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A B S T R A C T   

Research has repeatedly shown that the spread of infectious diseases is influenced by properties of our social 
networks. Small-world like structures with densely connected clusters bridged by only a few connections, for 
example, are not only known to diminish disease spread, but also to increase the chance for a disease to spread to 
any part of the network. Clusters composed of individuals who show similar reactions to avoid infections (health 
behavior homophily), however, might change the effect of such clusters on disease spread. To study the com-
bined effect of health behavior homophily and small-world network properties on disease spread, we extend a 
previously developed ego-centered network formation model and agent-based simulation. Based on more than 
80,000 simulated epidemics on generated networks varying in clustering and homophily, as well as diseases 
varying in severity and infectivity, we predict that the existence of health behavior homophilous clusters reduce 
the number of infections, lower peak size, and flatten the curve of active cases. That is because agents perceiving 
higher risks of infections can protect their cluster from infections comparatively quickly by severing only a few 
bridging ties. A comparison with epidemics in static network structures shows that the incapability to act upon 
risk perceptions and the low connectivity between clusters in static networks lead to diametrically opposed ef-
fects with comparatively large epidemics and prolonged epidemics. These finding suggest that micro-level 
behavioral adaptation to health risks mitigate macro-level disease spread to an extent that is not captured by 
static network models of disease spread. Furthermore, this mechanism can be used to design information cam-
paigns targeting proxies for groups with lower risk perception.   

1. Introduction 

The COVID-19 pandemic has revealed the vulnerability of our 
globalized world to the spread of infectious diseases. As a reaction to 
this, many countries implemented physical distancing measures to lower 
the number of infections for a disease mainly transmitted through 
human-to-human contact in social networks (Li et al., 2020; Shen et al., 
2020; WHO, 2021). In other words, reducing social contacts should 
reduce the transmission of the virus. 

However, authority-initiated interventions are not the only factors 
affecting social network structure to lower the risk of infections. Avoi-
dant health behaviors, such as keeping away from large crowds, 
avoiding symptomatic coworkers, or avoiding sexual contact because a 
partner has a sexually transmitted disease, are common self-imposed 

measures known to mitigate disease spread (Bish and Michie, 2010; 
Funk et al., 2009). These health behaviors depend on heterogeneous risk 
perceptions (Bish and Michie, 2010; Leppin and Aro, 2009) that, 
depending on the composition of a group, may facilitate or hinder the 
spread of infectious diseases on the macro-level, such as COVID-19 
(d’Andrea et al., 2022) or HIV (Koku and Felsher, 2020). Furthermore, 
risk perceptions depend on personal properties, such as age, gender, 
ethnicity, educational level, or marital status (Bish and Michie, 2010); 
properties known to facilitate homophily (McPherson et al., 2001), a 
tendency of people to be connected to others with similar 
characteristics. 

Additionally, certain network properties are known to affect the 
spread of diseases in networks. On the one hand, small average path 
length reduces the probability of a disease to die out before reaching 
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distant points of the network (Watts and Strogatz, 1998). On the other 
hand, the presence of clusters, densely connected areas within a network 
that have only few ties bridging to nodes outside this area, can reduce 
the size of an epidemic (Badham and Stocker, 2010; Keeling, 1999; 
Miller, 2009). These two features are of particular interest for the spread 
of infectious diseases, as they constitute the typical structure of our 
small-world-like social networks (Milgram, 1967; Watts and Strogatz, 
1998). 

Although we know quite well how small-world properties and 
homophily affect disease spread in networks separately, it is less clear 
how the two shape epidemics in combination. Furthermore, network 
models of disease spread typically neglect adaptive changes in the 
network structure, despite their potentially large effect on predictions 
(Bansal et al., 2010). We therefore ask: What are the effects of health 
behavior homophily on epidemics in adaptive small-world networks? and 
How do epidemics differ between adaptive and static networks? 

1.1. Network models of disease spread 

For almost 40 years, scientists use network theory to study the spread 
of infectious diseases (e.g., Klovdahl, 1985; May and Anderson, 1987). A 
typical approach is to study how the structural properties of relation-
ships (edges) between individuals (nodes) affect the spread of infectious 
diseases. 

Many network models of disease spread, however, assume that re-
lationships do not change over time (Bansal et al., 2010). In their review 
on epidemic processes in complex networks, Pastor-Satorras et al. 
(2015) argue that static networks are good approximations, when the 
network evolves at a much slower pace than the dynamic process 
working within it. Examples for processes that change network topology 
slowly are demographic changes, such as births and deaths, migration, 
or social or economic changes. Short-term changes, however, can be the 
result of behavioral changes to adapt to health risks thus requiring the 
consideration of the interdependent dynamics between social networks 
and infectious diseases (Bansal et al., 2010). An established approach to 
account for such adaptations as well as heterogeneity on the host level 
are individual-based models for infectious disease transmission (Bedson 
et al., 2021; Willem et al., 2017; Verelst et al., 2016). Simulation studies 
on adaptive networks suggest, for example, that epidemic size is smaller 
in adaptive networks compared to their static counterparts, no matter 
whether ties to infectious nodes are simply cut (Gross et al., 2006) or 
whether infectious nodes rewire randomly (Leung et al., 2018; Risau--
Gusman and Zanette, 2009). Another typical application of 
individual-based models is to test the effectivity of network-based in-
terventions (Verelst et al., 2016), such as vaccination (Breban, 2011; 
Nunner et al., 2022) or information campaigns (Mao and Yang, 2012; 
Nyabadza et al., 2010). 

