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A B S T R A C T   

Background: Type 2 diabetes (T2D) is thought to be influenced by environmental stressors such as air pollution 
and noise. Although environmental factors are interrelated, studies considering the exposome are lacking. We 
simultaneously assessed a variety of exposures in their association with prevalent T2D by applying penalised 
regression Least Absolute Shrinkage and Selection Operator (LASSO), Random Forest (RF), and Artificial Neural 
Networks (ANN) approaches. We contrasted the findings with single-exposure models including consistently 
associated risk factors reported by previous studies. 
Methods: Baseline data (n = 14,829) of the Occupational and Environmental Health Cohort study (AMIGO) were 
enriched with 85 exposome factors (air pollution, noise, built environment, neighbourhood socio-economic 
factors etc.) using the home addresses of participants. Questionnaires were used to identify participants with 
T2D (n = 676(4.6 %)). Models in all applied statistical approaches were adjusted for individual-level socio-de-
mographic variables. 
Results: Lower average home values, higher share of non-Western immigrants and higher surface temperatures 
were related to higher risk of T2D in the multivariable models (LASSO, RF). Selected variables differed between 
the two multi-variable approaches, especially for weaker predictors. Some established risk factors (air pollutants) 
appeared in univariate analysis but were not among the most important factors in multivariable analysis. Other 
established factors (green space) did not appear in univariate, but appeared in multivariable analysis (RF). 
Average estimates of the prediction error (logLoss) from nested cross-validation showed that the LASSO out-
performed both RF and ANN approaches. 
Conclusions: Neighbourhood socio-economic and socio-demographic characteristics and surface temperature 
were consistently associated with the risk of T2D. For other physical-chemical factors associations differed per 
analytical approach.   

1. Introduction 

Type 2 diabetes (T2D) is a chronic disease with high individual and 
societal burden. Despite the genetic predisposition, environmental fac-
tors and lifestyle behaviours are important behavioural determinants in 
the etiology of T2D (Zheng et al., 2018). Environmental factors can 
affect the risk of T2D either directly (air pollutants, residential noise) or 

indirectly, by influencing lifestyle behaviours such as dietary habits and 
physical activity (walkability, green space)(Beulens et al., 2022). For 
instance, high neighbourhood walkability with more green areas and 
low levels of air pollution is associated with more physical activity (An 
et al., 2018; Barnett et al., 2017). With regard to direct environmental 
drivers, there is some evidence suggesting a potential link between T2D 
and exposure to arsenic in drinking water, persistent organic pollutants, 
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pesticides, antibiotics and several other drugs, as well as atmospheric 
pollutants, such as nitrogen dioxide and fine particulate matter (Misra 
and Misra, 2020). 

A recent systematic review by Beulens et al. summarized the existing 
evidence on the environmental risk factors of T2D (Beulens et al., 2022). 
There was robust evidence for the associations of air pollution, resi-
dential noise, neighbourhood walkability, green space, area-level socio- 
economic deprivation and T2D and inconclusive evidence for associa-
tion with outdoor temperature, neighbourhood social environment and 
food environment (Beulens et al., 2022; Pitt et al., 2017). 

In real life environmental exposures and lifestyle behaviours are 
inseparable parts of the same complex structure that we call exposome. 
However, current evidence is mostly based on studies investigating 
single exposures (Wild, 2012). This might be problematic especially 
because such studies do not disentangle risks from associated environ-
mental stressors. For instance, most studies focusing on air pollution did 
not consider green space or road traffic noise (Yang et al., 2020; Zare 
Sakhvidi et al., 2018). In the context of the exposome, only one study 
examined the association of 266 environmental factors measured in 
blood and urine samples with T2D. This was an environment wide as-
sociation study (EXWAS) within the NHANES dataset based on biolog-
ical measures of environmental, lifestyle and dietary exposures. 
Significant positive associations were found for the pesticide-derivative 
heptachlor epoxide, the vitamin c-tocopherol, and polychlorinated bi-
phenyls and b-carotenes (Patel et al., 2010). Although the authors give a 
collective interpretation of results, using single or multivariable linear 
regression models may be ill-suited for exposome studies, because of a 
few reasons. First, these approaches do not consider complex in-
terdependencies that exist between the exposures. Second, potential 
nonlinear exposure-outcome associations are mostly ignored. Third, 
when analysing a combination of highly correlated factors in a linear 
regression model simultaneously, generated effect estimates become 
unstable. Hence, more advanced statistical methods are required to 
analyse this type of high dimensional data. 

In our previous work we showed how different methods could be 
applied to build interpretable and robust multi-exposure models 
(Ohanyan et al., 2022). Although there is not a gold standard approach 
for this type of analysis, the results showed that a combination of 
methods that complement each other by dealing with linear or nonlinear 
associations could be useful in capturing the overall picture of associa-
tions. For this reason, we used a linear model Least Absolute Shrinkage 
and Selection Operator (LASSO), Random Forest (RF) and Artificial 
Neural Networks (ANN) approaches. The last two methods can process 
nonlinear and non-additive associations without making any assump-
tions about the nature of the variables (Krogh, 2008; Stafoggia et al., 
2017). LASSO is a more conventionally applied method for the purpose 
of variable selection among highly correlated variables (Petrovic et al., 
2022; Stafoggia et al., 2017; Tibshirani, 1996). We also applied uni-
variate analyses as to study the associations with established factors that 
in a multivariable model may not be selected due to low contribution to 
the overall fit. 

The aim of this study was to examine the associations of a combi-
nation of 85 urban exposome factors and the prevalence of T2D, 
considering the nonlinear and non-additive associations and assess how 
our findings compare with the prior knowledge on established risk 
factors of T2D. 

