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Local density of states of electron-crystal phases in graphene in the quantum Hall regime
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We calculate, within a self-consistent Hartree-Fock approximation, the local density of states for different
electron crystals in graphene subject to a strong magnetic field. We investigate both the Wigner crystal and
bubble crystals with M, electrons per lattice site. The total density of states consists of several pronounced
peaks, the number of which in the negative energy range coincides with the number of electrons M, per lattice
site, as for the case of electron-solid phases in the conventional two-dimensional electron gas. Analyzing the
local density of states at the peak energies, we find particular scaling properties of the density patterns if one
fixes the ratio vy/M, between the filling factor vy of the last partially filled Landau level and the number of
electrons per bubble. Although the total density profile depends explicitly on M., the local density of states of
the lowest peaks turns out to be identical regardless the number of electrons M,.. Whereas these electron-solid
phases are reminiscent of those expected in the conventional two-dimensional electron gas in GaAs hetero-
structures in the quantum Hall regime, the local density of states and the scaling relations we highlight in this
paper may be, in graphene, directly measured by spectroscopic means, such as, e.g., scanning tunneling

microscopy.
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I. INTRODUCTION

As was shown by Wigner in 1934,! the degenerate Fermi
gas is unstable toward the formation of a periodic triangular
lattice of localized electrons (electron crystal), once the Cou-
lomb energy prevails over the kinetic one. Whereas a Wigner
crystal (WC) has been observed at low electronic densities
on the surface of liquid helium,? the critical electron density
at which the transition to the WC occurs is too low for usual
metals. Nevertheless, the situation is much improved if one
applies a strong perpendicular magnetic field to a two-
dimensional (2D) electron gas (2DEG). In this case, the
single-particle continuous energy spectrum is quantized into
a sequence of hugely degenerate Landau levels (LLs). If one
restricts oneself to the electrons within the last partially filled
LL, one finds that their kinetic energy is quenched, and the
only energy scale is the Coulomb energy, which favors the
formation of an electron crystal at small filling factors.’-

A quantum electron crystal in the presence of a disorder
potential is expected to become collectively pinned and to
manifest itself as an insulator.® While at small filling factors
the 2D WC with triangular lattice symmetry*> is expected to
yield the global energy minimum, it was predicted that the
phase diagram of the 2DEG includes also electron-bubble
crystals (a periodic lattice with more than one electron per
site), stripes,” and even more exotic quantum Hall liquid-
crystal phases.!® Unlike electron-crystal phases, the promi-
nent quantum liquids, which display the fractional quantum
Hall effect in the two lowest LLs,!! are translationally and
rotationally invariant and remain conducting even in the
presence of disorder. Therefore, these different quantum
phases may be distinguished experimentally with respect
to the behavior in transport measurements. For instance, a
succession of insulating and conducting phases yields a
re-entrant integer quantum Hall effect (IQHE) in the first'?
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(N=1) and second!? (N=2) excited LLs and has been inter-
preted in terms of a competition of such electron-solid and
quantum-liquid phases.'* Further evidence, prior to the
above-mentioned transport measurements, for electron crys-
tals in LLs stems from radio-frequency spectroscopy,'>'®
threshold behavior in the conductivity due to crystal
pinning,'” and more recent transport measurements under
microwave irradiation,'~2? which excites the collective pin-
ning mode of the electron crystals.

While all these experimental techniques have been very
successful in discovering unusual insulating phases and have
confirmed a number of theoretical predictions, they are indi-
rect evidence for high-field electron crystals based on trans-
port measurements—the 2DEG in GaAs heterostructures is
buried deep inside the substrate, which renders impossible a
direct optical observation of a periodic electron-crystal lat-
tice, e.g., by means of scanning tunneling microscopy
(STM). In contrast to the conventional 2DEG, such optical
studies might become possible in graphene, a one-atom-thick
sheet of graphite, with unique electronic and mechanical
properties.>*? Indeed, graphene may be viewed as a particu-
lar 2DEG, where the electrons behave as if they were mass-
less particles described by the relativistic 2D Dirac equation.
In this Dirac equation, the Fermi velocity vy plays the role of
the speed of light ¢, although it is roughly 300 times smaller
than the latter in vacuum. In addition, the Brillouin zone of
graphene has two nonequivalent corner points (called Dirac
points), which yield a twofold valley degeneracy and which
may formally be described in terms of an SU(2) pseudospin
degree of freedom.