1.2. Small-world networks 

“My it’s a small world.” is according to Milgram (1967, p. 61) a 
typical statement we make upon realizing that a stranger knows the 
same person we do. In a seminal study, he discovered that it takes only 
about five intermediaries to send a letter from distant places in the US (i. 
e., Wichita, Kansas and Omaha, Nebraska) to a stockbroker in Boston, 
Massachusetts. This surprisingly low number is caused by the typical 
properties of our social networks: high clustering and short average path 
length (Watts and Strogatz, 1998). That is, small-world networks typi-
cally have densely connected areas that are connected by just a few 
bridges. Translated into our social lives that means we form clusters with 
people who are also connected among each other (e.g., friends, family), 
while we typically know few people who are not part of that inner social 
circle (e.g., a former fellow student). The tendency for high clustering or 
triadic closure (Simmel, 1950) is often studied in the social sciences 
(Granovetter, 1977), also because social cohesive structures have ad-
vantages in terms of cooperation and trust for the people in these 

structures (Coleman, 1994). 
Despite the advantages of social cohesion, we typically do not find 

fully connected networks. In addition to obvious reasons (spatial dis-
tance, too many people, personal sympathies), Jackson (2008) presents 
a process of consideration preceding the formation of contacts. He ar-
gues that while social ties provide benefits (e.g., emotional support, 
sense of belonging), there are also costs to maintain the relationships (e. 
g., time, effort). Thus, the answer to whether a social tie is formed or 
kept is a trade-off between the benefits from having the tie and the costs 
to maintain it. On the one hand, this trade-off creates tightly-knit clus-
ters within our social networks that are limited in size. On the other 
hand, clusters are not disconnected from each other, but bridged by a 
few ties. Burt (1992) argues that bridging ties provide their own ad-
vantages such as access to and control of resources and information. 
Consequently, network properties, such as the number of relations, the 
degree of clustering, or average path length, depend on costs and ben-
efits shaped by social context. 

Previous research on disease spread in social networks has shown 
repeatedly that increased clustering leads to smaller epidemics (Badham 
and Stocker, 2010; Keeling, 1999; Miller, 2009). Small-world networks 
that combine high clustering with short average path lengths, however, 
facilitate the spread of infectious diseases (Watts and Strogatz, 1998). 
That is because transmission events are subject to probabilities, and the 
more transmissions are required to reach distant parts of the network, 
the more likely the transmission chain breaks. Ties bridging two clusters 
lower the average path length by providing shortcuts to access distant 
nodes with only a few steps. It follows that while clusters hamper the 
spread of infections, increasing numbers of bridges between clusters 
facilitate the disease to quickly spread through the entire network. 

1.3. Health behavior homophily 

In the context of infectious diseases, Kasl and Cobb (1966) define 
health behavior as “[…] any activity undertaken by a person believing 
himself to be healthy, for the purpose of preventing disease or detecting 
it in an asymptomatic stage” (p. 531). A systematic review of 26 studies 
on a variety of airborne diseases (SARS, avian influenza, H5N1, swine 
flu, H1N1) reveals avoidant behavior as one of the most commonly 
adapted behaviors to prevent disease (Bish and Michie, 2010). Typical 
avoidant behaviors are removing social ties (Funk et al., 2010), volun-
tary quarantining (Tracy et al., 2009), or avoiding public places (Jones 
and Salathé, 2009). 

A systematic review of 28 studies on SARS and avian influenza 
(Leppin and Aro, 2009) showed that independent of how risk is 
conceptualized, the perception of risks is the most important determi-
nant of health decisions. The two main drivers of risk perception are (i) 
how probable a person believes it is to get infected, and (ii) how severe 
that person thinks the disease is (Bish and Michie, 2010; Leppin and Aro, 
2009). Risk perceptions, however, are highly subjective in nature (Bults 
et al., 2015), meaning that the more people perceive themselves to be 
susceptible to a disease and the more severe the consequences of the 
disease are perceived, the more likely they are to change behavior to 
save themselves from a potential infection. It follows, that a person who 
perceives a high risk of catching a disease with presumably severe effects 
on personal health is more likely to avoid potentially infectious contacts 
than a person who does not. 

Although risk perception is an individual characteristic and the 
resulting behavioral changes occur on the individual level, homophily 
regarding risk perception exerts effects beyond that. Homophily in-
dicates the extent to which it is more likely for a social tie to exist be-
tween similar people than between dissimilar people. Causes for 
homophily can be either the demographic structure of a group (baseline 
homophily) or explicit preferences for similarity (inbreeding homophily; 
McPherson et al., 2001). Independent of what causes homophily to 
emerge, risk perceptions and health behavior often correlate with other 
properties facilitating homophily, such as age, gender, ethnicity, 
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educational level, or marital status (Bish and Michie, 2010). McPherson 
et al. (2001) argue that as a result of homophily transmission processes 
tend to be socially localized. Kitchovitch and Lì (2010), for example, 
showed that higher levels of risk avoidance in scale-free networks limits 
the disease to the area around highly connected nodes, while nodes with 
lower contact numbers remain unaffected. 

2. The model 

Although numerous studies were concerned with the effects of small- 
world properties (Badham and Stocker, 2010; Keeling, 1999; Miller, 
2009; Watts and Strogatz, 1998) or homophily (d’Andrea et al., 2022; 
Kitchovitch and Lì, 2010; Koku and Felsher, 2020) on epidemics, there 
is, to our knowledge, no study that looks into their interplay. Further-
more, simulation studies typically consider static networks (Badham and 
Stocker, 2010; d’Andrea et al., 2022; Keeling, 1999; Kitchovitch and Lì, 
2010; Miller, 2009; Watts and Strogatz, 1998). To study the combined 
effects of small-world properties and homophily on epidemics in adap-
tive social networks, we created the so-called Small-Worlds Infectious 
Disease Model (SWIDM), a specific model case of the Networking during 
Infectious Diseases Model (NIDM; Nunner et al., 2021). 

