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Similarity measures are used in many applications, 
from comparing and searching for images to 
procedural content generation. They let us rank 
objects in order of similarity to a query, and they let 
us guide many search-based algorithms by telling 
us how good a chess move is, or how much our 
generated content resembles a given example. In 
this thesis, we specifically explore geometric 
similarity measures, which are used to quantify the 
resemblance between two geometric objects. We 
expand on the theoretical understanding of 
similarity measures, showing how the earth mover's 
distance can be approximated for a variety of 
simple geometric objects. We also find new 
applications for well-studied similarity measures by 
showing how the Hausdorff distance can be used 
to interpolate between two shapes, creating a 
morph. Additionally, we take a detour to study a 
new model of indeterminacy in graphs.
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Chapter 1

Introduction

Computers and automation continue to fulfil an increasingly important role in our
society. Advances in the research field of computer science are one of the driving
forces behind this, and theoretical computer science lays the foundation of this field.
In this subfield, we try to determine what it means for a problem to be solvable by a
computer, and identify which problems these are. We develop algorithms and data
structures that allow us to solve these problems in the best way possible. Here, “best”
can refer to a variety of aspects, such as speed, accuracy, and reliability. A major focus
is on mathematically proving that a given problem can be solved by a computer, or
proving that a given algorithm solves a problem optimally.

In computational geometry, we specifically study these questions for problems
with a geometric component. Instead of dealing only with abstract concepts such as
numbers and equations, we focus on cases where the objects we study are geometric.
The number of geometric problems we are interested in solving is virtually endless.
Here are some examples:

1. Calculate the area of a given polygon.
2. Given two locations in an environment with obstacles, calculate a shortest path

between them.
3. Given a set of items, calculate the box with smallest volume that they all can be

packed into.
4. Given a set of disks, determine if there is a point that lies in all of them.
5. Given a set of lines, find all the points at which two lines intersect.

As can be seen, some problems have very practical applications (1–3), while others
are more abstract (4, 5). Some can be relatively easily solved (1, 4, 5), while others
have been studied for decades (2, 3).
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6 Chapter 1 Introduction

In all the above cases, the problem can be solved by an algorithm. An algorithm is
a formal specification of a sequence of steps that can be followed in order to find the
solution to a given problem. Algorithms are meant for human consumption: they are
written down in a way that allows humans to interpret and analyse them. However,
due to their formal nature, they are usually well-suited to being converted into a
program that can be executed by a computer.

Let us consider problem number 4. Here, we are given a set of n disks C =
{c1, . . . , cn}, and are tasked with determining whether there is a point lying in all of
them. Observe that this equivalent to asking if the intersection ⋂i ci of all the disks
is non-empty. We can use a theorem due to Helly [62] to help us: if each triple of
three disks has a non-empty intersection, then the entire set of disks has non-empty
intersection. We can now give an algorithm to solve problem 4: look at all (n3) triples
of disks, and determine if their intersection is empty or not. If any of the intersections
is empty, then ⋂i ci = ∅. If none of the intersections are empty, then ⋂i ci ̸= ∅.

In some cases, we may not necessarily be interested or able to compute the exact
solution to a problem, but instead are satisfied with approximating the solution.
Consider, for instance, problem number 2. Due to the complexity of the obstacles,
it may be difficult to compute the shortest path exactly. At the same time, for most
practical applications, we may not care much if the calculated path is a little bit longer
than the shortest path. In such cases, we can use approximation algorithms. There are
several types of approximation algorithm. The approximation may introduce some
absolute error x, such that, if OPT is the cost of an optimal solution, the approximation
algorithm calculates a solution with cost at most OPT + x. The error may also be
multiplicative. A constant-factor approximation algorithm calculates a solution with
cost at most c · OPT, for some fixed constant c. In some cases, the user can specify
the desired accuracy of the approximation. One such case is a (1 + ε)-approximation,
where the algorithm, given some constant ε > 0, calculates a solution with cost at
most (1 + ε) · OPT. Note that it is possible to combine these concept: we might
have an algorithm that calculates a solution with cost (1 + ε) ·OPT+ x. We will see
such algorithms later in Chapter 2. For a more detailed overview of approximation
algorithms as they apply to computational geometry, see Har-Peled’s book [59].

In many cases, we are not only interested in the existence of an algorithm to solve
a particular problem, but we also want to solve the problem as efficiently as possible.
However, as an algorithm is not an actual computer program, we cannot measure
how long it takes to compute the solution. Still, we want to be able to compare the
efficiency of different algorithms. For this, we typically perform asymptotic analysis:
we analyse how the performance of the algorithm scales as the size of the input
becomes very large. A common tool we use here is “big-Oh notation”. We say that a
function f(n) ∈ O(g(n)) if there is some constant c and some number n0 such that
f(n) ≤ c · g(n) for all n > n0. This notation lets us focus on the most important terms
in the running time of an algorithm. For instance, one algorithm for problem 4 might
require 4n3 + n2 + 16n+ 238 steps to compute the solution, while another may take
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16n3 + 8 steps instead. Using big-Oh notation, both of these have a running time of
O(n3), which indicates that we expect the performance of the two algorithms to scale
roughly the same as the size of the input increases. However, a different algorithm
may require 7n2 log n steps to solve the same problem. This algorithm would have
an asymptotic running time of O(n2 log n): we expect it to scale better as the input
size increases.

A final word about the analysis of algorithms. Many algorithms require a different
number of steps to compute the solution depending on the input, even for inputs
of equal size. For example, the insertion sort algorithm for sorting a sequence of
numbers takesO(n) time to “sort” an already sorted sequence, but takesO(n2) time if
the input is sorted, but in reverse. There are several ways to analyse such algorithms.
We typically focus on the input that exhibits the worst running time, leading to what
is known as worst-case analysis. However, other approaches exist: we may instead
calculate the average running time over all possible inputs (average-case analysis),
or analyse the average running time over a sequence of computations (amortised
analysis). For a full overview of the design and analysis of algorithms, the reader is
referred to one of the many excellent textbooks on the subject, see e.g. [40, 74, 76].

When the problem is very well defined, as in the examples above, it can often be
solved optimally or approximately by an algorithm. However, there are many types
of problems for which it is not clear how an optimal or even approximate solution
can be calculated directly. Consider, for instance, the following example problems:

6. Given a chess position, determine the best move.
7. Given an example of a 3Dmodel of a tree, generate new tree models of the same

species.
8. Given an image, retrieve similar images from a database.

In these cases, it is not always possible to solve the problem optimally. In fact, in
many of these cases, it is not even clear what “optimal” means. Is there a chess move
that is objectively the best in a given position? An argument could be made in the
case that a checkmate is possible, but otherwise it is not so easy.

Many techniques can be applied to solving these more complex problems. We
might train an AI to learn good chess moves, or we might use genetic programming
to generate a procedure for instantiating new tree models. These approaches typically
need someway of describing how good a given solution is. For chess, wemight devise
an evaluation function that estimates how good a given position is. This evaluation
function can then be used to search the space of possible moves more efficiently. For
tree generation and image retrieval, we might devise a function that determines how
similar a given model is to the input. This similarity function can then be used to
steer the evolutionary process, or to sort the images in the database on similarity.

In all three cases, we want to come up with a function that somehow determines
the quality or similarity of a given object, whether that is a chess move, a procedural
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model, or a given image. Two mathematical concepts are central to such functions:
measures and metrics. At a high level, measures assign a number to an object that
reflects some property of that object. Typical everyday examples include the number
of items in a collection, or the volume of an object. Metrics, on the other hand, assign
a number to a pair of objects. Metrics typically reflect some notion of distance or
similarity between objects. Typical everyday examples include the shortest distance
between two points, or the time it takes to travel from one location to another.

Let us define these concepts more formally. LetX be a set, and letΣ be a collection
of subsets ofX .1 A function µ : Σ → R is said to be a measure if and only if it satisfies
the following properties:

1. ∀E ∈ Σ : µ(E) ≥ 0 (non-negativity);
2. µ(∅) = 0 (null empty set);
3. For all countable collections E of pairwise-disjoint elements of Σ, µ(⋃E∈E E) =∑

E∈E µ(E) (countable additivity).
A function that fulfils only the second and third conditions is also called a signed
measure. The triple (X,Σ, µ) is called a measure space. When µ(X) = 1, we call it a
probability measure. A common measure is the Lebesgue measure, which includes
length, area and volume, and its generalisations to higher dimensions.

A function d : M ×M → R is said to be a metric if and only if it satisfies the
following properties:

1. ∀x, y ∈M : d(x, y) = 0 ⇔ x = y (identity of indiscernibles);
2. ∀x, y ∈M : d(x, y) = d(y, x) (symmetry);
3. ∀x, y, z ∈M : d(x, y) ≤ d(x, z) + d(z, y) (triangle inequality).

Non-negativity (i.e. d(x, y) ≥ 0) can be derived from these three properties, and is
therefore usually not included as a separate requirement. A function that replaces
the first condition with a weaker d(x, x) = 0 is called a pseudometric. A combination
(M,d) of a setM and a metric d on that set is called a metric space. Depending on the
application, metrics are sometimes (somewhat confusingly) called distance measures
or similarity measures, although the terms are not always interchangable. In particular,
there exist certain similarity measures that are not actually proper metrics. We do
not study these cases in this thesis.

In many cases, the set M has some intrinsic notion of distance: the distance
between two elements x and y is the length of the shortest path between them. A
metric that is always equal to this length is called an intrinsic metric. Examples of
intrinsic metrics include the Euclidean distance in Rn and the great-circle distance on
the n-dimensional hypersphere Sn.

1Technically, Σ should be a σ-algebra, meaning it should be closed under complementation and count-
able unions and intersections, but this distinction is not important for our purposes.
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Figure 1.1: The Hausdorff distance from A (red) to B (blue), and vice versa. (a)
shows both directed Hausdorff distances. (b) shows the smallest value r such that
A ⊆ B ⊕Dr, and (c) shows the smallest value r such that B ⊆ A⊕Dr.

1.1 Hausdorff distance
One of the most widely used distance measures is the Hausdorff distance. Given two
shapes, it is the maximum shortest distance from any point on one shape to the other
shape. This can be formulated as an adversarial game: player one picks a point on
one of the shapes, and player two walks to the closest point on the other shape. The
Hausdorff distance between the two shapes is then the longest distance that player
two can be forced to walk.

More formally, for two sets A and B in some metric space (M,d), we define the
directed Hausdorff distance as

dH⃗(A,B) := sup
a∈A

inf
b∈B

d(a, b),

The undirected Hausdorff distance is defined as

dH(A,B) := max(dH⃗(A,B), dH⃗(B,A)).

A point a ∈ A is said to realise the Hausdorff distance if infb∈B d(a, b) = dH(A,B).
When the term Hausdorff distance is not qualified as directed or undirected, it is
usually referring to the undirected version. We adopt this convention throughout the
rest of this thesis.

An alternative, equivalent definition of the Hausdorff distance can be given as
follows. Given sets A and B, we can take the Minkowski sum B ⊕Dr of B with a
disk of radius r:

B ⊕Dr := {b+ d | b ∈ B, d ∈ Dr}.
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Figure 1.2: Very different shapes may have the same Hausdorff distance to the same
shape. In all three cases, the undirected Hausdorff distance between the red and the
blue shape is the same.

The directed Hausdorff distance dH⃗(A,B) from A to B is now the smallest value r
such that A ⊆ B ⊕Dr. The undirected Hausdorff distance dH(A,B) is the smallest
value r such that A ⊆ B ⊕Dr and B ⊆ A ⊕Dr. Both definitions are illustrated in
Figure 1.1.

Note that the Hausdorff distance is only a proper metric if we restrict A and B to
be compact sets. We can see this easily from the following example: let A be a disk,
and let B be the same disk with a single point removed. Clearly, dH(A,B) = 0, but
A ̸= B. This violates the identity of indiscernibles, which is required for a metric.
However, if C(M) is the set of all non-empty compact subsets ofM , then (C(M), dH)
is itself a metric space.

As the Hausdorff distance between A and B depends only on the point that is
furthest away from the points in the other shape, it is categorised as a bottleneck
metric. In practice, this means that we can typically greatly modify A and/or B while
maintaining the same Hausdorff distance (see Figure 1.2 for some examples). While
this is not a desirable property for all applications, the simplicity of the Hausdorff
distance makes it easily computable for a wide variety of inputs.

The Hausdorff distance has been applied in many different settings, such as
computer vision [43] and computer graphics [16, 39], for tasks such as template
matching, and error computation between a model and its simplification. Much
of the research in computational geometry has focused on developing algorithms
to compute the Hausdorff distance between different types of objects, such as con-
vex polygons [18], points [46], line segments, polylines, and simple polygons [8],
simplices in k-dimensional Euclidean space [9], certain classes of curves [15], and
imprecise points [75]. However, computing the Hausdorff distance between general
semialgebraic sets has been shown to be ∀∃<R-complete [66].

Additionally, much attention has been devoted to minimising the Hausdorff
distance under certain transformations. Here we typically define some set of allowed
transformations T , and are given two sets A and B of some geometric objects. The
task is then to find the transformation T ∈ T that minimises dH(A, T (B)). This has
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been studied for point sets under translation [46, 65] or translation and rotation [38],
and polygons under rigid motions (translation, rotation and scaling) [8].

In Chapters 3 and 4, we study how the Hausdorff distance can be applied to the
morphing of shapes. In particular, given two shapes A and B with dH(A,B) = 1, we
investigate ways of finding a shape C that has dH(A,C) = α and dH(B,C) = 1− α
for any α ∈ [0, 1]. In Chapter 3, we consider the maximal shape that fulfils these
conditions, studying its geometric and combinatorial properties, and give algorithms
for computing it. We also consider a natural generalisation to the Hausdorff middle
of multiple sets, again studying properties and giving algorithms. This chapter is
based on work that previously appeared in:

M. van Kreveld, T. Miltzow, T. Ophelders, W. Sonke and J. L. Vermeulen.
Between shapes, using the Hausdorff distance. Computational Geometry,
100:101817, 2022.

In Chapter 4, we consider a different shape that fulfils the conditions, studying the
same properties and giving algorithms. We also give an extensive experimental
analysis comparing the two morphs. This chapter is based on work that previously
appeared in:

L. de Kogel, M. van Kreveld and J. L. Vermeulen. Abstract Morphing Using
the Hausdorff Distance and Voronoi Diagrams. Proceedings of the 30th Annual
European Symposium on Algorithms, pages 74:1–74:16, 2022.

1.2 Fréchet distance
As mentioned, one downside of the Hausdorff distance is that is can be unresponsive
to changes in the input sets that do not affect the points realising the Hausdorff
distance. A distance measure that partially alleviates this problem is the Fréchet
distance. The Fréchet distance is classically defined between two curves, although
other versions exist. Intuitively, the Fréchet distance considers the maximum distance
that two points attain while moving over each of the curves. The usual metaphor
is that of a person walking a dog: each has a curve describing the path they take,
but they can speed up and slow down as desired. The question is what the shortest
possible leash is that allows the walk to be completed.

We now give a formal definition. Let A,B : [0, 1] →M be two curves. We say that
α : [0, 1] → [0, 1] is a reparameterisation of a curve if it is a continuous, non-decreasing
function. The Fréchet distance dF (A,B) between A and B is then defined as

dF (A,B) := inf
α,β

max
t
d(A(α(t)), B(β(t))),

where α and β are reparameterisations, and d denotes the distance function of metric
space M. For any pair of reparameterisations, we consider the maximum distance
attained while traversing both curves. We then take the reparameterisation that
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ε

A

B

A

B

Figure 1.3: The free space diagram shows the valid configurations of points on
polylines A and B for a given leash length ε. The grid denotes the vertices of each
polyline, with the width/height of each cell proportional to the length of the segment
on the polyline. White areas are configurations for which the leash length is sufficient,
grey areas are those where the leash is too short.

minimises this maximum distance. We can view the Fréchet distance as turning the
set of all curves in a metric spaceM into a metric space in its own right.

The typical tool for both reasoning about and calculating the Fréchet distance is
the free space diagram. For a given value ε ≥ 0, we define the following set:

Fε(A,B) := {(s, t) ∈ [0, 1]× [0, 1] | d(A(s), B(t)) ≤ ε}.

That is, Fε(A,B) is the set of configurations in which the person and the dog are
at most ε apart. It is then not hard to see that the decision version of the Fréchet
distance calculation (i.e. “is dF (A,B) ≤ ε?”) is equivalent to asking if there is an
xy-monotone path from (0, 0) to (1, 1) in Fε(A,B). Parametric search then lets us find
dF (A,B) using Fε(A,B) to solve the decision problem. An example of a free space
diagram is given in Figure 1.3.

Like the Hausdorff distance, the Fréchet distance is a bottleneck metric: it depends
only on the maximum distance attained during the traversal of both curves. This
can again mean that the distance between two curves is not affected by significant
modifications of one or both of the input curves. For example, a line segment A and
the same line segment B with a single spike of length x in the middle will have the
same Fréchet distance as two parallel line segments placed x apart. However, this
problem is less pronounced than with the Hausdorff distance, as even small changes
to the input may make a different reparameterisation more effective.

Many variants of the Fréchet distance exist. The weak Fréchet distance does not
require the reparameterisations to be non-decreasing, allowing one or both of the
traversals to backtrack. If the inputs are polylines, the discrete Fréchet distancemeasures
the distance only at the vertices, ignoring the length of the leash while travelling
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A

B

(a) (b)

Figure 1.4: (a) Two overlapping sets A (red) and B (blue). (b) Their intersection in
purple, and their symmetric difference in green.

between them. The homotopic Fréchet distance [36] requires all the shortest paths
between A(α(s)) and B(β(t)) to be homotopic. The input is then augmented with
obstacles that the leash cannot cross.

Instead of taking the maximum leash length, we can also consider the sum of all
leash lengths. This is is referred to as dynamic time warping [26] when we consider
only the positions at the vertices, and has applications in signal processing. Recently,
the first polynomial time algorithm was found that computes the exact solution to
continuous dynamic time warping for 1D curves [34]. In this setting, we integrate the
length of the leash during the entire traversal of the curves.

As the definition of the Fréchet distance requires the objects being compared to
be parameterised, algorithms are available only for objects that are already paramet-
erised, or allow a natural parameterisation. Besides simply computing the Fréchet
distance between two (polygonal) curves [13], work has been done in finding curves
in some set or domain that minimise the Fréchet distance. For instance, Har-Peled
and Raichel [60] show how to find two curves inside two simplicial complexes that
minimise the weak Fréchet distance. Similarly, Alt et al. [11] show how to find a path
in a geometric graph that minimises the Fréchet distance to a given polygonal curve.

The Fréchet distance has also been applied to higher-dimensional objects. Here
the decision problem is NP-hard, even when A and B are non-intersecting planar
polygons with holes or 2D terrains [32]. However, Alt and Buchin [10] show that the
weak Fréchet distance between surfaces can be computed in polynomial time.

1.3 Area of symmetric difference
While the Fréchet distance is more sensitive to changes in the input than theHausdorff
distance, it is still a bottleneck metric. For applications in which such a metric is
not suitable, we need metrics that depend on the entire input for their values. One
such metric can be obtained by considering the symmetric difference between two sets.
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A B C

Figure 1.5: The area of symmetric difference cannot differentiate between distinct
disjoint sets with the same area. In this example, d△(A,B) = d△(A,C) = d△(B,C).

Given two sets A and B, the symmetric difference A△B is defined as

A△B := (A ∪B) \ (A ∩B).

That is, it is the union of the parts of A and B that do not overlap. See Figure 1.4 for
an illustration.

If our sets live in a measure space (X,Σ, µ), then we can define a distance function
as follows:

d△(A,B) := µ(A△B).
For d△ to be a true metric though, we need to be somewhat careful with the types of
sets we consider. Similar to the Hausdorff distance, we need A and B to be compact,
as otherwise we could have d△(A,B) = 0 while A ̸= B. However, even for compact
sets, d△ may only be a pseudometric. Consider, for instance, taking B to be A plus
a single point outside of A. This set is compact, but will have the same Lebesgue
measure as A. One way to ensure d△ is a metric is by requiring that our sets are
bounded and equal to the closure of their interior.

The area of symmetric difference is not a bottleneck metric. However, it can still
assign the same distance to significantly different pairs of sets, particularly when
the sets are disjoint. Consider, for instance, two unit squares placed close together,
and two unit squares placed far apart. The area of symmetric difference will be 2
in both cases. See Figure 1.5 for an illustration. This is less of an issue when we
are interested in comparing shapes only, but is undesirable when the location of the
shapes is important.

There are two reasons we might be interested in finding a transformation that
minimises the area of symmetric difference. First, when we are only interested in
computing the similarity of shapes, as opposed to objects with some location, it seems
to make sense to normalise the input by finding the relative alignment that minimises
the distance. On the other hand, it may be that our task is precisely to align certain
objects. We could naively place the centroids on top of each other, but this may create
an unnatural alignment. A better approach may be to align the objects such that the
area of symmetric difference is minimised. Note that this is the same as maximising
the area of overlap.
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Figure 1.6: Oneway to look at the earthmover’s distance is to consider one distribution
(red) as piles of earth, and the other distribution (blue) as holes in the ground. The
question is then to level the ground by filling the holes with earth from the piles in
the most efficient way possible.

For convex shapes, aligning the centroids actually gives an 11/3-approximation
of the optimal area of symmetric difference [12]. Similarly, the area of the overlap is
at least 9/25 times the optimal area for convex polygons [24]. For general shapes, no
exact polynomial-time algorithm is known, although approximation algorithms do
exist for polytopes under rigid motion [5, 106].

1.4 Earth mover’s distance
The Hausdorff and Fréchet distance are bottleneck measures, and the area of symmet-
ric difference permits changes in the disjoint parts of the shapes without changing
the value of the metric function, as long as they have the same area. A metric that
has neither of these problems is the earth mover’s distance (EMD). The earth mover’s
distance is typically defined between two weighted point sets in the plane of equal
total weight. Its name derives from the following analogy: we can consider one of
the point sets to be a set of piles of earth, and the other point set to be a set of holes.
The weights of the points determine the height of the piles and the depth of the holes.
Moving some quantity of earth over some distance has a cost associated with it that
is the product of the amount of earth moved and the distance over which it is moved.
The task is then to find the most cost-efficient way to fill all the holes with the earth
from our piles. This is illustrated in Figure 1.6.

The general problemof optimallymoving a distribution ofmasswas first described
by Monge in 1781 [90], and was reformulated by Kantorovich in 1942 [69]. It is a
special case of the more general optimal transport problem. For a full treatment of
the problem’s history and connections to other areas of mathematics, the reader is
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referred to Villani’s book [107].
Let us now define the earth mover’s distance formally. Let P = {p1, . . . , pn} and

Q = {q1, . . . , qm} be two point sets in some metric space (M,d). Additionally, let µP
and µQ be two probability measures2 assigning a weight to each element of P and
Q, respectively. We define H to be the set of all mappings of weight from P to Q,
i.e. for a given η ∈ H , η(pi, qj) specifies how much mass moves from pi to qj . These
mappings are usually known as transport plans. We can then define the earth mover’s
distance de as follows:

de(P,Q) = min
η∈H

∑
i

∑
j

d(pi, qj) · η(qi, qj)

This is equivalent to a minimum cost flow problem in a Euclidean graph with P
as the sources and Q as the sinks. When all weights are equal, this simplifies to an
assignment problem, or finding a minimum-weight maximummatching in a bipartite
graph.

It is not necessary to restrict the definition of the earth mover’s distance to only
point sets. In fact, a generalised version called the Wasserstein metric has been studied
inmathematics. Let P andQ be two probabilitymeasures. The r-Wasserstein distance
is then defined as follows:

Wr(P,Q) = inf
η∈H

(∫
P

∫
Q

d(p, q)r · η(p, q) dp dq

)1/r

The parameter r lets us control the influence of the distance on the cost. Note that
our definition of de is equivalent toW1 when P and Q are finite point sets.

The earth mover’s distance has been widely applied in fields such as image re-
trieval [97], shape matching [57, 86, 103] and mesh reconstruction [54]. It has also
been studied in many geometric contexts. Agarwal et al. [2] give both exact and
approximation algorithms for the case where P and Q are point sets under some Lp
metric. For sets of points with integer weights, Khesin at al. [73] give two algorithms
running in O(nε−O(d) log(Λ)O(d) log n log(1/ρ)) and O(nε−O(d) log (U

O(d)
log(n/ρ)2)

time that compute a (1 + ε)-approximation with probability at least 1− ρ, where d is
the dimension, Λ the aspect ratio of the input, and U the total mass. This result was
improved by Fox and Lu [50], using a similar method to obtain, with high probability,
a (1 + ε)-approximation in O(nε−O(d) logO(d) n) time.

The EMD was also studied when the input sets may be transformed: Cabello et
al. [35] present algorithms that, given two weighted point sets of n andm points in
R2, compute a (1 + ε)-approximation of a translation that minimises the EMD, and a
(2 + ε)-approximation of a rigid motion that minimises the EMD. These algorithms
run in O((n2/ε4) log2 n) and O((n3m/ε4) log2 n) time, respectively.

2This ensures that the two measures have equal total measure, and simplifies some of the definitions by
giving a total measure of one.



1.5 Graph reconstruction 17

abc, bcd, cde =
a b c d e

abd, acd, bcd =
a

b
c

d

Figure 1.7: Two different sets of triples with their reconstructions. On the left, the
only graph consistent with this set of triples is a path of five vertices. On the right,
multiple graphs are possible: the solid edges plus any choice of at most one dotted
edge.

For continuous distributions, rather than discrete point sets, many numerical
algorithms are known (see e.g. De Goes et al. [53], Lavenant et al. [83], Mérigot [87,
88] and Solomon et al. [101]). For the case where one set consists of weighted points
and the other is a bounded set C ⊂ Rd, Geiß et al. [52] give a geometric proof that
there exists an additively weighted Voronoi diagram such that transporting mass
from each point p to the part of C contained in its Voronoi cell is optimal. The weights
of this Voronoi diagram can be determined numerically.

In Chapter 2, we describe the first algorithms that compute the earth mover’s
distance between geometric objects other than points with provable approximation
ratios. In particular, we give (1 + ε)-approximations for the case where P is a set of
points and Q is a set of line segments or triangles in R2. We also give approximation
algorithms where both P and Q are sets of segments or sets of triangles. In these
cases, there is an additional small additive term in our approximation ratio. Finally,
we show how to extend these results to higher dimensions, giving approximation
algorithms between points and simplices, as well as simplices and simplices, in Rd. A
preliminary version of this research appeared in

M. van Kreveld, F. Staals, A. Vaxman and J. L. Vermeulen. Approximating the
Earth Mover’s Distance between sets of points and line segments. Proceedings
of the 35th European Workshop on Computational Geometry, pages 24:1–24:6,
2019.

1.5 Graph reconstruction
In addition to the work on geometric similarity measures, we present results on an
unrelated topic in graph reconstruction.

Imagine that we get information on a graph, but not its complete structure by a
list of edges. One natural question that arises is whether we can determine the graph
uniquely based on this information. This type of problem is usually referred to as
graph reconstruction.

The problem of graph reconstruction arises naturally in many cases where some
unknown graph is observed indirectly. For instance, we may have some (noisy)
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measurement of the graph structure, or only have access to an oracle that answers
specific types of queries. Much previous research has been done for specific cases,
such as reconstructingmetric graphs from a density function [42], road networks from
a set of trajectories [4], graphs using a shortest path or distance oracle [68], labelled
graphs from all r-neighbourhoods [93], or reconstructing phylogenetic trees [30]. A
lot of research has been devoted to the graph reconstruction conjecture, which states
that it is possible to reconstruct any graph (up to isomorphism) from all subgraphs
obtained through the removal of one vertex [28, 82, 94, 108].

We explore the casewhere the input consists of all triples of verticeswhose induced
subgraph is connected. In other words, we know for each given triple of vertices that
two or three of the possible edges are present, but we do not know which ones. We
may be able to deduce the graph fully from all given triples.

As a simple example, assume we are given the (unordered) triples abc, bcd, and
cde. Then the only (connected) graph that matches this specification by triples is the
path a—b—c—d—e. On the other hand, if we are given all triples on four vertices
a, b, c, d except for abc, then there are several graphs possible. We must have the
edges ad, bd, and cd, and zero or one of the edges ab, ac, and bc. See Figure 1.7 for an
illustration.