2. Methods 

2.1. Study design and participants 

We conducted a cross-sectional analysis using baseline data of the 
Occupational and Environmental Health Cohort (AMIGO) study. Par-
ticipants across the Netherlands were randomly selected from the Dutch 
National General Practitioners Network database (“NIVEL Primary Care 
Registry,” 2021). The only inclusion criterium was the age between 31 

and 65 years old, as the target population were adults of working age 
from general population. Maximum one person per household were 
invited to complete the online questionnaire. Overall, 14,829 (16 % out 
of 93,550 invited) participants were included. A detailed description of 
the recruitment process, a flowchart of participant data and the ethical 
approval is provided elsewhere (Slottje et al., 2015). 

2.2. Outcome variable 

The outcome measure was prevalent T2D, assessed by self-reported 
questionnaires. Each participant responded to two questionnaire 
items: “Have you ever been diagnosed by a doctor with T2D (“non-in-
sulin-dependent” or late-onset diabetes)?” and “Have you ever been 
diagnosed by a doctor with unknown type of diabetes?”(Slottje et al., 
2015). Considering that T2D accounts for approximately 90 % of dia-
betes cases, we considered unknown type of diabetes as T2D. Among the 
participants who reported to have been diagnosed with T2D or unknown 
type of diabetes, a low number 43 (6 %) had reported age at the diag-
nostic less than 40 years, which might be type 1 diabetes. Therefore, a 
sensitivity analysis was performed where participants who reported 
unknown type of diabetes with an age at diagnoses less than 40 years, 
were not considered T2D cases. 

2.3. Covariates 

Self-reported questionnaire data on the duration of living at the 
current address, age, sex (male/female), country of birth (Netherlands/ 
other), country of birth of mother and of father (Netherlands/other), 
civil state (with/without a partner), current education (high (college, 
university degree) / low or medium (vocational education, community 
college, high school)), employment status (employed/unemployed), 
smoking (yes/no) were considered as covariates in this study. 

2.4. Exposome factors 

Geospatial models, monitoring stations, satellite data, and land use 
databases were used to assess a large set of environmental factors. These 
data were then linked to each respondent’s geocoded residential 
address, to assess exposure at the home addresses of participants as a 
proxy for actual exposure (Martens et al., 2018). Exposure estimates 
were calculated for the questionnaire data collection period 
(2011–2012). Overall, 85 exposures across a total of 12 exposure con-
structs were analysed: air pollution (19 factors), road traffic noise (1 
factor), mobile phone base station radiofrequency electromagnetic field 
(1 factor), green space density (2 factors), outdoor light at night (1 
factor), meteorology (2 factors), quality of the drinking water (29 fac-
tors), socio-demographic characteristics of the neighbourhood (16 fac-
tors), food environment (3 factors), built environment (10 factors) and 
road safety (1 factor). The assessment of these constructs and variables 
are detailed in Table 1 and supplementary material Table S1. 

2.5. Statistical analysis 

2.5.1. Data pre-processing 
We excluded exposures that were judged uninformative based on the 

following reasons: i) variables with very low variability, e.g., when most 
observations (>99 %) had the same value, assessed by histograms and 
descriptive statistics (see the list in supplementary material, Table S2) or 
ii) if two variables were correlated at a level of rspearman ≥ 0.95. In the 
latter case only one out of the correlated variables was included in the 
analysis and was considered as a proxy for the other variable(s) 
(Table S3). Overall, 85 exposure variables were included in the analyt-
ical models. 

Before building the models, all continuous exposures were stan-
dardized to the same scale by their standard deviations (Z-score). This 
step helps to maximize the comparability of variable importance scores 
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Table 1 
Description of data sources for each exposure. More detailed explanations can be found in the supplementary material.  

Variables Description References 

Temperature (C)   
Surface temperature Surface temperature measured using Satellite pictures taken on a hot day (20 July 

2016) 
(Environmental Health Atlas 
Atlasleefomgeving, 2016; Remme, 
2017) Heat island effect Temp difference to rural surrounding  

Combined traffic noise (Lden) Road traffic noise levels (dB) estimated using noise model maps. It covered the whole 
day period and included an overweighting for noise levels during evening and night 
(Lden), as the nuisance perception is higher during more quiet hours of the day 

(Baliatsas et al., 2016; Martens et al., 
2018)  

Green space (NDVI) 
100 m buffer 
1000 m buffer 

Normalized Difference Vegetation Index (NDVI) was used to quantify the vegetation 
density. Satellite images from Landsat 8, captured in September 2016 were used to 
generate NDVI for 100m and 1000m buffers around residential addresses 

(Rhew et al., 2011)  

Electric lights at night (NanoW/cm2/sr) Outdoor artificial light at night was assessed by the global low-light imaging data from 
Earth’s surface. Maps (2015) from Visible Infrared Imaging Radiometer Suite Day/ 
Night Band was used to assign an exposure value to the home address. 

(Elvidge et al., 2017)  

RF-EMF (mW/m2) 
Total = GSM900 + GSM1800 + UMTS 

Model estimates from the total sum of the exposures to downlink field strength of 
GSM900 (Global System for Mobile Communication), GSM1800, and UMTS (Universal 
Mobile Telecommunications System) (mW/m2) 

(Beekhuizen et al., 2015; Bürgi et al., 
2008; Martens et al., 2018)  

Air pollution Land use regression models were used to estimate annual average concentrations of the 
air pollutants listed below.  