To facilitate comparability, reproducibility, and understanding of 
our model we are guided by the updated version of the ODD protocol 
(“Overview”, “Design concepts”, “Details”) of individual- and agent- 
based models (Grimm et al., 2010). Here, we offer mostly top-level de-
scriptions of the model components relevant for this paper. In Online 
appendix A – Additional model definitions, we offer more detailed and 
formal model definitions. 

2.1. Purpose 

The SWIDM was developed to investigate how (i) social mixing of 
heterogeneous risk perception (random, homophilous), (ii) variations in 
small-world network properties (clustering, path length), and (iii) the 
possibility of network changes (static, adaptive) affect the transmission 
of infectious diseases in social networks. 

2.2. Basic principles 

The SWIDM is a network formation and disease spread model for a 
closed population of autonomous agents (nodes) that can create 
infection-relevant relationships (edges). Networking decisions are based 
on the trade-off between the social benefits (e.g., sense of belonging, 
affection), costs (e.g., time, effort, money), and (potential) harm of in-
fections (e.g., symptoms, absence from work, hospitalization) that a tie 
has for an agent. Agents seek to myopically maximize personal utility by 
(i) forming ties to other agents (requires the consent of the opposite 
agent), (ii) maintaining existing ties to other agents, and (iii) dissolving 
ties to other agents (unilateral decision). Decisions on these actions are 
based on an agent’s position in the network, individual risk perception 
related to the disease, and the distribution of disease states among 
agents in the network (see section Utility). 

In their choice to create or maintain ties, agents have a preference for 
triadic closure versus openness in their networks. This preference bal-
ances two things: first, a preference for closed triads (Coleman, 1994), 
and second, the strategic advantage to bridge structural holes (Burt, 
1992). Finally, the underlying agent selection process captures baseline 
homophily (McPherson et al., 2001) by implementing larger probabili-
ties for changing ties with agents who have similar risk perceptions. This 
process does not integrate explicit preferences regarding risk perception 
of alters (inbreeding homophily) and is in line with findings that cor-
relations between personal properties, such as risk perceptions and 
health behavior, are driven by higher likelihoods to meet similar others 
(e.g., regarding age, gender, ethnicity, educational level, marital status) 
(Bish and Michie, 2010; McPherson et al., 2001). 

2.3. Dynamics of disease transmission and network formation 

Disease dynamics and adaptive network dynamics are simulated in 
discrete time steps (for detailed pseudocode refer to Online appendix A – 
Additional model definitions, Process overview and scheduling). At the start 
of each time step, the simulation updates the epidemiological state of the 
population. That is, for each agent in random order, we first determine 
its disease state. If an agent is susceptible, the likelihood of the agents to 
become infected is: 

πi = 1 − (1 − γ)tiI , (1)  

with γ being the probability to get infected per single contact and tiI the 
number of infected neighbors. If an agent is infected and has been 
infected for a fixed number of time steps (τ), the agent recovers. If an 
agent is recovered, the agent cannot get re-infected until the simulation 
run ends. Note that the random order ensures that all nodes get an equal 
chance to be processed first, as later processed agents may have an 
increased number of infectious neighbors than if they had been pro-
cessed earlier. 

Following the update of the population’s epidemiological state, so-
cial network dynamics are computed. That is, for each agent i in random 
order a set J consisting of a fixed proportion (φ) of agents from the entire 
population (N) is selected. To realize the concept of focused interaction 
in an agent’s social vicinity (Feld, 1981), J is composed of neighbors at 
distance 1 and distance 2, as well as agents randomly selected from the 
entire network. Furthermore, to account for homophily, each single 
agent j is selected either to be the most similar agent regarding risk 
perception (r) or an agent selected without regard to risk perception. 
More formally, we draw a random number u from the uniform distri-
bution U(0,1) and compare this to the homogeneity parameter ω such 
that: 

j= k,with k
{

such that|ri − rk| = min∀k
′

∈ N∗|ri − rk′ |, if u ≤ ω
is a randomly selected element of N∗, if u > ω (2) 

For each agent j in J, i dissolves an existing tie, if i’s utility (see 
section Utility) without tie ij exceeds the utility with tie ij; or i proposes a 
new tie to j, if i’s utility with tie ij exceeds the utility without ij. Note that 
only if j accepts the proposal (j’s utility with tie ij also exceeds the utility 
without ij), a new tie ij is formed. 

2.4. Utility 

Utility for an agent i is defined in the SWIDM as the trade-off between 
the social benefits (Bi), social maintenance costs (Ci), and (potential) 
harm (Di) of infections based on the network connections held by i: 

Ui = Bi − Ci − Di. (3) 

Social benefits are defined as the weighted sum of the benefits for ties 
(left summand) and the benefits for the proportion of closed triads (right 
summand): 

Bi = b1⋅ti + b2⋅
(

1 − 2⋅
|xi − α|

max(α, 1 − α)

)

, (4) 

with xi denoting the actual proportion of closed triads i belongs to, α 
the preferred proportion of closed triads, and ti the number of ties agent i 
possesses. Social maintenance costs are assumed to be quadratic in the 
number of ties ti to model increasing marginal costs of additional ties: 

Ci = c1⋅ti + c2⋅t2
i . (5)  

The combination of benefits and costs for social ties 
([b1 ⋅ti] − [c1 ⋅ti +c2 ⋅t2

i ]) allows us to control the number of ties the agents 
seek to establish apart from clustering considerations. This largely 
controls the degrees of the agents and thus the average degree of the 
network. Further, we control the degree of clustering in the network by 
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defining the proportion of closed triads agents seek to be a part of (α). 
(Potential) harm of infections is a combination of perceived proba-

bility to get infected (pi) and perceived severity of the disease (si): 

Di = pi⋅si. (6) 

That is, agents transform actual probability to get infected πi 
(Equation (1)) into a subjective version of the same, depending on their 
disease state: 

pi =

⎧
⎪⎪⎨

⎪⎪⎩

π2− r
i , if i is susceptible,
1, if i is infected,
0, if i is recovered.