This model of indeterminacy of a graph is perhaps the simplest combinatorial
model for partial information, a model that does not use probability. Normally a
graph is determined by pairs of vertices which are the edges; nowwe are given triples
of vertices with indeterminacy on the edges between them.

Manydifferent types of uncertainty in graphs have been studied. Fuzzy graphs [95]
are a generalisation of fuzzy sets to relations between elements of such sets. In a
fuzzy set, membership of an element is not binary, but a value between zero and
one. Fuzzy graphs extend this notion to the edges, which now also have a degree
of membership in the set of edges. Uncertain graphs are similar to fuzzy graphs
in that each edge has a number between zero and one associated with it, although
here this number is a probability of the edge existing. Much work has been done on
investigating how the usual graph-theoretic concepts can be generalised or extended
to fuzzy and uncertain graphs [70, 92]. Methods for drawing these types of graphs
have also been developed, see e.g. [98, 100].

In Chapter 5, we investigate the graph reconstruction model described above. We
show that for any set of triples, we can efficiently test whether a graph consistent
with the triples exists. We also show that this solution may not be unique in general,
but that several classes of graphs allow for unique reconstruction. We conclude by
studying which structures of the triples make the reconstruction not unique, although
a full characterisation currently eludes us. This chapter is based on unpublished joint
work with Jeff Erickson and Marc van Kreveld.



Chapter 2

Approximating the earth
mover’s distance between sets of
geometric objects

2.1 Introduction
The earth mover’s distance (EMD) is a metric that is widely used in fields such as
image retrieval [97], shape matching [57, 86, 103] and mesh reconstruction [54]. It
models two sets P and S as distributions of mass, and takes their distance de(P, S) to
be the minimum cost of transforming one distribution into the other, where cost is
measured by the amount of mass moved multiplied by the distance over which it is
moved. More formally,

de(P, S) = inf
η∈H

∫
P

∫
S

d(p, s) · η(p, s) dp ds

where H is the set of all mappings of mass between P and S and d(·, ·) is any metric.
In the case where P and S are finite sets of (weighted) points, we can rewrite this as

de(P, S) = min
η∈H

∑
p∈P

∑
s∈S

d(p, s) · η(p, s)

For unweighted point sets, the solution can be obtained by solving an assignment
problem; for weighted point sets, this is an instance of a minimum cost flow problem.

Recently, much attention has been devoted to computing the earth mover’s dis-
tance when both P and S are sets of points [2, 50, 73, 99]. In this chapter we expand
on this by letting P and S be sets of points, line segments, triangles or d-dimensional

19
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simplices in Rd. We describe a unified framework for calculating the EMD between
points and segments, points and triangles, points and simplices, segments and seg-
ments, triangles and triangles and simplices and simplices. Our approach provides
polynomial-time algorithms that give a (1 + ε)-approximation to the earth mover’s
distance between P and S, for some arbitrarily small ε > 0. Moreover, our algorithms
produce an assignment of mass that realises this cost. For triangles and simplices, the
running time also depends on the largest edge length (note that we normalise the total
area/volume of each set to one, so we cannot improve the running time by scaling the
input). When neither set consists of discrete points, there is a small extra additive
term in our approximation. For all our algorithms, our approach is to subdivide
the elements of the input into sufficiently small pieces, and then approximate each
piece by a point. The approximate optimal transport plan can then be obtained by
solving a transport problem on these points. Our results are summarised in Table 2.1.
Note that all our algorithms give the solution with high probability; this is simply
a consequence of using Fox and Lu’s algorithm [50] to solve the optimal transport
problem on points. Substituting a deterministic algorithm here would make our
results deterministic as well.

To our knowledge, these are the first combinatorial algorithms with a provable
approximation ratio for the earth mover’s distance when the objects are continuous
rather than discrete points. We give algorithms for moving mass from points to
segments (Section 2.5), points to triangles (Section 2.6), points to simplices (Sec-
tion 2.9.1), segments to segments (Section 2.7), triangles to triangles (Section 2.8)
and simplices to simplices (Section 2.9.2).

Objects Running time Additive term
Points to segments O

(
nm
εc polylog nm

ε

) -
Points to triangles O

(
nm
εc polylog nm∆

ε

) -
Points to simplices O

(
6dd2ddm+ 105dd2dd/2nm

εO(d) logO(d)
(
dnm∆
εd

)) -
Segments to segments O

(
nm
εc polylog nm

ε

)
O
(
ε
nm

)
Triangles to triangles O

(
nm∆(n+m)

εc polylog nm∆
ε

)
O
(

ε√
nm

)
Simplices to simplices O

(√
d(nm)1/d∆d(n+m)

εO(d) logO(d)
(
d(nm)1/d∆d

ε

))
O
( √

dε
(nm)1/d

)

Table 2.1: A summary of our results for different choices of sets P and S of sizes n
andm. d is the dimension, ∆ is the largest diameter of any element of the sets.
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2.2 Related work
The general problem of optimally moving a distribution of mass was first described by
Monge in 1781 [90], andwas reformulated by Kantorovich in 1942 [69]. It is known as
the earth mover’s distance due to the analogy of moving piles of dirt around; it is also
known as the 1-Wasserstein distance, and is a special case of the more general optimal
transport problem. For a full treatment of the problem’s history and connections to
other areas of mathematics, the reader is referred to Villani’s book [107].

The earth mover’s distance has been studied in many geometric contexts. Agar-
wal et al. [2] give both exact and approximation algorithms for the case where both
sets are points under some Lp metric. When both sets are weighted points, Khesin
at al. [73] give two algorithms running in O(nε−O(d) log(Λ)O(d) log n log(1/ρ)) and
O(nε−O(d) log (U

O(d)
log(n/ρ)2) time that compute a (1+ε)-approximationwith prob-

ability at least 1− ρ, where d is the dimension, Λ the aspect ratio of the input, and U
the total mass. However, their algorithm assumes that the point weights are integers,
whereas our weights can be arbitrary real numbers, as they correspond to lengths
and areas. This result was improved by Fox and Lu [50]. They used a similar method
to obtain, with high probability, a (1+ ε)-approximation in O(nε−O(d) logO(d) n) time.
The EMD was also studied when the input sets may be transformed: Cabello et
al. [35] present algorithms that, given two weighted point sets of n andm points in
R2, compute a (1 + ε)-approximation of a translation that minimises the EMD, and a
(2 + ε)-approximation of a rigid motion that minimises the EMD. These algorithms
run in O((n2/ε4) log2 n) and O((n3m/ε4) log2 n) time, respectively.

For continuous distributions, rather than discrete point sets, many numerical
algorithms are known (see e.g. De Goes et al. [53], Lavenant et al. [83], Mérigot [87,
88] and Solomon et al. [101]). For the case where one set consists of weighted points
and the other is a bounded set C ⊂ Rd, Geiß et al. [52] give a geometric proof that
there exists an additively weighted Voronoi diagram such that transporting mass
from each point p to the part of C contained in its Voronoi cell is optimal. The weights
of this Voronoi diagram can be determined numerically.

De Goes et al. [54] discuss a problem similar to our own, but in the context of the
reconstruction and simplification of 2D shapes. Given a set of points, they want to
reconstruct a simplicial complex of a given number of vertices that closely represents
the shape of the point set. They start with computing the Delaunay triangulation
of the point set, then iteratively collapse the edge that minimises the increase in
the EMD between the point set and the triangulation. They use a variant of the
EMD in which the cost is proportional to the square of the distance (2-Wasserstein
distance). This allows them to calculate this variant of the EMD between a given set
of points and a given edge of the triangulation exactly, as the squared distance can be
decomposed into a normal and a tangential component. However, they determine
the assignment of points to edges heuristically. In this work, we show how to obtain
a (1 + ε)-approximation to the true optimal solution.
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2.3 Preliminaries
We are given a set of points P = {p1, . . . , pn} in the plane with weights |pi| and a
set of geometric objects S = {s1, . . . , sm}, with lengths, areas or volumes |sj |. It
is given that∑ |pi| =

∑
|si|. We assume the mass associated with an object si is

distributed uniformly over the object, and that all objects have the same mass density.
For convenience, and without loss of generality, we scale the input such that the total
mass in either set is one. We want to compute a “transport plan” of mass from P
to S that minimises the cost according to the earth mover’s distance. We define for
each pair (pi, sj) ∈ P × S a function ηi,j(x, y), that describes the density of mass
being moved from pi to the point (x, y) ∈ sj . All these functions together describe the
function η used in the definition of de(A,B). Such a set of functions needs to satisfy
the following conditions to be a valid transport plan:

∀i, j : 0 ≤ ηi,j(x, y) ≤ 1

∀i :
m∑
j=1

∫
sj

ηi,j(x, y) dt = |pi|

∀j, (x, y) ∈ sj :

n∑
i=1

ηi,j(x, y) = 1

We can then define the cost of a given transport plan η as

|η| =
n∑
i=1

m∑
j=1

∫
sj

ηi,j(x, y) · d(pi, (x, y)) dt

where d(·, ·) is any metric. Our problem is to find a transport plan η∗ with minimal
cost.

In the following section, we give an exact algorithm to calculate an optimal trans-
port plan between a set of weighted points and line segments when d(·, ·) is the L1

metric. However, the approach we use does not seem to generalise to Euclidean
distances, objects with areas, or even two sets of segments. This motivated us to look
towards approximation algorithms for more general versions of the EMD problem.
In the rest of this chapter, we describe approximation algorithms and only consider
the case where d(·, ·) is the L2 metric.

2.4 Points to segments under the L1 metric
When S is a set of line segments and distances are measured by the L1 metric, we
can solve the problem exactly by a convex quadratic program. We first subdivide
all segments on the x- and y-coordinates of the points; call the set of subdivided
segments Q = {q1, . . . , qk}. Note that the horizontal and vertical strip induced by
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Xj,3Xj,2
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Figure 2.1: The regions of points for one subsegment qj , and the parts of the segment
they assign their mass to.

each segment is now empty of points, while the axis-aligned quadrants starting at
each corner of its bounding box may contain points; see Figure 2.1 for an illustration.
LetQ1 be the set of segments inQwith slope between−1 and 1, and letQ2 beQ \Q1.

We can now label the quadrants of points for each segment qj : let Xj,1 and Xj,2

be the quadrants to the left of qj , withXj,1 being the quadrant starting at the leftmost
endpoint of qj , and Xj,2 being the other. Similarly, let Xj,3 be the quadrant starting
at the rightmost endpoint of qj , and let Xj,4 be the other quadrant on the right. In
case of a horizontal or vertical segment, Xj,2 and Xj,4 are simply merged into Xj,1

and Xj,3, and it does not matter if Xj,1 is the top or bottom quadrant.
For all points in P , the L1 distance to any point on the segment qj is the same as

the distance via one of the corners of the axis-aligned bounding box of qj . Therefore,
for each quadrant, we can separately consider the cost to reach the bounding box
of qj with a certain amount of mass, and the cost to spread that mass out over the
segment. Furthermore, the order in which a segment receives mass from the different
quadrants in an optimal solution is fixed depending on its slope, see Figure 2.1. A
simple swapping argument shows that the cost of an assignment not following this
order can be decreased by making it follow the order.

Let ui,j be the variable representing the amount of mass moved from pi to qj , let
di,j be the precomputed distance from pi to the bounding box of qj , letWj and Hj

be the width and height of the bounding box of qj , and let wj and hj be constants
such that wj · ℓ is the absolute difference in x-coordinate when moving a distance
of ℓ along segment qj , and hj · ℓ is the absolute difference in y-coordinate. Writing∑
pi∈Xj,1

ui,j as xj,1 for convenience, for a given segment qj ∈ Q1 we can write the
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qj

hj
1
2xj1

hj(xj1 +
1
2xj2)wj

1
2xj1

wj(xj1 +
1
2xj2)

Figure 2.2: The calculations of the distances to the midpoints of the regions to which
the mass from Xj,1 and Xj,2 will be assigned for a segment with slope between −1
and 1.

cost cj,k for moving the mass from the corner of the region Xj,k to the segment as
follows:

cj,1 = 1
2x

2
j,1(wj + hj)

cj,2 = xj,2(wjxj,1 + wj
1
2xj,2 + (Hj − hjxj,1 − hj

1
2xj,2))

= xj,2((wj − hj)(xj,1 +
1
2xj,2) +Hj)

cj,3 = 1
2x

2
j,3(wj + hj)

cj,4 = xj,4(wjxj,3 + wj
1
2xj,4 + (Hj − hjxj,3 − hj

1
2xj,4))

= xj,4((wj − hj)(xj,3 +
1
2xj,4) +Hj)

Here we use the fact that under the L1 distance, the cost of sending mass to some
connected region of a segment is the same as the cost of sending everything to the
midpoint of the connected region; see Figure 2.2 for an illustration of the calculations
of the distances to these midpoints. Note that we omit the cost of sending the mass
from the points to the corners of the bounding box; this will be accounted for later.
Further note that wj − hj is always positive here. Symmetrically, the costs c′k(qj) for a
given segment qj ∈ Q2 are as follows:

c′j,1 = 1
2x

2
j,1(wj + hj)

c′j,2 = xj,2((hj − wj)(xj,3 +
1
2xj,2) +Wj)

c′j,3 = 1
2x

2
j,3(wj + hj)

c′j,4 = xj,4((hj − wj)(xj,1 +
1
2xj,4) +Wj)
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Note that hj − wj is always positive here. We can now formalise our problem as
follows:

η∗ = argmin
u

∑
j

∑
i

di,j · ui,j

+
∑
k

 ∑
qj∈Q1

cj,k +
∑
qj∈Q2

c′j,k


subject to ui,j ≥ 0 ∀i, j∑

j

ui,j = |pi| ∀i

∑
i

ui,j = |qj | ∀j

Since all di,j , cj,k and c′j,k are non-negative, this is a sum of convex quadratic
functions, giving a quadratic program with a convex objective function.
Theorem 2.1. Let P be a set of n weighted points and S be a set ofm line segments with
equal total weight. It is possible to construct an exact optimal transport plan between P and
S under the L1 metric by solving a convex quadratic program.

When all the weights in our objective function and constraints are integers, a
convex quadratic program can be solved in weakly polynomial time, see e.g. [55, 79,
91]. In our case, some of the weights may be real numbers. In particular, wj and
hj may be square roots of rational numbers. It is not clear if such a program can be
solved in polynomial time.

As square roots appear in many geometric settings, we are typically happy to
assume a model of computation in which we can perform elementary operations on
arbitrary real numbers in constant time. However, even in such a model of compu-
tation, the typical methods (cited above) for solving convex quadratic programs in
polynomial time may fail. These methods generally rely on approximately solving a
series of quadratic programs with increasing precision, and then argue that when the
precision is high enough, the approximate solution can be rounded to the globally
optimal solution. The argument that such rounding works eventually relies on the
input being integral.

This problem can be addressed in several ways. First, we can employ different
methods for solving the quadratic program, such as the simplex algorithm. This
method takes exponential time in theworst case, but has been shown to be polynomial
in practice through smoothed analysis [41]. Second, we can forego an exact algorithm
and obtain a (1 + ε)-approximation by simply rounding the square roots in our
programwith enough precision. Given the value of ε, it suffices to simply approximate
the values such that the ratio of the rounded value to the original is at most (1 + ε).
Third, we could apply theL1 metric not only to distances, but also to the length of each
segment. If we define the length of a segment to be equal to the L1 distance between
its endpoints, the equations for cj,k and c′j,k simplify significantly, and the square
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roots disappear. Our entire program can then be made to have integer coefficients
by simply requiring all points in P and endpoints of segments of S to lie on the
integer lattice. Note that this solution also applies if we restrict ourselves to classes of
segments for which no square roots show up in our program, such as segments that
are axis-aligned.

It may seem that our exact algorithm only runs in provably polynomial time in
quite restricted cases. However, it is worth noting here that it is not clear that an exact
algorithm for the L2 case even exists, let alone one that runs in polynomial time.

2.5 Points to segments
We now describe a polynomial-time algorithm that finds a transport plan with a cost
that is at most 1+ ε times the cost of the optimal transport plan when one set consists
of points with total weight one and the other of line segments with total length one.
The main idea is to reduce our instance to a transport problem on two weighted sets
of points. Our strategy is as follows: we subdivide each segment such that for each
subsegment s′ the ratio of the distance to the closest and furthest point on s′ for every
pi ∈ P is at most 1+ δ for some appropriate choice of δ ∈ O(ε). We then approximate
a minimum cost flow problem on a bipartite graph between P and the subdivided
segments, where the cost of any edge is equal to the shortest distance between a point
and a subsegment. Finally, we use the solution to this flow problem to build a discrete
transport plan. For an appropriate choice of δ, this gives a (1 + ε)-approximation.

The naive approach to subdividing the segments would be to make all the pieces
some equal, appropriately small length. However, we can reduce the number of
subsegments required by subdividing the segments as follows1. We repeatedly
perform the following procedure for each subsegment. If there exists a point in P
such that the entire subsegment lies within distance δ/nm of that point, do nothing.
Otherwise, if there is a point in P for which the ratio of the longest and shortest
distance between that point and the current subsegment is more than 1 + δ, cut the
subsegment in half. Call the resulting set of subsegments Q; see Figure 2.3 for an
example.

We now define a complete bipartite graph G = (P ∪ Q,P × Q), with edges
between each point-subsegment pair (note that this graph is used for analysis only;
our algorithm does not construct it). The cost of each edge will simply be the shortest
distance between the point and segment it connects. A solution to a flow problem in
G can be transformed into a transport plan by assigning a piece of subsegment to a
point with length equal to the amount of flow along the corresponding edge. We will
show that the EMD between P and S is approximated by the cost of any transport
plan derived from a minimum cost flow in G.

First note the following general lower bound on the cost of an optimal solution:
1This reduces the total number of subsegments required from O(nm/ε2) to O(nm

ε
log 1

ε
).
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Figure 2.3: An example subdivision of a set of segments. Small perpendicular line
segments delimit the generated subsegments. A green circle denotes the distance of
δ/nm from each point. Note that ε is set to a very large value here for the clarity of
the resulting image.

Lemma 2.2. The earth mover’s distance |η∗| between P and Q is bounded from below by the
cost |W| of a minimum cost flow W in G.

Proof. Consider any transport plan η∗ that minimises the earth mover’s distance. If,
for each point pi that moves mass to some segment qj , we modify the transport plan
such that the mass is moved only to the point on qj closest to pi, we obtain a plan λ
with cost |λ| ≤ |η∗|. Such a plan is a solution to a flow problem in G, as it moves all
available mass. It follows that the cost |W| of a minimum cost flowW in G satisfies
|W| ≤ |η∗|.

We also note the following lower bound on the value of |W|:

Lemma 2.3. |W| ≥ δ − 2δ2 − 2δ3

nm
.

Proof. For a given point-segment pair (p, s) ∈ P × S, consider the segments in Q
derived from s that have a point within distance δ/nm of p. By construction, such a
segment has its furthest point at distance at most (1+ δ) · δ/nm = δ/nm+ δ2/nm to p.
Therefore, the total length of these segments is at most 2(δ/nm+ δ2/nm) for a given
p and s. Over all point-segment pairs, this gives a total length of at most 2δ + 2δ2.
This means the total length of segments in Qwith distance to the closest point in P at
least δ/nm is at least 1− 2δ − 2δ2. The cost of a minimum flow inW is therefore at
least (1− 2δ − 2δ2) · δ/nm = (δ − 2δ2 − 2δ3)/nm.

We calculate a transport plan η between P andQ as follows. First, we approximate
each segment q ∈ Q by a point somewhere on that segment with weight equal to the
length of q; call this set of points T . We obtain η by calculating an optimal transport
plan ν between P and T , and then spreading the mass sent to each point t ∈ T evenly
over the segment in Q that point was derived from. We now bound the cost of η in
terms of |W|:
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Lemma 2.4. |W| ≤ |η| ≤ (1 + δ)2|W|+ 4δ2

nm
+

2δ3

nm
.

Proof. We first bound the cost of ν. InW , we measured all the distances to the closest
point on each subsegment. Imagine that we picked all the points in T to be the
furthest point on the subsegment. For the subsegments with furthest distance to a
point in P of at least δ/nm, the ratio of these distances is at most 1+ δ by construction.
We can therefore bound all the parts of ν where the furthest distance to a point in P is
at least δ/nm by (1 + δ)|W|. The total mass being moved over distance at most δ/nm
in ν is at most 2δ, giving a cost of at most 2δ2/nm. The total cost of ν is therefore at
most (1 + δ)|W|+ 2δ2/nm.

Now consider the extra cost incurred when transforming ν into η by spreading
the mass out evenly over all the segments. We can use the same argument as before:
for the parts of ν with distance to a point in P of at least δ/nm, the cost increases by a
factor of at most 1 + δ, and the total cost of the part within distance δ/nm is at most
2δ2/nm. We can therefore bound the cost of η by (1 + δ)|ν|+ 2δ2/nm.

We now obtain the upper bound stated in the lemma by plugging the bound on ν
into the bound on η. The lower bound follows directly from the fact that none of the
distances in η are smaller than the distances between the same objects in W .

We now show that |η| approximates |η∗|.
Theorem 2.5. |η| is a (1 + 17δ)-approximation to the earth mover’s distance |η∗| between P
and S for 0 < δ ≤ 1

4 .

Proof. By Lemma 2.4, we know that

|η| ≤ (1 + δ)2|W|+ 4δ2

nm
+

2δ3

nm

|W| is also a lower bound on |η|; the ratio between the upper and lower bound is

(1 + δ)2|W|+ 4δ2

nm + 2δ3

nm

|W|

This ratio is the largest for small values of |W|, so we plug in the lower bound
from Lemma 2.3:

(1 + δ)2 · δ−2δ2−2δ3

nm + 4δ2

nm + 2δ3

nm
δ−2δ2−2δ3

nm

=
1 + 4δ − 3δ2 − 6δ3 − 2δ4

1− 2δ − 2δ2

= 1 + δ +
5δ + δ2 − 4δ3 − 2δ4

1− 2δ − 2δ2
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Figure 2.4: An example of a single Ri,j . Small perpendicular segments delimit the
generated subsegments. The green circle denotes the distance of δ/nm from the
projected point.

≤ 1 + δ +
6δ

1− 2δ − 2δ2

≤ 1 + 17δ (assuming δ ≤ 1
4)

As |W| is also a lower bound for |η∗| (Lemma 2.2), and η can obviously not have
lower cost than the optimal transport plan, this gives a (1 + 17δ)-approximation.

Setting δ = ε/17 gives a (1 + ε)-approximation. Note that the bound on δ is not
restrictive: for any constant ε that would require a larger value of δ, we can simply
use the value 1/4 at the cost of a constant factor in the running time of our algorithm.

2.5.1 Running time analysis
We now analyse the number of subsegments in Q. We will count the number of
subsegments in a different subdivision of S, and then show that Q has at most a
constant factor more subsegments. The alternative subdivision of each sj will be as
follows: project each pi onto the supporting line of sj , call this point pi,j . We construct
the one-dimensional Voronoi diagram of all pi,j along the supporting line of sj ; let
si,j be the part of sj inside the Voronoi cell of pi,j . From each pi,j , we subdivide si,j
into both directions. Up to a distance of δ/nm, we make subsegments of size δ2/nm.
Moving outward, we double the size of the subsegments whenever their ratio of
distances to pi,j would still be below 1 + δ. Let Ri,j be the resulting subdivision; see
Figure 2.4 for an example.

Lemma 2.6. R =
⋃
Ri,j has O

(
nm

δ
log

1

δ

)
subsegments.

Proof. We define β = δ
nm and γ = δ2

nm . In the following, we analyse only the case
where pi,j is on si,j ; if it lies outside, the number of subsegments will be smaller, as
the size of the subsegments increases with distance. The length covered as we add
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subsegments on si,j can be written as

β + 2

k∑
i=0

αi2
iγ

where k is the number of times we double the size of the subsegments, and αi is the
number of subsegments with a size that has been doubled i times. The number of
subsegments can then be calculated by finding the values of k and αi. We start with
α0, which can be found by considering the distance at which the next cell could be
double the size:

β + α0γ + 2γ

β + α0γ
≤ 1 + δ

2γ

β + α0γ
≤ δ

α0 ≥ 2γ − δβ

δγ
=

2

δ
− β

γ
=

1

δ

α0 ≥ 1

δ

Per the procedure described above, we double the size of the subsegments as soon
as this is allowed. This corresponds to taking the values of αi as small as possible, so
we take α0 = 1

δ . Next, we can show by induction that all αi are equal:

IH: αj = α∗ =
1

δ
for j < i.

β + 2i+1γ +
∑i
j=0 αj2

jγ

β +
∑i
j=0 αj2

jγ
= 1 + δ

2i+1γ

β +
∑i
j=0 αj2

jγ
= δ

2i+1γ = δβ + δ

i∑
j=0

αj2
jγ

= δβ + δαi2
iγ + δ

i−1∑
j=0

αj2
jγ

2i+1 = 1 + δαi2
i + δα∗(2i − 1)

αi =
2i+1

δ2i
− 1

δ2i
− δα∗(2i − 1)

δ2i
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=
2

δ
− 1

δ2i
− 2i − 1

δ2i

=
2

δ
− 1

δ

=
1

δ

Knowing that all αi are equal to 1
δ , we can determine the value of k:

β +

k∑
i=0

1

δ
2iγ ≥ |si,j |

β +
1

δ
γ(2k+1 − 1) ≥ |si,j |

β + β(2k+1 − 1) ≥ |si,j |

2k+1 ≥ |si,j |
β

k ≥ log
|si,j |
β

− 1

This gives a total number of subsegments of O( 1δ log
|si,j |
β ) for each point-segment

pair. The sum over all pairs is largest when all |si,j | are equal, i.e. 1/nm. This gives us
a total number of subsegments for all pairs of O

(
nm
δ log 1/nm

β

)
= O

(
nm
δ log 1

δ

).
Lemma 2.7. The set Q has O

(
nm

δ
log

1

δ

)
subsegments.

Proof. Consider any subsegment r ∈ R. Any subsegment q ∈ Q that overlaps with
r has |q| ≥ |r|/4: otherwise q was subdivided unnecessarily. As the subsegments
in Q are disjoint, it follows that r can overlap with at most 5 subsegments in Q. As
such, Q contains at most 5 times more subsegments than R, which, by Lemma 2.6, is
O
(
nm
δ log 1

δ

).
Putting everything together, we obtain the following result:

Theorem 2.8. Let P be a set of n weighted points and S be a set ofm line segments with
equal total weight, let |η∗| be the cost of an optimal transport plan between them, and let δ
be any constant > 0. Given an algorithm that constructs a (1 + δ)-approximation between
weighted sets of k points in fδ(k) time, we can construct a transport plan between P and S
with cost ≤ (1 + 25δ)|η∗| in O

(
fδ
(
nm
δ log

(
1
δ

)))
time.
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Proof. In Theorem 2.5, we prove that an optimal transport plan ν between P and T
approximates |η∗|. However, we may be able to compute a (1 + δ)-approximation
to ν faster than we are able to compute it exactly. It remains to be shown that this
approximation also suffices.

Plugging in a (1 + δ)-approximation to |ν|, rather than the exact value, we obtain
the ratio

(1 + δ)3|W|+ 4δ2

nm + 4δ3

nm + 2δ4

nm

|W|

Following the same strategy as in the proof of Theorem 2.5, we derive the approx-
imation ratio as follows:

(1 + δ)3 · (δ − 2δ2 − 2δ3) + 4δ2 + 4δ3 + 2δ4

δ − 2δ2 − 2δ3

=
(1 + 3δ + 3δ2 + δ3)(1− 2δ − 2δ2) + 4δ + 4δ2 + 2δ3

1− 2δ − 2δ2

=
1 + 5δ − δ2 − 9δ3 − 8δ4 − 2δ5

1− 2δ − 2δ2

= 1 +
7δ + δ2 − 9δ3 − 8δ4 − 2δ5

1− 2δ − 2δ2

= 1 + δ +
6δ + 3δ2 − 7δ3 − 8δ4 − 2δ5

1− 2δ − 2δ2

≤ 1 + δ +
9δ

1− 2δ − 2δ2

≤ 1 + 25δ (assuming δ ≤ 1
4)

As such, using an approximation of ν still gives us an approximation of η∗, albeit
with a somewhat worse dependency on δ.

