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ABSTRACT
This paper presents a novel Bayesian variable selection approach that accounts for the sign
of the regression coefficients based on multivariate one-sided tests. We propose a truncated
g prior to specify a prior distribution of coefficients with anticipated signs in a given model.
Informative priors for the direction of the effects can be incorporated into prior model prob-
abilities. The best subset of variables is selected by comparing the posterior probabilities of
the possible models. The new Bayesian one-sided variable selection procedure has higher
chance to include relevant variables and therefore select the best model, if the anticipated
direction is accurate. For a large number of candidate variables, we present an adaptation
of a Bayesian model search method for the one-sided variable selection problem to ensure
fast computation. In addition, a fully Bayesian approach is used to adjust the prior inclusion
probability of each one-sided model to correct for multiplicity. The performance of the pro-
posed method is investigated using several simulation studies and two real data examples.
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Introduction

Variable selection is an important step when analyzing
data collected for social and behavioral studies. In
regression models the objective of variable selection is
to identify relevant predictor variables of an outcome
variable. Irrelevant or redundant predictors should be
removed before conducting regression analyses as they
will add noise when estimating or testing other quan-
tities that researchers are interested in. Statisticians
have proposed many variable selection methods for
regression analysis. Some modern methods include
the least absolute shrinkage and selection operator
(Lasso) presented by Tibshirani (1996) in the fre-
quentist setting, variable selection using ”spike and
slab” priors popularized by George and McCulloch
(1993) from a Bayesian perspective, and their mixture
Bayesian Lasso developed by Park and Casella (2008)
and Ro�ckov�a and George (2018). For an overview of
shrinkage priors for Bayesian variable selection see,
for instance, van Erp et al. (2019).

Variable selection is traditionally a problem of mul-
tiple two-sided hypothesis tests with respect to regres-
sion coefficients. It is well known that the one-sided
test has higher power than the two-sided test. Because
of this property, it has been extensively discussed, see

for example, Jeffreys (1961, p. 283), Berger and
Mortera (1999), and Marsman and Wagenmakers
(2017). In the context of variable selection, higher
power implies larger probability to include a variable
when the anticipated direction of the effect is correct.
While there is also a larger probability to exclude a
variable if it is truly null because the null will receive
more support when the observed effect is in the
opposite direction. This suggests that with one-sided
models, the probability of selecting the best model
increases, that is, relevant variables will be included
with higher probability while irrelevant variables will
still be excluded. For this reason, previous studies
have adopted the one-sided tests in the variable selec-
tion process. For example, Wolak (1987) first used
multivariate one-sided tests to select associated varia-
bles in the regression model, and Hughes and King
(2003) proposed one-sided AIC for model selection.
More recently, Tibshirani et al. (2016) discussed both
one-sided and two-sided tests in their variable selec-
tion procedure, and concluded that the one-sided test
is preferred because it has stronger power than the
two-sided test.

It is a waste of information not to include some
prior information about the direction of the effects if
available, as very often, even in variable selection
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problems with many potential variables, researchers
have expectations of the direction based on external
knowledge or published work. For example, when one
is interested in predicting test scores of students based
on various potentially important predictor variables,
such as the number of teachers in a school, the num-
ber of available computers for students to practice, the
expenditure per student, etc., it is likely that the
effects of these variables, if they are present, are posi-
tive on test scores of students (Stock & Watson,
2015). This paper presents a novel Bayesian algorithm
for one-sided variable selection problems where
researchers can incorporate prior knowledge about the
direction of the effects.

In the Bayesian one-sided variable selection algo-
rithm, the best subset of variables along with their
effect directions will be selected by means of posterior
model probabilities. The posterior model probability is
proportional to the marginal likelihood of the data for
a particular model times the prior model probability.
Depending on the amount of candidate variables an
algorithm with fixed prior probabilities for the one-
sided models and a fully Bayesian algorithm are pro-
posed. The latter is particularly useful in the case of
many candidate variables (Scott & Berger, 2010).
Furthermore, as it becomes computationally infeasible
to derive the exact posterior model probabilities for
all models given a large number of candidate varia-
bles, a model search method is needed to obtain
numerical estimates for the one-sided models. Various
model search methods using Markov chain Monte
Carlo (MCMC) samples have been developed by
George and McCulloch (1993), George and
McCulloch (1997), Kuo and Mallick (1998), and
Dellaportas et al. (2002) among others. This method
can also be used to select the median probability
model (Barbieri & Berger, 2004). More recently, an
EM variable selection algorithm was presented as an
alternative to MCMC model search methods Ro�ckov�a
and George (2014). In this paper, we extend the
model search algorithm proposed by George and
McCulloch (1997) to the one-sided variable selection
problem. The algorithm will not visit all models but
only those having relatively high posterior probabil-
ities. This will substantially reduce the computation
task because in practice most candidate models have
almost zero posterior probability and will not be vis-
ited in the algorithm.

This paper is organized as follows. Section 2 pro-
poses a one-sided variable selection scheme. Section 3
presents how the one-sided models can be compared
by means of the Bayes factor. Thereafter, we explain

the prior probability specification for the one-sided
model using researchers’ prior beliefs of the effect
directions in Section 4. Furthermore, the fully
Bayesian approach is adopted such that multiplicity
can be controlled. In the case of a large number of
candidate variables, Section 5 provides the MCMC
model search algorithm counterpart of the one-sided
selection. In Section 6, we conduct several simulation
studies to investigate the performance of one-sided
variable selection, as well as the MCMC model search
method and the fully Bayesian approach.
Subsequently, two empirical data examples are used to
illustrate how the proposed variable selection scheme
can be used in Section 7. This paper ends with
a conclusion.

Variable selection schemes

In this paper, we consider a variable selection problem
in the context of normal linear regression models:

yi ¼ aþ b1x1i þ :::þ bJxJi þ �i, (1)

where yi is the outcome variable, a is the intercept,
x1i, :::, xJi are candidate variables with b1, :::, bJ being
the corresponding coefficients and J the number of
variables, and �i ~Nð0r2Þ are the residuals with r2

being their variance. Our target is to select a set of
relevant variables and remove others, or more specif-
ically to identify whether each coefficient bj for j ¼
1, :::, J is equal to zero. Therefore, variable selection in
regression models can be seen as a multiple test or
selection problem on the regression coefficients. For
example, if two variables are under consideration the
problem comes down to the selection of the following
models:

M0 : b1 ¼ 0; b2 ¼ 0, M1 : b1 ¼ 0; b2 6¼ 0,
M2 : b1 6¼ 0; b2 ¼ 0, MF : b1 6¼ 0; b2 6¼ 0,

(2)

where M0 and MF denote the null and full models,
respectively. For each coefficient across models the
selection is two-sided, i.e., bj ¼ 0 against bj 6¼ 0:

An alternative variable selection approach can be
obtained by replacing the two-sided model by a one-
sided model. The one-sided model consists of a mix-
ture of bs that are larger than, smaller than or equal
to zero. For example, with two coefficients candidate
models are:

M0 : b1 ¼ 0; b2 ¼ 0, M1 : b1 ¼ 0; b2 > 0, M2 : b1 ¼ 0; b2 < 0,
M3 : b1 > 0; b2 ¼ 0, M4 : b1 > 0; b2 > 0, M5 : b1 > 0; b2 < 0,
M6 : b1 < 0; b2 ¼ 0, M7 : b1 < 0; b2 > 0, M8 : b1 < 0; b2 < 0:

(3)

We refer to this as one-sided variable selection. A
straightforward advantage of this approach is that
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besides selecting a set of variables that best predicts
the outcome variable, the direction of effects of
included variables can also be inferred from the
results. This implies that researchers gain knowledge
of whether a variable is included as well as whether
the included variable has positive or negative effect on
the outcome variable and with how much certainty
determined by the posterior probability of the selected
model. Another advantage of a Bayesian one-sided
variable selection scheme is that it allows researchers
to specify prior probabilities of the directions based
on their prior beliefs in a direct manner, which will
be discussed in the section entitled Prior model
probabilities.

Bayesian variable selection

A common strategy in Bayesian variable selection is
involving an indicator variable (George & McCulloch,
1993), often denoted by c ¼ ðc1, :::, cJÞ, where cj ¼ 1
implies bj 6¼ 0 and presence of variable xji, and cj ¼ 0
implies bj ¼ 0 and absence of xji in the regression
model. Since each cj is either 1 or 0, there are 2J can-
didate models each of which can be denoted by Mc:

Under model Mc, the density of the regression model
is given by:

f ðYja, bc, r2, cÞ ¼ Nða1þ Xcbc, r
2IÞ (4)

where Y ¼ ðy1, :::, ynÞ is an n� 1 vector, 1 is a vector
of 1 of length n, Xc is an n�mc matrix with mc

being the number of included variables, bc is a vector
of non-zero bj, and I denotes an n� n iden-
tity matrix.

Bayes factors for two-sided tests

The Bayes factor is a criterion when comparing two
hypotheses or models, and thus can be used to select
relevant variables. For example, consider the set of
models in (2), we can specify either the null model
M0 or the full model MF as the base, and compute
Bayes factors of candidate models against the base.
This paper will only consider the null base model M0.
In this case Bayes factors are the ratio of marginal
likelihoods of the data under candidate models and
the null model (Kass & Raftery, 1995):

BFc0 ¼ mðYjMcÞ=mðYjM0Þ: (5)

An important step when using the Bayes factor is
to specify a prior distribution of unknown parameters.
A commonly used prior in Bayesian variable selection
is the g prior proposed by Zellner (1986):

pðbc, r2jcÞ ¼ pðbcjr2, cÞpðr2jcÞ (6)

with

pðbcjr2, cÞ ¼ Nð0, gr2ðXT
c XcÞ�1Þ (7)

and

pðr2jcÞ / r�2: (8)

Without loss of generality we assume that an intercept
is included in every model. An attractive advantage of
the g prior is that it is conjugate to the density
f ðYjbc, r2, cÞ, and it leads to a closed form of the
Bayes factor (Garcia-Donato & Martinez-Beneito,
2013; Liang et al., 2008):

BFc0 ¼ ð1þ gÞðn�1�mcÞ=2

ð1þ g RSS
TSSÞðn�1Þ=2 (9)

where RSS ¼ ðy � Xcb̂cÞTðy � Xcb̂cÞ is the residual
sum of squares with b̂c being the OLS estimate of bc
under Mc, and TSS ¼ yTy is the total sum of squares.
The hyper-parameter g is of crucial importance when
using Bayes factors based on g priors. With the
increase of g the support for the null hypothesis
increases (Gu et al., 2016) and therefore fewer varia-
bles will be included in the selected model. The speci-
fication of g has been thoroughly discussed in Liang
et al. (2008) and Consonni et al. (2018). This paper
considers two common choices: g¼ n which corre-
sponds to the unit information prior (Kass &
Wasserman, 1995) and g ¼ J2 based on risk inflation
criterion (Foster & George, 1994).

Bayes factors for one-sided tests

For one-sided variable selection, we use an indicator
variable c0 to represent the one-sided model. Possible
values of c0 are c0j ¼ f0, 1, � 1g where c�j equal to 0, 1
and �1 corresponds to bj ¼ 0, bj > 0 and bj < 0,
respectively. The Bayes factor of the one-sided model
Mc0 against the null M0 can be written as:

BFc00 ¼ BFc0cBFc0, (10)

where BFc0c is the Bayes factor for the one-sided
model Mc0 against the two-sided Mc: Using the same
prior given by Equation (6) under the two-sided
model, BFc0 can be obtained through Equation (9). To
compute BFc0c, note that the one-sided model Mc0 is
nested in the two-sided model Mc, and therefore we
can use the encompassing prior method proposed by
Klugkist et al. (2005) where the prior under the one-
sided model is a truncation of the prior under the
two-sided model, that is,
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pðbc, r2jc0Þ ¼ pðbc, r2jcÞ=Uprior, (11)

where Uprior ¼
Ð
bc2Bc0

pðbc, r2jcÞdbcdr2 is the probabil-

ity of prior distribution pðbc, r2jcÞ truncated in

Bc0 ¼ fbcjc�bc 2 R
þmcg, (12)

where c� is equal to c0 with the zero elements omitted.
The element of bc 2 Bc0 is bj > 0 if c0j ¼ 1 and bj < 0

if c0j ¼ �1: Note that the prior in (11) is a truncated

version of the g prior, where the prior mean is zero.
This assumes that small effects (i.e., effects close to
zero) are more plausible than large effects (i.e., effects
far away from zero), which is a reasonable assumption
in the social and behavioral sciences.

Using the encompassing prior approach, the Bayes
factor for the one-sided model against the two-sided
can be written as:

BFc0c ¼ Uposterior

Uprior
, (13)

where Uposterior ¼
Ð
bc2Bc0

pðbc, r2jc,YÞdbcdr2 with

pðbc, r2jc,YÞ being the posterior distribution of bc

and r2 under model Mc: The derivation of Equation
(13) can be found in Gu et al. (2018). As can be seen
from Equation (13), the Bayes factor BFc0c can be
expressed as the ratio of posterior and prior probabil-
ities that the unconstrained bc lie in Bc0 :

To simplify the computation of Uprior and Uposterior,
we treat r2 as known and set it equal to its least
squares estimator r̂2: This setting was also suggested
by George and Foster (2000). On the one hand, the
prior probability Uprior is invariant for the choice of
r2 when evaluating the one-sided hypotheses/models,
which has been demonstrated by Mulder (2014).
Therefore, this simplification will not influence the
value of Uprior: Given r2 ¼ r̂2,Uprior becomes cumula-
tive probability of a normal distribution constrained
in bc 2 Bc0 :

Uprior �
ð
bc2Bc0

pðbcjr̂2, cÞdbc

¼
ð
bc2Bc0

Nð0, gr̂2ðXT
c XcÞ�1Þdbc: (14)

On the other hand, by letting r2 be known the pos-
terior of bc is approximated by a normal distribution
and Uposterior can be obtained by:

Uposterior �
Ð
bc2Bc0

pðbcjc,YÞdbc
� Ð

bc2Bc0
N

g
1þ g

b̂c,
g

1þ g
r̂2ðXT

c XcÞ�1
� �

dbc,
(15)

where b̂c is the OLS estimate of bc:

Until now Bayes factors of a one-sided model
against the null have been presented. The next step is
to specify prior probabilities for the one-sided models,
which will be discussed in the next section.