In strong magnetic fields, the energy of Dirac fermions in
graphene is quantized into LLs, the structure of which is
different from that of nonrelativistic electrons in a conven-
tional 2DEG. Apart from their unconventional (square root)
magnetic-field dependence, there exists a LL at exactly zero
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energy, and each LL in the conduction band has a counterpart
in the valence band. This particular LL structure leads to the
anomalous integral quantum Hall effect observed in
graphene.?®?’ In addition, the energy gap between the subse-
quent LL’s in graphene is so large, that it is possible to ob-
serve the IQHE even at room temperatures.?®

As the mobility of graphene samples is further improved,
one may expect to observe the fractional quantum Hall ef-
fect, which has been studied theoretically by several
authors,?*3* and also collectively pinned insulating phases,
such as Wigner-crystal and bubble phases, as predicted in
Refs. 35-39. In contrast to GaAs heterostructures, these elec-
tronic phases occur at the surface of the graphene sheet and
are, thus, directly accessible by spectroscopic means. Indeed
STM has been applied successfully to probe the density dis-
tribution in exfoliated*” and epitaxial®' graphene, as well as
in graphene on a graphite substrate in a strong magnetic
field.*? This exciting prospect motivated us to calculate theo-
retically physical quantities of a 2D electron crystal which
might be measured in an STM experiment: the (integrated)
density of states (DOS) and the local DOS (LDOS). We
should note that the quantum Hall regime is the only case for
which one may expect the formation of electron-crystal
phases in graphene. Indeed, it is predicted that the 2D
Wigner crystallization is completely absent in graphene for
any electron density in the absence of a magnetic field,** due
to the scale invariance of the dimensionless interaction pa-
rameter r,=e?/fievy=2/ € for a 2D system with a linear dis-
persion relation. Here, € is the dielectric constant which de-
pends on the environment where the graphene sheet is
embedded.

In this paper, we discuss the DOS and the LDOS for
several electron crystals in the N=2 LL within a Hartree-
Fock approximation. We have performed similar calculations
for N=0, 1, 3, and 4, but we concentrate in the present paper
on N=2 for two reasons. First, the DOS and LDOS results
for N=2 are representative of high-field electron solids—our
calculations yield indeed similar results for the other LLs.
Second, for higher LLs there have been no clear indications
so far for electron-crystal phases in GaAs in the quantum
Hall regime. For our numerical calculations, we have
adopted the iterative scheme proposed by Co6té and
MacDonald,***> which has also been applied to calculate the
energies and the real-space profiles of various electron-
crystal phases in graphene.>> As a test of the validity of our
code, we have corroborated the results obtained in Ref. 35
and then applied it for the calculation of the DOS and the
LDOS. Notice that, despite the huge amount of Hartree-Fock
studies of quantum Hall electron-crystal phases, none is de-
voted to study the LDOS of these phases. We have calculated
the LDOS at energies where the integrated DOS has well-
pronounced peaks, which fall into two distinct classes: bound
states at negative energy with respect to the chemical poten-
tial and high-energy peaks above. The number of negative-
energy peaks is identical with the number of electrons M, per
bubble, in agreement with bubble crystals in the conven-
tional 2DEG.? Furthermore, we find that the sum of the
LDOS at these M, negative-energy peaks reproduces the
real-space density profile of the M -electron bubble crystal.

This paper is organized as follows. In Sec. II, we outline
the basic steps of the Hartree-Fock approximation to the
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2DEG in graphene. In Sec. III, we present numerical results
for the DOS and the LDOS in graphene, and we briefly dis-
cuss our results for N=0 in Sec. IV. Finally, we draw our
conclusions in Sec. V.