To our knowledge, the current fastest algorithm to calculate a (1+δ)-approximation
to ν is that by Fox and Lu [50], which runs in O(Nδ−O(1) polylogN) time, where N
is the size of the input. Setting δ = ε/25, this gives the following corollary to the
previous theorem:

Corollary 2.9. For any constant ε > 0, a transport plan between P and S with cost
≤ (1 + ε)|η∗| can be constructed in O

(
nm
εc polylog

(
nm
ε

))
time with high probability.

2.6 Points to triangles
We consider the case where P is a set of weighted points with total weight one and S
is a set ofm triangles with total area one. We denote the longest edge of any triangle
by ∆. Our strategy is similar to before: we subdivide the triangles such that for
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∆

Figure 2.5: An example subdivision of a set of triangles. Each cell records the total
area of triangles it intersects. Cells that are part of Q are shown in black; empty cells
are shown in grey dashed lines. A green disk denotes the distance of δ/√nm from
each point. Note that ε is set to a very large value here for the clarity of the resulting
image.

each subregion, the ratio between its shortest and longest distance to each point is at
most 1 + δ for some appropriate choice of δ ∈ O(ε). We then show that a solution
based on an optimal transport plan between P and some points inside the subregions
approximates an optimal solution.

We first overlay a uniform grid onto our triangles with grid cells of size ∆×∆.
We can identify the cells of this grid that contain a triangle in O(m logm) time using
point-location in a compressed quadtree where the smallest cell size is∆×∆ [64].
As each triangle can intersect at most four cells, the total size of this set of cells is
O(m). We now recursively subdivide each cell as follows: if there is a point in P such
that the whole cell is within distance δ/√nm of it, we stop; otherwise, if for any point
the ratio of distances to the furthest and closest point in this cell is more than 1 + δ,
we subdivide this cell into four cells of one quarter the area. If the ratio holds for all
points, we stop. Call the resulting set of cells Q; see Figure 2.5 for an example.

During each subdivision, we keep track of the total area of triangles contained
inside that cell. We can then once again build a complete bipartite graph G =
(P ∪Q,P ×Q), with the capacity of each vertex set to the weight of the corresponding
point or the total area of triangles contained in the corresponding cell, and the weight
of each edge equal to the shortest distance between the point and the cell it connects.
The cost of a minimum cost flow W is now once again a lower bound to the EMD,
exactly as in Lemma 2.2. In an analogous way to Lemma 2.3, we obtain a lower bound
on the cost of W :

Lemma 2.10. |W| ≥ δ√
nm

− πδ3 + 2πδ4 + πδ5√
nm

.

Proof. For a given point-triangle pair (p, s) ∈ P×S, consider the cells inQ intersecting
s that have a point within distance δ/√nm of p. By construction, such a cell has its
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furthest point at distance at most (1 + δ) · δ/
√
nm = δ/

√
nm+ δ2/

√
nm. Therefore,

the total area of these cells is at most π(δ/√nm+ δ2/
√
nm)2 = π(δ2 + 2δ3 + δ4)/nm.

Over all point-triangle pairs, this gives a total area of at most π(δ2 + 2δ3 + δ4). This
leaves 1− π(δ2 + 2δ3 + δ4)with distance at least δ/√nm inW . The cost is therefore
at least (1− π(δ2 + 2δ3 + δ2)) · δ/

√
nm = δ/

√
nm− π(δ3 + 2δ4 + δ5)/

√
nm.

We now once again approximate |W| by reducing the flow problem to a transport-
ation problem between two sets of weighted points. Again, we pick any point in each
cell q ∈ Q and give it a weight equal to the area of triangles contained in q; call this
set of points T .
Lemma 2.11. |W| ≤ |η| ≤ (1 + δ)2|W|+ 2πδ3√

nm
+ πδ4√

nm

Proof. Let ν be an optimal transport plan between P and T , and let |ν| be its cost.
We can upper bound |ν| by measuring all distances to the furthest point in each cell.
We constructed Q such that the ratio of the closest and furthest distance between
any point-cell pair is 1 + δ when the furthest distance is at least δ/√nm. We can
therefore bound all parts of ν where the distance is at least δ/√nm by (1+ δ)|W|. The
total mass being moved over a distance at most δ/√nm in ν is at most πδ2, giving a
cost of πδ3/√nm. The total cost when measuring to the furthest point is therefore
(1 + δ)|W|+ πδ3/

√
nm.

We now turn ν into a transport plan η between P and Q by spreading the mass
sent to each point t ∈ T out evenly over the parts of the triangles in the cell in Q that
t was derived from. By construction, for cells with a distance of at least δ/√nm, this
increases the cost by at most a factor 1 + δ. We can therefore bound the cost of this
part of η by (1 + δ)|ν|. The remaining part has a total mass of at most πδ2, giving a
cost of πδ3/√nm. The total cost of η is then bound by (1 + δ)|nu|+ πδ3/

√
nm.

Plugging in the bound on |ν| obtained above, we obtain an upper bound of
(1 + δ)2|W| + 2πδ3/

√
nm + πδ4/

√
nm. The lower bound follows directly from the

fact that none of the distance in η are smaller than the distances between the same
objects inW .

Putting this all together, we can show that |η| approximates |η∗|.
Theorem 2.12. |η| is a (1 + 9δ)-approximation to the earth mover’s distance |η∗| between P
and S for 0 < δ ≤ 1

2π .

Proof. By Lemma 2.11 have that

|η| ≤ (1 + δ)2|W|+ 2πδ3√
nm

+
πδ4√
nm

|W| is also a lower bound on |η|; the ratio between the upper and lower bound is

(1 + δ)2|W|+ 2πδ3√
nm

+ πδ4√
nm

|W|
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This ratio is largest for small values of |W|, so we plug in the lower bound from
Lemma 2.10:

(1 + δ)2|W|+ 2πδ3√
nm

+ πδ4√
nm

|W|

≤
(1 + δ)2

(
δ√
nm

− πδ3+2πδ4+πδ5√
nm

)
+ 2πδ3√

nm
+ πδ4√

nm

δ√
nm

− πδ3+2πδ4+πδ5√
nm

≤ (1 + 2δ + δ2)(1− πδ − 2πδ2 − πδ3) + 2πδ2 + πδ3

1− πδ − 2πδ2 − πδ3

=
1 + 2δ + δ2 − 2πδ2 − 5πδ3 − 4πδ4 − πδ5

1− πδ − 2πδ2 − πδ3

= 1 +
2δ + δ2 − πδ − 4πδ3 − 4πδ4 − πδ5

1− πδ − 2πδ2 − πδ3

= 1 + δ +
δ + δ2 − πδ − 2πδ3 − 3πδ4 − πδ5

1− πδ − 2πδ2 − πδ3

< 1 + δ +
δ2

1− πδ − 2πδ2 − πδ3

≤ 1 + δ +
δ2

1− 1
2 − 1

π − 1
2π2

(assuming δ ≤ 1
2π )

< 1 + δ + 8δ2

< 1 + 9δ

As |W| is also a lower bound for |η| (Lemma 2.2), and η can obviously not have
lower cost than the optimal transport plan, this gives a (1 + 9δ)-approximation.

Setting δ = ε/9 gives a (1 + ε)-approximation.

2.6.1 Running time analysis
Our analysis will be the same as in Section 2.5.1; we just need to determine the size
of Q. We will once again make an alternative subdivision of each sj ∈ S, count
the number of cells in that subdivision, and then argue that |Q| differs by at most a
constant factor. Our alternative subdivision is a direct adaptation of the one used in
Section 2.5.1 to two dimensions: for each point pi and triangle sj , we fill a square with
side length 2δ/

√
nm centred on pi with cells of size δ2/√nm. From there, we add

rings of cells of side length δ2/√nm around the square, until the next full ring could
have cells double the size without violating the ratio of 1 + δ between the shortest
and longest distance to pi for any cell in the ring. We repeat this process until we have
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β︷ ︷ ︸ ︸
α0

︸ ︸
α1

︸ ︸
α2

γ

2γ

4γ

Figure 2.6: On the left, part of one quadrant of the construction of Ri,j . There are αi
layers of cells of size 2iγ before the size is doubled. On the right, an illustration of the
argument that a cell of Q (blue) has at least one quarter the edge length of a cell of R
that it intersects (red).

covered a square of size∆×∆. Let Ri,j be the resulting set of cells; see Figure 2.6 for
an example. The proof is similar to Lemma 2.6.

Lemma 2.13. R =
⋃
Ri,j has O

(
nm

δ2
log

nm∆

δ

)
cells.

Proof. We define β = δ√
nm

and γ = δ2√
nm

. In the following, we only analyse the case
where pi,j is inside si,j ; if it lies outside, the number of cells will be smaller, as the
size of the cells increases with distance. We also analyse the number of cells in one
quadrant only; the total number is simply four times as many. See Figure 2.6 for an
illustration of a quadrant. The number of cells created as we add rings of cells on si,j
can then be written as

β2

γ2
+

k∑
i=0

2αi ·
β +

∑i−1
j=0 αj2

jγ

2iγ
+ α2

i

where k is the number of times we double the size of the cells, and αi is the number
of rings containing cells of a size that has been doubled i times. The number of cells
can then be calculated by finding the values of k and αi. We take the values of αi to
be the same as in Lemma 2.6 (i.e. 1/δ): along a horizontal or vertical line through pi
these values give the exactly correct distance ratios, and cells not on this line can be
made to have the correct ratio through one extra subdivision.

Let (x, y) be the vector from pi to the closest point on the cell. Assume w.l.o.g.
that 0 ≤ y ≤ x; the other cases are symmetrical. By construction of our subdivision,
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we know that the cell has size at most δx. We will now show that by dividing the cell
one extra time (i.e. to a size of δx/2), the furthest point will have the desired ratio
irrespective of the value of y.√

(x+ δx
2 )2 + (y + δx

2 )2√
x2 + y2

≤ 1 + δ

(x+ δx
2 )2 + (y + δx

2 )2

x2 + y2
≤ (1 + δ)2

x2 + y2 + δx2 + δxy + δ2x2

2

x2 + y2
≤ 1 + 2δ + δ2

δx2 + δxy + δ2x2

2

x2 + y2
≤ 2δ + δ2

δxy ≤ δx2 +
δ2x2

2
+ 2δy2 + δ2y2

As δxy ≤ δx2, and the other terms on the right-hand side are positive, the inequality
holds. As such, the construction described can be turned into one where all cells have
the desired ratio with one extra subdivision.

Plugging the values of αi, β, γ into our initial formula, we can obtain the number
of cells as a function of k:(

δ√
nm

δ2√
nm

)2

+

k∑
i=0

2

δ
·

δ√
nm

+
∑i−1
j=0

1
δ 2
j δ2√

nm

2i δ2√
nm

+
1

δ2

=
1

δ2
+

k

δ2
+

2

δ

k∑
i=0

δ√
nm

+ δ√
nm

∑i−1
j=0 2

j

2i δ2√
nm

=
1

δ2
+

k

δ2
+

2

δ

k∑
i=0

δ√
nm

+ δ√
nm

(2i − 1)

2i δ2√
nm

=
1

δ2
+

k

δ2
+

2

δ

k∑
i=0

2i δ√
nm

2i δ2√
nm

=
1

δ2
+

k

δ2
+

2

δ

k∑
i=0

1

δ

=
1

δ2
+

k

δ2
+

2k

δ2

∈ O

(
k

δ2

)
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We can directly calculate the value of k by considering the number of doublings
needed to cover a horizontal line segment of length ∆ starting at pi:

δ√
nm

+

k∑
i=0

1

δ
· 2i · δ2√

nm
= ∆

δ√
nm

+
δ√
nm

k∑
i=0

2i = ∆

1 +

k∑
i=0

2i =

√
nm∆

δ

2k+1 =

√
nm∆

δ

k ∈ O

(
log

nm∆

δ

)

This gives a total number of cells of O( 1
δ2 log

nm∆
δ

) per point-triangle pair. Over
all pairs, we obtain a total number of cells of O(nmδ2 log nm∆

δ

).
Lemma 2.14. The set Q has O

(
nm

δ2
log

nm∆

δ

)
cells.

Proof. Consider any cell r ∈ R. Any cell q ∈ Q that overlaps with r has |q| ≥ |r|/16:
otherwise qwas subdivided unnecessarily; see Figure 2.6. As the cells inQ are disjoint,
it follows that r can overlap with at most 25 cells in Q. As such, Q contains at most 25
times more cells than R, which, by Lemma 2.13, is O(nmδ2 log nm∆

δ

).
This leads to the following result:

Theorem 2.15. Let P be a set of n weighted points and S be a set ofm triangles with equal
total weight, let∆ be the longest edge length in S after normalising its total area to one, let
|η∗| be the cost of an optimal transport plan between P and S, and let δ be any constant > 0.
Given an algorithm that constructs a (1+ δ)-approximation between weighted sets of k points
in fδ(k) time, we can construct a transport plan between P and S with cost ≤ (1 + 9δ)|η∗|
in O

(
fδ
(
nm
δ2 polylog

(
nm∆
δ

)))
time.

We can again calculate a (1+ δ)-approximation to ν inO(Nδ−O(1) polylogN) time
using the algorithm by Fox and Lu [50], giving the following corollary to the previous
theorem:
Corollary 2.16. For any constant ε > 0 and some constant c, a transport plan between P
and S with cost ≤ (1 + ε)|η∗| can be constructed in O

(
nm
εc polylog

(
nm∆
ε

))
time with high

probability.
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u

v

x

τ(x)

Figure 2.7: Two points, with their mass assignment in an optimal solution shown in
purple. We greedily match a point x on u to τ(x) on v, and obtain the assignment of
mass shown in green.

2.7 Segments to segments
In the previous section, we considered the casewhen one of our two input sets consists
of points. We now describe an algorithm to compute the EMD between two sets of
line segments. Here, we cannot directly apply our general approach of subdividing:
the optimal transport plan may have a cost arbitrarily close to zero. As such, if we
disregard everything within some radius of one of the sets, there may be nothing left.
We solve this by introducing an additive term into the approximation. The cost of a
plan generated by our algorithm is (1 + ε)|η∗|+A, for some value A depending on ε.
This allows us to greedily match parts of the input within a small distance of each
other, and then solve the remainder with our previous approach.

Let P = {p1, . . . , pn} and S = {s1, . . . , sm} be sets of line segments with equal
total length. Our algorithm is then as follows. First, we greedily match equal-length
pieces of P and S that are within distance δ/nm of each other, until no such pieces
remain; we describe this process in more detail later. Let P ′ and S′ be the remaining
parts of P and S, respectively. We subdivide P ′ and S′ as before: for every p ∈ P ′, if
there is an s ∈ S′ such that the ratio between the closest and furthest distance is more
than 1 + δ, cut p in half; after processing P ′, do the same for S′. Call the resulting
sets Q and R. We then choose a point on each q ∈ Q and r ∈ R, with a weight equal
to the length of the subsegment, and solve an optimal transport problem between
these two point sets. Our final transport plan is then obtained by spreading the mass
moved between any two points evenly over the segments they were chosen on.

We first prove that greedily matching parts of the input within distance δ/nm
increases the cost of an optimal solution by at most an additive term. The proof for the
approximation algorithm then follows the same structure as in the previous sections.
Let ηM be a transport plan between the parts of the input that were greedily matched,
in which the longest distance is at most δ/nm, and let η∗G be an optimal transport
plan for the remainder of the input.

Lemma 2.17. Let u and v be two subsegments with length l of P and S, respectively. If all
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mass from u can be transported to v with distance at most κ, then an optimal transport plan
between P \ {u} and S \ {v} has cost at most |η∗|+ lκ.

Proof. We will construct a transport plan in which u and v are removed, having cost
at most |η∗|+ lκ. The cost of an optimal solution on the remainder is then not higher.

Let ηs(x, t) : R2 × [0, 1] → R2 be a function describing, for a point x ∈ s, where its
mass comes from or goes to (recall that each point sends or receives mass density
one), let ds(x, t) : R2 × [0, 1] → R be defined as d(x, ηs(x, t)), and let τ : R2 → R2 be
a mapping of points on u to points on v such that for all x ∈ u, d(x, τ(x)) ≤ κ. The
cost of the part of η∗ involving segments u and v can then be written as

c∗(u) =

∫
x∈u

∫
du(x, t) dt dx

c∗(v) =

∫
x∈u

∫
dv(τ(x), t) dt dx

Wemodify η∗ by removing u and v, and moving all mass that each point τ(x) receives
in η∗ to where x moved it in η∗; see Figure 2.7. We can distribute this mass in any
way we like, as the total incoming and outgoing mass is one by definition. This gives
a transport plan η with cost

|η| = |η∗| −
(∫

x∈u

∫
du(x, t) dt dx

)
−
(∫

x∈u

∫
dv(τ(x), t) dt dx

)
+

(∫
x∈u

∫
d(ηu(x, t), ηv(τ(x), t)) dt dx

)
By the triangle inequality, d(ηu(x, t), ηv(τ(x), t)) ≤ dv(τ(x), t)+κ+du(x, t). It follows
that

|η| ≤ |η∗| −
(∫

x∈u

∫
du(x, t) dt dx

)
−
(∫

x∈u

∫
dv(τ(x), t) dt dx

)
+

(∫
x∈u

∫
dv(τ(x), t) + κ+ du(x, t) dt dx

)
= |η∗|+ lκ

Note that this bound is tight in the worst case: consider horizontal line segments
of unit length with their left endpoints having x-coordinate 0. If we take P to consist
of two such segments at y = 0 (p1) and y = 2 (p2), and S to consist of two segments
at y = 1 (s1) and y = 3 (s2), the optimal solution would move mass from p1 to s1
and from p2 to s2, giving a total cost of 2. If we set κ = 1, we would greedily match
p2 and s1, giving a total cost of 3, being exactly lκmore than the optimal.

We can now bound the costs of η∗G and ηM .
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Lemma 2.18. |η∗G| ≤ |η∗|+ δ

nm
.

Proof. Any subsegments of P and S with length l that are greedily matched increase
the cost of an optimal solution in the remaining part by at most δl/nm (Lemma 2.17).
The total length that can be greedily matched is at most one, so the total extra cost is
at most δ/nm.

Lemma 2.19. |ηM | ≤ δ

nm
.

Proof. By construction, the distance over which any mass is transported in ηM is at
most δ/nm. The total mass transported is at most one, giving the bound.

For each segment p ∈ P , we can straightforwardly compute a maximal subset that
can be transported over distance at most δ/nm. Consider each segment s ∈ S: the
supporting lines of p and s can intersect inside p or s, outside both, or not at all. If they
don’t intersect (i.e. are parallel), computation of the parts that can be transported
within the required distance is trivial. If they intersect outside both, we can find the
points on p and s furthest from the intersection point that are within the required
distance, then find the largest distance we can move towards the intersection point
while staying within the required distance. If they intersect inside one or both of the
segments, we split the segments at the intersection point and handle both sides using
the case for intersections outside the segments.

Let P ′ and S′ be the parts of P and S that remain after the greedy matching, with
|P ′| = |S′| = ℓ. We subdivide P ′ and S′ into Q and R as described above. As before,
we define a complete bipartite graph G = (Q ∪R,Q×R), where the weight of each
edge is equal to the shortest distance between the two subsegments it connects, and
the capacity of each vertex is equal to the length of the subsegment it represents. Let
W be a minimum cost flow in G; we observe the following lower bound on its cost:

Lemma 2.20. |W| ≥ δℓ

nm
.

Proof. By construction, the distances in G are at least δ/nm. As the total mass moved
is ℓ, we obtain the bound stated in the lemma.

Lemma 2.2 also still applies to the part of the input that remains after greedy
matching. We now approximate |W| by reducing the flow problem to a transportation
problem between two weighted point sets. We pick any point on each q ∈ Q and
r ∈ R, and give them weights equal to |q| and |r|. Call these sets of points U and V .
We can now bound the cost of ηG in terms of η∗G using the flow problem.

Lemma 2.21. |η∗G| ≤ |ηG| ≤ (1 + δ)2|η∗G|.



42 Chapter 2 The earth mover’s distance between geometric objects

Proof. Let ν be an optimal transport plan between U and V , and let |ν| be its cost.
We can upper bound |ν| by measuring all distances to the furthest points inside the
segments. By construction of Q and R, the ratio of longest to shortest distance is at
most 1 + δ. The cost |ν| of ν can therefore not be more than (1 + δ)|W|.

We can turn η into a valid transport plan ηG between Q and R by spreading the
mass moved to each point in U and V evenly over the segments in Q and R that they
were derived from. Again, by construction, the distances increase by a factor of at
most 1 + δ, giving ηG ≤ (1 + δ)|ν|.

Plugging in the bound on |ν| obtained above, we obtain an upper bound of
(1 + δ)2|W|. As |W| ≤ |η∗G|, we obtain that |ηG| ≤ (1 + δ)2|η∗G|. The lower bound
follows directly from the fact that η∗G is optimal, and therefore cannot have a cost
higher than that of ηG.

We can then show that, for a transport plan η = ηG + ηM , |η| approximates |η∗|:

Theorem 2.22. |η| ≤ (1 + 3δ)|η∗|+ 5δ

nm
.

Proof. By Lemma 2.21, we know that |ηG| ≤ (1 + δ)2|η∗G|. As δ ≤ 1, (1 + δ)2 ≤ 1 + 3δ.
By Lemma 2.18, we have that |η∗G| ≤ |η∗|+ (1− ℓ)δ/nm. Combining the two results,
we get that

|ηG| ≤ (1 + 3δ)|η∗G|

≤ (1 + 3δ)

(
|η∗|+ (1− ℓ)

δ

nm

)
≤ (1 + 3δ)|η∗|+ (1− ℓ)

δ + 3δ2

nm

≤ (1 + 3δ)|η∗|+ 4δ

nm

By Lemma 2.19, |ηM | ≤ δ/nm. As |η| = |ηG|+ |ηM |, we obtain the bound stated
in the lemma.

Setting δ = ε/3 gives a (1 + ε)-approximation with an additive term of 5ε/3nm

2.7.1 Running time analysis
During the greedy matching, each p ∈ P may have been cut intom pieces, and each
s ∈ S into n pieces. As such, P ′ and S′ (the parts remaining after greedy matching)
both contain O(nm) subsegments. In the worst case, P ′ and S′ are close to each other
everywhere, causing them to be subdivided into the smallest possible subsegments.
As the minimum distance is δ/nm, and the ratio of the longest and shortest distance
between any two subsegments is 1 + δ, the smallest possible subsegment has size
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Θ( δ
2

nm ). Each subsegment of P ′ and S′ may give rise to one extra subsegment in Q
and R, as the length may not be exactly divisible by δ/nm. This gives sets Q and R a
size of O(nmδ2 + nm) ∈ O(nmε2 ), leading to the following result:
Theorem 2.23. Let P and S be sets of n andm line segments in the plane, both having equal
total length, let |η∗| be the cost of an optimal transport plan between them, and let δ be any
constant > 0. Given an algorithm that constructs a (1 + δ)-approximation between weighted
sets of k points in fδ(k) time, we can construct a transport plan between P and S with cost
≤ (1 + c′δ)|η∗|+ 5δ

nm for some constant c′ in O
(
fδ
(
nm
δ2

))
time with high probability.

We can again calculate a (1+ δ)-approximation to ν inO(Nδ−O(1) polylogN) time
using the algorithm by Fox and Lu [50], giving the following corollary to the previous
theorem:
Corollary 2.24. For any constant ε > 0, a transport plan between P and S with cost ≤
(1+ ε)|η∗|+O

(
ε
nm

)
can be constructed in O

(
nm
εc polylog

(
nm
ε

))
time with high probability.

2.8 Triangles to triangles
We consider the case where P and S are both sets of triangles with total area one
and longest edge length ∆. The algorithm is completely analogous to the one for
transport between sets of segments: we greedily match parts of the input within a
certain distance, subdivide the remainder and approximate the optimal transport
plan by reduction to a minimum cost flow. As the setup and proofs are exactly the
same as in the previous section (just substitute the integrals over segments with
integrals over area), this is omitted. All we need is an algorithm that can greedily
match parts of the input within a given distance.

We do this greedy matching as follows. We can first remove the parts where P
and S overlap: they have cost zero. We then overlay a grid with cells of size δ/(2√nm)
onto our input, and keep only the cells that contain an edge or are adjacent to one
that does (the other cells already have the desired clearance from cells containing
triangles from the other set). Inside each cell, we record the total area of triangles
from P and S that lie inside it separately. For parts of P and S that lie inside the same
cell, we match as much as possible, resulting in a grid where each cell only contains
parts of P or S. We then match as much of each cell as possible to each of its eight
neighbours. The maximum distance over which we have greedily matched weight is√
2δ/

√
nm, and the remaining parts of P and S have a minimum distance of δ/√nm

to each other.
We can then combine the ideas of the point-to-triangle and segment-to-segment

algorithm to approximate the optimal solution. First, we overlay a uniform grid with
cells of size δ × δ separately for P and S, and identify the cells that contain a triangle.
We then recursively subdivide each cell as long as there is any part of a triangle in the
other set for which our distance ratio of 1 + δ is violated. We track the total area of
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triangles contained in each cell, then approximate each cell by a point with a weight
equal to this area. After each set is approximated by points in this way, we can run
our algorithm as before. Lemma 2.17 can be straightforwardly modified to give the
same result for triangles, except that l will be an area instead of a length. This means
that we obtain a (1 + ε)-approximation with an additive term of O(ε/

√
nm).

2.8.1 Running time analysis

The number of cells examined during the greedy matching is O(
√
nm∆
δ ) per triangle,

so O(
√
nm∆(n+m)

δ ) in total. The part of the input remaining after greedy matching
can be at distance δ/√nm from each other everywhere, causing it to be subdivided
into cells of sizeΘ( δ2√

nm
) to maintain a distance ratio of 1+ δ. There may beO(

√
nm∆
δ2 )

cells that intersect the boundaries of a triangle, or O(
√
nm∆(n+m)

δ2 ) in total; the other
cells are interior to some triangle, and as the total area is one, there can be at most
O(nmδ4 ) of them. The total number of cells is therefore at mostO(

√
nm∆(n+m)

δ2 + nm
δ4 ) ∈

O(
√
nm∆(n+m)

δ4 . This gives the following result:

Theorem 2.25. Let P be a set of n and S a set ofm triangles in the plane, both having equal
total area and longest edge length at most ∆ after normalising their total areas to one, let |η∗|
be the cost of an optimal transport plan, and let δ be any constant > 0. Given an algorithm
that constructs a (1 + δ)-approximation between weighted sets of k points in fδ(k) time, we
can construct a transport plan between P and S with cost ≤ (1 + c′δ)|η∗| + O( δ√

nm
) for

some constant c′ can be constructed in O
(
fδ

(√
nm∆(n+m)

δ4

))
time.

We can again calculate a (1+ δ)-approximation to ν inO(Nδ−O(1) polylogN) time
using the algorithm by Fox and Lu [50], giving the following corollary to the previous
theorem:

Corollary 2.26. For any constant ε > 0, a transport plan between P and S with cost
≤ (1 + ε)|η∗|+O( ε√

nm
) can be constructed in O

(√
nm∆(n+m)

εc polylog
(
nm∆
ε

))
time with

high probability.

2.9 Higher dimensions

In this section we show how our approach can be extended to work in d-dimensional
space. We discuss the case of transporting mass from points to d-dimensional sim-
plices, and from one set of simplices to another.
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2.9.1 Points to simplices
The approach described here is a direct extension of the one detailed in Section 2.6.
Let P be a set of n weighted points in d dimensions with total mass one, and let S be
a set ofm d-dimensional simplices with total volume one and longest edge length ∆.
We start by overlaying an infinite grid of size∆ and identifying the cells intersected by
any simplex in O(dm log(m) + 6dd2ddm) time using compressed quadtrees [64]. We
then repeatedly subdivide each cell until the ratio between the shortest and longest
distance is at most 1 + δ for all points in P , or until it is wholly within δ/(nm)1/d of
any point in P . Call the resulting set of cells Q. We can again show that picking one
point in each cell of Qwith weight equal to the total volume of simplices contained
in it, and then solving a transport problem between P and the resulting set of points,
approximates the transport problem between P and S.