Prior model probabilities

This section presents two different techniques for
specifying prior model probabilities for one-sided
variable selection. One is based on fixed probabilities
and the other uses a fully Bayesian approach.
Depending on the amount of prior information, either
informative priors or non-informative priors can be
specified under both techniques.

Fixed prior probabilities of one-sided models

In default Bayesian two-sided variable selection, each
variable has an equal chance of being included priori.
Therefore, we set all variables the same inclusion
probability Pðcj 6¼ 0Þ ¼ p for j ¼ 1, :::, J: Assuming
independence of c1, c2, :::, cJ , the prior model
probability is given by

PðMcÞ ¼ pmcð1� pÞJ�mc , (16)

where mc is the number of included variables. A rea-
sonable default specification of prior inclusion prob-
ability is to set p¼ 1/2 where a variable can either be
included or excluded with equal prior probability.

For one-sided variable selection, we set equal prior
inclusion probability p¼ 1/2 for all variables which is
similar as the two-sided approach. However, the prior
inclusion probability in the one-sided model is
defined by the sum of the prior probabilities for the
positive and negative effects, denoted by pjþ and pj�,
respectively, for variable xj where pjþ þ pj� ¼ p: These
two probabilities can be chosen either equal in the
case of no prior preference about the direction of the
effects or unequal in case researchers have prior
beliefs about the anticipated direction.

First, if researchers firmly believe that variable xj, if
included, has a positive effect, then a prior probability
of pjþ ¼ 1=2 is set leaving pj� ¼ 0: In this case, mod-
els with bj < 0 will have a prior probability of zero
and therefore be excluded. An opposite setup can be
used if a negative effect is anticipated. We refer to the
first case as strong prior beliefs. Second, if researchers
expect that the effect of xj is positive but are not com-
pletely certain, then the positive direction receives a
larger prior probability than the negative. A possible
setting would be pjþ ¼ 2pj� leading to pjþ ¼ 1=3 and
pj� ¼ 1=6 given the choice of p¼ 1/2. In contrast, if
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the negative effect is favored then pjþ ¼ 1=6 and
pj� ¼ 1=3 can be set. We refer to the second case as
moderate prior beliefs. Third, if researchers have little
prior knowledge about the effect direction, an equal
prior probability pjþ ¼ pj� ¼ 1=4 will be given by
default. We refer to the third case as no prior beliefs.
Consequently, the prior probability of a one-sided
model Mc0 is the product of the prior probabilities of
all variables having positive, negative, and no effects:

PðMc0 Þ ¼
Y
c0j¼1

pþj

Y
c0j¼�1

p�j

Y
c0j¼0

ð1� pÞ: (17)

For example, with strong prior belief for b1 > 0
and moderate prior belief for b2 < 0, the models
M0, :::,M8 in Equation (3) will receive prior probabil-
ities of 1

4 ,
1
12 ,

1
6 ,

1
4 ,

1
12 ,

1
6 , 0, 0, 0

� �
, respectively.

Fully Bayesian approach for one-sided models

The specification of equal inclusion probabilities
regardless of the number of variables J causes the
algorithm to include more variables as J increases.
This phenomenon, called multiplicity, arises from
multiple tests or comparisons in variable selection.
For example, in a simple case where candidate varia-
bles are independent and all have positive effects, the
one-sided variable selection is executed as J independ-
ent tests of bj ¼ 0 against bj > 0: Therefore, the
choice p¼ 1/2 suggests a model size of J=2 a priori
since each variable has a probability of 1/2 of being
included and there are J variables. To control for
multiplicity in Bayesian variable selection, previous
studies have presented two approaches: the empirical
Bayes approach (George & Foster, 2000) and the fully
Bayesian approach (Scott & Berger, 2010). The empir-
ical Bayes approach can be criticized because, in a
way, it uses the data twice in the variable selection
procedure. Therefore, this paper only adopts the fully
Bayesian approach for multiplicity correction as the
number of candidate variables J grows.

Instead of fixing p¼ 1/2, the fully Bayesian
approach assigns a Beta distribution on the prior
inclusion probability pðpÞ ¼ Beða, bÞ with the default
choice of a ¼ b ¼ 1 implying a uniform prior on p.
This renders a prior probability of

PFðMcÞ ¼
ð1
0
pðMcÞpðpÞdp ¼ Cðmc þ 1ÞCðJ �mc þ 1Þ

CðJ þ 2Þ
(18)

for the two-sided model, where Cð�Þ is the gamma
function, and PFð�Þ denotes prior probabilities under
the fully Bayesian approach.

The fully Bayesian approach can be extended to
one-sided variable selection. Because the effect has dif-
ferent directions (or the effect is zero) with various
degrees of prior beliefs, three situations of the effect
directions are considered. First, for variables with
strong prior beliefs of the effect directions, the prior
inclusion probability p is equal to the prior probability
of the anticipated direction as the opposite direction
receives a probability of zero. Therefore, a Beta distri-
bution Be(1,1) can be specified for p for these varia-
bles, resulting in a probability of

Pstrong ¼ Cðmcs þ 1ÞCðm0s þ 1Þ
Cðmcs þm0s þ 2Þ , (19)

where mcs and m0s are the numbers of included and
excluded variables, respectively, with strong prior
beliefs of the effect directions. Note that mcs þm0s is
not equal to the number of candidate variables, but
the number of variables with respect to which there
are strong prior beliefs. Note also that models con-
taining any variable of which the effect direction is
opposite to the prior belief receive a prior probability
of zero.