(7)  

Furthermore, agents transform actual severity of the disease (σ) into a 
subjective version of the same, depending on their disease state: 

si =

⎧
⎨

⎩

σr , if i is susceptible,
σ, if i is infected,
0, if i is recovered.

(8)  

Consequently, agents with risk perception values (r) below 1 underes-
timate, while agents with risk perception values above 1 overestimate 
the probability of infections and disease severity. We can therefore 
control the severity (σ) and infectivity (γ, operationalized as trans-
mission probability per contact and time step) of the disease, as well as 
the agents’ perception of these parameters (r). 

3. Simulation 

3.1. Simulation procedure & output data 

A simulation run is initialized by setting the model parameters (see 
Table 1). Thereupon, we simulate the social network dynamics in a 
disease free population until a pairwise stable network (Jackson and 
Wolinsky, 1996) emerges. That is a notion of equilibrium where no 
agent benefits from unilaterally breaking an existing tie and no pair of 
agents benefits from jointly creating a non-existing tie. This ensures that 
changes in network structure at the onset of an epidemic depend solely 
on the presence of an infectious disease. If this initialization phase did 
not lead to a pairwise stable and connected network within 50 time 
steps, we restarted the initialization until we had over 80,000 networks 
suitable for the next phase (80,305 to be precise). 

The observation phase begins when a randomly selected agent gets 
infected (index case). The observation phase ends when no infected 
agents are left (every agent is either susceptible or recovered). Each 
observation phase is executed twice for each network and parameter 
setting. That is, one simulation without network dynamics and one 
simulation with network dynamics. Thus, both conditions start with the 
same network structure and index case. The only difference is that 
agents in the static condition cannot change their network ties, while 
agents in the adaptive condition can. 

During the observation phase we keep track of all varied parameters 
and a range of outcome variables (see Table 1). On the agent level, we 
record the number of social ties (ti), the proportion of closed triads (xi), 
and the disease state (di). On the network level, we record the number of 
susceptible (|S|), infected (|I|), and recovered agents (|R|), the number 
of broken (t−G ) and created ties (t+G ), network clustering (𝒞G), average 
path length (ℒG), and homophily (ℋG). Furthermore, we keep track of 
average degree (𝒟G), as it is known to be a significant factor for diffusion 
processes even for small variations. 

Network clustering is defined as the average of all agents’ local 
clustering coefficients, while average path length consists of the average 
of all shortest paths between all pairs of agents in the network (Watts 
and Strogatz, 1998). Following the concept of quantifying degree-based 
assortative mixing by Newman (2002), we quantify homophily with the 
Pearson correlation coefficient of risk perception between all pairs of 

tied agents. 

3.2. Parameter settings 

We fixed the population size to N = 80, the preferred number of ties 
per agent to 8 (realized through the combination of b1 = 1.0, c1 = 0.2, 
and c2 = 0.05; see section Utility for details), the number of agents to be 
evaluated per time step to 16 (φ = 0.2), and the recovery time to τ = 5 
time steps. These parameters constitute a relevant and interesting 
framework for our further studies. That is, keeping average degree 
constant, and thus creating a homogeneous degree distribution, enables 
us to minimize the otherwise strong effect of degree on epidemic dy-
namics (e.g., Danon et al., 2011; Nunner et al., 2021), and thus to study 
the network properties of interest (clustering, average path length) in 
isolation. Additionally, empirical studies support an average of 8 con-
tacts per day being a relevant magnitude for networks of respiratory 
disease spread (Danon et al., 2013; Leung et al., 2017), while 5 days 
recovery time is within the average range for respiratory diseases, like 
influenza (Longini et al., 2005), and people typically have between 5 
and 30 contacts relevant for respiratory disease transmissions per day 
(Mossong et al., 2008). Finally, we opted for a constant homogeneous 
setting to minimize sources of variation, while test simulations have 
shown that these settings produce interesting dynamics. 

Submodels are realized through randomized initial settings of the 
remaining model parameters. This allows us to generate epidemics on a 
whole variety of different scenarios and to study how sensitive the 
outcomes are to changes in parameter settings. Variations in clustering 
and average path length are realized through uniform random samples 

Table 1 
State variables, scales, and settings for model parameters.  

State variable Scale Setting 

I.I. Agent, parameters 
Benefit per social tiea b1 ∈ R+

0 b1 = 1.0 
Benefit for triadic closure b2 ∈ R+

0 b2 = 0.5 
Preferred proportion of closed triadsb 0 ≤ α ≤ 1 α ~ U[0, 1] 
Simple cost per tiea c1 ∈ R+

0 c1 = 0.2 
Marginal cost per tiea c2 ∈ R+

0 c2 = 0.05 
Risk perception 0 ≤ r ≤ 2 r ~ U[rmin, rmax] 
I.II. Agent, outcomes 
Number of social ties ti ∈ N0  

Proportion closed triads 0 ≤ x ≤ 1  
Disease state d ∈ {S, I, R}  
II.I. Network, model parameters 
Number of agents N ∈ N0 N = 80 
Minimum risk perception 0 ≤ rmin < 2 rmin ~ U[0, 1] 
Maximum risk perception 0 < rmax ≤ 2 rmax ~ U[1, 2] 
Likelihood of ties similar in risk perceptionc 0 ≤ ω ≤ 1 ω ~ U[0, 1] 
II.II. Network, outcomes 
Number of susceptible agents |S| ∈ N0  