As the structure of the proof is very similar to that contained in Section 2.6, we
omit some of the intermediate lemmas here. We start with the lower bound on the
cost of a minimum cost flowW in the bipartite graph G = (P ∪Q,P ×Q):

Lemma 2.27. |W| ≥ δ

(nm)1/d
− δ(2(δ + δ2))d

(nm)1/d
.

Proof. For a given point-simplex pair (p, s) ∈ P×S, consider the cells inQ intersecting
s that have a point within distance δ/(nm)1/d of p. Such a cell has its furthest point
at most at distance (δ + δ2)/(nm)1/d. The total volume of these cells is then (2(δ +
δ2))d/nm (the volume of a d-dimensional hypercube with radius (δ + δ2)/(nm)1/d,
which contains the hypersphere with the same radius). Over all point-simplex pairs,
this gives a volume of at most (2(δ + δ2))d, leaving 1− (2(δ + δ2))d with distance at
least δ/(nm)1/d in W . The cost is therefore at least (1− (2(δ + δ2))d) · δ/(nm)1/d =
δ/(nm)1/d − δ(2(δ + δ2))d/(nm)1/d.

We again approximate |W| by reducing the flow problem to a transportation
problem between two sets of weighted points. We do this by picking a point in each
cell q ∈ Q and giving it a weight equal to the total volume of simplices contained in q.
Call this set of points T :
Lemma 2.28. The cost |ν| of an optimal transport plan ν between P and T satisfies |W| ≤

|ν| ≤ (1 + δ)|W|+ δ(2(δ + δ2))d

(nm)1/d
.

Proof. The lower bound follows directly from the fact that none of the distances in ν are
smaller than the distances between the same objects inW (recall that the distances in
W aremeasured to the closest point on the cell). We can upper bound |ν| bymeasuring
all distances to the furthest point in each cell. By construction, those distances are
at most 1 + δ times the distance to the closest point when the furthest distance is at
least δ/(nm)1/d. We can therefore bound all parts of ν where the distance is at least
δ/(nm)1/d by (1+δ)|W|. The total mass beingmoved over distance at most δ/(nm)1/d
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in ν is at most (2(δ+ δ2))d, giving a cost of δ(2(δ+ δ2))d/(nm)1/d. The total cost when
measuring to the furthest point is therefore (1 + δ)|W|+ δ(2(δ + δ2))d/(nm)1/d.

As before, we turn ν into a valid transport plan η between P and Q by spreading
the mass moved to each point in T out evenly over the parts of simplices contained in
the cell of Q the point was derived from. By the same argument used in Lemma 2.28,
we obtain the following bound on the cost of η:

Lemma 2.29. |η| ≤ (1 + δ)|ν|+ δ(2(δ + δ2))d

(nm)1/d
.

Putting this all together, we can show that |η| approximates the cost of the optimal
transport plan |η∗|:

Theorem 2.30. |η| is a (1 + 21δ)-approximation to the earth mover’s distance |η∗| between
P and S for 0 < δ ≤ 1

5 .

Proof. We follow the same structure as Theorem 2.12, obtaining the following ratio,
into which we plug the lower bound from Lemma 2.27:

(1 + δ)2|W|+ 2δ(2(δ+δ2))d

(nm)1/d
+ δ2(2(δ+δ2))d

(nm)1/d

|W|

≤
(1 + 2δ + δ2)

(
δ

(nm)1/d
− δ(2(δ+δ2))d

(nm)1/d

)
+ 2δ(2(δ+δ2))d

(nm)1/d
+ δ2(2(δ+δ2))d

(nm)1/d

δ
(nm)1/d

− δ(2(δ+δ2))d

(nm)1/d

=
1 + 2δ + δ2 + (2(δ + δ2))d − δ(2(δ + δ2))d − δ2(2(δ + δ2))d

1− (2(δ + δ2))d

= 1 + δ +
δ + δ2 + 2(2(δ + δ2))d − δ2(2(δ + δ2))d

1− (2(δ + δ2))d

≤ 1 + δ +
δ + δ2 + 2(2(δ + δ2))((2(δ + δ2)))d−1

1− (2(δ + δ2))d

≤ 1 + δ +
δ + δ2 + 8δ

1− 1
2d

(Assuming (δ + δ2) ≤ 1
4)

≤ 1 + δ +
9δ + δ2

1
2

< 1 + 21δ

As |W| is also a lower bound for |η| (Lemma 2.2), and η can obviously not have
lower cost than the optimal transport plan, this gives a (1 + 21δ)-approximation.
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Note that the constant in our approximation is slightlyworse than the one obtained
in Theorem 2.12; this is because we approximate the volume of a hypersphere by the
volume of its bounding cube, whereas before we could calculate the area of the disk
exactly.

2.9.1.1 Running time analysis

We construct a structure similar to Section 2.6.1, then argue that the number of cells
in our actual subdivision is similar. Our construction is the direct generalisation of
the one described before: we build a layered structure of cells of increasing sizes. Let
Ri,j be the set of cells generated by point pi and simplex sj ; we now analyse how
many cells are created.

Lemma 2.31. R =
⋃
Ri,j has O

(
ddd/2nm

δd
log

(nm)1/d∆

δ

)
cells.

Proof. We follow the structure of the proof of Lemma 2.14, again counting the number
of cells in one “quadrant”, and then multiplying by the number of quadrants (2d).
The number of cells in a quadrant is(

β

γ

)d
+

k∑
i=0

dαi ·

(
β +

∑i−1
j=0 αj2

jγ

2iγ

)d−1

+ αdi

where αi is the number of layers of cells that have doubled in size i times, β is the
distance inside of which we use the smallest cell size (δ/(nm)1/d), γ is the smallest
cell size (δ2/(nm)1/d), and k is the number of times we need to double the cell size.

The value of each αi is 1/δ: this value is exact along any axis, and we can show
that all cells can be made to have the correct ratio with a given number of extra
subdivisions. For a given cell r ∈ Ri,j , let v be the vector from pi to the closest point
on r, and let γ′ be the edge length of cell q. W.l.o.g. assume that v0 = max vi; by
construction this gives us that (v0+γ′)/v0 ≤ 1+δ. Let u be the vector from the closest
point on q to the furthest point; we want to find a value x such that |v+u/x|

|v| ≤ 1 + δ.
Through the triangle inequality, we can upper bound the distance to the furthest
point on q as |v|+ |u/x|. We can now calculate the required value of x:

|v|+
∣∣u
x

∣∣
|v|

≤ 1 + δ

|u|
x|v|

≤ δ

γ′
√
d

x|v|
≤ δ
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γ′
√
d

xv0
≤ δ

√
d

x
δ ≤ δ

x ≥
√
d

So all cells have the correct ratio if their edge length is reduced by a factor of at least√
d, which means each cell needs to be replaced by at most O(dd/2) cells.
This gives us the following derivation for the number of cells:

1

δd
+

k∑
i=0

d

δ
·

 δ
(nm)1/d

+
∑i−1
j=0 2

j δ
(nm)1/d

2i δ2

(nm)1/d

d−1

+
1
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)
The value of k is derived in the sameway as before, giving k ∈ O(log((nm)1/d∆/δ)).

This gives O( d
δd

log (nm)1/d∆
δ ) cells per point-simplex pair, where each cell needs to

be divided into O(dd/2) smaller cells, for a total of O(dd
d/2nm
δd

log (nm)1/d∆
δ ) cells.

Lemma 2.32. Q has O
(
5dddd/2nm

δd
log

(nm)1/d∆

δ

)
cells.

Proof. Consider any cell r ∈ R. As before, any cell q ∈ Q that overlaps with r has
|q| ≥ |r|/4d: otherwise q was subdivided unnecessarily. As the cells in Q are disjoint,
it follows that r can overlap with at most 5d cells in Q. As such, Q contains at most 5d
times more cells than R, which, by Lemma 2.31, is O

(
ddd/2nm

δd
log (nm)1/d∆

δ

)
.

Combined with the time required to build the quadtree that we use to find the
starting cells of our subdivision, this gives the following result:
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Theorem 2.33. Let P be a set of n weighted points and S be a set ofm simplices in Rd with
equal total weight, let ∆ be the longest edge length in S after normalising its total volume
to one, let |η∗| be the cost of an optimal transport plan between P and S, and let δ be any
constant > 0. Given an algorithm that constructs a (1 + δ)-approximation between weighted
sets of k points in fδ(k) time, we can construct a transport plan between P and S with cost
≤ (1 + 21δ)|η∗| in O

(
6dd2ddm+ fδ

(
5dddd/2nm

δd
log (nm)1/d∆

δ

))
time.

Note that if we set d = 2, this is the same running time as the one obtained in The-
orem2.15. We can again calculate a (1+δ)-approximation to ν inO(Nδ−O(d) logO(d)N)
time using the algorithm by Fox and Lu [50]. Setting δ = ε/21, this gives a total
running time of

O

(
6dd2ddm+

105dddd/2nm

εO(d)
logO(d)

(
5ddnm∆

εd

))
∈ O

(
6dd2ddm+

105dd2dd/2nm

εO(d)
logO(d)

(
dnm∆

εd

))
.

Corollary 2.34. For any constant ε > 0, a transport plan between P and S with cost
≤ (1 + ε)|η∗| can be constructed in O

(
6dd2ddm+ 105dd2dd/2nm

εO(d) logO(d)
(
dnm∆
εd

))
time

with high probability.

2.9.2 Simplices to simplices
The approach from Sections 2.7 and 2.8 can also be extended towork on d-dimensional
simplices in d dimensions. We take the same approach of overlaying a grid with cells
of size δ/(4(nm)1/d) onto the input and greedily matching the parts of P and S that
are close together. The maximum distance over which we greedily match weight is
then

√
dδ/(2(nm)1/d), and the remaining parts of P and S have minimum distance

δ/(2(nm)1/d) to each other. We then approximate the transport plan between the
remaining cells with a minimum cost flow. The same analysis still works, and we
obtain a (1 + ε)-approximation with an additive term of O(

√
dε/(nm)1/d).

2.9.2.1 Running time analysis

The number of cells examined during the greedy matching is O( (nm)1/d∆d

δ ) per sim-
plex, so O( (nm)1/d∆d(n+m)

δ ) in total (note that we simplify the analysis by simply
considering the volume of a d-dimensional cube of side length∆). The part of the
input remaining after greedymatching can be close to each other everywhere, causing
it to be subdivided into cells of size Θ( δ2√

d(nm)1/d
). The total number number of these

cells is then O(
√
d(nm)1/d∆d(n+m)

δ2 ). This gives the following result:
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Theorem 2.35. LetP be a set of n and S a set ofmd-dimensional simplices inRd, both having
equal total volume and longest edge length at most ∆ after normalising their total volumes to
one, let |η∗| be the cost of an optimal transport plan between them, and let δ be any constant> 0.
Given an algorithm that constructs a (1+ δ)-approximation between weighted sets of k points
in fδ(k) time, we can construct a transport plan between P and S with cost≤ (1+ c′δ)|η∗|+
O(

√
dδ

(nm)1/d
) for some constant c′ can be constructed in O

(
fδ

(√
d(nm)1/d∆d(n+m)

δ2

))
time.

We can again calculate a (1+ δ)-approximation to ν in O(Nδ−O(d) logO(d)N) time
using the algorithm by Fox and Lu [50], giving the following corollary to the previous
theorem:
Corollary 2.36. For any constant ε > 0, a transport plan between P and S with cost
≤ (1+ ε)|η∗|+O(

√
dε

(nm)1/d
) can be found in O

(√
d(nm)1/d∆d(n+m)

εO(d) logO(d)
(
d(nm)1/d∆d

ε

))
time with high probability.

2.10 Conclusion
We have provided approximation algorithms to the earth mover’s distance between
sets of points, line segments, triangles and d-dimensional simplices. These are the
first combinatorial algorithms with a provable approximation ratio for this problem
when the objects are continuous rather than discrete points.

Here we described the case where the total mass is spread uniformly over the
available length or area. However, our approach also works when this is not the case.
If the ratio of densities is bounded, the same running times hold; otherwise, this ratio
will show up in the running times the same way that the longest edge length does for
cases involving triangles.

We note that for points and line segments (in any dimension), the approximation
scheme is free from undesired parameters, whereas for points and triangles (or
simplices), the maximum edge length ∆ appears in the running time, and when
neither set is a set of points, an additive term appears in the approximation. The most
interesting open question is whether either of these two artifacts can be avoided.
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Hausdorff morphing

3.1 Introduction
For two sets A and B in R2, we define the directed Hausdorff distance as

dH⃗(A,B) := sup
a∈A

inf
b∈B

d(a, b),

where d denotes the Euclidean distance. The undirected Hausdorff distance is defined as

dH(A,B) := max(dH⃗(A,B), dH⃗(B,A)).

If A and B are closed sets then dH(A,B) = r is equivalent to saying that r is the
smallest value such thatA ⊆ B⊕Dr andB ⊆ A⊕Dr, where⊕ denotes theMinkowski
sum, and Dr is a disk of radius r centered at the origin. Recall that the Minkowski
sum of sets A and B is the set {a+ b | a ∈ A, b ∈ B}. In this chapter we consider only
closed sets, and therefore we can freely use this containment property.

The Hausdorff distance has been widely used in computer vision [43] and com-
puter graphics [16, 39] for tasks such as template matching, and error computation
between a model and its simplification. At the same time, the Hausdorff distance is
a classic mathematical concept. Our research motivation is to study this profound
concept from a new perspective. Algorithms to compute the Hausdorff distance
between two given sets are available for many types of sets, such as points, line
segments, polylines, polygons, and simplices in k-dimensional Euclidean space [8, 9,
18]. However, computing the Hausdorff distance between general semialgebraic sets
has been shown to be ∀∃<R-complete [66].

In this chapter, we consider the natural problem of finding a set that lies “between”
two or more input sets, in a Hausdorff sense. In Section 3.2 we investigate the Haus-
dorff middle of sets A and B; this is a set that has minimum undirected Hausdorff
distance to A and B. Differently put, it minimizes the maximum of four directed

51
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Figure 3.1: Hausdorff morphs between three shapes.

Hausdorff distances. We show that when the Hausdorff distance between A and B
is assumed to be 1, there is always a Hausdorff middle that has Hausdorff distance
1/2 to A and B, and we cannot have a lower distance. We relate the convexity of A
and/or B to the convexity and connectedness of the Hausdorff middle, and study its
combinatorial complexity.

We actually treat the middle more generally, by defining a class of sets that
smoothly interpolate between A and B, giving a morph between them. Figure 3.1
shows two examples of such morphs. We prove that for two given intermediate
shapes in the morph, the difference between the interpolation parameters bounds
the Hausdorff distance between the shapes.

Algorithms for morphing, sometimes called shape interpolation, have been widely
studied. A classical application is the reconstruction of a 3D object from 2D slices,
a common problem in medical imaging. Many algorithms that solve this problem
exist, based on straight skeletons [20, 22], curve matching and triangulations [21],
and Delaunay triangulations [27]. When considering more abstract applications, a
typical approach is to first transform each input shape into a cannonical form, and
then morph between those. Alt and Guibas [14] give an overview of this approach.
Finally, work has been done to ensure the interpolation of two simple polygons is
itself a simple polygon [56].

A common thread in all these algorithms is that they are based on computing
some kind of correspondence between features of the input shapes, either by expli-
citly matching parts of the boundary, or by computing some geometrical structure
(like a Voronoi diagram or a straight skeleton). In addition, most of these morphing
algorithms interpolate only the boundary of the input shapes, and keep all interme-
diate shapes polygonal. Our approach does not require any correspondence between
features of the input to be calculated. However, our approach is unusual in the sense
that the intermediate shapes when morphing between e.g. two polygons are not
necessarily polygons themselves.

In Section 3.3 we extend the results of Section 3.2 to Hausdorff middles of more
than two sets and generalize several results. We assume that the maximumHausdorff
distance over all pairs of input sets is 1 and examine the smallest Hausdorff distance
for a middle set. That is, given sets M = {A1, . . . , Ak}, we are interested in the value
α(M) = minS maxi=1,...,k dH(Ai, S). This value α(M) is no longer 1/2, but depends
on the input. For convex sets, we show that a value ≈ 0.608 can always be achieved
and is sometimes necessary, whereas for non-convex sets a value of 1may be required.
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A B A B A B

Figure 3.2: Three possible Hausdorff middles of A and B: two points, a line segment,
and S1/2.

For a given set of polygons with total combinatorial complexity n, we show that α(M)
and the Hausdorffmiddle can be computed inO(n6) time, and, for any constant ε > 0,
(1 + ε)-approximated in O(n2 log2 n log 1/ε) time. We note that other interpolation
methods between two shapes do not have a natural generalization to a middle of
three or more shapes.

Our proofs use three types of arguments. First, many of our arguments rely on
simple manipulations of the formal definition of the Hausdorff distance. The second
type of argument is of a topological nature. Using continuity and connectivity, we infer
related properties to the output, by constructing topological structures or conclude
that they cannot exist. The third type of argument uses 2-dimensional Euclidean
geometry directly. We construct features, like vertices, edges and circular arcs, and
argue about their existence, and give distance bounds. These arguments are often
intricate and do not generalize. They are of particular value, as the 2-dimensional
Euclidean plane is often the most interesting case in computational geometry.

3.2 The Hausdorff middle of two sets
Consider two compact sets A and B in R2; we are interested in computing a Hausdorff
middle: a set C that minimizes the maximum of the undirected Hausdorff distances
to A and B. That is,

C ∈ argmin
C′⊂R2

max(dH(A,C ′), dH(B,C ′)).

Note that there may be many such sets that minimize the Hausdorff distance; see
Figure 3.2 for a few examples. It might seem intuitive to restrictC to be theminimal set
that achieves this distance, but such a set is not necessarily unique, and the common
intersection of all minimal sets is not a solution itself (see Figure 3.3). However, the
maximal set is unique. Let dH(A,B) = 1. Then

S(A,B) := (A⊕D1/2) ∩ (B ⊕D1/2)

is the unique maximal set with Hausdorff distance 1/2 to A and B (we prove this
below in Lemma 3.2; see the right of Figure 3.2 for an example of what S looks like).
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(a) (b) (c)

B

A

1/4

Figure 3.3: Two different minimal sets achieving minimal Hausdorff distance to A
and B. Both the two green dots in Figure (b) and the three green dots in Figure (c)
minimize the Hausdorff distance to A and B.

1/6

A B

Sα

≤ α ≤ 1 − α

a bs

Figure 3.4: An arbitrary point a ∈ A with its closest point b on B. The point s has
distance at most α to a, and distance at most 1− α to b.

Note that in the rest of this chapter we omit the arguments and simply write S, as the
arguments are always clear from context. We want to show that dH(A,S) ≤ 1/2 and
dH(B,S) ≤ 1/2. In fact, we can prove a more general statement.

We define
Sα(A,B) := (A⊕Dα) ∩ (B ⊕D1−α)

for α ∈ [0, 1], and we use seg(a, b) to denote the line segment connecting points a and
b.
Theorem 3.1. Let A and B be two compact sets in the plane with dH(A,B) = 1. Then
dH(A,Sα) = α and dH(B,Sα) = 1− α.

Proof. We first show that dH(A,Sα) ≤ α. The proof for dH(B,Sα) ≤ 1− α is analog-
ous and therefore omitted. We will infer dH(A,Sα) ≤ α from dH⃗(A,Sα) ≤ α and
dH⃗(Sα, A) ≤ α; thereafter we will show equality.

Consider any point a ∈ A; by our assumption that dH(A,B) = 1, there is a point
b ∈ B with d(a, b) ≤ 1; see Figure 3.4. Now consider a point s ∈ seg(a, b) with
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S1/2A B2

Figure 3.5: Sets A and B for which S1/2 is disconnected. The shaded areas around A
and B represent A⊕D1/2 and B ⊕D1/2, respectively.

d(a, s) ≤ α and d(b, s) ≤ 1− α; clearly this point must be in Sα, as it is contained in
both A ⊕Dα and B ⊕D1−α, and it has d(a, s) ≤ α. As this works for every a ∈ A,
it holds that dH⃗(A,Sα) ≤ α. The fact that dH⃗(Sα, A) ≤ α follows straightforwardly
from Sα being a subset of A⊕Dα. Thus, dH(A,Sα) ≤ α.

To show equality, assume that the Hausdorff distance betweenA andB is realized
by a point â ∈ Awith closest point b̂ ∈ B, at distance 1. Consider the point ŝ ∈ seg(â, b̂)
with d(â, ŝ) = α and d(b̂, ŝ) = 1− α. As observed, ŝ ∈ Sα. Since ŝ is the closest point
of Sα to â, and b̂ is the closest point of B to ŝ, equality follows.

Lemma 3.2. Sα is the maximal set that satisfies dH(A,Sα) = α and dH(B,Sα) = 1− α.

Proof. Consider any set T for which we have dH⃗(T,A) ≤ α and dH⃗(T,B) ≤ 1−α. As
A⊕Dα contains all points with distance at most α to A, we have that T ⊆ A⊕Dα;
similarly, we have that T ⊆ B ⊕ D1−α. By the definition of Sα, this implies that
T ⊆ Sα. As this holds for any T , we conclude that Sα is a unique maximal set.

3.2.1 Properties of Sα

In this section, we study the convexity and connectedness of Sα. Recall that a set
A ⊆ R2 is convex if for any two points a, b ∈ A, the segment seg(a, b) between them
is completely contained in A. Also, recall that a set A ⊂ R2 is connected if for any
two points a, b ∈ A, there exists a continuous curve c : [0, 1] → A such that c(0) = a
and c(1) = b. This type of connectedness is known as path-connectedness, but we
use the term connected for simplicity. We observe the following properties.

1. If A and B are convex, Sα is convex;

2. If A is convex and B is connected, Sα is connected;

3. For some connected sets A and B, Sα is disconnected.
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1/6

A

B

b′

b

π

s

s′

ρ(b)

ρ(b′)

ρ3/4(b)

ρ3/4(b
′)

Figure 3.6: Illustration of the proof showing that Sα is connected if A is convex
(sketched for α = 3/4). The shaded areas around A and B represent A⊕D3/4 and
B ⊕D1/4, respectively, so that the doubly-shaded area is S3/4.

Property 1 is straightforward: the Minkowski sum of A and B with a disk is convex,
and the intersection of convex objects is itself also convex. The example in Figure 3.5
demonstrates Property 3; in fact, anyHausdorff middle will be disconnected for those
input sets.

The next lemma establishes Property 2.
Lemma 3.3. Let A and B be two compact connected regions of the plane with Hausdorff
distance 1, andA convex. Then Sα = (A⊕Dα)∩(B⊕D1−α) is connected for any α ∈ [0, 1].

Proof. See Figure 3.6 for an illustration. Because A is convex, there is a continuous
map ρ : B → A that maps each point of B to a closest point (within distance 1) in A.
For b ∈ B, let ρα(b) = αρ(b) + (1− α)b. We have that ρα : B → Sα is also continuous.

Now take any two points s and s′ in Sα; respectively, they have points b and b′ ∈ B
within distance 1− α. The segments between s and ρα(b) and between s′ and ρα(b′)
lie completely in Sα. Take a continuous curve π from b to b′ inside B. The image of π
under ρα connects ρα(b) to ρα(b′) within Sα, so s and s′ are connected inside Sα.

We note that Sα may contain holes. Furthermore, Sα is not shape invariant when
B is translated with respect to A. For example, let A be the union of the left and
bottom sides of a unit square and letB1 andB2 be the left and right sides of that same
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A

1/2

B2 S1/2(A, B2)

A B1 S1/2(A, B1)

Figure 3.7: Although B2 is a translate of B1, the middle set between A and B2 is not
a translate of the middle set between A and B1.

unit square. Then (A⊕D1/2)∩(B1⊕D1/2) is not a translate of (A⊕D1/2)∩(B2⊕D1/2).
See Figure 3.7; note that dH(A,B1) = dH(A,B2).

3.2.2 Complexity of Sα

In this section, we describe the complexity ofSα in terms of the number of vertices, line
segments, and circular arcs that make up its boundary, for several types of polygonal
input sets. Recall that ∂A denotes the boundary of set A.
Lemma 3.4. Let A be a convex polygon with n vertices and B a simple polygon with m
vertices. Then ∂Sα consists of O(n+m) vertices, line segments and circular arcs, and this
bound is tight in the worst case.

Proof. For brevity we let A⊕ = A⊕Dα and B⊕ = B ⊕D1−α.
There is a trivial worst-case lower bound of Ω(n+m) by taking α = 0 or α = 1, as

S0 = A and S1 = B. Note that if the boundaries of A⊕ and B⊕ would consist of only
line segments, the upper bound is easy to show: A⊕ is convex, and its boundary can
therefore intersect each segment of ∂B⊕ at most twice, making ∂Sα consist of (parts
of) segments from ∂A⊕ and ∂B⊕ and at most O(m) intersection points. The problem
is that ∂A⊕ and ∂B⊕ also contain circular arcs, in which case ∂A⊕ may intersect an
arc of ∂B⊕ Ω(n) times.

To show an upper bound of O(n+m), we distinguish two cases. In the first case,
we assume α ≥ 1 − α. Note that in this case, the circular arcs that are part of the
boundary of A⊕ have a radius larger or equal to those of B⊕. Additionally, ∂A⊕ is
smooth and is an alternating sequence of circular arcs and segments, as A is convex.
In this case, we do in fact have that any line segment or circular arc b of ∂B⊕ can
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A⊕

b

Figure 3.8: When α ≥ 1 − α, an arc b of ∂B⊕ (blue) can only intersect ∂A⊕ (red)
twice.

<
ε

i1

i2

b

b′

i0

i3

c

ã
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<
ε

Figure 3.9: When α < 1 − α, a single arc b of ∂B⊕, shown in blue, can have many
intersections with ∂A⊕, but no other arc b′, shown as a dashed blue arc, can have
many intersections with the same part of ∂A⊕. The intersections of bwith ∂A⊕ are
shown in red.

intersect ∂A⊕ at most twice. Consider two intersection points of bwith ∂A⊕: as the
curvature of ∂A⊕ is at most that of b, there can never be another intersection point
between these two, or we would violate the convexity of A⊕. See Figure 3.8 for an
illustration of this case.

For the second case, we assume α < 1− α. We charge all the intersections to the
arcs and line segments of ∂A⊕ and ∂B⊕. Each line segment of ∂B⊕ can intersect
∂A⊕ at most twice, as A⊕ is convex, so there can be at most O(m) such intersections.
Similarly, for arcs of ∂B⊕ that intersect ∂A⊕ at most three times, there can be at most
O(m) intersections in total. It remains to consider the arcs of ∂B⊕ that intersect ∂A⊕

more than three times.
Let b be such an arc of ∂B⊕. Consider any quadruple of consecutive intersection

points i0, i1, i2, i3 with ∂A⊕ along b, see Figure 3.9, where the part of ∂A⊕ between i1
and i2 that does not contain i0 and i3 is outside the disk supporting b. This part is
denoted ã; note that ãmust contain at least one circular arc, denoted a. Notice that
we consider all intersection points between ∂A⊕ and b, except possibly for the first
one or two and last one or two. These first and last ones can be charged to b, and
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this charge is at most four per arc b. Let c be the center of the supporting disk of b. If
any of the angles ∡i0ci1, ∡i1ci2, or ∡i2ci3, is larger than ε for some constant ε > 0,
we again charge the intersection points i1 and i2 to b, and we have less than 360/ε of
such charges. So we now assume that all three angles are at most ε. We charge the
intersection points i1 and i2 to a, the arc of a disk that appears on ã.

It remains to show that a is charged at most once. We can limit the distance by
which ã can protrude outside of b: as A⊕ is convex, ã cannot cross the line through i0
and i1, nor the line through i2 and i3. This restricts ã to the shaded area in Figure 3.9.
It is possible that ã intersects a different arc b′ of ∂B⊕ in this shaded area. We observe
that the disk that b′ is a part of cannot contain the intersection points i1 and i2, as
otherwise those points would not be intersections of ∂A⊕ and ∂B⊕. Now b′ can
intersect ∂A⊕ at most twice, as more intersections would violate the convexity of
A⊕. In particular, b′ cannot intersect ∂A⊕ four times, and hence b′ cannot charge
intersections on it to a. We conclude that a is charged only once. From this we
conclude that there are at most O(n+m) intersection points in total, and that ∂Sα
therefore consists of at most O(n+m) vertices, line segments and circular arcs.