Second, for variables with moderate prior beliefs of
the effect directions, we specify a Dirichlet distribu-
tion Dirichletða1, a2, a3Þ for the prior probabilities of
the anticipated and opposite directions, and zero
effect, where a1, a2 and a3 are the corresponding
parameters. A possible setting is a1 ¼ 1=3, a2 ¼ 1=6
and a3 ¼ 1=2 because a1, a2 and a3 are proportional
to the expected means of the prior probabilities. This
gives a probability of

Pmoderate ¼
C mcm1

þ 1
3

� �
C mcm2

þ 1
6

� �
C m0m þ 1

2

� �
Cðmcm1

þmcm2
þm0m þ 1Þ =cm,

(20)

where mcm1
and mcm2

are the numbers of included var-
iables of which the effect directions are in line with
and opposite to the moderate prior beliefs, respect-
ively, m0m is the number of excluded variables having
moderate prior beliefs on the effect directions,
and cm ¼ C 1

3

� �
C 1

6

� �
C 1

2

� �
:

Third, for variables with no prior beliefs, both
directions should receive an equal prior probability.
Thus, there is no need to distinguish the effect direc-
tion when specifying the prior probability. Analogous
to the two-sided approach, we specify a Beta distribu-
tion Be(1,1) for the prior inclusion probability p,
which leads to a probability of

Pno ¼ Cðmcn þ 1ÞCðm0n þ 1Þ
Cðmcn þm0n þ 2Þ , (21)
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where mcn and m0n are the numbers of included and
excluded variables, respectively, with no prior beliefs
of the effect directions.

The situations discussed above cover all variables
(for which there are strong, median, and no prior
beliefs). Consequently, prior model probabilities under
the fully Bayesian approach can be computed by

PFðMc0 Þ ¼ PstrongPmoderatePno: (22)

The fully Bayesian prior favors the simpler model
when the number of candidate variables is large, and
therefore controls multiplicity (Scott & Berger, 2010).
The performance of the fully Bayesian approach in
terms of multiplicity correction will be illustrated in
Section 6.2.

Using the Bayes factor obtained from Equation
(13) and the prior model probability computed by
Equation (17) or (22), the posterior probability of a
one-sided model can be obtained by

PðMc0 jYÞ / PðMc0 ÞBFc00 (23)

with the fixed prior model probability, or

PFðMc0 jYÞ / PFðMc0 ÞBFc00 (24)

using the fully Bayesian approach. The set of variables
having the largest posterior model probability will
be selected.

MCMC model search method

When the number of candidate variables is large,
exhaustive calculation of the posterior model probabil-
ities in (23) or (24) for all possible models becomes
infeasible. For example, given J¼ 20 there are more
than three billions (320) possible models under consid-
eration. This issue can be addressed by using a
MCMC model search method to the one-sided
Bayesian variable selection algorithm with different
prior model probability settings.

A popular MCMC model search method was pro-
posed by George and McCulloch (1993), where a
spike and slab prior distribution is set for the coeffi-
cients b: Given a model Mc, if cj ¼ 0 then bj has a
normal prior with a mean of zero and small variance,
whereas if cj 6¼ 0 then bj has a normal prior with a
mean of zero and large variance. The two prior var-
iances are of crucial importance when using the spike
and slab method. Note that the normal prior proposed
in George and McCulloch (1993) is not conjugate to
the likelihood of the regression model. An alternative
setup is to use a conjugate prior where bjr2 is nor-
mally distributed. George and McCulloch (1997)

thoroughly discussed the non-conjugate and conjugate
spike and slab priors, and their implementation in the
MCMC model search method. They concluded that
the conjugate form offers the advantage of analytical
simplification and more efficient exploration with
more correlated designs in the model search method.

In this paper, the g prior distribution presented in
Equation (6) is a special case of the conjugate spike
and slab prior where the small variance is set as zero
if cj ¼ 0, and the large variance is set as
gr2ðXT

c XcÞ�1: This prior setting has been widely used
in Bayesian variable selection where the MCMC
model search method is adopted when the model
space is large. Examples can be found in George and
Foster (2000), Liang et al. (2008), and Garcia-Donato
and Martinez-Beneito (2013). The hyper-parameter g
plays an important role in the variable selection. The
larger the g, the fewer the variables included as the
Bayes factor will favor the null hypothesis more. As
was elaborated in Section 3.1, two commonly used
choices are: g¼ n and g ¼ J2: However, other reason-
able choices can also be specified in the pro-
posed algorithm.

The basic idea of the MCMC algorithm for
Bayesian variable selection is to sequentially sample c

from its posterior distribution pðcjYÞ, and select the
best model which appears most often in the sample of
c. It is important to note that when using conjugate
priors the marginal posterior distribution of c has an
analytical form:

pðcjYÞ ¼ PðMcjYÞ / BFc0PðMcÞ, (25)

where BFc0 is given by Equation (9) and PðMcÞ is
given by Equation (16) or (18). Because of integrating
out b and r2 in pðcjYÞ, we can apply the Gibbs sam-
pler algorithm only to c, i.e., to sequentially sample
along ctj for j ¼ 1, :::, J and t ¼ 1, :::,T with T the
sample size:

c01, :::, c
0
J , c

1
1, :::, c

1
J , :::, c

t
1, :::, c

t
J , :::, (26)

where c01, :::, c
0
J denote the initial values, which can be

set as zero. In the Gibbs algorithm the subsequent val-
ues of ctj can be sampled from its conditional poster-
ior distribution given the latest values of all other cs.

As was pointed out by George and McCulloch
(1997), the conditional distribution of cj given all
other cs is Bernoulli. At iteration t the probability of
sampling ctj ¼ 1 is

Pðctj ¼ 1jct�j,YÞ ¼
pðctj ¼ 1, ct�jjYÞ

pðctj ¼ 1, ct�jjYÞ þ pðctj ¼ 0, ct�jjYÞ
,

(27)
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where ct�j ¼ ðct1, :::, ctj�1, c
t�1
jþ1 , :::, c

t�1
J Þ denotes the lat-

est values of c except cj. Note that when sampling
ctj , ðcjþ1, :::, cJÞ have not been sampled at iteration t
and thus their values at the t� 1 iteration are used. In
Equation (27), pðctj ¼ 1, ct�jjYÞ and pðctj ¼ 0, ct�jjYÞ
can be computed using Equation (25) given ctj ¼ 1
and ctj ¼ 0 respectively, and the latest ct�j: The prob-
ability of sampling ctj ¼ 0 is 1� Pðctj ¼ 1jct�j,YÞ:

With the two sampling probabilities, either ctj ¼ 1
or ctj ¼ 0 will be sampled, indicating the inclusion or
exclusion of variable xj in the model at iteration t.
Thereafter, the algorithm visits the next ctjþ1: Once all
ct have been sampled, the algorithm goes to the tþ 1
iteration until the Gibbs chain converges, to obtain the
samples shown in (26). After obtaining the Gibbs sam-
ples and discarding the burn-in phase (say the first
1000 iterations for example), the best model will be the
one with the highest frequency in the useful samples.

