denote with Rz ⊆ R and z ∈ {0, 1}
the set of rectangles that is contained in any window of Wz. Observe, that every
rectangle is fully contained in only one of the two partitions.

Computing an independent set for the rectangles Rz now amasses to com-
puting independent sets for each set of rectangles lying in one window w� of
Wz. By only considering windows that contain at least one interval and using
Theorem 5 we can compute for every Wz and z ∈ {0, 1} a 2-approximation of
its largest independent set using α(Rz) space in one pass. Let α′(Rz) be such
a 2-approximation, α(Rz) the size of an optimal independent set of Rz, and
RI ⊆ R an optimal independent set of R, then it holds that

2max{α′(R0), α′(R1)} ≥ α′(R0) + α′(R1) ≥ 1
2
(α(R0) + α(R1))

≥ 1
2
(|RI ∩ R0| + |RI ∩ R1|) ≥ 1

2
|RI | ≥ 1

2
α(R).

From this it follows that max{α′(R0), α′(R1)} ≥ 1
4α(R).

Theorem 6. Let R be a set of axis-aligned unit height rectangles that arrive
in a data stream, there is an algorithm that compute a 4-approximation to the
maximum independent set of R, uses O(α(R)) space, and handles each rectangle
in polylog time.

Note, that this algorithm restricted to axis-aligned squares matches the
approximation factor of three due to Cormode et al. [18] since for unit inter-
vals we can use the 3

2 -approximation algorithm from Cabello et al. [11].

6 Clique in Streams of Intervals and Segments

We can make an identical statement as Theorem 2 for maximum clique instead
of maximum independent set by observing the complement graph of the con-
struction in Lemma 1.

Theorem 7. Any constant-factor approximation algorithm for geometric max-
imum clique that succeeds with probability at least 3/4 on segment streams using
p passes must use at least Ω(n/p) bits of memory, even when the endpoints of
the segments lie on two lines.

Proof. The complement graph of the construction of Lemma 1 is also a permu-
tation graph and admits the property that it contains either a clique of size 1 or
t. It is given by reversing the permutation (exactly mirroring the bottom) of the
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Fig. 3. Lower bound for Clique in permutation graphs, with t = 3 players. In this
example, xi

j = 1 for all players i ∈ [t].

construction in Lemma 1. This construction is illustrated in Fig. 3. It follows that
Lemma 1 also holds for geometric maximum clique instead of geometric maxi-
mum independent set. The theorem now follows from the proof of Theorem 2,
using maximum clique instead of maximum independent set. �	

For streams of intervals, we show a simple upper bound, using that there are
at most 2n different endpoints of intervals.

Theorem 8. Let I be a set of intervals in the real line that arrive in a data
stream. There is an algorithm to compute the largest clique size, ω(I), in 1 pass
using O(n log(ω(I)) bits of memory, using time O(n2) total. In a second pass,
the intervals that make up the clique can be recovered, which can be streamed
without extra memory use, or stored using O(ω(I) log n) bits of memory.

Proof. We keep a counter for every possible endpoint of an interval, which are
2n counters total. We keep the order of counters fixed, but need no labels for
a counter, because of the assumption that the range of endpoints is 1, . . . , 2n.
When an interval appears in the stream, we increment all counters that are
contained in the interval, including its endpoints. At the end of the stream, ω(I)
is given by the largest counter, as this coordinate is a witness to ω(I) intervals co-
intersecting. This is the correct maximum, as the number of intersecting intervals
can only change at an endpoint of an interval.

In the second pass, we can recover the intervals that make up the clique
can be recovered by pushing every interval that overlaps the coordinate of the
maximum counter found in the first pass to the output. �	

The result of Theorem 8 is nearly tight, as the construction of Theorem 7
can also be constructed as a stream of unit intervals.

7 Conclusion

We studied the geometric independent set and clique problems for a variety of
geometric objects. Interestingly, we showed that the type of geometric object



222 S. Bhore et al.

used for the implicit stream of a geometric intersection graph can make a sub-
stantial difference even for simple objects like segments and intervals. This raises
the question if such a difference also exists for other types of objects. Moreover,
the complexity of finding an independent set in a stream of arbitrary rectangles
remains open. Finally, studying streams of geometric objects in other streaming
models, such as turnstile streams, provides an interesting direction for future
research.

References

1. Agarwal, P.K., van Kreveld, M.J., Suri, S.: Label placement by maximum inde-
pendent set in rectangles. Comput. Geom.: Theory Appl. 11(3–4), 209–218 (1998).
https://doi.org/10.1016/S0925-7721(98)00028-5

2. Agarwal, P.K., Krishnan, S., Mustafa, N.H., Venkatasubramanian, S.: Stream-
ing geometric optimization using graphics hardware. In: Di Battista, G., Zwick,
U. (eds.) ESA 2003. LNCS, vol. 2832, pp. 544–555. Springer, Heidelberg (2003).
https://doi.org/10.1007/978-3-540-39658-1 50

3. Agarwal, P.K., Mustafa, N.H.: Independent set of intersection graphs of convex
objects in 2D. Comput. Geom.: Theory Appl. 34(2), 83–95 (2006). https://doi.
org/10.1016/j.comgeo.2005.12.001

4. Alon, N., Matias, Y., Szegedy, M.: The space complexity of approximating the
frequency moments. J. Comput. Syst. Sci. 58(1), 137–147 (1999). https://doi.org/
10.1006/jcss.1997.1545

5. Bakshi, A., Chepurko, N., Woodruff, D.P.: Weighted maximum independent set of
geometric objects in turnstile streams. In: Proceedings of the Annual International
Conference on Approximation, Randomization, and Combinatorial Optimization.
Algorithms and Techniques (APPROX/RANDOM 2020). LIPIcs, vol. 176, pp.
64:1–64:22. Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2020). https://
doi.org/10.4230/LIPIcs.APPROX/RANDOM.2020.64

6. Balas, E., Yu, C.S.: Finding a maximum clique in an arbitrary graph. SIAM J.
Comput. 15(4), 1054–1068 (1986). https://doi.org/10.1137/0215075

7. Bar-Noy, A., Bar-Yehuda, R., Freund, A., Naor, J., Schieber, B.: A unified approach
to approximating resource allocation and scheduling. J. ACM 48(5), 1069–1090
(2001). https://doi.org/10.1145/502102.502107
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