Lemma 3.5. Let A and B be two simple polygons of n andm vertices, respectively. Then
∂Sα consists of O(nm) vertices, line segments and circular arcs, and this bound is tight in
the worst case.

Proof. The worst-case lower bound of Ω(nm) follows by taking A and B to be two
rotated “combs”; see Figure 3.5. For α = 1/2, Sα consists of Ω(nm) distinct compon-
ents. The upper bound follows directly from the fact that A ⊕ Dα and B ⊕ D1−α
have complexities O(n) and O(m), respectively. Each individual arc and edge on the
boundaries of A⊕Dα and B ⊕D1−α intersect at most a constant number of times, so
we cannot have more than O(nm) intersection points.

In fact, not just Sα, but any Hausdorff middle has complexity Θ(nm) for the
example in Figure 3.5. Since Sα is maximal, the components cannot be connected
without changing the Hausdorff distance to A or B, and other middles must have at
least some point in every component of Sα to achieve Hausdorff distance 1/2 to both
A and B.

3.2.3 Sα as a morph
By increasing α from 0 to 1, Sα morphs from A = S0 into B = S1. (Examples of such
morphs are presented in Figures 3.1 and 3.10.) The following lemma shows that this
morph has a bounded rate of change.

Lemma 3.6. Let Sα and Sβ be two intermediate shapes of A and B with dH(A,B) = 1 and
α ≤ β. Then dH(Sα, Sβ) = β − α.
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S1/2

A

B

1

S1/4

S3/4

1 1 1

Figure 3.10: Some examples of morphs Sα between two shapes A and B.
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Proof. We have dH(Sα, Sβ) ≥ β − α because, by the triangle inequality, dH(A,B) =
1 ≤ dH(A,Sα) + dH(Sα, Sβ) + dH(Sβ , B) ≤ α+ dH(Sα, Sβ) + 1− β.

It remains to show that dH(Sα, Sβ) ≤ β − α. We show that Sβ ⊆ Sα ⊕ Dβ−α;
the proof that Sα ⊆ Sβ ⊕Dβ−α is analogous. Let p be some point in Sβ . Then, by
definition of Sβ , there exist some points a ∈ A and b ∈ B such that d(a, p) ≤ β and
d(b, p) ≤ 1 − β. Let p̄ be the point obtained by moving p in the direction of a by
β − α. By the triangle inequality, we then have that d(a, p̄) ≤ β − (β − α) = α and
d(b, p̄) ≤ (1−β)+(β−α) = 1−α. This implies that p̄ ∈ Sα. As pwas an arbitrary point
in Sβ , and d(p, p̄) ≤ β−α, we have that Sβ ⊆ Sα⊕Dβ−α. So dH(Sα, Sβ) ≤ β−α.

The above lemma implies that, even though the number of connected components
of Sα can change when α changes, new components arise by splitting and never “out
of nothing”, and the number of components can only decrease through merging and
not by disappearance.

The morph ⟨Sα |α ∈ [0, 1]⟩ from A to B has a consistent submorph property,
formalized below.

Lemma 3.7. If a morph from A = S0 to B = S1 contains a shape C, then the morph from A
to C concatenated with the morph from C to B is the same as the morph from A to B: they
contain the same collection of shapes in between and in the same order.

Proof. Let α be the value such that Sα(A,B) = C. We define S′
β(A,C) := (A⊕Dβ)∩

(C ⊕ Dα−β) for β ∈ [0, α], giving the morph from A to C. We need to show that
Sβ(A,B) = S′

β(A,C). The case for the morph from C toB is analogous and therefore
omitted.

Let x be any point in Sβ(A,B). By definition it has a distance of at most β to
A, and Lemma 3.6 establishes that it has distance at most α − β to C. This implies
that x ∈ S′

β(A,C). As this works for any point x, we have that Sβ(A,B) ⊆ S′
β(A,C).

Now let x′ be any point in S′
β(A,C). By definition it has distance at most β to A, and

distance at most α − β to some point c ∈ C. As dH(B,C) = 1 − α, by the triangle
inequality x′ must have distance at most (α − β) + (1 − α) = 1 − β to some point
in B. This shows x′ ∈ Sβ(A,B). As this works for any point x′, we also have that
S′
β(A,C) ⊆ Sβ(A,B). We conclude that Sβ(A,B) = S′

β(A,C).

As a corollary of this lemma, {α ∈ [0, 1] | Sα is convex} is a connected interval.

3.2.4 The cost of connectedness
For some applications, it might be necessary to insist that the middle shape is always
connected. However, in the worst case, the cost of connecting all components of Sα
can be that the Hausdorff distance of the resulting shape to A and B becomes 1. See
Figure 3.11 for an example where this is the case. In fact, any connected shape has
distance at least 1 for this example.
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1

A

B

S1/2

(a) (b) (c)

Figure 3.11: Figures (a) and (b) show the offsets of A, respectively B with distance
1/2. Figure (c) shows the resulting S1/2 in green. Any connected shape must cross
the vertical middle line or stay on one side of it. In both cases, the Hausdorff distance
doubles.

3.3 The Hausdorff middle of more than two sets
A natural question is whether the results from the previous section extend to more
than two input shapes. There are several ways to formalize the notion of a Hausdorff
middle between multiple shapes. Analogous to the case of two sets, we are interested
in a middle shape that minimizes the maximum Hausdorff distance to each input
set. Let M = {A1, . . . , Am} be a collection ofm input shapes with largest pairwise
Hausdorff distance 1. We define Tα as⋂i(Ai⊕Dα); the (maximal) middle set is then
given by the smallest value α for which Tα ⊕Dα contains all input sets. We denote
this smallest α by α(M) := min{α | maxi dH(Ai, Tα) ≤ α }. If α is clear from the
context, we use the notation A⊕ to mean A⊕Dα.

In this section, we first study the largest possible α(M) for general and convex
input. We then study some general properties of Tα with respect to connectivity and
convexity. After this, we consider whether there is some subset ofM that requires
the same value of α, and obtain a Helly-type property for convex input. Finally, we
will give various algorithms to compute or approximate α(M) efficiently.

3.3.1 The largest α(M)

In this section, we are interested in the largest possible value of α(M). We first discuss
the general case and then study the case where all sets A ∈ M are convex. In both
cases, we provide an exact answer. This section relies on some tedious calculations,
which turn out to be easier if we do not normalize pairwise distances of our objects
to 1.

As it turns out, for some inputs it may be the case that α(M) = 1; see Figure 3.12.
Here, there can be no shape with Hausdorff distance less than 1 to all the input shapes,
meaning any of the three input shapes can be chosen as “the middle”. Hence, for two
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p

Tα

T ⊕
α

Figure 3.12: The pairwise Hausdorff distance in this construction is 1, and for any
α < 1, T⊕

α does not contain point p.

input sets, we always have α(M) = 1/2, but for more input sets, the value depends
on the input, and α(M)will be in [1/2, 1]. The example in Figure 3.12 requires non-
convex sets, raising the question of what the range of α(M) can be when all Ai are
convex.

If we have three convex sets that are points, and they form the corners of an
equilateral unit-side triangle, then we can easily see that α(M) = 1/

√
3 ≈ 0.577 and

the middle shape is exactly the point in the middle of the triangle.
An example with three line segments shown in Figure 3.13 surprisingly achieves

(for λ ≈ 0.253135, θ ≈ 123.37◦) a larger value α∗ ≈ 0.6068 = r, which we call the
magic value. Lemma 3.9 shows that no three convex sets achieve α(M) > α∗. Thus
the magic value is a tight upper bound for three convex sets.

We define the magic value as α∗ = 1/z ≈ 0.6068, where the value of z is derived
from Figure 3.14, and defined as z := min{λ + 1 − cos(2θ) | λ ≥ 0, θ ∈ (90◦, 180◦),
and λ + 1 − cos(2θ) = ∥(−λ cot(2θ) − sin(2θ) + sin(θ), λ − cos(2θ) + cos(θ))∥} ≈
1.647986325231 (at λ ≈ 0.253135, θ ≈ 123.37◦, verified using Wolfram Cloud).

Lemma 3.8. LetM = {A1, . . . , Am} be a collection of compact convex regions in the plane,
and α := α(M). There is some Ai ∈ M with dH⃗(Ai, Tα) = α.

Proof. By construction, we have dH⃗(Tβ , Ai) ≤ β for all i and all β. (Recall that this is
equivalent to Tβ ⊆ Ai ⊕Dβ .) Moreover, if Tβ is nonempty, then for any i, the map
γ 7→ dH⃗(Tγ , Ai) is continuous on the domain [β,∞), as Tγ changes continuously. We
show that for some i, we have dH⃗(Ai, Tα) = α. If instead dH⃗(Ai, Tα) < α for all i,
then unless Tβ is empty for all β < α, we can decrease α, contradicting minimality
of α. If instead α is the minimum value for which Tα is nonempty, then either α = 0
and we are done because Tα contains all Ai, or α > 0 and Tα has no interior (when
viewed as a subset of the plane). Because Tα is the intersection of convex sets, it is
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r =
α

1
θ

θ

λ

A1

A3

A2

Tr

Figure 3.13: Three segments A1, A2, and A3. Of these, A3 is the diameter of a circle
with radius r; the other two (A1 and A2) are tangent to the circle and are copies of
one another reflected through A3, such that all pairwise Hausdorff distances are at
most 1 (length of dashed segments). The top left vertex of A3 is furthest (at distance
r) from the middle set Tr (green), so α({A1, A2, A3}) is the radius r of the circle.

convex. If it has no interior, it is either a segment or a point, and by convexity it must
lie on the boundary of A⊕

i for some i, contradicting that dH⃗(Ai, Tα) < α.

Lemma 3.9. LetM = {A1, A2, A3} be compact convex regions in the plane. Letα := α(M)
and d = maxi,j dH(Ai, Aj), then d ≥ α/α∗ (equivalently d ≥ zα).

Proof. By Lemma 3.8, we have dH⃗(Ai, Tα) = α for some i. If x is a point, we will write
d⃗(x, ·) to denote dH⃗({x}, ·). Without loss of generality assume that dH⃗(A3, Tα) = α

and d⃗(a, Tα) = d(a, t) = α with a ∈ A3 and t ∈ Tα. Let T = A⊕
1 ∩A⊕

2 ⊇ Tα. There is
no point t′ ∈ T with d(t′, a) < α, since then d⃗(t′, A3) < α, in which case t′ ∈ A⊕

3 and
therefore t′ ∈ Tα, contradicting that dH⃗(a, Tα) = α. So t is a point in T closest to a
and hence d⃗(a, T ) ≥ α.

Assume that α > 0 (otherwise we are done) and let Ht be the half-plane (not
containing a) bounded by the line through t that is perpendicular to seg(t, a), see
also Figure 3.14. The set T is convex, as it is the intersection of convex sets. Therefore,
if T contains a point p, then T also contains seg(t, p). Since t is a point of T closest to
a, no such segment intersects the open disk of radius α centered at a, and therefore
T ⊆ Ht.

Let C be the circle of radius α centered at t. For the remainder of the proof, let
i ∈ {1, 2}. Let bi be a point of Ai closest to t. Then bi lies on or inside C. If bi ̸= t,
we can define the half-plane Hi (not containing t) bounded by the line through bi
that is perpendicular to seg(t, bi). For bi ̸= t, we have by convexity of Ai and bi being
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α

zα

θ

θ

b(θ) = (−α sin(2θ), α− α cos(2θ))

t = (0, α)
(−α sin(θ), α− α cos(θ)) = a

pλ(θ) = (−λ cot(2θ)− α sin(2θ), λ+ α− α cos(2θ))

λC

H(θ)

b(−θ) = (0, 0) H(−θ)

Ht

Figure 3.14: Derivation of the expression for z.

closest to t that Ai ⊆ Hi, so d⃗(a,Ai) ≥ d⃗(a,Hi). Without loss of generality, assume
that d⃗(a,Hi) < α/α∗ (otherwise d ≥ dH⃗(A3, Ai) ≥ d⃗(a,Ai) ≥ α/α∗).

If d(a, bi) ≥ 2α, then bi lies diametrically opposite to a on C, but then d⃗(a,Hi) ≥
2α > α/α∗, which is a contradiction, so d(a, bi) < 2α. Let ti ∈ A⊕

i be the midpoint of
bi and a, then d(a, ti) < α = d(a, t). If d(b1, t) < α, then T contains a point interior to
seg(t, t2), contradicting that d⃗(a, T ) ≥ α. So b1 and (analogously) b2 lie on C.

Let θi be the clockwise angle ∡atbi ∈ (−180◦, 180◦). Define b(θ) to be the point
on C for which θ is the clockwise angle ∡atb(θ), so that bi = b(θi). Similarly, let H(θ)
be the half-plane (not containing C) bounded by the line tangent to C at b(θ), so that
Hi = H(θi). Assume without loss of generality that |θ1| ≥ |θ2| (otherwise relabel A1

and A2). If θ1 and θ2 are both positive or both negative, consider the circle of radius
α/2 centered at the midpoint of a and t. Then t1 lies on the (shorter) arc of this circle
connecting t2 and t. This arc lies entirely in A⊕

2 , so t1 lies in Tα, which contradicts
that there is no point t′ ∈ T with d(t′, a) < α. So assume without loss of generality
that θ2 ≤ 0 ≤ θ1 (otherwise mirror all points). If θ1 − θ2 < 180◦, then T contains
the segment between t and the midpoint of b1 and b2. This segment does not lie in
Ht, which contradicts that T ⊆ Ht. Moreover, if θ1 − θ2 = 180◦, then b1 and b2 are
antipodal on C, so dH(A1, A2) ≥ dH(H(θ1), H(θ2)) = 2α > α/α∗. So consider the
remaining case where θ1 − θ2 > 180◦.

In fact, it will turn out that in the worst case, θ2 = −θ1. Suppose that p ∈ A1 ⊆
H(θ1) is the point of A1 closest to a. We have d ≥ d(a, p) and d ≥ d⃗(p,A2) ≥
d⃗(p,H(θ2)). Moreover, since −θ1 ≤ θ2 < θ1 − 180◦, the value of d⃗(p,H(θ)) decreases
as θ ∈ [−θ1, θ2] decreases. In particular, we have d⃗(p,H(θ2)) ≥ d⃗(p,H(−θ1)). Since
|θ1| ≥ |θ2|, we have θ1 ∈ (90◦, 180◦). Let λp = d⃗(p,H(−θ1)) − d⃗(b(θ1), H(−θ1)). If
λp < 0, then d(a, b(θ1)) < d(a, p), and pwould not be a point ofA1 closest to a because
the angle ∡ab(θ1)p would be at least 90 degrees. Combining the above lower bounds,
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we obtain d ≥ min{max{d(a, p), d⃗(p,H(−θ1))} | p ∈ H(θ1), λp ≥ 0}. The right hand
side of the above inequality is attained for some p on the boundary of H(θ1). We
parametrize such points pwith parameters λ and θ1: let pλ(θ1) be the unique point
on the boundary ofH(θ1)with d⃗(pλ(θ1), H(−θ1)) = d⃗(b(θ1), H(−θ1))+λ. The above
inequality becomes d ≥ minλ≥0 max{d(a, pλ(θ1)), d⃗(b(θ1), H(−θ1)) + λ}.

We need to minimize this quantity over all values of λ ≥ 0 and θ1 ∈ (90◦, 180◦).
Wewill show that it is minimizedwhen its terms d(a, pλ(θ1)) and d⃗(b(θ1), H(−θ1))+λ
are equal. The point pλ(θ1), and hence the two terms, vary continuously in λ and θ1.
For fixed θ1, both terms are convex as a function of λ. Therefore, for any fixed θ1, the
function isminimized eitherwhen λ = 0, or the two terms are equal. As θ1 approaches
180◦, the first term approaches at least 2α (for any λ), and as θ1 approaches 90◦, the
second term approaches at least 2α. Since the optimal value is less than 2α, there exists
an optimal value of θ1. Assume for a contradiction that the terms are not equal in an
optimal solution. Fix λ = 0, and consider the two terms as a function of θ1. For θ1 ≈
90◦ and λ = 0, we have d(a, pλ(θ1)) ≈ α < 2α ≈ d⃗(b(θ1), H(−θ1)) + λ. Conversely
for θ1 ≈ 180◦ and λ = 0, we have d(a, pλ(θ1)) ≈ 2α > 0 ≈ d⃗(b(θ1), H(−θ1)) + λ.
Hence, by the intermediate value theorem, the inequality as a function of θ1 (with
fixed λ = 0) is minimized when the terms are equal. We handled the case with
λ > 0 above, so our inequality becomes d ≥ min{d⃗(b(θ1), H(−θ1)) + λ | λ ≥ 0, θ1 ∈
(90◦, 180◦), and d(a, pλ(θ1)) = d⃗(b(θ1), H(−θ1)) + λ}. Following the derivation in
Figure 3.14, this corresponds to d ≥ zα = α/α∗.

3.3.2 Convexity and connectedness of Tα

In this subsection, we use α := α(M) for simplicity. Similarly to Section 3.2.1, we
examine the properties of Tα for different types of input. We arrive at straightforward
generalizations of the results obtained for two sets.

1. If all Ai are convex, then Tα is convex.
2. If one of the Ai is connected and the rest are convex, then Tα is connected.
3. For some input where each Ai is connected, and at least two are not convex, Tα

is disconnected.
Property 1 follows from the same argument as before: Tα is the intersection of

convex sets, and therefore itself convex. Property 3 can be shown by extending the
construction from Figure 3.5 with some other sets: if the intersection of two of the
sets is not connected, adding more sets will not make Tα connected as long as the
pairwise Hausdorff distance does not increase. We establish Property 2 with the
following lemma.
Lemma 3.10. Let M = {A1, . . . , Am} be a set of compact connected regions of the plane,
with Ai convex for i < m. Then Tα is connected.
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dh = 1

r = 1 + ε
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α = 1+ε
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α = 1+ε
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α = 1+ε/2
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Figure 3.15: When the input sets are not convex, all sets may be necessary to realize
the value of α. Figure (a) shows our input construction, along with the radius of the
circle and the Hausdorff distance. Figure (b) shows that when all sets are present, the
required value of α is (1 + ε)/2. Figure (c) shows that with the blue set is removed,
the required value of α is reduced to (1 + ε/2)/2.

Proof. Consider the set T ′
α =

⋂m−1
i=1 A⊕

i . This set is convex, as it is the intersection of
convex sets. Also note that by definition of Tα, Am has directed Hausdorff distance at
most α to T ′

α. Let A = T ′
α and B = Am, normalized such that dH⃗(B,A) = 1. We now

apply Lemma 3.3 to A and B, using zero as the value for α. We obtain the result that
Tα = (T ′

α ⊕D0) ∩ (Am ⊕Dα) is connected. Note that the Hausdorff distance from A
to B may be bigger than one, but this does not matter for the proof of Lemma 3.3.

3.3.3 Helly-type properties
An interesting question is whether there are any sets in the input that could be
removed while maintaining the same optimal value of α. This type of property is
sometimes called a Helly-type property, after the concept of a Helly family. To make
this precise, we need some definitions. We say a collection M ofm sets is d-sufficient,
if there is a collectionMd ⊂ M of d sets such that α(M) = α(Md). We remind the
reader that we assume the maximum pairwise Hausdorff distance between our input
sets is 1.

Lemma 3.11. For everym, there is a collectionM ofm connected sets in the plane that is
not (m− 1)-sufficient.

Proof. Figure 3.15 depicts a construction of four sets which are not 3-sufficient, which
generalizes to more sets. The example has one set that is a disk of radius 1+ ε (shown
in orange in Figure 3.15(a)), andm− 1 sets that are circles on the boundary of this
disk with m − 1 protrusions of some small length ε. These protrusions are evenly
spaced along the boundary of the disk, and in each location there is a distinct set out
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of them−1 sets missing (each subset of sizem−2 is represented by some protrusion).
In the example, we have protrusions containing the red and the blue set, the blue and
the purple set, and the red and the purple set. This way, for the case where all sets are
present (Figure 3.15(b)), the protrusions don’t have any influence on Tα, meaning
that α ≥ (1+ε)/2 is required to let T⊕

α contain the entire disk. However, if we remove
one set (other than the orange disk), there will be one protrusion where all sets are
now present, meaning it will change the shape of Tα. Because of this, the center of
the disk will already be covered with a smaller value of α, namely (1 + ε/2)/2. This
is shown in Figure 3.15(c): the dotted arc shows the dilation of the bump caused by
the protrusion, which covers a part of the disk that would otherwise not be covered
(shown as a dashed circle). Note that if we remove the orange disk, it is sufficient to
use a value of α = ε/2. Further note that with a minor adaptation, all sets become
polygonal and simply connected.

We have shown that in general, we cannot remove any sets from the input while
maintaining the same value of α. However, when all input sets are convex, we can
show that there is always a subset of size at most three that has the same optimal
value of α.

Lemma 3.12. Let M = {A1, . . . , Am} be a collection of convex sets. Then there exists a
subcollectionM′ ⊆ M of size at most three such that α(M) = α(M′).

Proof. Consider growing some value β from 1/2 to 1. At some point, T⊕
β := Tβ ⊕Dβ

contains all sets inM (i.e. when β = α(M)). There are two ways in which this can
happen: (1) Tβ is non-empty for the first time, and immediately the condition holds,
or (2) Tβ grows, and its dilation now covers the last point of all sets inM. As Tβ is
convex no new components can appear except for the first, and thus we have only
those two cases.

In Case 1, Tβ is either a segment or a point; otherwise, Tβ′ would have been non-
empty for some β′ < β. If it is a segment, it is generated by two parallel edges of some
Ai, Aj ∈ M such that we have α({Ai, Aj}) = α(M). If it is a point, it is the common
intersection of the dilation of some number of sets fromM; we argue that you can
always pick three sets for which β is optimal. Let a be the single point in Tβ ; consider
the vectors V perpendicular to the boundaries of the dilated input sets intersecting
in this point. The vectors V must positively span the plane:1 otherwise, all vectors
would lie in a common half-plane, and a would not be the first point to appear in Tβ .
As we are in the plane, there must be a subset U ⊂ V of three vectors that positively
span the plane by themselves. The three corresponding sets Ai, Aj , Ak ∈ M satisfy
α({Ai, Aj , Ak}) = α(M).

In Case 2, as our input sets are convex, Tβ itself is also convex. Let a ∈ Ai be
one of the last points of M to be covered by T⊕

β . As T⊕
β is convex, amust be on its

1We say vi ∈ R2 span the plane positively, if for every point p ∈ R2 there are some numbers ai ∈ R+

such that∑ aivi = p.
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boundary; let c be the piece of boundary curve a lies on. This piece of curve is either
generated by the dilation of some boundary curve in Tβ , or by the dilation of one of
its vertices. If it is the dilation of a boundary curve, it can be traced back directly to
a boundary curve of some Aj , in which case Ai and Aj have Hausdorff distance 2β,
and α({Ai, Aj}) = α(M) for any choice of k. If it can be traced back to a vertex of Tβ ,
this vertex is generated by the intersection of the boundaries of some A⊕

j and A⊕
k , in

which case we also have that α({Ai, Aj , Ak}) = α(M).

Combining the previous lemma with Lemma 3.9, we obtain the following result.

Theorem 3.13. Let M = {A1, . . . , Am} be a collection of convex regions in the plane, and
let Tα =

⋂
iA

⊕
i . Then α(M) is at most the magic value α∗ ≈ 0.6068.

3.3.4 Algorithms
For any given collection M = {A1, . . . , Am} of polygons, we want to compute α(M).
We present two algorithms, a simple approximation algorithm and a more complex
exact algorithm. They both use the same decision algorithm as a subroutine. To be
precise, givenM and some α, the decision algorithm decides if α ≤ α(M). We first
present an algorithm for the decision problem. Then we sketch how they are used
in the approximation algorithm and the exact algorithm. We denote all vertices and
edges of the Ai as features ofM.

Decision algorithm Assuming the input has total complexity n, we can test whether
a given value of α ≤ α(M) as follows. Compute the intersection Tα of the dilations
A⊕

1 , . . . , A
⊕
m in O(n2 log n) time, using the construction of an arrangement of straight

and circular arcs [45, 58]. The set Tα will always have at most quadratic complexity,
but it can be disconnected. Nextwe compute T⊕

α . We take every connected component
T of Tα separately, compute T⊕, and then compute their union. Since the connected
components of Tα are disjoint and can be partitioned into O(n2) convex pieces, the
Minkowski sums of these pieces with Dα form a set of pseudo-disks with total
complexity O(n2), see [71]. It is known that such a union has O(n2) complexity and
can be computed inO(n2 log2 n) time [3, 71]. Thus, we can compute Tα inO(n2 log2 n)
time.

Note that Tα ⊆ A⊕
i , by definition. It remains to test Ai ⊆ T⊕

α , for each Ai. We test
all those containments by a standard plane sweep [25] inO(n2 log n) time. As soon as
we find any proper intersection between an arc of ∂(T⊕

α ) and some edge of some ∂Ai,
we can stop the sweep and conclude that α needs to be larger. If there were no proper
intersections of this type, there were only O(n2) events (and not O(n3)), including
the ones between edges of different ∂Ai. When there are no proper intersections,
each shape Ai lies fully inside or outside T⊕

α . We can test this in O(n2 log n) time
(replace each Ai by a single point and then test by a plane sweep or planar point
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Figure 3.16: Left, two sets shown by red and blue line segments, and the construction
of Tα from lines parallel to edges ofM and circles centered at vertices ofM. Right,
construction of T⊕

α from lines at distance 2α from edges of M, circles of radius 2α
centered at vertices ofM, and circles of radius α centered at certain vertices of Tα.

location [25]), and conclude that α must be larger or smaller than the one tested.
Thus this decision algorithm takes O(n2 log2 n) total time.

Approximation algorithm The decision algorithm leads to a simple approximation
algorithm to find a value of α that is at most a factor 1+ ε from the optimum. We can
perform ⌈log 1/ε⌉ steps of binary search in the range [1/2, 1], testing if T⊕

α contains all
Ai using the above decision algorithm. This takes O(n2 log2 n log 1/ε) time in total.

Exact computation We can compute an exact value of α(M) in polynomial time.
To this end, we imagine a continuous process where we grow α from 1/2, and keep
track of T⊕

α . The first time (smallest α) T⊕
α covers all Ai, we have found the Haus-

dorff distance α(M) corresponding to the Hausdorff middle, and we can construct
Tα explicitly as the Hausdorff middle. Such an approach is sometimes called wave-
front propagation or continuous Dijkstra; it has been used before to compute Voronoi
diagrams [25, 49], straight skeletons [6] and shortest paths on terrains [89]. This
approach is combinatorial if there are finitely many events and we can determine
each on time, before it occurs. Instead of explicitly maintaining T⊕

α when α grows,
we will determine a polynomial-size set of critical α values that contains the sought
one, and find it by binary search, using the decision algorithm described above.

The value α(M) that we aim to compute occurs when T⊕
α has grown just enough

to cover all Ai. This can happen in three ways, roughly corresponding to a vertex of
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Ai becoming covered, an edge of Ai becoming covered at some point “in the middle”,
or a hole of T⊕

α collapsing and disappearing interior to Ai. We call the vertices, edges,
and arcs of M and T⊕

α the features (of their boundaries). The three ways of covering
all Ai, expressed in the features of M and T⊕

α , are now: (1) a feature of T⊕
α coincides

with a vertex of someAi, (2) a vertex of T⊕
α lies on a feature of someAi, or (3) features

of T⊕
α collapse and cause a hole of T⊕

α to disappear. In the last case, when that hole
was inside some Ai, this can be the event where Ai is covered fully for the first time.
In all cases, one, two, or three features of T⊕

α and zero or one feature of some Ai
are involved, and at most three features in total. When three edge or circular arc
features pass through a single point for some value of α, we say that these features
are concurrent. Similarly, when an edge or circular arc passes through a vertex for
some α, we say they are concurrent.