The above algorithm can be extended to one-sided
variable selection where each c0j has three possible val-
ues 0, 1 and �1 for zero, positive and negative effects,
respectively. By using the truncated g prior the poster-
ior distribution pðc0jYÞ has a closed form as well,
which can be computed through pðc0jYÞ ¼ PðMc0 jYÞ
in (23) or pðc0jYÞ ¼ PFðMc0 jYÞ in (24). Similarly,
Gibbs sampler is used to sample c0 from its posterior
distribution. For one-sided variable selection, we gen-
eralize the Bernoulli conditional distribution (27) to a
multinomial distribution. The three probabilities of
sampling c0j

t ¼ r for r ¼ 0, 1, � 1 at iteration t are

Pðc0jt ¼ rjc0�j
t ,YÞ ¼ pðc0jt ¼ r, c0�j

tjYÞP
r pðc0jt ¼ r, c0�j

tjYÞ (28)

where c0�j
t ¼ ðc01t, :::, c0j�1t, c

0
jþ1

t�1, :::, c0J
t�1Þ, and

pðc0jt ¼ r, c0�j
tjYÞ can be computed using (23) or (24)

given c0j
t ¼ r and the latest c0�j

t: Based on the condi-
tional distribution (28), the algorithm for sampling c0

can be implemented as follows:

Algorithm 1 Gibbs sampler for Bayesian one-sided
variable selection

Initialize c00 ¼ 0 and t¼ 1

repeat

for j ¼ 1, :::, J do
Sample c0j

t ¼ 0 with probability Pðc0jt ¼ 0jc0�j
t,YÞ:

Sample c0j
t ¼ 1 with probability Pðc0jt ¼ 1jc0�j

t,YÞ:
Sample c0j

t ¼ �1 with probability Pðc0jt ¼
�1jc0�j

t,YÞ:
end for

Set t ¼ t þ 1:
until Gibbs chain converges

Convergence of the chain will be discussed in the
simulation study in Section 6.2. After obtaining a
sample c0t for t ¼ 1, :::,T, we can estimate the poster-
ior distribution of c0, based on which the best model
(subset of variables) that has the largest probability in
the distribution will be selected.

The MCMC model search method is needed when
exhaustive computation of posterior probabilities for
all models is infeasible. For traditional two-sided vari-
able selection, a full enumeration of all models usually
requires the number of candidate variables J � 25, see
for example George and McCulloch (1997). This
implies a limitation of 225 models under consider-
ation. Given a similar limited number of possible
models, the MCMC model search method for 3J one-
sided models should be used when J> 15.

Simulation studies

This section conducts two simulation studies to inves-
tigate the difference between the two-sided and one-
sided variable selection schemes presented in Section
2, and to assess the performance of the fully Bayesian
approach proposed in Section 4.2 and the MCMC
model search method introduced in Section 5 in the
case of a large number of candidate variables. In both
simulations, the hyper-parameter in the g prior is
chosen as g¼ n or g ¼ J2:

Variable selection with fixed prior model
probabilities

We consider a simple variable selection problem with
J¼ 8 candidate variables x1, :::, x8 of length n. The first
four variables are independently generated from the
standard normal distribution, i.e., x1, :::, x4 iid �
Nð0, 1Þ, while the last four variables are generated by

x5, x6, x7, x8½ 	 ¼ Eþ x1, x2, x3, x4½ 	 � D, (29)

where ½�	 denotes the data matrix of the corresponding
variables, E is an n� 4 matrix of the independent
standard normal variates, and D is a 4� 4 matrix to
account for possible multicollinearity of the variables.
In the simulation, two choices of D are considered.
The first D ¼ 0 implies no correlation among the
eight variables in the population. The second D ¼
Dc ¼ ½0:5, 0:7, 0:9, 1:1	0 � ½1, 1, 1, 1	 implies strong cor-
relation among the last four variables and moderate
correlation between the first four and the last four
variables. This sampling strategy of the predictors is
commonly used in the simulation study for the
Bayesian variable selection, see e.g., Nott and Kohn
(2005). The outcome variable yi is calculated by:
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yi ¼ b1x1i þ :::þ b8x8i þ �i, (30)

where �i � Nð0, 1Þ: We assume an intercept of zero in
the simulation. The true values of the coefficients are
given by b ¼ ðb, � b, 0, b, � b, 0, b, 0Þ where b is var-
ied from 0 to 0.8. Based on Equation (30) and the
true b, data xi and yi are generated 1000 times. For
each dataset, the posterior probabilities of different
models will be computed and the best model with the
highest posterior probability will be selected under
both the two-sided and one-sided approaches.

In this simulation, the prior inclusion probability is
set as p¼ 1/2 based on fixed prior model probabilities.
For one-sided variable selection, we consider four
scenarios for the prior beliefs of the effect directions
of the eight variables:

i. prior belief: (sþ , s� , sþ ,mþ ,m� ,mþ , n6, n6)
ii. prior belief: (s� , sþ , s� ,m� ,mþ ,m� , n6, n6)
iii. prior belief: (sþ , s� , n6, sþ , s� , n6, sþ , n6)
iv. prior belief: (mþ ,m� , n6,mþ ,m� , n6,mþ , n6)

where sþ and s� denote strong prior beliefs for the
positive and negative effects, respectively, mþ and
m� denote moderate prior beliefs for the positive and
negative effects, respectively, and n6 denotes no prior
belief. Note that the anticipated signs of b1, b2, b4 and
b5 in prior beliefs (i), (iii) and (iv) are in agreement
with the signs of the true coefficients whereas the
prior belief (ii) specifies opposite signs to the true.
Since there are only eight candidate variables, we need
not use the MCMC model search method in
this simulation.

First of all, Table 1 displays the inclusion propor-
tion of each variable from 1000 samples given n¼ 20

and b¼ 0.4 under D ¼ 0 and D ¼ Dc using both two-
sided and one-sided selection approaches with prior
beliefs (i) and (ii) based on g¼ n and g ¼ J2: For the
one-sided approach, the proportions of selecting varia-
bles with positive and negative effects are shown
under the columns named by “þ” and “–”, respect-
ively. The inclusion proportion is the sum of the val-
ues under “þ” and “–”. It can be seen from Table 1
that the proportions of including variables x1, x2, x4
and x5 under the one-sided approach with prior belief
(i) are always larger than those under the two-sided
approach. For example, given D ¼ 0 and g¼ n the
proportion of including x2 is 0.458 under the two-
sided approach and 0.610 under the one-sided
approach with strong prior belief for the negative
effect. This implies that the one-sided variable selec-
tion which involves correct prior knowledge of the
effect direction can increase the probability of includ-
ing variables that have actual effects. If the prior belief
is opposite to the true direction, as shown in the
results below “One (ii)” the inclusion proportions
under the one-sided approach are smaller than those
under the two-sided for the four variables. However,
the one-sided approach still makes the correct direc-
tion more often for x4 and x5 with moderate prior
beliefs of the wrong directions. It is also important to
note that for variables x3, x6 and x8 that have no effect
in the population, the one-sided approach produces
smaller inclusion proportion than the two-sided. This
indicates that the one-sided variable selection does not
increase the chance of incorrect inclusion compared
to the two-sided approach.