II. HARTREE-FOCK HAMILTONIAN

For a partially filled LL N, the low-energy electronic
properties are captured within a model that takes into ac-
count states only within this level. In this case, the single-
particle kinetic energy is the same for all of states, and thus
only the interaction term is relevant. Furthermore, we omit
the physical spin, which we consider to be completely polar-
ized, e.g., due to a sufficiently large Zeeman effect. The deri-
vation of the Hartree-Fock Hamiltonian for the 2DEG in
GaAs has been extensively discussed in the literature.***> In
graphene, the interaction Hamiltonian for the 2DEG is simi-
lar to that in GaAs, albeit with different form factors due to
the spinorial form of the wave functions.?>*¢ This similarity
allows one to use the same theoretical methods which were
used previously to study the 2DEG in GaAs, with the impor-
tant difference that we need to take into account the twofold
valley degeneracy in the form of an SU(2) pseudospin degree
of freedom, B= * 1. Provided that inter-LL transitions are
neglected, we may write the interaction part of the full
Hamiltonian for the 2DEG of spinless electrons in graphene
2529
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thCEez/ [ge is the Coulomb energy scale, with Iy
=\fi/eB the magnetic length, B is the magnetic field, and € is
the dielectric susceptibility of the medium and q=(q,.q,) is
a 2D wave vector. The (guiding center) density operator in
the Landau gauge reads
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2)

Here, N,=S§/ 2771,23 measures the LL degeneracy, with the
square area S of the 2DEG sample, Cy 5 and c”; p are the
electron’s destruction and creation operators, respectively,
where X denotes single-particle quantum states within the
Nth LL. Finally, in Eq. (1) the graphene form factor Fy(q)

reads2946
1 212 2[2
Falq) E{L'N(%)”N—l(% e N #0;
Nq) = .
e~ 13/4, N = O’
(3)

where g=|q| and L,(x) is the Laguerre polynomial of order
n. We note that the 2DEG form factor in GaAs is given by**

2712
q [ _ 22
Fy(q) =LN(—2B>e A 4)

It is apparent from Egs. (3) and (4) that the graphene (rela-
tivistic 2DEG) form factor is simply a linear combination of
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form factors for adjacent LLs of the nonrelativistic 2DEG in
GaAs. This peculiar fact results from mixing the Dirac par-
ticle wave functions between the sites of two sublattices in
graphene, and is also a consequence of the spinorial nature of
these wave functions. Apart from the difference in form fac-
tors given by Egs. (3) and (4), the 2DEG in GaAs and
graphene is described equivalently, as follows from the same
analytical structure of the Coulomb interaction term given by
Eq. (1).

Finally, we note that the Hamiltonian in Eq. (1) is SU(2)
invariant with respect to the valley pseudospin. In contrast to
the physical electron spin, this SU(2) symmetry is approxi-
mate. However, SU(2)-symmetry-breaking terms are sup-
pressed linearly in a/l3<1 where a=0.14 nm is the carbon-
carbon distance in graphene and [z=26/VB[T] nm, i.e., at an
energy scale that is well below the disorder broadening of the
LL’s.2%47 This physical model is similar to another two-
component quantum Hall system—if one replaces in Eq. (1)
Fy(q) by the nonrelativistic form-factor Fy(q), one obtains
the Hamiltonian for the nonrelativistic 2DEG including the
electrons’ spin in the absence of a polarizing Zeeman effect.
Alternatively, this model may describe a quantum Hall bi-
layer in the theoretical limit of zero layer separation, where
the two “spin” orientations denote the two different layers.*’
One may further simplify the model in Eq. (1) by omitting
the valley pseudospin degree of freedom, in which case one
presupposes a complete valley polarization of the electronic
phases, which would maximally profit from the exchange
interaction. This effective U(1) model is described by the
interaction term

o= C3 A @PA -0, ()
2% lal
where the density operator of spinless electrons p(q) is ob-
tained from Eq. (2) by neglecting the pseudospin indices.
This simplified U(1) model of fully valley-polarized
graphene, which is described by Eq. (5), is called U(l)-
graphene in the remainder of the paper. Now, if one substi-
tutes into Eq. (5) the nonrelativistic form-factor Fy(q), one
obtains the usual single-layer quantum Hall 2DEG for spin-
polarized electrons in GaAs.
The Hartree-Fock approximation applied to the graphene
interaction term in Eq. (1) yields?>*