It can be that more than three features of T⊕
α pass through the point where, e.g., a

hole in T⊕
α disappears, but then we can still determine this critical value by examining

just three features of T⊕
α , and computing the α value when the curves of these three

features are concurrent.
Let us analyze which features make up the boundary of T⊕

α , see Figure 3.16. There
are four types: (1) straight edges, which are at distance 2α from an edge ofM, and
parallel to it, (2) circular arcs of radius 2α, which are parts of circles centered at
vertices ofM, (3) circular arcs of radius α, centered at a vertex of Tα, and (4) vertices
where features of types (1)–(3) meet. Every one of the features of the boundary of
T⊕
α is determined by one or two features ofM. In particular, each arc of type (3) is

centered on an intersection point which is a vertex of Tα, of which there can be Θ(n2)
in the worst case (Figure 3.5). Depending on the type of intersection point, its trace
may be linear in α, or may follow a low-degree algebraic curve (when the intersection
has equal distance α to an edge and a vertex of M).

Since any critical value can be determined as a concurrency of two (vertex and
edge or arc) or three features (three edges or arcs) from M and T⊕

α , and features of
T⊕
α in turn are determined by up to two features of M, every critical value depends

on at most six features of the input M. If we choose any tuple with up to six features
of M, and compute the α values that may be critical, we obtain a set of O(n6) values
that contain all critical α values, among which α(M). We can compute this set in
O(n6) time, as it requires O(1) time for each tuple of up to six features of M.

Theorem 3.14. Let M be a collection of m polygonal shapes in the plane with total com-
plexity n, such that the Hausdorff distance between any pair is at most 1, and let ε > 0
be a constant. The Hausdorff middle of M can be computed exactly in O(n6) time, and
approximated within ε in O(n2 log2 n log 1/ε) time.

Parametric search could result in a faster exact algorithm, but for this one would
need to express whether input features are close to a given Sα in terms of low-degree
polynomials. This is nontrivial given that Sα as a function of α varies in a complex
manner.
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3.4 Discussion and future research
We have defined and studied the Hausdorff middle of two planar sets, leading to
a new morph between these sets. We also considered the Hausdorff middle for
more than two sets. While we assumed that the input sets are simply connected, our
definition of middle and the morph immediately generalize to more general sets, like
sets with multiple components and holes. In this sense our definition of middle is
very general. Other interpolation methods between shapes do not generalize to more
than two input sets and cannot easily handle sets with multiple components.

There are many interesting open questions. For example, when both input sets are
one-dimensional curves, is there a natural way to define a Hausdorff middle curve
that is also 1-dimensional?

Besides the maximal middle set, there are other options for a Hausdorff middle.
For example, we can choose Sα clipped to the convex hull of A ∪B, which is also a
valid Hausdorff middle. In Figure 3.11, the green shape would be reduced to the part
inside the square, which may be more natural. This Hausdorff middle can also be
used in a morph.

Another interesting question could be if, for two shapes A and B, we can find a
translation or rigid motion of A such that some measure on the Hausdorff middle
(e.g. area, perimeter, diameter) is minimized.

For two or more shapes in the plane, we could also define a middle based on area
of symmetric difference. Here we may want to average the areas for the middle shape,
and possibly choose the middle that minimizes perimeter. This problem is related to
minimum-length area bisection [78].

Similarly, for a set of curves, we could define a middle curve based on the Fréchet
distance. This appears related to the Fréchet distance of a set of curves rather than
just a pair [44].

Finally, it is worth looking into faster algorithms for finding α(M). As mentioned,
using parametric search seems to be a good candidate, but faster algorithms for the
decision problem could also be investigated.



Chapter 4

Abstract morphing using the
Hausdorff distance and Voronoi
diagrams

4.1 Introduction
Morphing, also referred to as shape interpolation, is the changing of a given shape
into a target shape over time. Applications include animation and medical imaging.
Animation is often motivated by the film industry, where morphing can be used
to create cartoons or visual effects. In medical imaging, the objective is a 3D recon-
struction from cross-sections, such as those from MRI or CT scans. Reconstruction
between two 2D slices is essentially 2D interpolation between shapes, which is a form
of morphing. We regard morphing itself as the change of one shape into another
shape by a parameter, or, more precisely, a function from the interval [0, 1] to shapes
in a space, such that the image at 0 is the one input shape and the image at 1 is the
other input shape. It is often convenient to see the morphing parameter as time. In
the rest of this chapter, we will refer to the shape of the morph at any particular time
value as an intermediate shape. See Figure 4.1 for an example of two halfway shapes
between polygons resembling a butterfly and a spider.

The quality of a morph depends on the application. For medical imaging, the
implied 3D reconstruction must be anatomically plausible. For morphing between
two drawings of a cartoon character, the shapes in between must keep the dimensions
of the limbs, for example. Furthermore, semantically meaningful features (nose,
chin) should morph from their position in the one shape to their position in the other
shape.

In this chapter we concentrate on abstract morphing of shapes. A morphing task
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Figure 4.1: The intermediate shapes of two different morphing methods at time value
1/2 when morphing between the input shapes on the left. The middle shows the
dilation morph (introduced in the previous chapter), the right shows the Voronoi
morph (introduced in this chapter).

is abstract if there is no (semantic) reason to transform certain parts of a starting
shape into certain parts of a goal shape. In the previous chapter, we presented a new
type of abstract morphing based on the Hausdorff distance. It takes any two compact
planar shapes A and B as input, and produces a morphed shape that interpolates
smoothly between them. For a time value α ∈ [0, 1], this morph is equal to A at α = 0
and to B at α = 1. For any value of α it has Hausdorff distance α to A and Hausdorff
distance 1− α to B, if the initial Hausdorff distance is 1 (the input can be scaled to
make this true without changing intermediate shapes). Morphs with this property
are called Hausdorff morphs [80]. The Hausdorff morph introduced in Chapter 3 is
based on Minkowski sums with a disk, and hence we refer to this specific one as the
dilation morph.

While the dilation morph has nice theoretical properties, in practice it will often
grow intermediate shapes from A until α = 1/2, at which point the greatly dilated
shape will shrink back towards B. For α close to 1/2, the morphed shape typically
resembles neither of the input shapes unless they already looked alike. We can see
this in Figure 4.1.

In this chapter we present a new Hausdorff morph called Voronoi morph that
gives a subjectively more visually convincing morph, while maintaining many of the
properties of the dilation morph. Our morph uses Voronoi diagrams to partition each
input shape into regions with the same closest point on the other shape, and then
scales and moves each such region to that closest point based on the value of α. We
show that the Voronoi morph is also a Hausdorff morph. It interpolates smoothly
between A and B, but does not have the same problem of significantly increasing the
area during the morph. We also present a variant called mixed morph that reduces the
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problem of unnecessarily increasing the perimeter of the interpolated shape. It uses
dilation and erosion to overcome some shortcomings of the Voronoi morph.

4.1.1 Related work
The Hausdorff distance is a widely used distance metric that can be used for any two
subsets of a space. It is a bottleneck measure: only a maximum distance determines
the Hausdorff distance. Efficient algorithms to compute the Hausdorff distance
between two simple polygons or their higher-dimensional equivalents exist [8, 9, 18].
The Hausdorff distance is used in computer vision [43] and computer graphics [16,
39] for template matching, and the computation of error between a model and its
simplification.

Several algorithmic approaches to morphing have been described. Many of these
are motivated by shape interpolation between slices (e.g., [7, 20, 21, 27], an overview
can be found in [23]). Other papers discuss morphing explicitly and not as an
interpolation problem. Many of these results use compatible triangulations [56, 84],
in particular those that avoid self-intersections. It is beyond the scope of this chapter to
give a complete overview of morphing methods. For (not so recent) surveys of shape
matching, interpolation, and correspondence, see [14, 67]. Our method builds upon
the morphing approach given in Chapter 3, which introduced Hausdorff morphs as
a new technique for abstract morphing, and the dilation morph as a specific example
of a Hausdorff morph.

Another shape similaritymeasure than theHausdorff distance, the Fréchetdistance,
can also be used to define a morph. In particular, locally correct Fréchet matchings [31]
immediately imply a smooth transition of one shape outline into another, because
they match all pairs of points on the two curves. Similar approaches were given in
[85, 96]. During the transition, however, the outline may be self-intersecting. This
problem was addressed in [33, 37]. A more important shortcoming of morphing
using the Fréchet distance is that it is unclear how to morph between shapes with
different numbers of components and holes.

Much of the commercial software for morphing applies to images, with or without
additional human control. Other software is meant as toolkits for designers to design
their own morphs, most notably Adobe After Effects.

4.1.2 Our results
We introduce two new abstract morphs based on the Hausdorff distance. They are—
just like the dilation morph—conceptually simple and easy to implement if one has
code for Minkowski sum and difference with a disk, Voronoi diagrams, and polygon
intersection and union. We examine basic properties of the two new morphs and
compare how they relate to the dilation morph. In particular, we show that the
Voronoi morph is a Hausdorff morph and that it is 1-Lipschitz continuous. We also
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show that for any morphing parameter (time), the Voronoi-morph intermediate
shape is a subset of the mixed-morph intermediate shape, which in turn is a subset
of the dilation-morph intermediate shape.

We then proceed with an extensive experimental analysis where we compare four
basic quantities: area, perimeter, number of components, and number of holes. We
show how these quantities develop throughout the three morphs. We also present
visual results. As data we use simple drawings of animals, country outlines, and text
(letters and whole words).

4.2 Preliminaries
Given two sets A and B, we can define the directed Hausdorff distance from A to B
as

dH⃗(A,B) := sup
a∈A

inf
b∈B

d(a, b),

where d denotes the Euclidean distance. The undirected Hausdorff distance between A
and B is then defined as the maximum of both directed distances:

dH(A,B) := max(dH⃗(A,B), dH⃗(B,A)).

When A and B are closed sets, we can alternatively define the Hausdorff distance
usingMinkowski sums. Recall that theMinkowski sumA⊕B is defined as {a+b | a ∈
A, b ∈ B}; the directed Hausdorff distance between A and B is then the smallest
value r for which A ⊆ B ⊕Dr, where Dr is a disk of radius r.

In Chapter 3 we defined a function that interpolates between two shapes in a
Hausdorff sense: for any time parameter α ∈ [0, 1], we defined the dilation morph

Sα(A,B) := (A⊕Dα) ∩ (B ⊕D1−α),

and proved that this shape has Hausdorff distance α to A and 1− α to B, and that it
is the maximal shape with this property. Additionally, we showed that this morph is
1-Lipschitz continuous: for two time parameters α and β, dH(Sα(A,B), Sβ(A,B)) ≤
|β − α|. Note that we will omit the arguments A,B when they are clear from context.

Structurally, it turns out that the intermediate shapes may have quadratic com-
plexity, even when the input is two simple polygons with n vertices each. For instance,
if the input consists of a horizontal comb and an overlapping vertical comb, each with
n/4 prongs, Sα will consist ofΩ(n2) components for any α ∈ (0, 1) (see Figure 3.5). In
fact, this is not limited to the dilation morph: any intermediate shape with Hausdorff
distance α to A and 1 − α to B will have Ω(n2) components, so every Hausdorff
morph has this feature.
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4.3 Voronoi morph
As demonstrated in Figure 4.1, one of the problems with the dilationmorph is that the
intermediate shapes tend to lose any resemblance to the input during the morphing
process. The main reason for this is that the dilated shapes we are intersecting contain
many points that do not influence the Hausdorff distance in any way, because they
are not on the shortest path from a point on one shape to the closest point on the other.
In other words, much of Sα can be removed without changing the Hausdorff distance
to and from the input. That said, there is no obvious “correct” way to determine
which parts should be removed to obtain the greatest resemblance to the input.

We propose amorph inwhichwe only take the points of Sα that are on the shortest
path between points in one input shape and the closest point on the other. Specifically,
we only take the points where the ratio of distances to the one shape and the closest
point on the other is α : 1−α. More formally, we define our newmorph Tα as follows:

Tα(A,B) := {a+ α(c(a,B)− a) | a ∈ A} ∪ {b+ (1− α)(c(b, A)− b) | b ∈ B},

where c(a,B) denotes the point onB closest to a. In other words, we move each point
in A closer to the closest point in B by a fraction α of that distance, and each point in
B closer to the closest point in A by a fraction 1− α, and take the union of those two
shapes. If a point is equidistant to multiple points in the other shape, we include all
options. We can prove that this morph has the desired Hausdorff distances to the
input.
Theorem 4.1. Let A and B be two compact sets in the plane with dH(A,B) = 1. Then for
any 0 ≤ α ≤ 1, we have dH(A, Tα) = α and dH(B, Tα) = 1− α.

Proof. We first show that dH(A, Tα) ≤ α, and then show strict equality. The case for
dH(B, Tα) is analogous and therefore omitted.

By construction, any point a ∈ A has a point at distance at most α in Tα, showing
that dH⃗(A, Tα) ≤ α. Similarly, by construction, for each point b ∈ B there is a point
tb ∈ Tα such that tb = (1 − α)(c(b, A) − b). As d(b, c(b, A)) ≤ 1, it must be the case
that tb has distance at most α to c(b, A). It follows that all points in Tα have distance
at most α to a point in A, thereby showing that dH⃗(Tα, A) ≤ α. As we have both
dH⃗(A, Tα) ≤ α and dH⃗(Tα, A) ≤ α, it follows that dH(A, Tα) ≤ α.

To show strict equality, assume the Hausdorff distance is realised by some point
â ∈ A with closest point b̂ ∈ B, i.e., d(â, b̂) = 1. By construction, there is a point
t̂ ∈ Tα at distance α from â and at distance 1 − α from b̂. As t̂ is the closest point
to â in Tα, we have dH(A, Tα) = α, and as b̂ is the closest point to t̂ in B, we have
dH(B, Tα) = 1 − α. If the Hausdorff distance is realised by a point on B, we use a
symmetric argument.

We can additionally show that the Voronoi morph, like the dilation morph, is
1-Lipschitz continuous in a Hausdorff sense:
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BA

V(B)

Qα

Pα

Figure 4.2: On the left, A is partitioned by the Voronoi diagram V (B) of B. On the
right, each partitioned part of A, shown in green, is scaled towards the closest point
on B by a factor α.

Lemma 4.2. Let α, β ∈ [0, 1]. Then dH(Tα, Tβ) ≤ |β − α|.

Proof. Let tα be any point on Tα. Assume without loss of generality that there is
some a ∈ A such that tα = a+ α(c(a,B)− a) (the case for tα being included due to
a point in B is analogous). Now consider the point tβ = a+ β(c(a,B)− a): tα and
tβ are on the same straight line segment between a and c(a,B), and have distance
|β − α| · |c(a,B)− a| to each other. As dH(A,B) = 1, we know that |c(a,B)− a| ≤ 1,
and therefore that |tβ − tα| ≤ |β − α|. This holds for any tα ∈ Tα, and the argument
is symmetric for Tβ .

Note that this type of continuity implies that components of Tα can only form or
disappear by merging with or splitting from another component.

In addition to the Hausdorff distance-related properties, it is also interesting to
study the general geometric and topological properties of Tα. We first show that the
number of components #C(Tα) of Tα does not change during the morph, except
possibly at α = 0 and α = 1. We prove this for the case of polygonal input; the
proof can likely be generalised, but the formalisation is somewhat tedious and not
particularly interesting.

Let V (A) be the Voronoi diagram of the vertices, open edges and the interior
components of A. We now define Par(A,B) to be the input shape A partitioned into
regions by V (B). Note that Par(A,B) is a set of regions ofA that each have the closest
point of B on the same vertex, edge or face of B. For some region P ∈ Par(A,B),
let Pα be the region obtained by scaling P towards the site of the Voronoi cell of B
it is in by a factor α. If this site is a vertex, we simply scale P uniformly towards it;
if it is an edge, we scale it perpendicular to the supporting line of that edge; and if
it is a face, it does not scale or move at all; see Figure 4.2 for an illustration. Now
let Parα(A,B) := {Pα | P ∈ Par(A,B)}. Note that Tα is the union of all elements of
Parα(A,B) and Par1−α(B,A).



4.3 Voronoi morph 79

Lemma 4.3. Let 0 < α < β < 1. Then #C(Tα) = #C(Tβ).

Proof. Assume that #C(Tα) ̸= #C(Tβ). We can assume without loss of generality
that#C(Tα) > #C(Tβ), as in the other case we can take Tα(B,A) instead of Tα(A,B)
and get the same morph, but parametrised in reverse. We can also assume that for
fixed α, β is the smallest value such that #C(Tα) > #C(Tβ). In this case, there
are two regions P and Q of Par(A,B) or Par(B,A) that are disjoint and in different
components of Tα, but intersect and are in the same component of Tβ . This is because,
as a consequence of Lemma 4.2, components cannot appear or disappear. In the
following we assume P,Q ∈ Par(A,B); the arguments for when one or both are in
Par(B,A) are identical.

As Pβ ∩Qβ ̸= ∅, there must be some point p in both Pβ and Qβ . As both Pβ and
Qβ are formed by regions moving towards the closest point on the other shape, this
point is then on the intersection of two shortest paths between A and B. Let a1, b1,
a2 and b2 be the endpoints of these paths intersecting in p. One of the two segments
seg(p, b1,), seg(p, b2,) will be the shortest; assume without loss of generality that it
is seg(p, b1,). In this case the path a2pb1 is shorter than a2pb2, and by the triangle
inequality b1 must be closer to a2 than b2.

This contradicts the assumption that b2 was the closest point to a2. We conclude
that such shortest paths can never intersect, and therefore Pα ∩ Qα = ∅ for any
α ∈ (0, 1). As such, components can never merge or split for α ∈ (0, 1), and as
they also cannot appear or disappear by Lemma 4.2, the statement in the lemma
follows.

Note that the number of components can change at α = 0 or α = 1, as in these limit
cases elements of Parα(A,B) and Parα(B,A) turn into points or line segments. Using
the strategy from this proof, it also follows that Parα(A,B) and Par1−α(B,A) are
interior-disjoint. An interesting corollary of this observation is that the area |Tα| of Tα
is bounded from below by (1− α)2|A|+ α2|B|, which is attained when both shapes
are disjoint and all parts are moving to a finite number of points (vertices) on the
other shape.

4.3.1 A variant morph
One problem with the Voronoi morph is that it can introduce many slits into the
boundary, thereby greatly increasing the perimeter of the shape. This is because parts
of the input that have different closest points on the other shape will tend to move
away from each other. We present a variant of the Voronoi morph that tries to reduce
these problems. As it uses both the Voronoi morph and the dilation morph, we call
this variant the mixed morph. The mixed morphMα,φ is defined as follows:

Mα,φ(A,B) := ((Tα(A,B)⊕Dφ)⊖Dφ) ∩ Sα,
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where ⊖ is the Minkowski difference, defined as A⊖B := (Ac ⊕B)c, where Ac is the
complement of A. Taking a Minkowski sum with a disk is also known as dilation, and
the Minkowski difference with a disk is known as erosion. Performing first a dilation
and then an erosion with disks of the same radius is known as closing, and can be
used to close small gaps and holes in a shape without modifying the rest too much.
The closing operator is widely used and studied in the field of image analysis [61].

The resultingmorphmay no longer be aHausdorffmorph: wemay have increased
the Hausdorff distance by closing certain gaps or holes. We therefore intersect the
closed version of Tα with the dilation morph Sα, so that gaps that are necessary to
obtain the appropriate Hausdorff distance are maintained. This results in the mixed
morphMα,φ.

The mixed morph has a new parameter, φ, being the radius of the disk used in the
closing. Note thatMα,0 = Tα. We can show thatMα,φ contains all shapes obtained
with the same α but smaller value of φ:
Lemma 4.4. Let φ,ψ ∈ R+ and φ ≤ ψ. ThenMα,φ ⊆Mα,ψ .

Proof. Let us assume thatMα,φ ⊃Mα,ψ instead. Then there is some point p such that
p ∈Mα,φ, but p /∈Mα,ψ. There are two reasons why pmight not be inMα,ψ: either
p /∈ Tα ⊕Dψ , or p ∈ Tα ⊕Dψ but p /∈ (Tα ⊕Dψ)⊖Dψ .

It can clearly not be the case that p ∈Mα,φ but p /∈ Tα ⊕Dψ: Mα,φ is a subset of
Tα ⊕Dφ, and as φ ≤ ψ, we have that Tα ⊕Dφ ⊆ Tα ⊕Dψ .

It must then be the case that p ∈ Tα ⊕ Dψ but p /∈ (Tα ⊕ Dψ) ⊖ Dψ. In this
case, the distance between p and the boundary ∂T⊕

α of Tα ⊕Dψ must be less than
ψ. Let q ∈ ∂T⊕

α be the point on the boundary closest to p. As p ∈ Tα ⊕ Dφ and
Tα ⊕Dφ ⊆ Tα ⊕Dψ , the segment seg(p, q,) must intersect the boundary of Tα ⊕Dφ

in some point q′. We must have that d(p, q′) ≥ φ, or p would not be in Mα,φ, and
we must have d(q, q′) ≥ ψ − φ, as Tα ⊕Dψ = (Tα ⊕Dφ) ⊕Dψ−φ. But then, by the
triangle inequality, d(p, q) ≤ d(p, q′) + d(q, q′) ≥ ψ, which is a contradiction. Hence,
p ∈Mα,ψ . As this holds for all p ∈Mα,φ, the statement in the lemma follows.

Note that this means we now have the following hierarchical containment of
morphs: Tα ⊆ Mα,φ ⊆ Mα,ψ ⊆ Sα, for φ ≤ ψ. As Tα is a Hausdorff morph, and
Sα is the maximal Hausdorff morph, this shows thatMα,φ is a Hausdorff morph as
well. However,Mα,φ is not 1-Lipschitz continuous: components may suddenly merge
when their distance falls below 2φ.

4.3.2 Algorithm
To give an algorithm for computing Tα, we assume A and B are (sets of) polygons,
possibly with holes. As Tα is based on moving all points on the one shape to the
closest point on the other shape, we can compute the Voronoi diagram of each input
shape, and then use these to partition the other shapes. This gives us a partitioning
of A into pieces that overlap B, or have the same closest point or edge on B, and vice
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versa. Pieces of A completely inside B are unchanged, pieces with a vertex as closest
element are scaled uniformly towards that vertex by a factor α, and pieces with an
edge as closest element are scaled perpendicular to the supporting line of that edge
by a factor α. For pieces of B we do the same, except that we scale them with a factor
1− α. Figure 4.2 shows an example of how a shape A is partitioned by the Voronoi
diagram V (B) of B, and each piece is scaled towards the closest point on B.

Given this algorithm, we can also straightforwardly computeMα,φ by computing
Tα and Sα, dilating and eroding Tα by a distance φ, and then intersecting the result
with Sα.

Our computations rely solely on Voronoi diagrams of segments, Minkowski sums
and differences with disks, intersections and unions of polygons, all of which can
be found in standard books or surveys [3, 19, 25] and an intermediate shape can be
calculated in O(n2 log n) time.

4.4 Experiments
We compare the dilation, Voronoi and mixed morphs experimentally on three data
sets. The first data set is a collection of outlines of animals taken from [29]. The
second is a selection of the outlines of European countries obtained from the Thematic
Mapping World Borders data set;1 we use the outlines of Austria, Belgium, Croatia,
Czechia, France, Germany, Greece, Ireland, Italy, the Netherlands, Poland, Spain and
Sweden. For these two sets we compute the morphs for all pairs of animals and all
pairs of countries in the sets. None of the three morphs is translation-invariant or
scale-invariant, so it matters where we place the shapes with respect to each other
and what sizes they initially have. We choose to scale the shapes to have the same
area and translate them to have a common centroid.

The third data set is a small collection of words and letters manually traced as
polygons. We use three pairs of words (wish/luck, kick/stuff, try/it), and the letters
f, i and u in a serif and a sans serif font. Observe that our morphs could in theory be
used to define an infinite family of fonts by interpolating between the glyphs of each
element. For these experiments we do not scale the shapes but use the font size, and
we align them manually.

For each experiment, we measure the area, perimeter, number of components and
number of holes of the morph for α values starting at zero and increasing in steps
of 1/8. The parameter φ of the mixed morph was universally set to 0.02 based on
preliminary experimentation.

It is not necessarily insightful to compare areas and especially perimeters between
experiments. To make the results more comparable, we make the assumption that an
ideal morph linearly interpolates the area and perimeter between those of the input
shapes. For each experiment, we can then give the ratio between the measured area

1http://www.thematicmapping.org/downloads/world_borders.php

http://www.thematicmapping.org/downloads/world_borders.php
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and perimeter and these “ideal” values. For the number of components and holes
this is less meaningful, as these are discrete values, so we simply record the numbers
directly.

Each morphing method was implemented in C++, using Boost2 to calculate inter-
sections and unions of polygons, Voronoi diagrams, and Minkowski sums. Although
efficiency is not the focus of our study, running all our experiments only took a few
minutes in total.

4.5 Results
A summary of our measurements of area and perimeter can be seen in Tables 4.1
and 4.2. A summary of the number of components and holes for only the animals data
set can be seen in Table 4.3; we exclude the other data sets because the inputs have
different numbers of components. Topological measurements for all experiments can
be viewed in Table 4.4. We note that the Voronoi and mixed morphs sometimes have
spurious holes caused by numerical precision issues (e.g., the Voronoi morph should
not have an intermediate shape with five holes in our experiment with the letter i).
Animations of the different morphs for each experiment can be viewed online.3

In Figure 4.3 we can see that the average area of the dilation morph quickly grows
as α increases, until reaching its peak at α = 1/2, to about three times the desired size.
For the perimeter we see the opposite trend, with the dilation morph typically having
a lower perimeter than desired. This is a consequence of the dilation erasing details
in the boundary of the input shapes. We can see in Figure 4.4 that this happens more
quickly in the experiments with country shapes. This is expected, as most of the
country shapes have more sharp coastline features and islands that quickly disappear,
whereas the animal shapes are generally smoother and only have one component.

Our Voronoi morph on average has an area that is much closer to the desired
value, and with much lower variance than the dilation morph. However, we see that
on average the perimeter is much higher than the desired value. This is because
points on opposite sides of a Voronoi edge move in different directions, causing new
boundaries to appear in the interior of a shape as soon as α > 0. We can see this
happen in the middle column of Figure 4.5, and this is reflected in Figure 4.4, where
we see the perimeter sharply increase and then stay mostly the same, before sharply
dropping back down.

Our mixed morph achieves its purpose of reducing the perimeter of the Voronoi
morph: the measured perimeters are close to the desired values, while the measured
areas stay comparable to those of the Voronoi morph. In Figure 4.4, we see that the
perimeter typically still increases during the morphing process, but does not jump
up sharply as soon as α > 0. This is because the small value of φ lets us close only

2https://www.boost.org
3https://hausdorff-morphing.github.io

https://www.boost.org
https://hausdorff-morphing.github.io
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Table 4.1: The distributions of areas for each morphing method over all experiments
for all nine tested values of α, separated by experiment category.

Dilation Voronoi Mixed
Category Mean Std. Dev. Mean Std. Dev. Mean Std. Dev.
Animals 1.977 0.763 0.969 0.024 0.986 0.019
Countries 2.249 1.498 0.960 0.039 0.987 0.039
Text 2.118 1.046 0.980 0.035 0.989 0.028

Table 4.2: The distributions of perimeters for each morphing method over all experi-
ments for all nine tested values of α, separated by experiment category.

Dilation Voronoi Mixed
Category Mean Std. Dev. Mean Std. Dev. Mean Std. Dev.
Animals 0.857 0.137 1.725 0.432 1.183 0.155
Countries 0.876 0.237 1.610 0.471 1.129 0.184
Text 0.955 0.142 1.401 0.418 1.155 0.192

Table 4.3: The distributions of the number of components and holes for eachmorphing
method for all tested values of α except 0 and 1. This only includes the animals data
set, as these shapes have only one component and no holes.