Next, we will explore how often the true model is
selected when the sample size is varied from n¼ 10 to

Table 1. Inclusion proportions of variables from 1000 datasets given n¼ 20 and b¼ 0.4 with prior beliefs (i) and (ii).
D ¼ 0 D ¼ Dc

Two One (i) One (ii) Two One (i) One (ii)
g xj þ – þ – þ – þ –

g ¼ n x1 0.434 0.580 0.000 0.000 0.009 0.390 0.572 0.000 0.000 0.009
x2 0.458 0.000 0.610 0.003 0.000 0.484 0.000 0.565 0.000 0.000
x3 0.164 0.113 0.000 0.000 0.132 0.217 0.097 0.000 0.000 0.153
x4 0.428 0.490 0.001 0.286 0.004 0.302 0.413 0.000 0.218 0.006
x5 0.408 0.000 0.474 0.001 0.278 0.438 0.001 0.479 0.013 0.243
x6 0.151 0.078 0.051 0.035 0.088 0.150 0.080 0.047 0.026 0.070
x7 0.414 0.416 0.001 0.361 0.000 0.510 0.458 0.001 0.382 0.001
x8 0.145 0.067 0.063 0.059 0.049 0.168 0.073 0.053 0.074 0.050

g ¼ J2 x1 0.342 0.459 0.000 0.000 0.003 0.304 0.442 0.000 0.000 0.001
x2 0.348 0.000 0.476 0.002 0.000 0.402 0.000 0.472 0.000 0.000
x3 0.100 0.077 0.000 0.000 0.072 0.140 0.067 0.000 0.000 0.080
x4 0.335 0.384 0.001 0.212 0.000 0.244 0.318 0.001 0.167 0.003
x5 0.304 0.001 0.361 0.001 0.201 0.320 0.001 0.358 0.007 0.172
x6 0.101 0.049 0.032 0.020 0.057 0.100 0.058 0.030 0.013 0.041
x7 0.329 0.338 0.000 0.271 0.000 0.404 0.370 0.001 0.277 0.000
x8 0.089 0.045 0.040 0.037 0.034 0.111 0.054 0.034 0.044 0.025

The results for the two-sided approach are shown under “Two.” The results for the one-sided approach with prior beliefs (i) and (ii) are shown under
“One (i)” and “One (ii),” respectively. The proportions of selecting variables with positive and negative effects are shown under “þ” and “–,”
respectively.
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n¼ 100 and the effect size is varied from b¼ 0.1 to
b¼ 0.8 given g¼ n and D ¼ 0: We only consider D ¼
0 for independent variables because in this case the
true model is clearly defined which includes variables
x1, x2, x4, x5 and x7, and excludes others. Figure 1 plots
the probability of selecting the true model from the
1000 samples as a function of b given n¼ 20 and
n¼ 50 (top panels), as well as a function of n given
b¼ 0.3 and b¼ 0.5 (bottom panels) under the two
selection approaches. The one-sided approach involves
strong prior belief (iii) and moderate prior belief (iv)
of the effect directions for variables that have actual
effects. Note that the one-sided approach also requires
correct selection of the effect directions. As can be seen
from all four figures, the probability of correction selec-
tion increases as n and/or b grows up, which implies
that the larger the true effect or the sample size, the
higher the chance to select the true model. More inter-
estingly, the proportion of correct selection under the
one-sided approach is always higher than that under
the two-sided. For example, given n¼ 20 and b¼ 0.5
in Figure 1(a) the probabilities of correct selection are
0.138 and 0.075 under the one-sided approach with
prior beliefs (iii) and (iv), respectively, which are about
three and two times larger than the corresponding
probability of 0.039 under the two-sided approach.
This indicates that the one-sided approach with correct

prior beliefs of the direction performs better. On the
other hand, for relatively large effects or sample sizes,
Figure 1(b,d) demonstrate that the one-sided and two-
sided approaches become similar and both result in
large probabilities to select the true model given, for
example, n¼ 50 and b¼ 0.8 in Figure 1(b) or b¼ 0.5
and n¼ 100 in Figure 1(d).

Performance of the model search method and
fully Bayesian approach

In this subsection, a simulation study is conducted to
evaluate the performance of the MCMC model search
method and the fully Bayesian approach for one-sided
variable selection. We consider various numbers of
candidate variables from J¼ 6 to J¼ 60. Candidate
variables x1i, :::, xJi with sample size n¼ 100 are simu-
lated independently from the standard normal distri-
bution N(0, 1), and the outcome variable yi is
calculated based on Equation (1) with intercept a¼ 0,
residual variance r2 ¼ 1, and true coefficients of

b1 ¼ b2 ¼ 0:5; b3 ¼ b4 ¼ 0:3; b5 ¼ � � � ¼ bJ ¼ 0

(31)

We assume strong, moderate and no prior beliefs
of the positive direction for variables that have effects

Figure 1. Proportion of selecting the true model given D ¼ 0 and g¼ n using both two-sided and one-sided variable selection
approaches. (a) and (b) set n ¼ 20 and n ¼ 50, respectively, and b varied from b ¼ 0.1 to b ¼ 0.8; (c) and (d) set b ¼ 0.3 and b
¼ 0.5, respectively, and n varied from n ¼ 10 to n ¼ 100.
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of 0.5, 0.3 and 0, respectively, in the popula-
tion above.

The model search method using the MCMC sam-
ples as introduced in Section 5 will be used to obtain
a sample of c0 from which the best model can be
determined. First, we have to discard the burn-in
phase and check the convergence of the chain. It is
not advisable to monitor the sample of c0 because it is
a vector of discrete variables which necessarily fluctu-
ates in the chain. Instead, we monitor the largest pos-
terior probability among all possible models given the
current sample, since it is the criteria to select the
best model. The Gibbs sampler chain is checked per
100 samples. For example, if in the first 100 samples
Mc0 appears most often, say 40 times, then the prob-
ability is 0.4. Sequentially, if for the first 200 samples
M0

c0 (which is often the same as Mc0) shares the largest
count, say 100, then the probability becomes 0.5. As
the number of iterations in the Gibbs sampler

increases, the largest posterior probability should con-
verge to a certain value such that we can safely select
the best model. This can be best verified graphically.
Figure 2 depicts the posterior probability of the
selected model against the iteration number for c0

given J¼ 6 and J¼ 30 under g¼ n using both the
fixed setting and the fully Bayesian approach for the
prior model probabilities. The chain starts with the
null model c0 ¼ 0: As can be seen from Figure 2 (a,b)
with J¼ 6 candidate variables, the chain converges
fast, that is, with more than 2,000 iterations the pos-
terior probabilities become stable. While with J¼ 30
variables, the chain would need more iterations, say,
10,000, to converge under the fixed prior probabilities,
which is shown in Figure 2(c). However, when using
the fully Bayesian approach, the chain needs much
less iterations to converge even with J¼ 30, which can
be seen from Figure 2(d), because the posterior prob-
ability of the selected model obtained from the fully
Bayesian approach is much higher than that from the
fixed prior probabilities in the one-sided vari-
able selection.