Number of infected agents |I| ∈ N0  

Number of recovered agents |R| ∈ N0  

Number of broken ties t−G ∈ N0  

Number of created ties t+G ∈ N0  

Clustering 0 ≤ 𝒞G ≤ 1  
Average path length ℒG ∈ R+

0  
Homophily − 1 ≤ ℋG ≤ 1  
Average degree 𝒟G ∈ R+

0  
III. Infectious disease, model parameters 
Disease severity σ > 1 σ ~ U(1, 100] 
Infectivityd 0 ≤ γ ≤ 1 γ ~ U[0.01, 0.20] 
Recovery time in time steps τ > 0 τ = 5  

a The combination of b1 = 1.0, c1 = 0.2, and c2 = 0.05 sets the preferred 
number of ties to 8. 

b The effect of α on network clustering and average path length is depicted in 
Figure B.1 in Online appendix B – Additional analyses. 

c The effect of ω on homophily is depicted in Figure B.1 in Online appendix B – 
Additional analyses. 

d Infectivity is operationalized as transmission probability per contact and 
time step. 
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of preferred proportion of closed triads (α ~ U[0, 1]). Note that the joint 
variation of clustering and path length is key in the collective dynamics 
of small-world networks (Watts and Strogatz, 1998). Uniform random 
samples of likelihood of ties between agents that are similar in risk 
perception (ω ~ U[0, 1]) are used to realize variations in homophily. 
Further, we set randomized bounds for risk perception on the network 
level (rmin ~ U[0, 1], rmax ~ U[1, 2]) and assign randomized values 
within the previously set bounds to each agent (ri ~ U[rmin, rmax]) to 
realize variations of risk perception on the network and individual level. 
Finally, we vary disease severity (σ ~ U(1, 100]) and infectivity (γ ~ U 
[0.01, 0.20]). 

Note that, although we choose plausible settings supported by 
empirical examples, we do not study a specific disease in a specific 
context but consider parameter variations that contribute to answering 
our specific research questions. Please refer to Nunner et al. (2021) for 
detailed elaborations on the model’s theoretical foundations, its func-
tional form, and additional sensitivity analyses. 

3.3. Data and source code availability 

The data, the Java 8 source code to generate the data (including an 
executable program and an easy to use graphical user interface), and the 
R scripts to analyze the data during the current study are available under 
the GPLv3 license in the GitHub repository, https://github.com/hnunn 
er/nidm-simulation. 

4. Analysis 

To investigate the effect of small-world properties and health 
behavior homophily on epidemics, we divide the variables into two 
categories. First, independent variables describing network and disease 
properties: (i) network clustering, (ii) average path length, (iii) homo-
phily, (iv) average degree, (v) disease severity, (vi) infectivity, and (vii) 
average risk perception. Note that the listed network properties are 
outcome variables resulting from the network formation process, but 
independent variables in the analysis of epidemics. Second, dependent 
variables characterizing epidemics and network dynamics: (i) the per-
centage of infected agents throughout the entire epidemic (final size), (ii) 
the number of time steps from first infection until all agents are either 
susceptible or recovered (duration), (iii) the maximum number of 
simultaneously infected agents (epidemic peak size), and (iv) the number 
of network changes during the epidemic (number of broken and created 
ties). 

We use box-and-whisker plots to compare dependent variables be-
tween adaptive and static networks. Box-and-whisker show the median, 
interquartile range (IQR: [Q1, Q3]), minimum (at most Q1 − 1.5 ⋅ IQR), 
maximum (at most Q3 + 1.5 ⋅ IQR), and outliers. We use Kendall rank 
correlation coefficients to describe the relationship between non- 
normally distributed variables (i.e., final size - duration, final size - 
peak size). 

Bivariate effects are analyzed visually using scatter plots with inde-
pendent variables on the x-axis and dependent variables on the y-axis. 
Due to the large number of simulations, we sort the independent vari-
ables and bin them into 100 points on the x-axis, thus, showing the mean 
of 80,305

100 ≈ 803 simulations per point. Standard errors and 95% confi-
dence intervals are omitted, as they hardly exceed the size of the dots in 
every plot. 

Finally, we perform regression analyses to study model behavior in a 
multivariate manner. We realize that significance tests do not have the 
conventional interpretation because we do not have a usual sample. 

Tests should be interpreted more descriptively and are used to find the 
best fitting models given the sample of model parameters drawn (cf. 
Buskens and Yamaguchi, 1999; Buskens and Snijders, 2016). We use 
models to linearly approximate the logit of final size by combinations of 
the independent variables, since final size describes the percentage of a 
binary response (infected/not infected) (Long, 1997). We use linear 
models for duration, peak size, and number of network changes. We first 
create models for each dependent variable and the main effects for all 
standardized independent variables. Second, we create interaction ef-
fects starting from all possible interactions. We then remove all effects 
that are not significant at p < 0.001 or do not contribute to reduce un-
explained variance at R2 ≥ 0.001. For highly collinear parameters (e.g., 
clustering and path length) we select parameters to minimize collin-
earity, while maximizing R2. We use an inductive approach rather than 
testing theoretically informed interaction effects to get a more complete 
picture of the model behavior and not to miss potentially counterintu-
itive interactions. 

5. Results & discussion 

In the following, we discuss the results of our simulations starting 
with a comparison of epidemics in adaptive and static networks. 
Thereafter, we discuss how health behavior homophily affects epidemics 
in adaptive and small-world networks and conclude with how these 
dynamics differ in static networks. Additional analyses can be found in 
Online appendix B – Additional analyses, where we show, among others, 
that the effect of degree on final size is negligible (Effect of degree on final 
size) and can therefore be omitted for further analyses. 