HIO = N, Ve 2 {[H(Q) - XP5(Q)15,4(Q)
B.Q
- XPB(Q)p5 Q) 6)

where B=-8 and Q’s are the reciprocal wave vectors of the
WC lattice. The Hartree and Fock effective interaction po-
tentials read, respectively,

2,2
-Q%132

Q

HQ) = ——|FQ)Po(- Q)1 - 8g0). (1)
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XPP(Q) = I f dxe™ | Fy(0)PIo(xQlp)pp (- Q). (8)
0

where Q=|Q|, J, is a Bessel function, and the density aver-
ages are P,B,/z'(Q)=<ﬁB,,6'Q> and P(Q)=E,3P/3,B(Q)~ We as-
sume a triangular electron lattice for the broken-symmetry
state, with reciprocal lattice vectors given by

s”;
Q=Qo<g,g+—m2\ ) nme 7. (9)

Here Q, is the length of the basis vector of the reciprocal
lattice,

47TVN)1/2 (10)

-1
Oo=13 (v’EMC
where vy, is the filling factor of the last partially filled LL and
M, is the number of electrons per site (M.=1 corresponds to
the WC and M.=2 to an electron-bubble crystal with M,
electrons per bubble). The single-particle Green’s function in
the imaginary-time Matsubara formalism*® reads

hikgT
drexp(iw,T)

Gﬁsz(Q’iw”) =" N(—I;J
0
I%QXQ,\}

XE exp{— i0X+
X 2

X(Tiex- o, 5 (D00, (11)

where T is the temperature, kg is the Boltzmann constant, 7,
denotes imaginary-time ordering, and w,=w(2n+1)kgT/h
are the Matsubara frequencies. GBI-BZ(Q’iwn) may be deter-
mined self-consistently from quadratic Hamiltonian (6) by
using the Heisenberg equations of motion within the
iterative-solution method proposed in Ref. 44, which we
adopt in the present work.

After analytic continuation to real frequencies iw,— w
+i0%, Gp p,(Q,iw,) yields the retarded Green’s function
which may be used to calculate the DOS g(w),

glw)=- N$7TE Im G 5(Q=0,iw, — 0+i0%) (12)
B
and the LDOS A(r, w),
A(r,w) = —N;lﬂ'z Im Gg g(r,iw, — w+i0%), (13)
B
where the Green’s function in real space reads
Gp,.p,(Tsiw,) = (2771,%)“% exp(-iQ - 1) Fy(- Q)
X Gﬁl,ﬁz(Q,iwn). (14)

III. ELECTRON CRYSTALS IN N=2

In this section, we discuss the spectroscopic properties of
the electron-solid phases for the LL N=2. As already men-
tioned in the introduction, we concentrate on this LL for
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FIG. 1. Logarithmic plots for the density of states g(w) of
graphene in the N=2 Landau level at (A) M.=1, vy=0.14; (B)
M.=2, vy=0.28; and (C) M.=3, vy=0.42. The frequency o is
given in units of the Coulomb scale V. The w=0 frequency is the
position of the chemical potential (Fermi energy) w. The infinitesi-
mal imaginary frequency shift o — w+i0* is approximated by w
— w+i6,, with §,=107*. Figures (A)—(C) in the left column yield
the DOS in the low-energy frequency range (bound states of elec-
trons), while in the right column the high-energy peaks of the DOS
correspond to single-electron excitations above the ground state of
the lattice.

illustration purposes and because it is more significant than
the other LLs from the physical point of view. We have ob-
tained similar results for N=3 and 4 (not discussed here).
The zero-energy LL (N=0) turns out to be quite particular
and will be discussed briefly in Sec. IV.