NO2 (microg/m3)  (Beelen et al., 2013; Eeftens et al., 2012) 
NOx (microg/m3)  
PM2.5 absorbance  
PM10 (microg/m3)  
PM2.5 (microg/m3)  
PMcoarse  
UFP particle (count/cm3)  (Kerckhoffs, 2021) 
Oxidative Potential (dithiothreitol)  (Yang et al., 2015) 
Oxidative Potential (electron spin resonance)  
Copper in PM10 (ng/m3)  (De Hoogh et al., 2013) 
Iron in PM10 (ng/m3)  
Potassium in PM10 (ng/m3)  
Nickel in PM10 (ng/m3)  
Sulfur in PM10 (ng/m3)  
Silicon in PM10 (ng/m3)  
Vanadium in PM10 (ng/m3)  
Zinc in PM10 (ng/m3)  
Copper in PM2.5 (ng/m3)  
Iron in PM2.5 (ng/m3)  
Potassium in PM2.5 (ng/m3)  
Nickel in PM2.5 (ng/m3)  
Sulfur in PM2.5 (ng/m3)  
Silicon in PM2.5 (ng/m3)  
Vanadium in PM2.5 (ng/m3)  
Zinc in PM2.5 (ng/m3)   

Neighborhood socio-demographic 
characteristics 

Land Use Database of Statistics Netherlands provided data on neighbourhood level 
socio-demographic and socio-economic factors for 2011 

(Statistics Netherlands, 2012) 

Inhabitants aged 0–14 years (%)  
Inhabitants aged 15–24 years (%)  
Inhabitants aged 25–44 years (%)  
Inhabitants aged 45–64 years (%)  
Inhabitants aged 65+ years (%)  
Single inhabitants (%)  
Married inhabitants (%)  
Divorced inhabitants (%)  
Widowed inhabitants (%)  
One-person households (%)  
Inhabitants with western origins (%)  

(Europe, North America, Oceania, Indonesia, 
Japan)  
Inhabitants with non-western origins (%)  
Average value of houses (x 1000 euros)  
Inhabitants with income below 40th 
percentile (%)  
Inhabitants with income above 20th 
percentile (%)  

(continued on next page) 
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and minimize the impact of the measurement unit on the coefficients, 
independently from variable’s original measurement units. 

2.5.2. Missing values 
The highest percentage of missing values was 11 % for the neigh-

bourhood non-western immigrants. For the remainder of variables, the 
proportion of missing data was < 7 %, and the outcome measure had 2.8 

% missing values. Five imputed datasets were generated using Multi-
variate Imputation via Chained Equations (MICE). Given the absence of 
a widely accepted way to combine the results from multiple imputation 
sets, as well as high computational cost of used statistical approaches, 
the imputed values were averaged across imputed datasets. Before 
introducing variables into the imputation model, some of them were 
transformed by logarithmic, root square, or inverse functions, to best 

Table 1 (continued ) 

Variables Description References 

The number of total passenger cars  
Road safety by accident count in 200m buffer   

Built environment   
Degree of rurality 
(categories from 1 (high) to 5(low) 

Based on address density: 1=very highly urban ≥ 2,500 addresses per km2; 2 = highly 
urban 1 500–2 500 addresses per km2; 3 = moderately urban 1,000–1,500 addresses 
per km2; 4 = less urban 500–1,000 addresses per km2; 5 = non-urban < 500 addresses 
per km2 

(Statistics Netherlands, 2012) 

Distance to major road (km)  (Statistics Netherlands, 2012) 
Distance to train station (km)  
Distance to larger train station (km)  
Distance to medical facilities (km) Average distance to the general practitioner’s office, pharmacies and hospitals were 

grouped as “access to medical facilities”. 
Distance to educational facilities (km) Average distance to kindergartens, elementary, middle, and high school facilities were 

grouped as “access to educational facilities”. 
Distance to recreational facilities (km) Museums, cinemas, attraction parks, concert halls, swimming pools, ice skating halls, 

saunas and tanning clinics were grouped as “access to recreational activities” 
Educational facilities in 10km buffer  
Distance to warehouse shops (km)  (Statistics Netherlands, 2012) 
Warehouse shops in 20km buffer  

Food environment Supermarkets and local food shops (e.g., greengrocers, bakeries, butchers etc.) were 
categorised as “healthy food” exposure, and restaurants, fast food restaurants and take- 
away places, cafés, pancake houses, bars and pubs were classified as “non-healthy 
food” exposure. 

Distance to healthier food retailers (km)  
Healthy food retailers (1km and 5km buffer)  
Non healthy food retailers (1km buffer)   

Quality of drinking water Countrywide maps of drinking water quality are annually generated by the Dutch 
National Institute for Public Health and the Environment. Data from 2012 was used to 
assess the annual average values of 29 bacterial and chemical compounds, that were 
measured in the closest tested pump. 

(Quality of Drinking Water in 
Netherlands, 2018) 

Aluminium (µg/l)   
Natrium (ug/l)  
Nickel (ug/l)  
Nitrate (mg/l)  
Chloride (ug/l)  
Turbidity (FTE = Formazine Turbidity Units)  
Acidity, pH  
Fluoride (mg/l)  
Iron (µg/l)  
Copper (µg/l)  
Magnesium (mg/l)  
Total organic carbon (mg/l)  
Sulfate (mg/l)  
Color intensity (Pt/Co-schaal)  
Electrical conductivity (microS/cm)  
Aminomethyl phosphonic acid (Pesticide) 
(µg/l)  
Arsen (µg/l)  
Bentazon (herbicide)(µg/l)  
Bromat (µg/l)  
Chrome (µg/l)  
Diprogulic acid (µg/l)  
Lead (µg/l)  
Mangan (µg/l)  
pesticide: Mecoprop (µg/l)  
Nitrite (µg/l)  
Trihalomethanes (µg/l)  
Tritium (Becquerel)  
Bacteria of the coli group (kve/100 ml)  
Escherichia coli (kve/100 ml)  
Taste or smell  

RF-EMF = Radiofrequency electromagnetic field; GSM = Global System for Mobile Communication; UTMS = Universal Mobile Telecommunications System; 
PC4 = four digit postal code. 
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approach a Gaussian distribution, as the imputation model assumes 
normal distribution for predictors (Osborne and Ph, 2005)(Table S4). 
Note that the nature of association was inversed for the multiplicative 
inverse transformed variables (multiplicative inverse = 1/variable) 
throughout the rest of statistical analysis (Table S4). The outcome 
measure was imputed using all variables. 