After checking the convergence of the Gibbs sam-
pler, we discard 10,000 burn-in iterations and sample
another 10,000 iterations for variable selection. To
investigate the performance of the model search
method, we compare it to exhaustive calculation (i.e.,
consider every possible set of variables) in terms of
the posterior probabilities of the true model given a
random sampled dataset. Table 2 presents the

Figure 2. Convergence of the Gibbs sampler chain.

Table 2. Comparison of exhaustive calculation and MCMC
model search method under one-sided variable selection.

Fixed Fully Bayesian Fixed Fully Bayesian
g¼ n g¼ n g ¼ J2 g ¼ J2

J Exh. MCMC Exh. MCMC Exh. MCMC Exh. MCMC

6 0.394 0.404 0.523 0.531 0.425 0.430 0.502 0.509
8 0.450 0.452 0.434 0.432 0.247 0.248 0.442 0.439
10 0.436 0.433 0.712 0.718 0.437 0.433 0.712 0.718
12 0.289 0.292 0.665 0.676 0.346 0.346 0.715 0.722
14 0.182 0.178 0.622 0.628 0.268 0.260 0.707 0.709

“Fixed” denotes fixed prior model probabilities. “Fully Bayesian” denotes
fully Bayesian approach. “Exh.” denotes exhaustive calculation. “MCMC”
denotes MCMC model search method.
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posterior probability of the true model that includes
the first four variables under the fixed and fully
Bayesian specifications of prior probabilities given
g¼ n and g ¼ J2 for J ¼ 6, 8, 10, 12, 14: Note that
exhaustive calculation is infeasible for a larger J. As
can be seen, the posterior probabilities obtained from
exhaustive and MCMC model search methods are
very similar. This implies that the model search
method performs very well for one-sided variable
selection. In addition, it is interesting to note that
with the increase of J the posterior probability of the
true model decreases in general under the fixed prior
probability because more models are under consider-
ation. However, the fully Bayesian approach still
results in quite large posterior probabilities for the
true model.

Next, we illustrate the multiplicity problem given a
large number of variables, and its correction using the
fully Bayesian approach. Based on the sampling scen-
ario (31), all variables except the first four are irrele-
vant to the outcome variable. Therefore, we would
expect that the number of included variables is con-
sistently around mc ¼ 4 across different J. To reduce
the sampling error, we simulate the data xji and yi 100
times and report the median of the number of
included variable. Note that the median is a more
appropriate statistic than the mean because it will not
be affected much by extreme values.

The number of selected variables mc against the
number of candidate variables J based on fixed prior
model probabilities is plotted in Figure 3(a), where J
is varied by J ¼ 8, 12, :::, 56, 60: As can be seen, with
the increase of J the number of selected variables has
an apparent increase when J> 20 under both selection

approaches. This means that variable selection will
select more variables regardless of the actual number
of effective variables. For example, given J¼ 60 the
two-sided and one-sided variable selection approaches
result in the inclusions of 14 and 11 variables on aver-
age, respectively, which are much more than the num-
ber of true variables mc ¼ 4 in the simulation.
Therefore, the multiplicity problem happens when
comparing a great many models.

As was presented in Section 4.2, multiplicity can be
controlled using the fully Bayesian approach for the
prior model probability specification. The number of
included variables against the number of candidate
variables based on the fully Bayesian approach is plot-
ted in Figure 3(b). From this figure, we can clearly
observe that both the two-sided and one-sided vari-
able selection approaches render mc ¼ 4 variables all
the time. Therefore, it can be concluded that the fully
Bayesian approach performs very well in terms of
controlling multiplicity when the number of candidate
variables is large.

General recommendations

Based on the simulation studies, four recommenda-
tions are given for Bayesian variable selection.

1. Bayesian one-sided variable selection is generally
recommended.

2. The use of informative priors for the direction of
the effects is recommended. The degree of prior
information can be precisely tuned based on the
amount of prior certainty.

Figure 3. Variable selection based on fixed prior model probabilities and prior model probabilities specified using the fully
Bayesian approach.
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3. The MCMC model search method is recom-
mended if the number of candidate variables is
larger than 15.

4. Prior model probability specification based on the
fully Bayesian approach is recommended if the
number of candidate variables is large to correct
for multiplicity in a natural manner.

The proposed Bayesian one-sided variable selection
approach will be demonstrated by two empirical data
examples introduced in the next section.

Empirical data examples

In this section, two real data examples are used to
illustrate Bayesian one-sided variable selection. The
first one demonstrates the use of the one-sided
approach under different specifications of the prior
model probabilities. The second focuses on the use of
the MCMC model search method and the fully
Bayesian approach for a relatively large number of
candidate variables.

Example 1

The first example concerns a dataset previously used
by McNeish (2015) which contains average reading
test scores from 420 schools (K6 and K8) in
California for the 1998–1999 school year. This dataset
is available in the R package Ecdat and called
”Caschool”. Besides the test score the dataset also
includes a number of variables such as geographical
information (e.g., county and district) and school
characteristics. In this example, we consider seven
school characteristics as possible predictor variables.
Table 3 displays the outcome and predictor variables
with means and standard deviations. In addition, the
last three columns of Table 3 show the OLS estimates,
standard errors, and p-values of the corresponding
coefficients for the seven candidate variables.

We consider three different prior beliefs of the
effect directions of the seven variables:

i. prior belief ¼ (n6, sþ , sþ , sþ , sþ , s� , n6)
ii. prior belief ¼ (n6,mþ ,mþ ,mþ ,mþ ,m� , n6)
iii. prior belief ¼ (n6, n6, n6, n6, n6, n6, n6)

where (i) and (ii) suggest strong and moderate prior
beliefs, respectively, of the effect directions for some
variables, and (iii) suggests no prior belief for all vari-
ables. The direction of the effect for each variable is
determined by our prior knowledge. In this example,
variables ”Number of teachers”, ”Number of
Computers”, ”Computer per student”, and
”Expenditure per student” would have positive effects,
whereas variable ”Student teacher ratio” is expected to
have a negative effect on students’ average test score
(based on previous studies of the relationship between
student academic performance and school expend-
iture). When we have no idea about the direction of a
variable, e.g., ”Total enrollment” and ”District average
income”, then ”n6” is given. Note that the directions
in the prior beliefs should be specified without refer-
ring to the signs of the OLS estimates. Thereafter, we
will select a subset of variables that best predicts the
reading test score using the Bayesian one-sided vari-
able selection with the fixed and fully Bayesian specifi-
cations of prior model probabilities.