We have chosen three different electron-solid lattices
which have the same ratio vy/M.=0.14=~1/7, and hence the
same lattice period given by Eq. (10). Our choice for the
vy/ M, ratio is rather arbitrary. We note that the M.=1 and 2
states yield in graphene the global energy minima, while the
M_.=3 does not. It has been shown in Ref. 35 that the ground
state of graphene at vy =0.43 is an anisotropic Wigner crys-
tal whereas at 0.28 < vy, =0.43 the ground state is the M,
=2 bubble crystal, and at vy =0.28 the Wigner crystal yields
the lowest energy (M.=1). Therefore, the M.=3 phase is not
the lowest-energy state in graphene; nevertheless, it is useful
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to analyze on the same footing all three cases M.=1, 2,
and 3.

For completeness, we mention that we have also calcu-
lated the cohesive energies of other types of electron-crystal
phases (not only triangular bubble phases but also aniso-
tropic Wigner crystals). Our results for the energies coincide
with those of Ref. 35 with excellent accuracy and, therefore,
corroborate the DOS and LDOS results discussed below.

A. (Integrated) density of states

Our results for the DOS in graphene at N=2 are presented
in Fig. 1. We find that the DOS consists of two well-
separated classes of peaks: well-defined low-energy peaks
are found below the chemical potential w, which is shifted to
zero energy, whereas the large number of peaks above u are
not that easily distinguished. We note here that in graphene
the number of low-energy peaks in all cases is equal to M.,
the number of electrons in a bubble. The same result has
been obtained before in Hartree-Fock studies of the simpler
single-layer 2D quantum Hall system.” We checked that the
same property holds true also for U(1)-graphene, and in non-
relativistic two-component quantum Hall systems, such as a
bilayer with zero layer separation.

In the simpler single-layer 2D quantum Hall system in
GaAs, the DOS at M.=1 exhibits the features of the Hof-
stadter butterfly structure.’ It means the following: given that
the filling factor may be represented by a ratio of two inte-
gers p and g without a common divisor, vy=p/gq, these inte-
gers p and ¢ determine then the structure of the single-
particle energy spectrum of the system; namely, there should
exist p low-energy levels and ¢—p high-energy levels (Hof-
stadter butterfly counting rule). In the DOS, which is a func-
tion of frequency, these energy levels are recognized as
smoothed peaks. The Hofstadter butterfly counting rule was
confirmed for M.=1 in the single-layer 2DEG in GaAs,
while for M,=2 it is claimed that the counting of the single-
particle levels is different: the number of low-energy peaks is
equal to M., whereas nothing is known about what is the
precise rule for counting the number of high-energy peaks.’

What will be important in the following discussion is the
order of indexing of the DOS peaks. We will count the peaks
in the DOS with respect to increasing the frequency w. In
Fig. 1(A), the first DOS peak is obviously the lowest-energy

()

(C)
[0.6,2.4]

FIG. 2. (Color online) Real-space density profile n(r) in
graphene in the N=2 LL. Choices (A)—(C) are the same as in Fig. 1.
Minima and maxima of n(r) written inside the square brackets as
[min, max] correspond to the values [0.0, 1.0] in the color plots
(blue and white colors, correspondingly). The x and y axes are in
units of /p.
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g L g
@}

)

FIG. 3. (Color online) LDOS A(r, w) for graphene at vy=0.14, M.=1 [case (A)]. Contour colors are graded in the same way as defined
in Fig. 2. The contour plots are ordered with respect to the index of DOS peaks (indicated above the plots). The x and y axes are in units of

lg. The number of extracted DOS peaks is N,=13.

one with energy =-0.24V.. The second peak in (A) is a
higher-energy one with energy =0.17V. The numbering of
peaks continues until we reach the utmost-right peak with
energy =~0.3V.. The same indexing rule is applied to the
cases (B) and (C). One should note that in all three cases the
DOS peaks with the same index may have rather different
energies: while in (A) the second DOS peak belongs already
to the high-energy region, in (B) it still lies below the Fermi
level.