2.5.3. Univariate and multivariate analysis 
Most previously published studies had a single-exposure approach. 

To see if established risk factors were also existent in our sample, we 
analysed exposome factors in univariate logistic regression models 
adjusted for individual-level confounders (EXWAS). We interpreted the 
result in light of prior evidence as summarised by Beulens et al. (2022). 
We followed up with an agnostic analysis by including all variables 
simultaneously in multivariate models using penalised regression 
LASSO, RF and ANN. All multivariable models were based on the same 
pre-processed dataset. 

2.5.4. Nested cross-validation 
Current state-of-the-art suggests to use nested cross-validation for 

the combined tuning of hyperparameters and model selection (Krstajic 
et al., 2014). Nested cross-validation implies that hyperparameters are 
selected using the inner folds of cross-validation and, an unbiased esti-
mate of the expected accuracy of the algorithm is computed across the 
outer folds of cross-validation (Wainer and Cawley, 2021). Thus, we 
divided the dataset into training and test sets (80 % and 20 % accord-
ingly). The training data was in turn divided into five inner folds, each 
including 20 % of the data. During the cross-validation, the model was 
iteratively trained on four inner folds. The fifth fold was used as a 
validation set for hyperparameter tuning. In the outer loop of cross- 
validation each of the outer folds was iteratively held out as a test set 
for the evaluation of model performance. 

To maximize the comparability between statistical methods the same 
cross-validation folds were used for all models and stratified sampling 
on T2D case status (prevalence < 5 %) was used to create training and 
test sets. We compared predictive performances of multivariate models, 
using the logLoss metric (logistic loss or cross-entropy loss), which is 
based on probabilities and was suggested to be a better metric for model 
evaluation in imbalanced classification tasks (Harris and Samorani, 
2021). A model that predicts perfectly would achieve a logLoss of zero, 
therefore the lower the logLoss, the better the prediction. 

2.5.5. Penalised regression LASSO 
LASSO is a penalised regression method that is commonly used in 

high dimensional data setting for variable selection (Tibshirani, 1996). 
LASSO forces the sum of the absolute value of the regression coefficients 
to be less than the tuning parameter lambda (λ)(Tibshirani, 1996). This 
causes the shrinkage of some coefficients to be zero, hence conducting a 
variable selection. The optimal value of lambda was selected using 5- 
fold cross-validation. We used subsampling based stability selection to 
provide finite sample control of the family-wise error rate (Meinshausen 
and Bühlmann, 2010). Packages “glmnet” and “stabsel” in R were used 
to fit the LASSO model and for stability selection respectively. 

The advantage for using LASSO is that it has good properties for 
variable selection among highly correlated variables, hence a good 
interpretability. It is easy to tune and requires a low computational time. 
However, it is a linear model, therefore it cannot disentangle complex 
nonlinear or non-additive associations. 

2.5.6. Random forest 
RF is an ensemble learning method where at each iteration a random 

subset of predictors and observations is selected to build a decision tree 
(Ishwaran and Lu, 2019). The predictions from these trees are then 
aggregated to form the forest. Permutation importance was used to 
assess the variable importance score and Shapley values were used to 
assess the directions of associations (Molnar, 2020). We used a scree plot 

to select variables with the highest variable importance. Packages 
“tuneRanger” and “ranger” were used to calibrate and to run the RF 
model. We calibrated the number of observations to sample for each 
decision tree (“sample.fraction”), the minimal size of terminal nodes to 
control for the depth of decision trees (“min.node.size”), and the number 
of variables to possibly split at each node (“mtry”) using the package 
tuneRanger (Ohanyan et al., 2022). 

RF can capture nonlinear and non-additive associations and recent 
developments in R software packages have drastically improved both 
the ease of the parameter tuning and the interpretability. 

2.5.7. Artificial Neural Networks 
The main structure of ANN consists of layers: one input layer, one or 

more hidden layers and one output layer. Each layer consists of neurons 
and weights attributed to neurons. The information passes along the 
network of layers until it reaches the output neurons. This is an artificial 
feed-forward neural network since the signals go towards one direction. 
The aim of a feed-forward ANN is pattern recognition; namely to find 
how input neurons (i.e., independent variables and covariates) predict 
output neurons (T2D: Yes/ No). The loss function then compares these 
predictions to the targets, producing a loss value: a measure of how well 
the network’s predictions match what was expected (Chollet and Allaire, 
2018). The optimizer uses this loss value to update the network’s 
weights (Chollet and Allaire, 2018). 

Parameters were calibrated through the nested cross-validation: 
number of hidden layers, epochs, learning rate of the Adam optimizer 
and penalization. The number of neurons on hidden layers (nodes) was 
set to 98 in each layer. The number of epochs is the number of iterations 
when the entire training data passes through the network, and after each 
epoch the weights are updated. A learning rate of 1e− 5 was used for the 
Adam optimizer. The results of cross-validation suggested an optimal 
value of 0.001 L1 penalty on weights starting from the second layer. The 
model used sigmoid activation function by design and cross-validated 
batch normalisation. The “keras” package in R was used for running 
ANN. 

Similar to the RF, ANN can incorporate nonlinear associations and 
interactions. In recent years ANN gained popularity for its high pre-
dictive performance in various fields. The main disadvantages of the 
ANN are the high computational cost and poor interpretability. 

3. Results 

3.1. Urban exposome and participants 

Most participants (n = 14,829) were female(55.8 %) and were on 
average 50.7 ± 9.4 years old. Over 70 % were employed and more than 
one third had a higher education(38.2 %). Most respondents were 
originally from the Netherlands(95.3 %) and were living with a partner 
(80.4 %). A total of 676(4.6 %) respondents had T2D (Table 2). 