5.1. Epidemics in adaptive vs. static networks 

While in the majority of simulated epidemics almost all agents get 
infected in the static networks (Mdn = 97.50%), only about one fifth of 
the agents get infected in the adaptive networks (Mdn = 21.25%). 
Because duration and peak size are correlated with final size (final size - 
duration: rτ = 0.61, p < 0.05; final size - peak size: rτ = 0.89, p < 0.05), 
epidemics in static networks are on average longer (static networks: 
Mdn = 17 time steps; adaptive networks: Mdn = 15 time steps) and have 
higher maximum numbers of simultaneously infected agents (static 
networks: Mdn = 53.75%; adaptive networks: Mdn = 11.25%). That is, 
few infected agents need on average less time to recover than many 
infected agents, given they do not get infected at the same time step. This 
relation, however, reverses for large final sizes in static networks 
(Fig. 1b, orange box). Here, epidemics take significantly less time than 
for medium final sizes (Fig. 1b, green box). In adaptive networks, on the 
other hand, the duration is largely independent of final size when final 
size is larger than 10%. Consequently, many infected agents increase the 
rate of transmission events and thus the speed of disease spread if agents 
cannot actively avoid infections. Adaptive agents in networks with large 
final sizes, on the other hand, manage to delay infections, thus slowing 
down the course of epidemic. As a result, static networks show not only 
higher epidemic peaks, but must also have more simultaneously infected 
nodes on average. 

5.2. Effects of health behavior homophily on epidemics in adaptive small- 
world networks 

Fig. 2 shows bivariate effects of network properties on epidemics in 
adaptive networks. The data reveal negative effects on final size for 
homophily, network clustering, and average path length. Furthermore, 
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final size is mostly stable at high levels in networks with low levels of 
homophily (< 0.45) and clustering (< 0.45). In contrast, final size 
drops off quickly for low levels of average path length and remains 
stable for higher levels of average path length (> 3.0). Interestingly, 
multivariate regression analyses show that the effect of average path 
length on final size vanishes when controlled for all other independent 
variables (Table 2). 

The number of network changes helps to understand the complex 

dynamics in adaptive networks. That is, all independent variables have 
similar effects on final size and the number of network changes (Fig. 2, 
column 4). It follows that the further the disease spreads in the network, 
the more agents reposition themselves to avoid or delay infections. If we, 
however, control for all independent variables (Table 2), the number of 
network changes increases, although final size decreases as network 
clustering increases. That is because infections inside densely connected 
clusters require agents to dissolve comparatively many ties to distance 

Fig. 1. Comparison of epidemics in adaptive and static networks. Each panel shows box-and-whisker plots divided by network type (left: adaptive, right: static). 
Panels show the average outcome for final size (a), duration (b), and peak size (c). Plots for duration and peak size are further divided into three groups depending on 
final size: low (0–10%; blue), medium (10–90%; orange), and high (90–100%; green). (For interpretation of the references to color in this figure legend, the reader is 
referred to the Web version of this article.) 

Fig. 2. Bivariate effects of network properties on epidemics. Plots show the effects of homophily (row 1), network clustering (row 2), and average path length 
(row 3) on final size (column 1), duration (column 2), and peak size (column 3) of epidemics, as well as number of network changes (column 4) in adaptive networks. 
There are 100 points per group and plot, with each point showing the average of ≈ 803 (80,305

100 ) observations. Measures of variance are omitted, as they merely exceed 
the size of the dots. Data for duration and peak size have been grouped by final size: 0–10% (blue), 10–90% (orange), and 90–100% (green). Additional effects 
(average degree, average risk perception, disease severity, infectivity) and effects of all parameters on epidemics in static networks can be found in Figures B2 and B.3 
of Online appendix B – Additional analyses. (For interpretation of the references to color in this figure legend, the reader is referred to the Web version of this article.) 
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themselves from the disease. Due to the low number of ties bridging any 
two clusters, however, it is less likely that the disease spreads through 
the entire network. 

Furthermore, the interaction effect between homophily and clus-
tering (Fig. 3a) reveals that the combination of high clustering and high 
health behavior homophily produces the lowest final sizes. As the 
negative effect of risk perception (in combination with disease severity 
and infectivity) on final size (Table 2) suggests, the less risk taking the 
agents are, the quicker they dissolve their ties to infectious neighbors. 
Consequently, a cluster of low risk taking agents is especially hard to 
infiltrate due to the quick dissolution of ties to comparatively few in-
fectious neighbors outside the cluster. Consequently, the average 
epidemic in clustered networks is also shorter and has a lower peak size 
(Table 2). Considering final sizes of 90% and above (Fig. 2a, column 2, 
green points), however, the effect is inverted: If all agents get infected at 
some point, the disease requires more time to bridge between loosely 
connected clusters. Fig. 3 reveals further that even for highly infectious 
diseases, higher levels of homophily produce smaller final sizes (b) and 
larger average path lengths produce lower epidemic peaks (c). 

Finally, we observe that epidemics with final sizes up to 90% were 

insensitive to variation in every independent variable (Fig. 2, column 3). 
Peak sizes for final sizes of more than 90%, however, follow the shape of 
the final size curves. That is, only if the disease spreads through almost 
the entire network, the number of simultaneously infected agents cor-
relates with the final size of the epidemic. 

5.2. Effects of health behavior homophily on epidemics in static small- 
world networks 

Dynamics in static networks show several significant differences to 
their adaptive counterparts. First, there is no observable effect of 
homophily and risk perception on final size in static networks (Table 2). 
This is, of course, due to the operationalization of homophily in our 
study, which renders agents incapable to act upon their perceptions in 
static networks. Second, we observe a positive effect of clustering on 
epidemic duration in static networks (Table 2). That is, while the 
capability to cut off bridging ties quickly in adaptive networks causes 
epidemics to die out quickly (unless the disease spreads to the entire 
networks), the incapability to distance oneself from the disease leads to 
slow spread and on average larger final sizes in static networks. Third, 

Table 2 
Regression analysis summary.   