In addition, one should have a procedure of extracting the
energies of the DOS peaks from the smoothed DOS vs fre-
quency dependence shown in Fig. 1. In the low-energy re-
gime it may be always done reliably. In the high-energy re-
gime, however, there is a larger number of closely located
DOS peaks, the shapes, widths, and amplitudes of which
depend sensitively on the imaginary frequency shift &,. The
latter is used for the analytical continuation into the upper
complex half-plane of the Green’s function, iw,— w+id,,.
Physically, this imaginary frequency shift represents a level
broadening, e.g., due to disorder. We have found that the best

way to extract only those peaks which are physical is to
place a cutoff A on the DOS peak amplitude, so that peaks
with amplitude less than g, A are neglected, with g,
o é;l the maximum peak amplitude. In our study, we have
chosen 8,=107* and A=0.5. The number of shells of recip-
rocal lattice vectors Q’s is Ny, =8, so that the actual number
of vectors is Np=241. Single-particle energies which are ex-
tracted from the smoothed DOS, will be used below in the
calculation of the LDOS. In the U(l)-graphene and the
single-layer cases at the same densities considered here, we
are able to extract seven DOS peaks; at vy=0.14 and M,
=1, there is one lowest-energy peak and six high-energy
ones. These are exactly the numbers of single-particle levels
dictated by the Hofstadter butterfly counting rule.’

In graphene and the quantum Hall bilayer, studied within
the two-component model, we obtain the number of identi-
fied DOS peaks around 14 (with deviation of not more than
one wrongly identified peak). Due to the additional SU(2)
symmetry in the latter two cases, it is natural to expect that
the number of single-particle levels is thus doubled.
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FIG. 4. (Color online) LDOS A(r,w) for graphene at vy=0.28, M.=2 [case (B)]. The x and y axes are in units of 5, N,=15.

B. Real-space density profile

For later comparison with our results for the LDOS, we
calculated the real-space electron-density profile

1

277123

n(r) = —5 > exp(=iQ - 1) Fy(- Q)p(Q)  (15)
Q

for the same choices of (wy,M,) as in Fig. 1. The results,
which are shown in Fig. 2, agree with previous calculations
for graphene performed by Zhang and Joglekar.?

C. Local density of states

Our results for the LDOS in graphene are presented in
Figs. 3-5. The LDOS patterns are plotted for all three cases
(A)—(C), as in Fig. 1 and at the energies of all extracted
single-particle DOS peaks situated in increasing order. We
obtain that the rescaled, to the range of [0.0, 1.0], real-space
patterns of A(r, w), calculated at the first four DOS peaks for
all three choices of (vy,M,), coincide among themselves.
There is also an approximate mapping between the LDOS
patterns at the fifth DOS peak, although less pronounced

than for the first four ones (one sees correspondence between
the positions of maxima and minima, but the colors deviate
slightly in each case). For larger values of the peak index, we
start to see considerable discrepancies between the LDOS
patterns. Also the number of extracted peaks N, is different
for each case. The latter property is due to the very approxi-
mate nature of our extraction procedure: while low-energy
peaks are always identified reliably, the high-energy peaks
are determined only approximately. However, the accuracy is
quite good.

As for a possible explanation of the observed coincidence
between the LDOS at the first energy peaks with different
choices of (vy,M,), one notices two aspects. First, the lattice
constant is chosen to be the same for all three cases M.=1, 2,
and 3, as already mentioned above. Second, one may inter-
pret the jth peak in the integrated DOS as the energy of the
quasiparticle excitation on lattice sites that contain already
j—1 electrons. Whereas the associated density pattern, re-
vealed by the LDOS at the given energy, is then the same for
all values of M., the quasiparticle excitation naturally corre-
sponds to a bound state only if j=M..
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FIG. 5. (Color online) LDOS A(r,w) for graphene at vy=0.42, M.=3 [case (C)]. The x and y axes are in units of 5, N,=14.