The correlation plot (Fig. 1) shows that intragroup correlations 
(based on untransformed data) were the strongest between air pollutants 
and socio-demographic characteristics of neighbourhoods. Variables 
representing the quality of drinking water had the lowest inter- and also 
intragroup correlations. Moderate level correlations existed between air 
pollutants and neighbourhood built environmental and socio- 
demographic factors. Green space was negatively correlated with air 
pollutants. Descriptive statistics of the factors of urban exposome can be 
found in Table S5. 

3.2. Single exposure analysis 

Our univariate logistic regression results confirmed most of the 
established risk factors, such as air pollutants (oxidative potential of 
PM2.5 (DTT), potassium in PM10), neighbourhood SEP (neighbourhood 
average home values, high-income and low-income neighbourhoods), 
and urbanicity level. Despite the evidence from previous studies for an 
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association between outdoor noise, green space and T2D, our results did 
not confirm these associations. Among suspected risk factors, we found 
that surface temperature, heat island effect, and the share of non- 
Western immigrants in neighbourhood were associated with higher 
odds of having T2D. We also identified a few risk factors which were 
never studied before in relation to diabetes (sulphate in drinking water 
and neighbourhood proportion of divorced inhabitants). It should be 
noted that the p-values generally were not very low. Eight factors had p- 
values lower than 0.01, among which the average home values (p <
0.001), high-income neighbourhoods (p < 0.001), low-income 

neighbourhoods (p < 0.01), temperature (p < 0.01), share of non- 
Western immigrants (p < 0.01) and heat island (p < 0.01), share of 
divorced inhabitants (p < 0.01), urbanicity level (p < 0.01). An overview 
of results from the univariate analysis is given in Table 3 and Table 4. 

3.3. Multivariable analysis LASSO 

Similar to the results of the univariate analyses, LASSO showed that 
living in economically deprived neighbourhoods (low neighbourhood 
home values, low share of high-income residents) was associated with a 
higher risk of T2D. Living in areas with higher proportion of non- 
Western immigrants and higher surface temperatures was also related 
to a higher risk of T2D. Residents of highly urban areas had a higher risk 
of T2D as compared to residents from less urban areas (Table 4). 

Some other factors were identified by the LASSO, but were not 
selected after the stability selection procedure (Table 4, Table 5). From 
Table 4 it can be noted that the coefficients were generally low for all the 
factors. 

3.4. Multivariable analysis random forest 

Based on estimated variable importance from the RF model, four 
factors were selected: neighbourhood average home values, surface 
temperature, share of non-Western immigrants, and green space in 1 km 
buffer. Lower neighbourhood SEP and higher proportion of non-Western 
immigrants were related with a higher risk of T2D. In Shapley plots, the 
associations with temperature and green space appeared non-linear 
(Fig. 2). Similar to the coefficients from LASSO, relative effect sizes 
were generally low for all predictors, as indicated by the Shapley plots 
(Fig. 2). 

3.5. Multivariable analysis ANN 

The higher prediction error rate from the nested cross-validation of 
ANN indicated poor performance of this model. For comparison, the 
average logLoss from an empty model (random classification into two 
groups) was 0.186(0.0006) and for the ANN: 0.177(0.006). The per-
formance of the ANN was thus only slightly better than the random 
classification. In addition, comparison of logLoss estimated during 
hyper-parameter tuning on the inner folds (0.173) to that obtained on 

Table 2 
Characteristics of the participants from baseline data of Occupational and 
Environmental Health cohort (AMIGO).  

Characteristics Complete cases Mean ± SD or n(%) 

Diagnosed T2D 14,410 (97.2 %)  
Yes  676 (4.6 %) 
No  13,734 (92.6 %) 

Age 14,829 (100 %) 50.7 ± 9.4 
Sex 14,829 (100 %)  

Female  8268 (55.8 %) 
Male  6561 (44.2 %) 

Country of origin 14,829 (100 %)  
Netherlands  14,127 (95.3 %) 
Other  702 (4.7 %) 

Country of birth of mother 14,793 (99.8 %)  
Netherlands  13,750 (92.9 %) 
Other  1043 (7.1 %) 

Country of birth of father 14,787 (99.7 %)  
Netherlands  13,776 (93.1 %) 
Other  1011 (6.8 %) 

Civil state 14,805 (99.8 %)  
Having a partner/being married  11,902 (80.4 %) 
Not having a partner  2903 (19.6 %) 

Education 14,820 (99.9 %)  
Low/Medium  9164 (61.8 %) 
High  5656 (38.2 %) 

Employment status 14,829 (100 %)  
Employed  10,641 (71.8 %) 
Unemployed  4167 (28.2 %) 

Smoking 14,806 (99.8 %)  
Yes  2322 (15.7 %) 
No  12,484 (84.2 %) 

T2D = Type 2 diabetes. 

Fig. 1. Spearman correlations between constructs of exposures from the urban exposome.  
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the outer folds (0.177) suggests possible overfitting of the model. For 
these reasons, we do not report results of the ANN in detail. 

3.6. Comparison of the predictive performances and sensitivity analysis 

Prediction error from the nested cross validation was lowest for the 
LASSO, when compared to RF and ANN. Average logLoss(sd) error 
across the outer folds was 0.168(0.003) for LASSO, 0.172(0.001) for RF 
and 0.177(0.006) for the ANN. Although the absolute value of the 

Table 3 
Results from the univariate analysis (EXWAS). All models were adjusted for 
individual confounding factors that were also used in all multivariate analysis. 
The exposures in all models were standardized(z-transformed).  