Adaptive networks Static Networks  
Final size Duration Peak size Network changes Final size Duration Peak size 

I. Main effects 
Number of network changes (t+/−

G ) ⊕ ⊕ + ++

Homophily (ℋG) − − − – − − − –   – 
Clustering (𝒞G) − − – − − − + + – + + + + – 
Average path length (ℒG) + + − − − − – + + − −

Average risk perception (rσ,π) – – – –    
Disease severity (σ) – – –     
Infectivity (γ) + + + + − − ⊕ ⊕ ⊕ – ⊕

II. Interaction effects 
t+/−

G x ℋG 
− − –     

t+/−

G x 𝒞G 
− − − − − −

t+/−

G x ℒG  + ++

t+/−

G x γ + + − − + +

ℋG x 𝒞G + – +

ℋG x ℒG    –    
ℋG x γ − − − − +

ℒG x γ   − − – – ⊕ – 
Adjusted R2 0.92 0.80 0.85 0.39 0.76 0.07 0.87 
Number of observations 80,305 80,305 80,305 80,305 80,305 80,305 80,305 

Note: all variables are standardized; all effects shown are significant at p < 0.001; effect direction is shown as sign (+ for positive effects, − for negative effects), while 
effect sizes are shown in relation to the largest effect (⊕/⊖): +/− = 0–20%, + +/− − = 20–40%, …, + + + ++/− − − − − = 80–100%). Individual regression models 
can be found in Online appendix B – Additional analyses, Regression models. 

Fig. 3. Interaction effects in adaptive networks. Final size of epidemics decreases the more clustered the networks (a) and the lower the infectivity (b). At the 
same time, larger degrees of health behavior homophily (darker red lines) create lower numbers of infections. Epidemic peak size increases the higher the infectivity 
(c) and the shorter the average path length (light purple line). (For interpretation of the references to color in this figure legend, the reader is referred to the Web 
version of this article.) 
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we observe negative effects of average path length on final size and peak 
size in static networks only (Table 2). 

6. Conclusion & implications 

Although the literature contains numerous publications on how 
diffusion processes are shaped by small-world properties and homophily 
individually (Badham and Stocker, 2010; d’Andrea et al., 2022; Keeling, 
1999; Kitchovitch and Lì, 2010; Koku and Felsher, 2020; Miller, 2009; 
Watts and Strogatz, 1998), it is still unknown how the diffusion of in-
fectious diseases is shaped by their combination. We therefore asked: 
What are the effects of health behavior homophily on epidemics in adaptive 
small-world networks? and How do epidemics differ between adaptive and 
static networks? 

To answer these questions, we created the so-called Small-Worlds 
Infectious Disease Model (SWIDM), a specific model case of the Networking 
during Infectious Diseases Model (NIDM; Nunner et al., 2021). The SWIDM 
is a network formation model that considers 1. Subjective risk percep-
tion regarding infectious diseases, 2. The propensity of forming closed 
triads, and 3. The likelihood of forming ties between individuals similar 
in risk perception. That is, autonomous agents form, maintain, or break 
social ties based on the trade-off between the benefits and costs of social 
relations, and potential harm of infections. Agent-based simulations of 
epidemics enabled us to consider a wide range of infectious diseases 
(mild vs. severe, low vs. high infectivity), health behaviors (low risk 
taking vs. high risk taking), homophily (low vs. high chance of ties be-
tween agents similar in risk perception), and small-world networks 
(fixed average degree, low vs. high clustering, short vs. long average 
path length). 

In line with previous studies (Leung et al., 2018), our results suggest 
that epidemics in static small-world networks are on average larger, thus 
longer, and have higher peaks compared to epidemics in adaptive net-
works. Furthermore, we see that the dynamics of disease transmission 
are heavily shaped by network properties. Take the effect of clustering 
on an epidemic, for example. While we confirm a negative effect of 
clustering on final size in both adaptive and static networks (Badham 
and Stocker, 2010; Keeling, 1999; Miller, 2009), we observe opposing 
effects of clustering on duration in adaptive (− ) and static (+) networks. 
In both cases, the disease needs to cross one of the few available bridges 
to reach another cluster. Consequently, only a few ties need to be cut to 
isolate a cluster, causing the disease to die out quickly in the adaptive 
networks. In the static networks, however, intrusion of a cluster is more 
likely, while spreading across one of the few bridges slows down disease 
spread. 

Furthermore, our results suggest that health behavior homophily in 
adaptive networks may cause the epidemic to end earlier than compared 
to randomly mixed networks. That is, not only the properties of indi-
vidual actors but also their composition in heterogeneous networks 
affect disease spread. Consider, for example, a risk averse ego connected 
to an infectious alter. The preference to avoid the infectious alter lowers 
not only the probability to get infected for the ego but also the proba-
bility for all of its susceptible connections. Consequently, even the 
connections that are less risk averse benefit from the ego’s decision to 
isolate from infectious alters. Additionally, our results suggest that the 
combination of network and actor properties shape disease spread in 
combination. That is, on the one hand, a cluster composed of mostly risk 
averse agents increases the chance for actors bridging two clusters to 
isolate the entire cluster from infectious alters. On the other hand, a 
cluster containing only a few risk averse agents increases the chance for 
actors bridging two clusters to maintain ties to infected alters from 
outside the cluster. This in turn increases the probability for the disease 
to spread into the cluster. Consequently, the overall large impact of 
homophilous clusters on epidemic size results from a comparably large 
chance of entire clusters being isolated from the disease. In contrast to 
multiple clusters, isolation from infections in networks consisting of a 
single large cluster requires more ties to be cut and therefore such 

networks show a higher likelihood for the disease to spread to any part 
of the network (see also Watts and Strogatz, 1998). 