Dilation Voronoi Mixed
Category Mean Std. Dev. Mean Std. Dev. Mean Std. Dev.
Components 1.004 0.063 18.556 8.089 5.317 3.213
Holes 0.218 0.602 2.544 2.699 0.218 0.532
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Figure 4.3: The average area over all experiments as a function of α, for both the
animals and countries data sets.
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Figure 4.4: The average perimeter over all experiments as a function of α, for both
the animals and countries data sets.
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Figure 4.5: Intermediate shapes for α ∈ {0, 1/4, 1/2, 3/4, 1} when morphing between
the outlines of Germany and Italy. The columns show the dilation morph, Voronoi
morph and mixed morph from left to right.
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Figure 4.6: Intermediate shapes for α ∈ {0, 1/4, 1/2, 3/4, 1} when morphing between
the outlines of a butterfly and a spider. The columns show the dilation morph,
Voronoi morph and mixed morph from left to right.
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Figure 4.7: Intermediate shapes for α ∈ {0, 1/4, 1/2, 3/4, 1} when morphing between
the outlines of a bird and an ostrich. The columns show the dilation morph, Voronoi
morph and mixed morph from left to right.
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Figure 4.8: Intermediate shapes for α ∈ {0, 1/4, 1/2, 3/4, 1} when morphing between
the outlines of France and Spain. The columns show the dilation morph, Voronoi
morph and mixed morph from left to right.
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Figure 4.9: Intermediate shapes for α ∈ {0, 1/4, 1/2, 3/4, 1} when morphing between
the outlines of the letter i in two different fonts. The columns show the dilationmorph,
Voronoi morph and mixed morph from left to right. Note that some artefacts in the
Voronoi and mixed morphs, such as on the i’s dot, are caused by having polygonal
input instead of smooth curves.
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Figure 4.10: Intermediate shapes forα ∈ {0, 1/4, 1/2, 3/4, 1}whenmorphing between
the outlines of the words try and it. The columns show the dilation morph, Voronoi
morph and mixed morph from left to right. Note that some artefacts in the Voronoi
and mixed morphs, such as in the curved part of the letter r, are caused by having
polygonal input instead of smooth curves.
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the narrow gaps that appear around the edges of the Voronoi diagram, but not the
gaps that develop as pieces of the shapes move apart significantly. We can see this
when comparing the middle and right columns of Figure 4.5: fewer gaps are closed
at α = 1/2 than at the other time values.

In addition to area and perimeter, we also tracked the number of components
and holes for each morph type. We observe that for the dilation morph, there is
an intermediate shape with only one component in all but one of our experiments
(see Table 4.4), showing that this morph tends to turn everything into a blob during
the morphing process. On the other hand, the Voronoi morph tends to have an
intermediate shapewith a number of components much larger than either of the input
shapes. The mixed morph exhibits neither of these behaviours. This is illustrated in
Figure 4.5.

Table 4.4: The minimum and maximum number of components and the maximum
number of holes for each experiment, separated by morph type.

Dilation Voronoi Mixed
Experiment min max holes min max holes min max holes
bird→ butterfly 1 1 0 1 11 6 1 4 1
bird→ cat 1 1 1 1 12 6 1 5 0
bird→ dog 1 1 1 1 23 4 1 7 1
bird→ horse 1 2 1 1 27 6 1 8 2
bird→ ostrich 1 1 0 1 26 5 1 12 0
bird→ shark 1 1 0 1 14 4 1 6 0
bird→ spider 1 1 0 1 30 8 1 9 1
bird→ turtle 1 1 0 1 21 3 1 9 1
butterfly → cat 1 1 1 1 6 2 1 3 1
butterfly → dog 1 1 1 1 9 4 1 4 1
butterfly → horse 1 1 1 1 28 3 1 9 2
butterfly → ostrich 1 1 1 1 11 7 1 4 2
butterfly → shark 1 1 0 1 8 4 1 3 1
butterfly → spider 1 1 1 1 30 9 1 10 2
butterfly → turtle 1 1 0 1 13 6 1 3 2
cat→ dog 1 1 1 1 17 1 1 3 1
cat→ horse 1 1 1 1 17 2 1 5 1
cat→ ostrich 1 1 0 1 13 4 1 4 0
cat→ shark 1 1 0 1 9 0 1 5 0
cat→ spider 1 1 2 1 29 3 1 7 3
cat→ turtle 1 1 0 1 14 1 1 7 0
dog→ horse 1 1 2 1 31 4 1 9 1
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Table 4.4: (continued from last page)

Dilation Voronoi Mixed
Experiment min max holes min max holes min max holes
dog→ ostrich 1 1 1 1 22 2 1 7 1
dog→ shark 1 1 1 1 17 3 1 6 1
dog→ spider 1 1 3 1 32 2 1 14 2
dog→ turtle 1 1 1 1 16 1 1 6 0
horse → ostrich 1 1 2 1 27 7 1 15 1
horse → shark 1 1 1 1 22 5 1 7 1
horse → spider 1 1 4 1 38 3 1 9 1
horse → turtle 1 1 1 1 22 4 1 12 0
ostrich → shark 1 1 0 1 15 8 1 5 0
ostrich → spider 1 1 4 1 38 9 1 17 0
ostrich → turtle 1 1 0 1 21 12 1 4 0
shark → spider 1 1 0 1 23 2 1 5 2
shark → turtle 1 1 0 1 11 3 1 3 0
spider→ turtle 1 1 4 1 25 14 1 8 3
austria → belgium 1 1 0 1 2 2 1 1 0
austria → croatia 1 19 0 1 24 2 1 19 3
austria → czechia 1 1 0 1 2 2 1 1 0
austria → france 1 10 0 1 16 2 1 10 1
austria → germany 1 20 0 1 20 2 1 20 0
austria → greece 1 68 4 1 79 2 1 68 2
austria → ireland 1 4 0 1 12 1 1 4 1
austria → italy 1 22 1 1 33 1 1 22 1
austria → netherlands 1 9 1 1 15 2 1 9 2
austria → poland 1 1 0 1 2 2 1 2 0
austria → spain 1 15 0 1 23 2 1 15 1
austria → sweden 1 19 0 1 26 2 1 19 0
belgium→ croatia 1 19 1 1 26 3 1 19 4
belgium→ czechia 1 1 0 1 1 3 1 1 0
belgium→ france 1 10 0 1 13 1 1 10 2
belgium→ germany 1 20 0 1 21 2 1 20 2
belgium→ greece 1 68 6 1 81 1 1 68 4
belgium→ ireland 1 4 0 1 9 1 1 4 2
belgium→ italy 1 22 1 1 30 1 1 22 1
belgium→ netherlands 1 9 1 1 13 3 1 9 2
belgium→ poland 1 1 0 1 2 2 1 1 0
belgium→ spain 1 15 0 1 18 2 1 15 0
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Table 4.4: (continued from last page)

Dilation Voronoi Mixed
Experiment min max holes min max holes min max holes
belgium→ sweden 1 19 2 1 25 1 1 19 1
croatia→ czechia 1 19 0 1 24 3 1 19 4
croatia→ france 1 19 2 10 47 1 8 22 1
croatia→ germany 1 20 0 19 55 0 6 20 3
croatia→ greece 1 68 3 19 121 4 19 68 4
croatia→ ireland 1 19 0 4 34 5 3 19 4
croatia→ italy 1 22 1 19 67 7 19 30 1
croatia→ netherlands 1 19 1 9 39 2 7 19 6
croatia→ poland 1 19 0 1 34 1 1 19 2
croatia→ spain 1 19 0 15 51 1 6 19 0
croatia→ sweden 1 19 1 19 61 8 10 19 3
czechia → france 1 10 0 1 13 1 1 10 1
czechia → germany 1 20 0 1 22 1 1 20 2
czechia → greece 1 68 4 1 85 0 1 68 2
czechia → ireland 1 4 0 1 7 1 1 4 2
czechia → italy 1 22 1 1 25 1 1 22 0
czechia → netherlands 1 9 2 1 12 1 1 9 2
czechia → poland 1 1 0 1 2 1 1 1 0
czechia → spain 1 15 0 1 16 1 1 15 0
czechia → sweden 1 19 1 1 30 1 1 19 2
france→ germany 1 20 0 10 39 6 4 20 2
france→ greece 1 68 2 10 108 6 10 68 5
france→ ireland 1 10 0 4 20 3 3 10 2
france→ italy 1 22 1 10 52 6 10 25 0
france→ netherlands 1 10 1 9 25 4 6 11 2
france→ poland 1 10 0 1 11 12 1 10 2
france→ spain 1 15 0 10 38 5 4 16 0
france→ sweden 1 19 1 10 39 4 8 19 1
germany → greece 1 68 4 20 104 30 9 68 2
germany → ireland 1 20 0 4 31 6 4 20 3
germany → italy 1 22 1 20 57 26 11 22 2
germany → netherlands 1 20 1 9 43 14 6 20 3
germany → poland 1 20 2 1 26 6 1 20 2
germany → spain 1 20 0 15 39 16 2 20 0
germany → sweden 1 20 1 19 48 18 11 20 5
greece→ ireland 1 68 4 4 79 12 3 68 4
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Table 4.4: (continued from last page)

Dilation Voronoi Mixed
Experiment min max holes min max holes min max holes
greece→ italy 1 68 3 22 131 19 22 68 3
greece→ netherlands 1 68 6 9 85 21 7 68 5
greece→ poland 1 68 6 1 84 17 1 68 2
greece→ spain 1 68 0 15 111 11 14 68 3
greece→ sweden 1 68 3 19 125 11 12 68 2
ireland→ italy 1 22 1 4 36 4 4 22 2
ireland→ netherlands 1 9 2 4 21 4 3 10 3
ireland→ poland 1 4 0 1 7 8 1 4 2
ireland→ spain 1 15 0 4 25 4 3 15 0
ireland→ sweden 1 19 0 4 31 4 4 19 3
italy→ netherlands 1 22 2 9 42 15 9 22 2
italy→ poland 1 22 1 1 29 14 1 22 1
italy→ spain 1 22 0 15 51 12 12 22 0
italy→ sweden 1 22 1 19 68 13 13 22 0
netherlands → poland 1 9 3 1 13 6 1 9 2
netherlands → spain 1 15 0 9 29 5 5 15 2
netherlands → sweden 1 19 2 9 39 5 6 19 2
poland→ spain 1 15 0 1 17 6 1 15 0
poland→ sweden 1 19 1 1 29 5 1 19 1
spain→ sweden 1 19 0 15 47 3 4 19 0
wish→ luck 1 5 2 4 44 5 4 22 0
kick → stuff 1 5 3 5 29 6 5 18 0
try→ it 1 3 1 3 27 4 3 11 0
f serif→ f sans 1 1 0 1 1 3 1 1 0
i serif → i sans 2 2 0 2 2 5 2 2 0
u serif→ u sans 1 1 0 1 1 2 1 1 0

Inspecting the morphs visually (Figures 4.5–4.10), our mixed morph looks quite
reasonable, especially when the area of symmetric difference between the input
shapes is small. In many cases, the intermediate shape at α = 1/2 is a recognisable
mix of the two input shapes. This is not the case for the dilation morph, where the
Hausdorff distance needs to be very small compared to the size of the input shapes
for it to look good. For instance, when one shape has some small islands far away, the
dilation morph will grow to have a very large area, whereas with the Voronoi and
mixed morphs, the islands just slowly move towards the closest point on the other
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shape; see Figure 4.8. However, both the Voronoi and mixed morph can still look bad
when the area of symmetric difference is large. It may therefore be best to align the
input shapes such that the area of symmetric difference is minimised, rather than
simply aligning the centroids.

The morphs generally look less convincing on our experiments with text, as the
shapes can be very different. For single letters (Figure 4.9) the morphs can look
convincing, but when morphing between words, especially of different numbers of
letters, the intermediate shape at α = 1/2 does not necessarily resemble both input
shapes (Figure 4.10). However, the intermediate shapes at α = 1/4 and α = 3/4 still
do clearly resemble input shapes A and B, respectively, for the Voronoi and mixed
morphs, but less so for the dilation morph. A better approach to morphing text may
be to morph on a per-letter basis, rather than treating the whole text as a single shape.
Some strategy would then have to be devised that determines which letter will morph
to which, and how to deal with different Hausdorff distances between the letter pairs.

Both the Voronoi morph and the mixed morph often have small parts separating,
moving, and then merging somewhere else (for example, the beak in the bird-to-
ostrich morphs on https://hausdorff-morphing.github.io). Such artifacts may
be circumvented by choosing a slightly warped Voronoi diagram, but this upsets the
simplicity of the current methods. We can sometimes notice in the animations that
the mixed morph is indeed not Lipschitz continuous, but since φ is rather small, this
does not show clearly.

4.6 Conclusion
We introduced a new abstract morphing method based on Voronoi diagrams. This
new method satisfies the same bounds on the Hausdorff distance as the previously
introduced dilation morph, and is also 1-Lipschitz continuous. We have shown
experimentally that the intermediate shapes of the Voronoi morph have areas that
more closely match those of the input shapes than the dilation morph, but tends to
have a perimeter that is larger than desired. To remedy this, we introduced a variant
morph, the mixed morph, that we experimentally show to reduce this problem of
increasing the perimeter. This mixedmorph still satisfies the bounds on theHausdorff
distance, but is no longer 1-Lipschitz continuous. Our experimental analysis is the
first we are aware of that analyses the development of area, perimeter, number of
components and number of holes throughout the morphs.

An interesting open question is whether we can prevent the increase in perimeter
caused by the Voronoi morph without losing 1-Lipschitz continuity. This would
require somehow anticipating the moment when two pieces of boundary will meet,
and smoothly bridging the gap between them over time, instead of just instantly
filling it. To optimise the mixed morph, we can study the effects of choosing different
φ, or even changing φ throughout the morph. Another direction is to develop other
morphs that guarantee a smooth change of some distance measure other than the

https://hausdorff-morphing.github.io
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Hausdorff distance; we noted that it is unclear how to employ the Fréchet distance
for morphing in the presence of multiple components.

A more practically oriented direction for further research would be to develop a
less naive method of filling gaps than the mixed morph. It does not necessarily make
sense to use the same radius for the closing operator everywhere, which sometimes
closes gaps that will be opened again. However, any adaptation of this type will
disrupt the conceptual simplicity of the Voronoi and mixed morphs.



Chapter 5

Reconstructing graphs from
connected triples

5.1 Introduction

Imagine that we get information on a graph, but not its complete structure by a list
of edges. One natural question that arises is whether we can determine the graph
uniquely based on this information. In this chapter we explore the case where the
input consists of all triples of vertices whose induced subgraph is connected. In other
words, we know for each given triple of vertices that two or three of the possible
edges are present, but we do not know which ones. We may be able to deduce the
graph fully from all given triples.

As a simple example, assume we are given the (unordered) triples abc, bcd, and
cde. Then the only (connected) graph that matches this specification by triples is the
path a—b—c—d—e. On the other hand, if we are given all triples on four vertices
a, b, c, d except for abc, then there are several graphs possible. We must have the edges
ad, bd, and cd, and zero or one of the edges ab, bc, and ca.

This model of indeterminacy of a graph is perhaps the simplest combinatorial
model for partial information, a model that does not use probability. Normally a
graph is determined by pairs of vertices which are the edges; nowwe are given triples
of vertices with indeterminacy on the edges between them. As such, we believe this
model is interesting to study.

As pointed out, there are cases where reconstruction of the graph from the set T
of triples is unique and there are cases where it is ambiguous. There are also cases
where T is not consistent with any graph, like T = {abc, cde}. Can we characterize
these cases, and what can we say if we have additional information, for example,
when we know that we are reconstructing a tree?

97
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5.1.1 Related work

The problem of graph reconstruction arises naturally in many cases where some
unknown graph is observed indirectly. For instance, we may have some (noisy)
measurement of the graph structure, or only have access to an oracle that answers
specific types of queries. Much previous research has been done for specific cases,
such as reconstructingmetric graphs from a density function [42], road networks from
a set of trajectories [4], graphs using a shortest path or distance oracle [68], labelled
graphs from all r-neighbourhoods [93], or reconstructing phylogenetic trees [30]. A
lot of research has been devoted to the graph reconstruction conjecture, which states
that it is possible to reconstruct any graph (up to isomorphism) from all subgraphs
obtained through the removal of one vertex [28, 82, 94, 108].

Manydifferent types of uncertainty in graphs have been studied. Fuzzy graphs [95]
are a generalisation of fuzzy sets to relations between elements of such sets. In a
fuzzy set, membership of an element is not binary, but a value between zero and
one. Fuzzy graphs extend this notion to the edges, which now also have a degree
of membership in the set of edges. Uncertain graphs are similar to fuzzy graphs
in that each edge has a number between zero and one associated with it, although
here this number is a probability of the edge existing. Much work has been done on
investigating how the usual graph-theoretic concepts can be generalised or extended
to fuzzy and uncertain graphs [70, 92]. Methods for drawing these types of graphs
have also been developed, see e.g. [98, 100].

5.1.2 Our results

After some preliminaries in Section 5.2, we provide two relatively straightforward,
general algorithms for reconstruction in Section 5.3. One runs in O(n3) time when
the triples use n vertex labels, and the other runs in O(n · |T |) time when there are |T |
triples in the input. These algorithms return a graph that is consistent with the given
triples, if one exists, and decide on uniqueness. In Section 5.4we show that trees can be
reconstructed uniquely, provided that we know that the unknown graph is a tree. For
this casewe give anO(|T |) time algorithm. Section 5.5 continues this study by showing
unique reconstruction of 2-connected outerplanar graphs, triangulated planar graphs,
and graphs where all cycles have length at least 5. Section 5.6 contains a further study
of ambiguity and captures the structure of (non-)uniquely reconstructible graphs
partially. In Section 5.7 we study a natural extension of the model where not triples,
but larger constant-size subsets of vertices are given whose induced subgraph is
connected. We show that for k-tuples, we can uniquely reconstruct any tree of size at
least 2k − 1, provided we know that the sought graph is a tree.
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S

Figure 5.1: Three classes of ambiguous triples: a complete graph minus any inde-
pendent set of edges, a star graph plus any (partial) matching of the leaves, and a
path of length four in which all vertices are fully connected to some set S. In this last
case, we cannot tell the difference between the red and green path.

5.2 Preliminaries
Let G be an unknown graph with n vertices and let T be the set of all triples of
vertices that have a connected induced subgraph in G. We will use T to denote the
complement of this set T , i.e. T is the set of all triples of vertices for which the induced
subgraph is not connected. Note that

∣∣T ∪ T
∣∣ = (n3) ∈ Θ(n3).

Observe that the presence of a triple gives the same amount of information as
the absence of a triple: in the former case, at most one of the three possible edges is
absent, whereas in the latter case, at most one of these edges is present.

The size of T is upper-bounded by the sum of squared degrees of the vertices of
the graph. But we may be over-counting: if all three edges of a triple are present, then
we would count the same triple three times. Hence:

1

3

∑
v∈V

(degree(v)
2

)
≤ |T | ≤

∑
v∈V

(degree(v)
2

)

Hence, for a planar graph, |T | ∈ O(n2).
When multiple graphs yield the same set of triples, unique reconstruction is

impossible. A simple example are a path and a cycle of three vertices: both contain
the same triple. Three simple cases of sets of triples for potentially large graphs that
are ambiguous are shown in Figure 5.1.

5.3 Algorithms
Given a set of triples T , we can find a graphG consistent with those triples by solving
a 2-SAT formula. The main observation here is that the presence of a triple abc
means that at least two of the edges ab, ac and bc must exist, whereas the absence
of a triple means at most one of the edges can exist. We can then construct a 2-SAT
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formulawhere each variable corresponds to an edge of the graph, and truth represents
presence of that edge. For each triple abc ∈ T , we add clauses (ab ∨ ac), (ab ∨ bc)
and (ac ∨ bc) to the formula. For each triple abc ∈ T , we add clauses (¬ab ∨ ¬ac),
(¬ab ∨ ¬bc) and (¬ac ∨ ¬bc). A graph consistent with the set of triples can then be
found by solving the resulting 2-SAT formula and taking our set of edges to be the
set of true variables in the satisfying assignment. If the formula cannot be satisfied,
no graph consistent with T exists.

We can solve the 2-SAT formula in linear time with respect to the length of the
formula [17, 47]. We add a constant number of clauses for each element of T and T ,
so our formula has length O(

∣∣T ∪ T
∣∣). As

∣∣T ∪ T
∣∣ = (n3), this gives us an O(n3) time

algorithm to reconstruct a graph with n vertices. However, we prefer an algorithm
that depends on the size of T , instead of also on the size of T . We can eliminate the
dependency on the size of T by observing that some clauses can be excluded from
the formula because the variables cannot be true.
Lemma 5.1. We can find a graph G consistent with T in O(n · |T |) time.

Proof. The basic observation that allows us to exclude certain clauses from the formula
is that if there is no triple containing two vertices a and b, the variable ab will always
be false. Consequently, if we have a triple abc ∈ T for which at most one of the pairs
ab, ac and bc appear together in some triple, we do not need to include its clauses
in the formula, as at least two of the variables will be false, making these clauses
necessarily satisfied.

We can construct the formula that excludes these unnecessary clauses in O(n · |T |)
time as follows. We build a matrix M(i, j) with each entry containing a list of all
vertices with which i and j appear in a triple, i.e. M(i, j) = {x | ijx ∈ T}. This matrix
can be constructed straightforwardly in O(n2 + |T |) time. We also sort each list in
linear time using e.g. radix sort. As the total length of all lists is O(|T |), this takes
O(n2 + |T |) time in total.

Using this matrix, we can decide which clauses induced by triples from T to
include as follows. For all pairs of vertices (a, b) that appear in some triple (i.e.
M(a, b) ̸= ∅), we find all x such that abx ∈ T . AsM(a, b) is sorted, we can find all x
in O(n) time by simply recording the missing elements of the list. We then check if
M(a, x) andM(b, x) are empty. If either one is not, we include the clause associated
with abx ∈ T in our formula. Otherwise, we can safely ignore this clause, as it is
necessarily satisfied by the variables for ax and bx being false. We do O(n) work for
each non-empty element of M(i, j), of which there are O(|T |), plus O(n2) time to
traverse the matrix.

The total time to construct the formula is O(n2 + n · |T |). As |T | ∈ Ω(n) for
connected graphs, this simplifies to O(n · |T |) time. The resulting formula also has
O(n · |T |) length, and can be solved in time linear in that length. The statement in the
lemma follows.

Observe that this is only an improvement on the naive O(n3) approach if |T | ∈
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o(n2). We also note that we can test the uniqueness of the reconstruction in the same
time using Feder’s approach for enumerating 2-SAT solutions [48].

5.4 Unique reconstruction of trees
We consider the case where we are given a set of triples T and we know that the
underlying graph is a tree. We show that in this case the graph can be uniquely
reconstructed if it has at least five vertices. Let us briefly examine trees with three
or four vertices. A tree with three vertices is always a path and it will always have
one triple with all three vertices. We do not know which of the three edges is absent.
A tree with four vertices is either a path or a star. The path has two triples and the
star has three triples. For the star, the centre is the one vertex that appears in all three
triples, and hence the reconstruction is unique. For the path, we will know that the
graph is a path, but we will not know in what order the middle two vertices appear.
For the triples abc and bcd, both a—b—c—d and a—c—b—d are possible trees, and
they have different edges.

Next we consider trees with at least five vertices. We first show that we can
recognise all leaves and their adjacent vertices from the triples. In the following, we
say that a vertex v dominates a vertex u if v appears in all the triples that u appears in.
In addition, we say that v dominates u directly if there is no other vertex w such that v
dominates u and w, and w dominates u.
Lemma 5.2. A vertex u is a leaf, with neighbouring vertex v, if and only if v dominates u
directly and u does not dominate any vertex, assuming the tree has at least five vertices.

Proof. A leaf u can necessarily only appear in triples with its adjacent vertex v, as it is
not adjacent to any other vertices by definition. A leaf is therefore always dominated
by its neighbour v, and this domination is easily seen to be direct. Since |V | ≥ 5, u
does not dominate any vertex.

Conversely, assume v dominates u and u is not a leaf. Then the subtree T with u
obtained by removing the edge uv has two or more vertices in it. If any neighbour of
u is a leaf, u dominates it, so the domination of u by v is not direct. Otherwise, T has
size at least 3 so v does not dominate u.

We can use the lemma to prove that any tree can be reconstructed from its triples,
provided that we know that the result must be a tree and |V | ≥ 5. In order to derive an
optimal, O(|T |) time reconstruction algorithm, we will use a further characterisation
of vertices of a tree using the triples. The main idea is that we can recognize not only
leaves, but also other vertices where we can reduce the tree. If a vertex v has degree 2
in a tree, then there are two nodes w,w′ such that every triple with v also contains w
or w′ (or both). The inverse is not true for two reasons: if v is a leaf, it also has the
stated property, and if v has degree 3where at least one neighbour is a leaf, then it
has this property as well.
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Figure 5.2: All trees of five vertices, and the number of triples each vertex occurs in.

Lemma 5.3. A vertex v of a tree T of at least five vertices with triple set T is:

(i) a leaf if all triples with v also contain a vertex w, and there is no triple uvw such that u
occurs only in uvw;

(ii) (a) a node of degree 2, or (b) a node of degree 3 with at least one leaf neighbour, if v is
not a leaf and there are two nodes w1, w2 such that all triples with v also contain w1 or
w2.

Proof. The first characterisation is an alternative formulation of Lemma 5.2.
The second characterisation can be seen as follows. If v has degree at least 4, then

no w1, w2 as in the lemma exist, which is easily verified by looking at the triples with
these five vertices only. Furthermore, if v has degree 3 and none of its neighbours are
leaves, then again there are no w1, w2. The characterisation in the lemma covers the
remaining possibilities.

With some straightforward testing, both characterisations can be checked in time
O(|Tv|), where Tv is the set of triples that include v. For testing (i), take any triple
vab ∈ Tv, and test both a and b separately if they are the sought w. For testing (ii),
take any triple vab ∈ Tv . If characterisation (ii) holds, then w1 must be a or b. We try
both; assume w.l.o.g. w1 = a. Remove all triples with a from Tv. For any remaining
triple, one of the two vertices must bew2, andwe test both. In total we get four options
to test for w1 and w2; each option is easily checked in O(|Tv|) time. Note that more
than half of the vertices of T satisfy one of the two characterisations of the lemma.

The whole algorithm is therefore as follows: For each triple uvw in T , generate
vwu and wuv as well. Collect the triples with the same first vertex to generate Tv
for all v ∈ V . Then, for all v ∈ V , use Tv to test if v satisfies one of the conditions of
Lemma 5.3. The vertices of V partition into V ′, V ′′, and V ′′′, where V ′ contains the
leaves, V ′′ contains the vertices that are not leaves but satisfy the second condition
of the lemma, and V ′′′ = V \ (V ′ ∪ V ′′). For all leaves v, record their neighbour
and remove all triples with v. For all vertices in V ′′, note that they can no longer be
vertices of degree 3, but they may have become leaves. We test this and consider the
subset W ⊆ V ′′ of vertices that have not become leaves. These vertices appear as
singletons or sequences of degree 2 vertices. Let v ∈W and let its neighbours w1 and
w2 not be inW ; we record these two edges of T . Then we replace any triple vw1x by
w2w1x and any triple vw2y by w1w2y; the triple vw1w2 is discarded. Let v1, . . . , vk be
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a sequence of vertices inW such that vi and vi+1 are adjacent, 1 ≤ i ≤ k−1. Letw1 be
the other vertex neighbouring v1 and w2 the other vertex neighbouring vk. We record
all of these edges of T . Then we replace each triple uw1v1 by uw1w2 and each triple
vkw2x by w1w2x. Then we discard all triples that contain any of v1, . . . , vk. Then we
remove all leaves in V ′′ \W by discarding more triples.

This process takes time linear in |T |, and reduces the number of vertices occurring
in T to half or less. We repeat the process on the remaining tree until it has size five,
at which point we can uniquely identify the structure of the tree by simply looking at
the number of triples each vertex occurs in (see Figure 5.2). We may not remove all
vertices of V ′ or V ′′ if the remaining tree would be smaller than five vertices; in that
case, we simply leave some of them in. A standard recurrence shows that the total
time used is O(|T |).
Theorem 5.4. Let T be a set of triples, and let it be known that the underlying graph
G = (V,E) is a tree. If n ≥ 5, then G can be uniquely reconstructed in O(|T |) time.

We note that if the tree contains no leaves that are siblings, we do not need to
know that the graph is a tree for unique reconstruction.

5.5 Other families of graphs that are uniquely recon-
structible

Weshow that any 2-connected outerplanar graph of at least six vertices can be uniquely
reconstructed, as well as any triangulated planar graph with at least seven vertices.
We also show that any graph in which all cycles consist of at least five vertices can be
uniquely reconstructed.