We also note a very interesting property of the LDOS at
the last two peaks for (B) and (C): the LDOS patterns are
identical, but their positions are swapped. We do not have
any physical argument why this should be the case, but it
could be a feature that appears when M.> N. However, this
statement is a mere speculation and a more detailed investi-
gation is required to clarify this aspect.

D. Comparison with the real-space density

Now, to compare the LDOS patterns shown in Figs. 3-5
with the real-space density profile n(r) defined in Eq. (15)
and plotted in Fig. 2, we introduce the resummed LDOS

A(r, w), defined for a fixed single-particle energy w; as a sum
of all LDOS patterns at smaller peak energies,

Ar,w) = 2 A(r,0). (16)
j=1

Given the excellent coincidence of the LDOS patterns
shown in Fig. 6 with the real-space densities in Fig. 2, one
may empirically write

n(e,M,=i) < Alr,»), i=1,2,3, (17)

where the sign <> means mapping between the rescaled to the
[0.0, 1.0] interval quantities. This means that the real-space
density of the M -electron bubble crystal is determined by
the sum of the LDOS at the M, negative-energy peaks. More
surprisingly, because of the correspondence between the
LDOS patterns of the low-energy peaks for all different M,
bubble crystals, one may determine the real-space density

FIG. 6. (Color online) Resummed LDOS g(r,w) for graphene
at the three first DOS peaks for (A) [vy=0.14, M.=1]. Contour
colors are graded in the same way as defined in Fig. 2.
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FIG. 7. (Color online) LDOS A(r,w) for U(1)-graphene. The x and y axes are in units of /z. The number of extracted DOS peaks

Np=T.

pattern of the M, bubble crystal by summing the LDOS of
the M, peaks of lowest energy for any of the electron-solid
phases—the LDOS patterns of the M.=1 Wigner crystal,
e.g., contains thus the information of the density of all other
M., bubble crystals.

E. U(1)-graphene: Local density of states

In Fig. 7, we present the LDOS for U(1)-graphene. The
number of extracted DOS peaks for all three density choices
(A), (B), and (C) is N,=7. This is in accordance with the
Hofstadter butterfly counting rule. We also see an excellent
correspondence of the LDOS for the first four DOS peaks,
then, also a good coincidence of the LDOS at the peaks six
and seven for (A) and (B), whereas these two LDOS patterns
for (C) interchange places, as compared with the patterns six
and seven for (A) and (B). This interchange phenomenon is
the same as observed for graphene and is not yet understood.

In general, the U(1)-graphene results coincide numeri-
cally with those for graphene when one takes into account
the SU(2) symmetry for the valley pseudospin. This indicates
that one may use the U(1) model instead of the more com-
plex SU(2) symmetric one for the discussion of the density
patterns, hence simplifying further calculations on graphene.
Moreover, it indicates that in the electron-crystal phases con-
sidered above the valley degree of freedom is fully polarized.

IV. WIGNER CRYSTAL IN N=0

In the past section, we have concentrated on electron-
crystal phases in higher LLs (N=2) because of the particular

competition between crystals with different electron number
M. per site. The LLs N=0 and 1 are different, and we briefly
discuss the zero-energy LL. N=0 here. Notice that in both
levels N=0 and 1 only one type of electron crystal is present,
namely, the M,=1 WC.% As for the usual 2DEG, the WC
turns out to compete with possible incompressible quantum
liquid phases that display the fractional quantum Hall
effect,* and the WC is then expected to occur at low values
of the filling factor.

The density profile for the WC in N=0 is shown in the left
panel of Fig. 8 for a partial filling factor of vy=0.14. Al-
though no variational studies comparing the energies for the
WC and incompressible quantum liquids in graphene have,
to the best of our knowledge, been performed, one may

M, =1 M, =1
| J\ J !\ ]
LY i

/ Vi)Y
/ \\,/\\ q

|
|
I\

s

>4 ~~

-0.60 0.15 0.90
0]

FIG. 8. (Color online) Left: real-space density profile n(r) for
the WC in the zero-energy LL N=0 at v=0.14. Right: logarithmic
plot for the density of stats g(w) of the N=0 WC at v=0.14. The
frequency is measured in units of V.
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FIG. 9. (Color online) LDOS A(r, w) at the lowest five peaks of the DOS for the WC in N=0 at v=0.14.