Exposures Estimate Standard 
error 

z- 
value 

p-value 

Established risk factors     
Average value of houses 

(×1000 euros) 
− 0,1938 0,0463 − 4,19 <0.001*** 

Inhabitants with income below 
40th percentile 

0,1156 0,0429 2,69 0,0071** 

Inhabitants with income above 
20th percentile 

− 0,1716 0,0455 − 3,77 <0.001*** 

Number of total passenger cars − 0,0315 0,0421 − 0,74 0,4554 
Road traffic noise (Lden > 55 

dB) 
0,0647 0,0874 0,74 0,4589 

Green space (NDVI) 100m 
buffer 

− 0,0663 0,0419 − 1,58 0,1138 

Green space (NDVI) 1000m 
buffer 

− 0,0654 0,0429 − 1,52 0,1277 

Degree of urbanicity 
(categories from 1 (high) to 5 
(low)) 

− 0,0971 0,0327 − 2,97 0,003** 

NO2 (µg/m3) 0,0475 0,0413 1,15 0,2501 
NOx (µg /m3) 0,0317 0,0398 0,80 0,4252 
PM2.5 absorbance (10− 5m− 1) 0,0045 0,0416 0,11 0,9147 
PM10 (µg /m3) 0,0211 0,0409 0,52 0,6065 
PM2.5 (µg /m3) − 0,0073 0,0414 − 0,18 0,8602 
PM coarse (µg /m3) 0,0165 0,041 0,40 0,6882 
Oxidative Potential 

(dithiothreitol) 
0,0873 0,0419 2,08 0,0375* 

Oxidative Potential (electron 
spin resonance) 

0,0475 0,0408 1,17 0,244 

UFP particle count (in cm3) 0,012 0,0416 0,29 0,7726 
Copper in PM10 (ng/m3) 0,0324 0,0399 0,81 0,4168 
Iron in PM10 (ng/m3) 0,0594 0,0402 1,48 0,1398 
Potassium in PM10 (ng/m3) 0,0872 0,0408 2,14 0,0325* 
Nickel in PM10 (ng/m3) − 0,018 0,0409 − 0,44 0,6601 
Sulphur in PM10 (ng/m3) 0,0023 0,0398 0,06 0,954 
Silicon in PM10 (ng/m3) 0,0513 0,0404 1,27 0,2045 
Iron in PM2.5 (ng/m3) 0,0548 0,0404 1,36 0,1741 
Potassium in PM2.5 (ng/m3) 0,0243 0,0398 0,61 0,5405 
Sulphur in PM2.5 (ng/m3) 0,0384 0,04 0,96 0,3374 
Silicon in PM2.5 (ng/m3) − 0,0016 0,039 − 0,04 0,9676  

Suspected risk factors     
Temperature 0,1194 0,0435 2,75 0,006** 
Heat island effect 0,1143 0,0413 2,77 0,0057** 
Electric light at night (NanoW/ 

cm2/sr) 
− 0,0011 0,0418 − 0,03 0,9785 

Neighborhood inhabitants 
aged 0–14 years 

− 0,0675 0,0457 − 1,48 0,1396 

Neighborhood inhabitants 
aged 15–24 years 

− 0,042 0,0448 − 0,94 0,3484 

Neighborhood inhabitants 
aged 25–44 years 

0,0367 0,0441 0,83 0,4045 

Neighborhood inhabitants 
aged 45–64 years 

− 0,0154 0,0436 − 0,35 0,7232 

Neighborhood inhabitants 
aged 65+ years 

0,0341 0,0406 0,84 0,4001 

Single inhabitants in 
neighborhood 

− 0,0513 0,0454 − 1,13 0,2582 

Married inhabitants in 
neighborhood 

− 0,0341 0,0428 − 0,80 0,4262 

Divorced inhabitants in 
neighborhood 

0,1294 0,04 3,24 0,0012** 

Widowed inhabitants in 
neighborhood 

0,0665 0,0378 1,76 0,0787 

One-person households 0,0555 0,0412 1,35 0,1778 
Inhabitants with western 

origins 
0,0807 0,0408 1,98 0,0478 

Inhabitants with non-western 
origins 

0,1305 0,0402 3,24 0,0012** 

Distance to healthy food outlets − 0,0532 0,0459 − 1,16 0,2469 
Healthy food outlets in 5km 

buffer 
0,0424 0,0424 1,00 0,3173  

Table 3 (continued ) 

Exposures Estimate Standard 
error 

z- 
value 

p-value 

Non-healthy food outlets in 
1km buffer 

− 0,0125 0,0424 − 0,30 0,7679  

Unknown risk factors     
Aluminium (µg/l) − 0,0751 0,0442 − 1,70 0,0893 
Mangan (µg/l) − 0,7592 0,4581 − 1,66 0,0975 
pesticide: Mecoprop (µg/l) 0,2566 0,2604 0,99 0,3243 
Sulphate (mg/l) − 0,0888 0,0418 − 2,12 0,0337* 

*p-value < 0.05, **p-value < 0.01, ***p-value < 0.001. 

Table 4 
Cross-classification of the findings across statistical methods and previous evi-
dence from literature as reported in the systematic review by Beulens et al. 
(2022).  