The selection outcome based on the two-sided and
one-sided approaches with prior beliefs (i), (ii) and
(iii) are shown in Table 4 given g¼ n. As can be seen,
the one-sided approach with no prior belief (iii)
results in the same included variables as the two-sided
approach. Note however that the one-sided approach
also provides the direction of the effects. With prior
beliefs (i) and (ii) the one-sided approach selects dif-
ferent variables than the two-sided approach.
Furthermore, with strong prior belief (i) the posterior
probabilities of the selected model are larger than
those under the moderate prior belief (ii). This means
that the best model can be chosen with more certainty
if strong prior beliefs are present about the direction.
Finally, we can conclude that variables “Total
enrollment”, “Computer per student” and “District
average income” are selected when researchers have
informative priors of the effect directions.

Table 3. Summary of variables and coefficients.
Variables Mean SD Coefficient SE p-value

0. Reading test score 655.0 20.11
1. Total enrollment 2628.8 3913.1 0.002 0.003 0.374
2. Number of teachers 129.1 187.9 –0.075 0.058 0.200
3. Number of computers 303.4 441.3 0.003 0.005 0.520
4. Computer per student 0.136 0.065 32.29 12.40 0.010
5. Expenditure per student 5312 633.9 –0.003 0.001 0.045
6. Student teacher ratio 19.64 1.89 –0.803 0.527 0.128
7. District average income� 15.32 7.23 1.943 0.099 0.000
�Income in thousands of dollars.

Table 4. Bayesian variable selection results for Example 1.
Fixed prior probability Fully Bayesian approach

n¼ 420 Variablesa PMPb Variables PMP

Two-sided f2,4,7g 0.349 f2,4,7g 0.323
One-sided (i) f–1,4,7g 0.788 f–1,4,7g 0.709
One-sided (ii) f–1,4,7g 0.347 f–1,4,7g 0.572
One-sided (iii) f–2,4,7g 0.341 f–2,4,7g 0.252
aVariables included: minus means negative effect.
bPMP: posterior model probabilities.
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Example 2

The second example comes from a study of efficiency
in the provision of n¼ 62 UK universities. The data is
again available in the R package Ecdat and named
”University”. The outcome variable is the university
research rank with J¼ 16 candidate predictor variables
including, e.g., academic numbers, academic pay, and
land and buildings. Our target is to select a subset of
variables to estimate the efficiency of the cost in the
62 UK universities, which can be achieved by
Bayesian one-sided variable selection based on the
MCMC model search method.

Both fixed prior probabilities and prior probabil-
ities specified using the fully Bayesian approach are
used. In this example, we assume no prior belief avail-
able for the effect directions. The Bayesian variable
selection results are shown in Table 5. As can be seen
the two-sided and one-sided variable selections lead to
the same set of variables included, because no prior
belief of the direction is involved in the one-sided
approach. More interestingly, the fully Bayesian
approach results in fewer included variables than the
fixed setting, because the multiplicity is controlled.
Finally, we recommend including variables (3, 4, 8,
15, 16) in the regression model, where the third,
fourth and sixteenth variables have positive effects
and the eighth and fifteenth have negative effects.

Conclusion

This paper proposed a Bayesian one-sided variable
selection scheme which can incorporate the prior
beliefs of the effect directions of predictor variables.
When the number of candidate variables is large, the
MCMC model search method which only visits mod-
els with high posterior probabilities has been adopted
for fast computation. In addition, the fully Bayesian
approach is useful for multiplicity correction in the
one-sided selection.

From the simulation studies, several conclusions
can be drawn. First, the one-sided Bayesian variable
selection with correctly specified priors of the direc-
tions increases the chance of selecting the true model
compared to the traditional two-sided approach in

various cases, especially when the sample size and the
effect sizes are relatively small. Second, the MCMC
model search method performs quite well in terms of
fast convergence and accurate selection. Third, the
specification of prior model probabilities using the
fully Bayesian approach can effectively control for
multiplicity. Because our simulation studies only con-
sidered specific conditions and was not exhaustive (to
keep the scope of the paper reasonable), we can only
present general guidelines and recommendations as
done at the end of Section 6. Nevertheless, Bayesian
one-sided variable selection with the MCMC model
search method and together with the fully Bayesian
approach for prior model probability specification can
offer researchers in the social and behavioral sciences
a feasible, reasonable, and powerful technique in
exploratory regression analysis.

The number of candidate models under one-sided
variable selection is often larger than under two-sided
variable selection, which results in a model splitting
effect where models that are clearly incorrect receive
some prior probability causing more posterior uncer-
tainty. Depending on the specification of the prior
probabilities, this could make the MCMC model
search algorithm less effective. However, the method
proposed in this paper can completely avoid or con-
siderably reduce the model splitting effect. First, the
proposed method allows researchers to specify zero
prior probability to a negative effect of a variable xj, if
they believe that the effect must be positive if it is
nonzero. Models with negative effect of xj will have a
prior probability of zero and will not be involved in
the variable selection process. This would avoid the
model splitting effect caused by variable xj. Second,
the prior inclusion probabilities under the two-sided
and the one-sided variable selection approaches are
equal. Given the same data, the posterior probability
of including a variable under both approaches is
therefore identical. Thus, there is no model splitting
effect in terms of selecting a subset of variables to
have a nonzero effect. Third, the fully Bayesian
approach favors models with fewer included variables
when the number of candidate variables is large. This
further implies that the approach prefers to only
include variables that have large effects. For these var-
iables, there is little chance to obtain wrong effect
directions. Thus, the promising models under a one-
sided approach will have a similar amount of poster-
ior probability mass as under a two-sided approach.
In addition, the MCMC model search algorithm is
still quite effective when using the fully Bayesian

Table 5. Bayesian variable selection results for Example 2.
Fixed prior probability Fully Bayesian approach

Variablesa PMPb Variables PMP

Two-sided f3,4,8,14,15,16g� 0.041 f3,4,8,15,16g 0.064
One-sided f3,4,–8,14,–15,16g 0.022 f3,4,–8,–15,16g 0.007
aVariable included: minus means negative effect.
bPMP: posterior model probabilities.�3. Net assets; 4. Academic numbers; 8. Technician numbers; 14. Furniture
and equipment; 15. Land and buildings; 16. Research grants.
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approach given a large number of candidate variables,
which can be seen from Figure 2.

In this paper, the g prior specified for the regres-
sion coefficients is a local prior distribution with a
mean of zero. We used the truncated g prior in the
one-sided test because it implies that small effects
(either positive or negative) are more likely than large
effects, which is generally observed in the social and
behavioral sciences. However, the non-local prior pro-
posed by Johnson and Rossell (2010) would be
another way for prior specification in the one-sided
variable selection. Finally, this paper does not discuss
the case that the sample size is less than the number
of candidate variables, which itself is a challenging
topic in Bayesian model selection. This would be an
interesting setting to explore in further research.
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