These results are good news for two reasons. First, they support the 
notion that behavioral adaptation to health risks is a natural mechanism 
to not only reduce personal health risks, but also to mitigate disease 
spread. Dönges et al. (2021), for example, used a similar mechanism in a 
simulation study, concluding that non-pharmaceutical measures ought 
to leave sufficient room to exercise self-imposed measures resulting from 
risk perception, as strict measures of social distancing may result in 
rebound or compensatory effects when measures are lifted. Further-
more, social distancing may reinforce the mitigating effect of homo-
phily. That is, limiting contacts needs to undergo an active selection 
process after which contacts with similar traits are more likely to remain 
(McPherson et al., 2001). Yamaguchi (1990), for example, showed that 
people with fewer friends show a stronger preference for similarity, such 
as regarding educational level, a trait that coincides with health 
behavior and risk perceptions (Bish and Michie, 2010). Second, we can 
use this mechanism to design targeted information campaigns address-
ing groups with lower risk perception to increase awareness of health 
risks. A remaining challenge is how to determine such groups. A 
promising way could be to find suitable proxies for scenarios of interest. 
From the literature, we know that risk perception often coincide with 
other personal characteristics, such as age, gender, ethnicity, educa-
tional level, or marital status (Bish and Michie, 2010). More specifically, 
a recent study among heterosexuals at high risk for HIV infection used 
individual and network data to determine predictors of self-perceived 
HIV risk (Koku and Felsher, 2020). The results show that men, in-
dividuals with lower education, and individuals in ethnically hetero-
geneous groups are on average more likely to perceive high risks. 

Our study compares to earlier work in a few ways. Take Watts and 
Strogatz (1998), for example, who investigated the effects of clustering 
and path length on disease spread in static networks. Our findings also 
indicate that epidemic size decreases and epidemic duration increases 
with increasing values for clustering and average path length in static 
networks. In adaptive networks, however, we cannot confirm the effect 
of average path length on final size (when controlled for all other in-
dependent variables). As described earlier, this is a result of only a few 
bridges needing to be cut, thus causing the disease to die out quickly. 
Just as suggested by (Kitchovitch and Lì, 2010), we observe that pop-
ulations with on average less risk taking agents produce epidemics with 
smaller final size, shorter duration, and lower peak size. However, we 
considered homogeneous degree distributions, while Kitchovitch and Lì 
(2010) used scale-free networks. 

It is important to note that our study comes with a few limitations. 
First, it is not in and of itself reasonable to assume that agents know the 
disease state of others before creating social ties. Even at the time of 
evaluating a tie, a disease may be transmitted, affecting final size. Sec-
ond, although research on COVID-19 has shown that infections are 
primarily transmitted through social network ties (e.g., Li et al., 2020; 
Shen et al., 2020), it is important to consider transmissions that are not 
based on cost-benefit considerations (e.g., airborne diseases on public 
transport). This could be done in the form of a random component for 
spontaneous infections. Third, we only consider personal properties as a 
factor of risk perceptions. That is, agents are initialized to be either more 
or less risk averse throughout the entire course of a simulation run. Risk 
perceptions, however, may change according to changes in the preva-
lence of a disease or exchange of opinions with friends, which in turn 
may affect individual decision-making and thus disease spread (Lau 
et al., 2005; Teslya et al., 2022). To account for such effects, our model 
could be extended so that risk perception reflects a personal tendency 
(base value) that is influenced by current events (e.g., variation ac-
cording to prevalence). Fourth, in our model social relations are not 
“paused” but tried to be replaced. Although in some contexts this is 
unlikely to happen (e.g., families), in others it is to be expected (e.g., 
friendships break because one friend is not supportive in times of need). 
Fifth, the operationalization of homophily (in terms of tendency for 
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social distancing) does not allow effects on epidemics in static networks. 
Other operationalizations, however, might be interesting extensions for 
future work. 

To improve the model, other health behaviors lowering infectivity (e. 
g., handwashing, mask wearing) may be added. This would, most likely, 
also create an observable effect of health behavior homophily in static 
networks. Another approach to consider the effect of individual differ-
ences is to integrate a specific utility component expressing the prefer-
ence to connect to others alike (inbreeding homophily). This has been 
neglected in the current work to ensure a better control of fixed average 
degree, and thus the isolated study of network components of interest 
(clustering, average path length). Furthermore, although our results 
show the general effect of health behavior homophily on a generic dis-
ease, a model could be informative for a specific scenario by fitting 
parameters to empirical data (e.g., disease severity, infectivity, degree 
distribution, clustering, recovery times) and refining compartments. 
Additionally, such an approach would allow considering additional 
factors that may affect individual susceptibility, treatment, and recov-
ery, such as age, socio-economic status, or capacities of regional 
healthcare services. Finally, while the theories our model is based on 
have empirical grounding, our theoretical findings need to be corrobo-
rated by empirical experiments. This could be done by creating an 
experimental game-like study, in which human subjects take the role of 
the agents in our simulations. Another option is to fit the model to a 
specific scenario and study how well estimations fit to ongoing 
observations. 

In conclusion, our model suggests that a combination of high 
network clustering and high health behavior homophily can mitigate the 
spread of infectious diseases. That is, adaptive agents can cause an 
epidemic to die out quickly by severing only a few bridging ties. The 
more risk averse a cluster is on average, the more likely bridging ties are 
severed, and the more likely it is that the entire cluster is isolated from 
the disease. Although clusters slow down disease spread in static net-
works, infections can still reach any part of the network, as agents are 
rendered incapable of reacting to their risk perceptions. Neglect of these 
fundamentally different dynamics may, therefore, lead to inaccurate 
estimations when applied to a specific case. Considering the adaptive 
dynamics, however, can support the design of non-pharmaceutical in-
terventions such as targeted information campaigns using proxies for 
risk perception. 
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