Statistical 
method 

Findings among the 
established risk 
factors 

Findings 
among the 
inconsistent 
risk factors 

New findings 

Univariate 
analysis by 
Logistic 
regression 

1. Neighbourhood 
SEP (average home 
values*, high- income 
neighbourhood*, low- 
income 
neighbourhood*) 
2. Urbanicity level*4. 
Air pollution  
(oxidative potential of 
PM2.5 (DTT), 
potassium in PM10)  

1. Temperature* 
2. Heat island* 
3. Non-Western 
immigrants*  

1. Sulphate in 
drinking water 
(mg/l) 
2. Proportion of 
divorced 
inhabitants*   

Multivariate 
analysis by 
LASSO 

1. Neighbourhood 
SEP (average home 
values*, high- income 
neighbourhood) 
2. Urbanicity level 
3. Absorbance of 
PM2.5 

1. Temperature* 
2. Non-Western 
immigrants 

1. 15–24 years old 
inhabitants of 
neighbourhood(%) 
2. Single 
inhabitants in 
neighbourhood 
(%) 
3. Sulphate in 
drinking water4. 
Mecoprop 
(herbicide)  
in drinking water 

5. Aluminium in 
drinking water 
6. Manganese in 
drinking water 

Multivariate 
analysis by 
RF  

1. Average home 
values*2. Green space  
(100 m and 1 km*) 
3. Iron in PM2.5 

1. Temperature* 
2. Heat Island 
2. Non-Western 
immigrants* 

1. Proportion of 
divorced 
inhabitants 
2. Electric light at 
night 

For random forest approach presented exposures are the top 10 important ex-
posures. 
SEP = Socio-economic position; RF = Random Forest; DTT = dithiothreitol. 

* Indicates the factors for which the p-values were lower than 0.01 in single- 
exposure models, the factors that were selected after the stability selection in 
LASSO and the factors that had the highest variable importance scores in RF, as 
identified on scatterplot. 
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average logLoss of RF was higher as compared to LASSO, the small 
standard error indicated on the possibility that the RF model was more 
stable. 

The sensitivity analysis where eight participants with unknown type 
of diabetes who reported being diagnosed at <40 years old, were not 
considered as cases of T2D, showed very similar results for the univar-
iate analysis, LASSO and RF (data not shown). 

4. Discussion 

We analysed a large set of environmental factors from the urban 
exposome as one complex system to identify the strongest predictors of 
T2D. Furthermore, we used univariate logistic regression to compare our 
findings with the knowledge from the literature, given that previously 
published studies mostly focused on single exposures without account-
ing for other related factors. Our univariate analyses based on known 
and suspected risk factors confirmed the associations of air pollution 
(oxidative potential of PM2.5 (DTT), potassium in PM10), urbanicity 
level, neighbourhood socio-economic position (SEP) (neighbourhood 
average home values, high- and low- income neighbourhoods), surface 
temperature and the share of non-Western immigrants in the neigh-
bourhood with T2D risk, but not for road traffic noise and green space. 
The analyses in an agnostic framework (multivariable models of 85 
exposures) identified associations for neighbourhood average home 
values, surface temperature, neighbourhood share of non-Western im-
migrants and green space in 1 km buffer. The factors with lower variable 
importance score (RF) or probability of selection (LASSO) were less 
consistent as they fluctuated between model runs. 

Some known risk factors (air pollutants), which were identified in 
the univariate model, had more modest effects in more complex multi-
variable models. This may be because these risk factors have relatively 
small effects and do not add significantly to the predictive performance 
of the model. It could also be that they were falsely identified in previous 
research since other variables were not considered at the same time. The 
latter is possible, but as correlation patterns are likely to be different in 

Table 5 
Results from the penalised regression: LASSO.  

Variables Beta 
coefficients 

Probability of 
selection1 

Average home values − 0,2911 0,93* 
Temperature (C◦) 0,0316 0,89* 
Urbanicity level: 2 (high) 0,1719 0,84 
Non-Western immigrants (%) 0,0412 0,7 
High income neighbourhood (%) − 0,0073 0,53 
Urbanicity level: 4 (low) − 0,0544 0,38 
15–24 years old inhabitants (%) − 0,0594 0,35 
Sulphate in drinking water (mg/l) − 0,0011 0,32 
Aluminium in drinking water (µg/l) − 0,0116 0,28 
Mangan in drinking water (µg/l) − 0,0685 0,16 
Mecoprop (herbicide) in drinking 

water (µg/l) 
0,0678 0,16 

Single inhabitants in neighbourhood 
(%) 

− 0,1802 0,16 

Absorbance of PM2.5 − 0,0636 0,05  

1 Maximum of selection probabilities after the stability selection procedure. 
* Selected factors after the stability selection procedure. 

Fig. 2. Shapley plots of the top predictors of RF model. It shows the average effect of each predictor on the predicted outcome.  
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each study, the chances are low that they would always result in the 
same bias. It should be noted that only a few risk factors were selected 
(stability selection-LASSO and scatterplot-RF) in both multivariable 
models, perhaps arguing for the small effect sizes. However, these re-
sults suggest that confounding by other risk-factors could be important. 

The results of this study show that neighbourhood SEP and socio- 
demographic characteristics are associated with T2D. The negative as-
sociation with neighbourhood SEP is largely supported by earlier 
studies, but little is known on the question of neighbourhood socio- 
demographic factors like the share of immigrants (Beulens et al., 
2022). The share of non-Western immigrants is a multi-component 
factor. It contains elements of SEP, social and cultural interactions, 
eating behaviours and other genetic or biological factors, which could 
influence the risk of T2D. For example, South-East Asians have a higher 
genetic or biological risk of developing T2D for the same level of body 
mass index or waist circumference (Chan et al., 2014; Meeks et al., 2016; 
Yoon et al., 2006). Some relate this risk to the propensity to store fat 
viscerally rather than subcutaneously, the higher degree of insulin 
resistance, and the lower beta-cell function (Yoon et al., 2006). In our 
study the models were adjusted for the participant’s and their parents’ 
countries of origin in a crude way (Dutch vs non-Dutch), therefore we 
cannot exclude that this finding is reflecting the higher genetic/bio-
logical risk for T2D in certain ethnic groups. 