speculate that the ground state at vy=0.14 in N=0, as well as
in N=1, is indeed given by a WC. This is corroborated, on
the one hand, by the fact that the N=0 LL in graphene is
equivalent to that in the usual 2DEG, where the ground state
is a WC,* and, on the other hand, by the strong similarity
between the interaction potentials in the N=0 and 1 graphene
LL.»®

One notices that the real-space density profile of the WC
in N=0 (Fig. 8) is remarkably different from that in higher
LLs [Fig. 2(A)]}—instead of a ringlike shape of the electronic
density around the lattice sites, one obtains a density that is
similar to a filled circle. This difference may be explained by
the different nature of the one-particle wave functions in N
=0 as compared to higher LLs. Indeed, the wave function in
the lowest LL is a simple Gaussian with no node structure,
whereas the probability density of a semiclassical state in
higher LLs reflects the cyclotron motion, with a maximum at
the cyclotron radius R-=I[z\2N+1.

In Fig. 9 we show the LDOS patterns of the WC at the
first five peaks in the DOS (right panel of Fig. 8) at v
=0.14 for N=0, which may be accessible in an STM mea-
surement. As in the case of higher LLs, the LDOS measured
at the first (negative-energy) peak in the DOS has the same
structure as the real-space density profile of the WC (left
panel of Fig. 8). Remarkably, the scaling properties between
the peaks, discussed in Sec. III C for N=2, are absent in N
=0. This absence may be due to the different shape of the
one-particle wave functions—remember that these wave
functions are Gaussian in N=0, whereas they are of ringlike
shape in higher LLs, as mentioned above. Notice further-
more, that the positive-energy peaks in the DOS for the WC
are much denser in N=0 (right panel of Fig. 8) than in N
=2 [see Fig. 1(A), right panel]. This is also the case for the
DOS of bubble crystals (unphysical in N=0) with M. >1
(figures not shown). It is therefore more delicate to index the
high-energy peaks in N=0; hence, one may not safely con-
clude about the presence or the absence of scaling properties
in N=0.

V. CONCLUSIONS

The aim of this work is to show how a high-field electron-
solid phase in the 2DEG may be detected by optical means in
graphene. We have calculated the DOS and the LDOS of

electron-solid phases in the Hartree-Fock approximation in
the N=2 LL.

We show that the number of low-energy DOS peaks in
graphene is given by the number of electrons per site M..
This result is similar to the previous DOS calculation in the
Hartree-Fock approximation for GaAs.’

We found that the rescaled LDOS is identical for different
filling factors vy, as long as the ratio vy/M,, which deter-
mines the lattice spacing of the M -electron bubble crystal, is
kept fixed, and the LDOS frequency is taken at the DOS
peak with the same index (for the first four indices). In par-
ticular, this result yields an unexpected conclusion that, e.g.,
by fixing the filling factor vy=0.14 in the N=2 LL and using
STM, one could observe in the LDOS the whole succession
of electron-crystal density patterns with M. =1, 2, and 3 by
fixing the applied STM voltage at the consecutive first three
single-particle excitation energies, and summing up the

LDOS to obtain the resummed LDOS A(r, w).

We believe that this LDOS correspondence holds true for
all single-particle excitations resolved as individual DOS
peaks so far (accounting for interchanging of the last two
peaks in the M_,=2 and 3 cases) and for all LLs (similar
conclusions follow from our calculations in the LLs N=1, 3,
and 4). We also obtained the same LDOS correspondence for
other models of the 2DEG: (i) in a single-layer GaAs hetero-
structure; (ii) U(1)-graphene; and (iii) bilayer. This implies
that the observed LDOS vy/ M. scaling is independent of the
underlying interaction potential and the number of inner dis-
crete degrees of freedom. The fact that the U(1)-graphene
results coincide numerically with those for graphene indi-
cates that the electron crystals considered here are com-
pletely valley-pseudospin polarized.
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