We observed a nonlinear association with surface temperature, 
which was also seen in the univariate analysis and LASSO (Fig. 2). The 
association was positive in linear models, but took a parabolic shape 
with highlighted extreme values on Shapley plots for RF. This discrep-
ancy brings uncertainty for the interpretation of this association. To gain 
more insight on the nature of this association, we compared Shapley 
plots with multivariable generalised additive model splines, which 
showed a rather positive association (Fig.S1). More longitudinal studies 
are required to confirm the potential association and measure the role of 
temperature heat extremes for diabetes. 

The plotted association for the density of green space (1 km) looked 
similar to the plot of temperature (Fig. 2). Recent systematic reviews and 
meta-analysis showed that green space has been associated with 10–20 
% lower risk of T2D (Beulens et al., 2022; Bilal et al., 2018; Dendup 
et al., 2018). The mechanism of association might be related to walk-
ability and more physical activity, but green space is also related with 
reduced air pollution, noise and heat, compensating possible harmful 
effects. Furthermore, the density of green space is related with urban-
icity level and other characteristics of the built environment. These in-
terrelations with different aspects of the urban exposome could perhaps 
explain this nonlinear relationship (Fig. 2, Fig.S1). 

The oxidative potential of PM2.5 (DTT), potassium in PM10, the 
absorbance of PM2.5 and the iron in PM2.5 were identified by univariate 
and multivariable models, but none of these pollutants were selected. 
Although our univariate analysis did not find associations with PM2.5, 
PM10 and NO2, a large meta-analysis showed a positive association with 
these risk factors (Yang et al., 2020). Current evidence suggests that air 
pollution might change endothelial function, trigger inflammation and 
insulin resistance (Beulens et al., 2022; Yang et al., 2020). An expla-
nation for the differences observed between our univariate and multi-
variate models could be that there is a lack of studies exploring 
combinations of pollutants and other related factors. Another possible 
explanation could be that the effect sizes of these pollutants and also the 
contrast in our data sample were too small, therefore do not contribute 
to the predictive performance of the models. 

Nested cross validation allowed the comparison of nearly unbiased 
estimates for model performance, because the final model performance 
evaluation was done on the holdout test set, which was not used during 
the training process. Surprisingly, our analysis showed that the predic-
tive accuracy of the ANN model for our data was lower as compared to 
other multivariable methods. It should be noted that we only trained a 
regular feed-forward ANN. It is possible that ANNs with different ar-
chitectures could have had a better performance. 

Despite the increasing popularity of ANNs in a wide range of fields, in 
this setting, with many weak predictors and very imbalanced data (due 
to low prevalence of diabetes (<5%)), more simple methods like 
penalized regression may perform better. ANNs have been developed to 
learn from the data and are very powerful in strong predictive tasks, 
such as image or text processing. Considering ANN’s computational 
burden, the need for a lot of data and difficulties in the training, in an 
exposome context it is perhaps better to use alternative methods with 
similar properties for dealing with multiple interrelated factors with 
complex nonlinear or non-additive associations. 

Our study was based on data from a large, nationwide cohort 
enriched with a wide variety of urban exposome risk factors. All expo-
some factors were analysed simultaneously, using RF next to penalized 
linear model LASSO, to identify potential nonlinear and non-additive 
associations. Our study has several limitations. First, the lack of avail-
ability of the timing of T2D diagnosis and the cross-sectional design is 
limiting causal interpretation of the findings, as the temporal link cannot 
be established between the exposures and the outcome. Second, the 
AMIGO cohort study has a potential limitation by selection bias, given 
the low participation rate (<16 %). Slottje et al. compared the baseline 
and health-related characteristics of study participants with the source 
population. They found no consistent indications of systematic health- 
related participation bias, but men below 50 years of age and those 
with an intermediate level of education were under-represented among 
cohort members, while those born in the Netherlands were over- rep-
resented, probably in part due to the fact that the questionnaire was in 
Dutch. However, the authors concluded that given the achieved contrast 
between sociodemographic, environmental factors and the results of the 
health-related bias analysis, limited differences with the source popu-
lation are not a major concern for the internal validity of the study and if 
generalization to general adult population is desired, these results can be 
used for weighting purposes (Slottje et al., 2015). Third, the outcome 
measure as well as the confounding factors were assessed through self- 
reported questionnaire data, which is prone to errors and to the bias 
of desirable reporting. However, studies show that self-reported T2D is a 
valid measure in large-scale epidemiological studies (Li et al., 2020; 
Pastorino et al., 2015; Sluijs et al., 2010). In addition, we performed a 
sensitivity analysis excluding participants with unknown type of dia-
betes and age at diagnostic less than 40 years (potentially misclassified 
as T2D), which generated similar results. Fourth, the environmental 
factors were a mixture of modelled and measured factors, likely con-
taining both types of measurement errors: classical and Berkson’s error 
(Agier et al., 2020). In general terms, this means that the sensitivity of 
models is lower for highly variable factors (if we repeat the exposure 
assessment several times, those with the lowest intra-class coefficient of 
correlation) compared to factors that are more stable over time (Agier 
et al., 2020; Ohanyan et al., 2022). 

This study is one of the first to investigate the relations of various 
stressors from the urban exposome and the risk of T2D. Neighbourhood 
socio-economic and socio-demographic characteristics, surface tem-
perature, urbanicity, and green space were related with the prevalence 
of T2D. Although effect sizes were small, on the population level the 
impact of these factors could be substantial. Therefore, targeted policy 
approaches that address socio-economic disparities on neighbourhood- 
level and measures for a better urban planning with more green areas 
could help to improve public health. 
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Mosler, G., Nádor, G., Nieuwenhuijsen, M., Pershagen, G., Peters, A., Phuleria, H., 
Probst-Hensch, N., Raaschou-Nielsen, O., Quass, U., Ranzi, A., Stephanou, E., 
Sugiri, D., Schwarze, P., Tsai, M.Y., Yli-Tuomi, T., Varró, M.J., Vienneau, D., 
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