We start with 2-connected outerplanar graphs of at least six vertices. Our approach
is similar to the one for trees: we show that we can identify a vertex of degree two,
and remove it from the graph by merging it with one of its neighbours. We keep
doing this until we have a graph with six vertices, which can be distinguished by the
number of triples in which each vertex and edge occurs. We first observe that we can
recognise vertices of degree two.
Lemma 5.5. Two vertices u and v have degree two and are neighbours, if and only if there
are w1, w2 ∈ V such that uvw1, uvw2 ∈ T , and u and v appear together in no other triples.
We can also determine which of w1 and w2 is neighbour of u, and which is neighbour of v.

Proof. If u and v are neighbourswith degree two, they can clearly only appear together
in a triple with the other neighbours of u and v (w1 and w2), as u and v are not
connected to any other vertices. Conversely, if we have the triples uvw1 and uvw2, u
and v must be neighbours, and as the graph is outerplanar, we can have at most three
of the edges uw1, uw2, vw1 and vw2. Note that, as the graph is 2-connected, we must
have w1 ̸= w2, as all vertices of a 2-connected outerplanar graph appear in a simple
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v

w1 w2

u

Figure 5.3: The local neighbourhood of a degree two vertex in a 2-connected outer-
planar graph. The dashed edges w1w2 and w1umay or may not be present.

cycle. Also, as the graph has at least six vertices, we know that w1 and w2 both have
at least one additional neighbour. We can then tell which vertex neighbours which,
from the absence of certain triples: if we do not have a triple uw1x for x ̸= v, w2, u
must neighbourw2, if we do not have a triple vw2x then vmust neighbourw1, etc.

We can also identify a vertex of degree two that has neighbours with degree at
least three.
Lemma 5.6. A vertex v has degree two, and its neighbours are w1 and w2, if and only if all
triples v appears in also contain w1 or w2, and there is no other vertex for which this is true.

Proof. If v neighbours only w1 and w2, then it will clearly only appear in triples
with these vertices, and if the graph is 2-connected outerplanar and has at least six
vertices, there can be no other vertex for which the same holds. Conversely, if v would
have degree at least three, it would appear in some triple without w1 and w2 (if the
connected component of v after removal of w1 and w2 contains at least three vertices),
or there would be some vertex v′ that also only appears in triples with w1 or w2. Also,
if v does have degree two, but w1 or w2 is not its neighbour, it would appear in some
triple without w1 or w2.

Using these two lemmas, we obtain the following result.
Theorem 5.7. Let T be a set of triples, and let it be known that the underlying graph
G = (V,E) is 2-connected and outerplanar. Then G can be uniquely reconstructed from T if
n ≥ 6.

Proof. If our graph has any two neighbouring vertices of degree two, we can recognise
them and their neighbours by Lemma 5.5. Let u and v be the two degree two vertices,
and let w1 and w2 be their respective other neighbours. We can then merge u and v
by removing all triples they both occur in, and relabelling v to u in all other triples.
We repeat this step until there are no neighbouring vertices of degree two left, or the
remaining graph has six vertices.
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Figure 5.4: All base cases for a 2-connected outerplanar graph of six vertices, up to
symmetries. Note that each case can be identified by the number of triples each vertex
occurs in.

Otherwise, we know that any degree two vertex has two neighbours with degree
at least three, which we can recognise by Lemma 5.6. This gives us a degree two
vertex v with neighbours w1 and w2. We also know all neighbours of w1 and w2: they
are exactly the vertices that appear in triples with u and w1 or w2. The only exception
is that this does not tell us if w1 and w2 are neighbours, as we have the triple uw1w2

either way. However, we do know that, as the graph is 2-connected and outerplanar,
w1 and w2 can share at most two neighbours, one of which is v (see Figure 5.3 for an
illustration). Let u be the other neighbour; this means both w1 and w2 have at least
one neighbour that is not a neighbour of the other vertex, as they are both degree at
least three. We can then tell whether w1 and w2 are neighbours by the absence of any
triple w1w2xwith vw1x ∈ T or vw2x ∈ T . If any such triple does not exist, w1 and w2

are not neighbours.
If the edge w1w2 exists, we can remove v and all triples in which it occurs, giving

a new 2-connected outerplanar graph with one fewer vertex. If the edge does not
exist, we can add it and add all the triples w1w2x for each neighbour x of w1 or w2,
then remove v and all triples in which it occurs. This again gives a new 2-connected
outerplanar graph with one fewer vertex.

Our base cases are the 2-connected outerplanar graphs of six vertices, each of
which has a unique set of triples; see Figure 5.4 for an illustration. In all cases where
an edge exists between two vertices u, v with ku and kv occurrences in triples, if a
vertex w exists with kw = kv, we have that u,w occur less often together in a triple
than u, v. So we can identify all labeled edges in each base case as well.

To show that triangulated planar graphs of at least seven vertices can be uniquely
reconstructed, we first show that unique reconstruction of such graphs is possible if
they do not contain any separating triangles. A triangulated planar graph, also called a
maximal planar graph, is a planar graph where every face (including the outer face)
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is a triangle. Note that chordal graphs (graphs in which every cycle of more than
three vertices has a chord) are sometimes also called triangulated graphs, but this is
not the meaning we use here. A separating triangle is a triangle in the graph whose
removal would result in the graph being disconnected.

We take a similar approach as before: we argue that we can recognise all vertices
of degree at least five with their neighbours in cyclic order. We then argue that we
can deduce the existence of all edges not incident to a vertex of degree at least five as
well. In the following, a 6-wheel refers to a graph consisting of a cycle of five vertices,
and a sixth vertex connected to all vertices on the cycle. A 6-fan refers to the same
graph, but replacing the cycle with a path of five vertices.
Lemma 5.8. We can uniquely identify the 6-fan and the 6-wheel as an induced subgraph
from the triples, as well as which vertex is the apex, and the order in which the neighbours of
the apex appear on the fan or wheel.
Proof. Let v be the apex vertex, andW = {w1, . . . , w5} be the other vertices in the fan
or wheel in cyclic order. We can recognise v by the fact that it occurs in a triple with
all ten pairs of vertices in W . We can also identify the order in which w1 through
w5 appear on the fan by their triples, as the triples w1w2w3, w2w3w4 and w3w4w5 are
characteristic of a path of five vertices. Similarly, the wheel additionally has the triples
w1w4w5 and w1w2w5. It remains to be shown that these sets of triples are unique
to the 6-fan and 6-wheel among all triangulated planar graphs without separating
triangles.

We make a subdistinction on the degree of v in a hypothetical graph with the
same triples. If v has degree five, we have a star graph in which v appears in the
correct triples, but the vertices in W don’t. The induced subgraph of W must be
connected, as otherwise it would have one connected component of at most two
vertices, which wouldn’t add any triples for those vertices. For the 6-fan, the path
w1w2w3w4w5 would add exactly the triples required, and each other tree would add
too many triples to at least one vertex, as seen in Figure 5.2. In addition, adding any
more edges to any of the trees would add even more triples, so we conclude the path
is the only way to get the required triples. Similarly, for the 6-wheel, the only way
to make each vertex in W appear in three additional triples is to add a cycle to the
graph, and the cycle in cyclic order is the only way to get the correct triples.

If v has degree four, we are missing an edge from v to some vertex inW ; w.l.o.g.
let that vertex be w1. As we have the triples with v, w1 and each other vertex inW ,
the absence of this edge means we must have edges from both v and w1 to all other
vertices inW . For both the 6-fan and the 6-wheel, this immediately means we must
now have triples not normally present, such as w1w3w4, so we cannot have the same
set of triples as the 6-fan or 6-wheel if v has degree four.

If v has degree three or less, there is at least one more edge between v and W
missing, w.l.o.g. let that vertex be w2. In that case the triple vw1w2 cannot be present,
so we cannot have the same triples. We conclude that the 6-fan and the 6-wheel can
be uniquely identified from the triples.
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Figure 5.5: (a) The local structure around a degree four vertex with three neighbours
of degree four. (b) Connecting all neighbours of v to the same vertex gives the
octahedron. (c) Connecting any two neighbours of v to different vertices would give
at least one of them a higher degree.

Using the lemma above, we can show that we can recognise vertices with degree
at least five.

Lemma 5.9. We can identify any vertex v of degree at least five with its neighbours, as well
as the cyclic order of the neighbours around v.

Proof. Using Lemma 5.8, we can identify all 6-fans with the same apex. By overlaying
consecutive 6-fans, we can identify the k-wheel around v, where k is the degree of v.
Note that any vertex of degree at least five and its neighbours must form a k-wheel,
as the graph is triangulated. Also note that the cycle of neighbours around v cannot
have any chords, as those would introduce separating triangles.

This lets us reconstruct all triangles incident to a vertex of degree five. Next, let
us examine the structure of vertices of degree four.

Lemma 5.10. All edges of a triangulated planar graph without separating triangles of at
least seven vertices lie on a 6-wheel or 6-fan.

Proof. We show that induced subgraphs of vertices of degree four can only form paths
and cycles. Consider a vertex v of degree four with more than two neighbours of
degree four. This means it has either three or four neighbours of degree four. If it has
four, the induced subgraph of v and its neighbours must be a 4-wheel, as each face
incident to v must be a triangle, and the other triangulation option would give v a
higher degree. All v’s neighbours also need to be incident to triangular faces, and
the only way to achieve this is to have them all connected to the same vertex. This is
the octahedron, which cannot occur as an induced subgraph in a triangulated planar
graph of at least seven vertices without separating triangles.
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Figure 5.5 shows the situation if v has three neighbours of degree four, which we
call w1, w2 and w3. In this case v must have at least one additional neighbour u of
degree at least five, shown in red. All faces must be triangles, so v’s neighbours must
be connected by the green edges, or v would have a higher degree. For the same
reason, w1 and w3 must be neighbours of u. Now, because all faces of the graph must
be triangles, neighbours of v must be connected to other vertices. We could connect
all to the same vertex, as seen in Figure 5.5(b), but this would give us the octahedron
as an induced subgraph again, as the quadrilateral uw1w2w3 must be divided into
triangles by the chord uw2 (the other choice would give w1 and w2 a higher degree).

The only option that remains is to connect the neighbours of v to different ver-
tices. However, if any two neighbours of v are connected to different vertices, as in
Figure 5.5(c), at least one of them would need to have degree five to give triangular
faces.

We conclude that vertices of degree four can only have two neighbours of degree
four. This means they must form either a path or a cycle. However, as in Figure 5.5(c),
if any neighbours of degree four don’t share both their other neighbours, the graph is
not triangulated. This implies that every path or cycle of degree four vertices has two
vertices of degree at least five that are neighbours to all vertices on the path or cycle.
As such, all paths or cycles of degree four vertices appear on some 6-fan or 6-wheel.

We cannot have degree one or two vertices in a triangulated graph of at least seven
vertices, and the neighbours of a vertex of degree three would form a separating
triangle. A triangulated planar graph of at least seven vertices without separating
triangles therefore only has vertices of degree four or higher, for which all the edges
lie on a 6-wheel or a 6-fan.

Using this lemma we can obtain all edges of the graph, and therefore its recon-
struction. It turns out that we can also recognize separators of a graph (we need this
result only for separators of size 3):

Lemma 5.11. A subset of vertices S ⊂ V are a separator in G if and only if we can partition
V \ S into sets V1 ̸= ∅ and V2 ̸= ∅ such that any triple with an element from both V1 and V2
also contains an element of S, assuming |V1|+ |V2| ≥ 3.

Proof. If S is a separator, it is clear that if we take V1 and V2 to be the two components
of the graph after removing S, their vertices can only appear together in triples with
elements of S. After all, if we would have a triple xyz with, say, x, y ∈ V1 and z ∈ V2,
it wouldmean that x, y and z form a connected component of the graph, contradicting
the fact that S is a separator.

Conversely, if S is not a separator, the remainder of the graph must form one
connected component. If there are at least three remaining vertices, this means that,
for any choice of V1 and V2, there must be a vertex x ∈ V1 with a neighbour y ∈ V2,
and a third vertex z that neighbours x and/or y. We then have a triple containing
vertices from V1 and V2 but not containing any element of S.
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Figure 5.6: The cases for triangulated planar graphs of five or six vertices, modulo
symmetries.

Using the fact that we can recognise separators, we now show that all triangulated
planar graphs of at least seven vertices have a unique reconstruction.
Theorem 5.12. Let T be a set of triples, and let it be known that the underlying graph
G = (V,E) is planar and triangulated. Then G can be uniquely reconstructed from T if
n ≥ 7.

Proof. We decompose our graph using separating triangles, which by Lemma 5.11 we
can detect as long as our induced subgraph has at least six vertices. Any separating
triangle gives us a triangle S and a partition of V into V1 and V2, representing the two
components of G after removing S. We can then consider the induced subgraphs
given by V1 ∪ S and V2 ∪ S, which are still planar and triangulated. We recurse on
an induced subgraph G′ as long as it contains a separating triangle and has at least
seven vertices.

Any induced subgraph of at least seven vertices without any separating triangles
can be reconstructed using Lemma 5.10. It remains to be shown that we can recon-
struct the induced subgraphs of size at most six. In general, this is not possible:
consider, for instance, the octahedron, where we cannot tell from the triples which
vertex is connected to which. However, as our induced subgraphs are part of a larger
graph, we are able to reconstruct them.
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Let G′ = (V ′ ⊂ V,E′ ⊂ E) be an induced subgraph of at most six vertices. We
make a case distinction on the size of V ′. As G′ is the union of a separating triangle
abc with one of the two components it separates the previous subgraph into, it must
have at least four vertices. If it has four vertices,K4 is the only possible triangulated
structure. If it has five vertices, there is still only one structure, shown in Figure 5.6(a),
but several cases depending on the labelling of the vertices on the separating triangle.
As the full graph has at least seven vertices and is triangulated, there must be more
vertices connected to a, b and c. We can then tell which vertex of the triangle and
which of v1 and v2 have degree three in the induced subgraph by the absence of
triples with those two vertices and a vertex outside the induced subgraph. With the
labelling in the example figure, this would be triples of the form av2x, where x is not
in our induced subgraph. The induced subgraph is symmetric with regards to b and
c, so we don’t need to tell them apart.

IfG′ has six vertices, there are four structures possible, shown in Figure 5.6(b)-(e),
but again there are several labellings possible for each structure. In cases (b) and (c),
there are unique combinations of triples missing (av1v3 and av2v3 in (b), av2v3 and
cv2v3 in (c)), and the graph is symmetric w.r.t b and c, so we don’t need to distinguish
them. In case (d), acv3 and av2v3 are missing. We recognise a as it appears in both
missing triples, c as it appears in one, and b as it appears in none. Finally, in case
(e) all triples are present. However, just as in case (a), there must be more vertices
connected to a, b and c. We can then tell which vertices on the outer triangle are
neighbours of which vertices on the inner triangle by the absence of triples of the
type av2x, bv1x and cv3x, where x is any vertex outside the induced subgraph.

As these are all possible induced subgraphs of triangulated planar graphs of at
most six vertices, we conclude that we can uniquely reconstruct all of them, allowing
us to uniquely reconstruct any triangulated planar graph from the triples.

Note that, while our proof is constructive, it does not lead to a faster algorithm
than the general cubic or O(n · |T |) time algorithm described in Section 5.3.

When the cycles of our graphs all have at least five vertices (i.e. the graph has
girth at least five), things become significantly easier. We can reconstruct such graphs
in O(|T |) time by exploiting the fact that for each triple exactly two of the edges exist,
and that the edge that does not exist does not appear in any other triple. This last
part is not true if there are cycles of four vertices, making this case more complicated.
Theorem 5.13. Let T be a set of triples, and let it be known that all the cycles of the underlying
graph G = (V,E) have at least five vertices. Then G can be uniquely reconstructed from T
in O(|T |) time.

Proof. When all cycles have at least five vertices, each triple abc represents exactly two
edges. Assume ab is the edge that does not exist; we then know that ab only appears
in the triple abc. This is because a and b are at distance 2, and any triple abdwould
then put d at distance 1 to both a and b. If c ̸= d, we would then have a face abdc of
four vertices.
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Figure 5.7: Two isomorphic graphs that give the same set of triples.

We can then identify all edges of the graph as follows. We build a list of length
3 · |T | containing copies of all triples with each edge appearing at the start (e.g. for a
triple abc, we include it as abc, acb and bca). We then sort this list in linear time. Now
we walk through the list in order: for any item abc such that no other triple starts
with ab, we know that the edges ac and bcmust exist. All these edges together gives
us the graph G.

5.6 Results on ambiguity
As noted before in Section 5.2, it is not possible to uniquely reconstruct all graphs
from their sets of triples, because we may obtain the same set of triples from some
graph G = (V,E) as we do for the graph G′ = (V,E ∪ {(x, y)}). In such cases we say
that the edge xy is ambiguous. In other cases, we can reconstruct the structure of the
graph, but there are multiple labellings of the vertices giving the same set of triples;
see Figure 5.7 for an example. The problem of characterising all graphs that contain
such ambiguities remains open; here we present some partial results about sets of
triples that are not ambiguous.

To examine the structure that causes a particular edge xy to be ambiguous, it is
useful to classify the vertices of the graph based on their relationship with the vertices
x and y. We define the following classification:

A(x, y) := {z | xyz ∈ T}
B(x, y) := {z | xz· ∈ T ∧ yz· ∈ T}
C(x, y) := {z | yz· ∈ T ∧ xz· ∈ T}
D(x, y) := {z | xz· ∈ T ∧ yz· ∈ T ∧ xyz ∈ T}
E(x, y) := {z | xz· ∈ T ∧ yz· ∈ T}

where xz· ∈ T means x and z appear together in some triple. See Figure 5.8 for an
illustration of these sets; we will omit the arguments where appropriate. Note that
these sets are disjoint, and that their union contains all vertices in our graph minus
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Figure 5.8: The subdivision of all vertices into sets A, B, C, D and E. The triangles
visualise triples, not edges of the graph.

x and y. With these definitions in hand, we can make some statements about the
ambiguity of xy in specific cases. We first make the following observations:

Observation 5.14. If the edge xy is not ambiguous when only considering those triples
formed by a subset of the vertices (i.e. all abc ∈ T with a, b, c ∈ V ′ ⊆ V ), it is not ambiguous
for the full set of triples.

Proof. The observation follows from the 2-SAT formula: there is a clause for each
possible triple, positive if it exists and negative otherwise. Considering a subset of the
vertices is the same as considering a subset of the clauses. If a subset of the clauses
can only be satisfied by having a particular value for the variable xy, adding more
clauses cannot change this.

Observation 5.15. If x and y do not appear together in some triple, the edge xy does not
exist.

Note that this last observation is only true for connected graphs of at least three
vertices; otherwise, x and y may form their own component with an edge xy, but still
appear in no triple. In such cases, we can then assume that Awill not be empty. In
our proofs, we will often also use the fact that if one edge of a triple does not exist,
the other two must be in the graph. We can now show the following:
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Lemma 5.16. If some triple xaa′ or yaa′ with a, a′ ∈ A does not exist, the edge xy must
exist.

Proof. By definition of A, we know that xya and xya′ are triples that exist. Assume
that xy does not exist. In that case, the edges xa, ya, xa′ and ya′ must all exist, or we
would not have triples xya or xya′. But the edges xa and xa′ would yield a triple xaa′,
and the edges ya and ya′ would yield a triple yaa′, which contradicts our condition
in the lemma statement. We conclude that xy must exist.

We can further use this to prove that B and C must be empty for xy to be ambigu-
ous, provided the graph is of sufficient size.
Lemma 5.17. If B or C is not empty, and the graph contains at least five vertices, the edge
xy is not ambiguous.

Proof. We prove the case for B not being empty; the other case is symmetrical. By
Observation 5.15, we know that there must be some triple xyawith a ∈ A. As B is
not empty, let b be a vertex in B. Call the fifth vertex z; we now differentiate three
structures that our triples can have, based on the triples that z appears in:

1. xbz is a triple and z ∈ A.
2. xbz is a triple and z ∈ B or z ∈ D.
3. xbz is not a triple.

Note that if xbz is a triple, z cannot be in C or E by definition.
We first consider Case 1. We show that xy is not an edge if and only if xab is a

triple. The absence of xy implies xa, ya, xz and yz must all exist. The existence of
yz means bz cannot exist, or we would have the triple ybz. Therefore, xbmust exist,
which together with the existence of xa implies the triple xabmust be in our input.
Conversely, if xab is in our input, we know xy does not exist: if it did, we know that xb
cannot be an edge, so we must have ab and zb as edges. However, as by Lemma 5.16
we must have the triple yaz, we know that we have at least one of the edges ya and yz,
which would then imply the triples yab or yzb. By the definition of B, these cannot
exist, so we conclude xy cannot exist. We can therefore derive the existence of xy
from the presence of the triple xab.

We now consider the Case 2. In this case, we know xy cannot exist: at least one of
the edges xb and xz must exist, which would give triples xyb or xyz if xy exists. By
the definitions of B and D, neither of these triples can exist when z ∈ B or z ∈ D, so
we conclude xy cannot be an edge.

Finally, we consider Case 3. In this case, we must have the triple xab: b must
appear in some triple with x, and a is the only candidate vertex. We perform a further
case analysis of all the pairs of vertices z can appear in a triple with. We can disregard
some of the cases: ybz cannot be a triple because of the definition ofB, xyz is identical
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to Case 1 with the labels for a and z swapped, and xbz was already covered in Cases
1 and 2. The remaining triples we need to consider are xaz, yaz and abz. Note that
z cannot be in A in any of the cases, as this would be equivalent to Case 1, or by
Lemma 5.16 xy must exist.

Consider the case where z appears in a triple xaz. We further subdivide this case
into z ∈ B and z ∈ D. For z ∈ B, similar to Case 1, we show that xy ↔ abz. We first
note that the edge xamust exist, as otherwise we would have edges ya and ab, which
would give a triple yab, violating the definition of B. We now observe that there are
two possible structures our graph can have: we have the edges xa, xb, xz and ya, or
we have the edges xa, ab, az and xy. Any other combination of edges would cause y
to appear in a triple with b or z. Edges ab and az would give a triple abz, showing
xy → abz. For the other direction, simply observe that the edge ya cannot exist, and
therefore xy must.

We cannot use the same arguments when z ∈ D, as now the triple yaz is allowed
to exist. It is therefore also possible to have the edges xa, xb, ya and az. However,
note that the opposite case, with edges xa, xz ab, ya and xy is not valid, as it would
give a triple xyz. We therefore conclude that if z ∈ D and the structure of triples does
not follow the ones detailed above for the case z ∈ B, xy cannot be an edge.

We now consider the case where z appears in a triple yaz. If z ∈ A, we are in
Case 1 with the labels for a and z swapped. If z /∈ A, xy cannot exist: if it did, xb
and yz could not be edges, as that would give triples xyb and xyz. Because we have
triples xab and yaz, this implies that edges xa, ab, yz and az must all exist, but then
yabwould be a triple, violating the assumption that b ∈ B.

Finally, we consider the case where abz is a triple. If z ∈ A, xy must exist, or
otherwise xbz would be a triple, violating the assumption of this case. If z ∈ B, we
must have the triple xaz (the only other option is xbz), and xymust exist: if it doesn’t,
we would have edges xb and xz, again giving triple xbz. If z ∈ C or z ∈ D, we are in
Case 3 with yaz being a triple, which is described above. Lastly, if z ∈ E, xy must be
an edge: if it is not, we have edges xa, xb and ya, which would put z in D if az is an
edge, or in B if bz is an edge, and one of these must exist.

If B and C are empty, there are still cases in which we can deduce the existence of
the edge xy:
Lemma 5.18. If B and C are empty, and ∃d, d′ ∈ D : xdd′ ∈ T ∨ ydd′ ∈ T or ∃a, a′ ∈
A, d, d′ ∈ D : ((xad ∈ T ∨ yad ∈ T ) ∧ (xa′d′ ∈ T ∨ ya′d′ ∈ T ) ∧ ((a = a′ ∧ add′ ∈
T ) ∨ (d = d′ ∧ aa′d ∈ T )), then xy does not exist.

Proof. If there is any triple containing x or y with two elements d, d′ ∈ D, we know xy
is not an edge: at least one of the edges xd, xd′, yd or yd′ would have to exist, which
would create a triple xyd or xyd′ if xy was also an edge. Such a triple would place
d or d′ in A, which is not possible by definition. The same applies if there are two
triples ·ad and ·a′d′, with · being x or y, and either a = a′ and add′ is not a triple,
or d = d′ and aa′d is not a triple. In such a case, the absence of the indicated triple
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means that one edge of the type ad does not exist, which in turn means xd or ydmust
exist, which precludes xy being an edge.

What all these results have in common is that we can deduce the existence of the
edge xy from the triples when some symmetry with respect to x and y is broken.
However, there are many types of graphs where such symmetries exist, as illustrated
in Figure 5.1. These situations make it hard to decide if an edge is ambiguous: it is
not enough to look at only the neighbourhood of that edge, but we need to potentially
consider large sections of the graph.

5.7 Extensions
There are several logical extensions to the concept of reconstructing a graph from
triples. We could define a (k, ℓ)-representation, where T contains all k-tuples of
vertices for which at least ℓ pairs are neighbours. The definition we used in previous
sections would then be a (3, 2)-representation. Such a generalisation leads to some
strange properties, however: in particular, for many types of connected graphs, some
vertices may not appear in T , or T might even be empty altogether. This would
happen for instance if our graph is a tree and ℓ ≥ k.

An interesting generalisation is to take all k-tuples for which the induced subgraph
is connected for larger k. We can show that we can still recognise trees, as long as
they have sufficient size. We use the same notion of domination as before: a vertex v
dominates a vertex u if v appears in all the k-tuples that u appears in, and v dominates
u directly if there is no other vertexw such that v dominates u andw, andw dominates
u.

Lemma 5.19. Assuming n ≥ 2k − 1, a vertex u is a leaf, with neighbouring vertex v, if and
only if v dominates u directly and u does not dominate any vertex.

Proof. A leaf u is always directly dominated by its neighbour v. Conversely, if u is
not a leaf, it will have some subtree T not containing v. The only way that u does
not dominate all the vertices in T is if it has size at least k, in which case v would not
dominate u.

Theorem 5.20. Let T be a set of k-tuples, and let it be known that the underlying graph
G = (V,E) is a tree. Then G can be uniquely reconstructed from T if n ≥ 2k − 1.

Proof. Similarly to Theorem 5.4, we remove leaves until n = 2k− 1 using Lemma 5.19.
There will be exactly one vertex v that is not dominated by any vertex; removing v
would leave subtrees of size at most k − 1 only. Note also that no vertex from one
subtree can dominate a vertex in another subtree. Within each subtree, every vertex is
dominated directly by its parent. This lets us reconstruct all the edges of each subtree,
and thereby the entire tree.
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5.8 Conclusion
We have presented a new model of uncertainty in graphs, in which we only receive
all triples of vertices that form a connected induced subgraph. In a way, this is the
simplestmodel of combinatorial indeterminacy in graphs. Wehave studied some basic
properties of this model, and provided an algorithm for finding a graph consistent
with the observed indeterminacies. We also prove that some families of graphs are
uniquely reconstructible, although we may need to know the family the sought graph
belongs to. However, in general, edges of the graph may be ambiguous, meaning
multiple graphs are consistent with the input. We analyse when such ambiguous
edges occur, although we currently cannot give a full characterisation. Finally, we
show a straightforward extension of our model to larger k-tuples, and show that trees
of sufficient size are uniquely reconstructible.

There are several avenues for further research on this topic. One is to give a full
characterisation of sets of triples that contain ambiguity. The model can also be
extended further; for instance, we could give all tuples of connected vertices of size
at least k. We could analyse a version where it is given whether two or three edges of
a triple exist, which would likely simplify the situation. Another interesting question
is how to visualise the possible graphs for an ambiguous set of triples. In some
cases many different graphs are possible (e.g. a complete graph with any matching
removed), but even for cases with only a few ambiguous edges it is not immediately
clear how to place the vertices effectively.



Chapter 6

Conclusion and future outlook

Similarity measures allow us to quantify how alike two given objects are. As such,
they are widely studied and have many applications, ranging from AI and image
retrieval, to procedural content generation and computer vision. Geometric similarity
measures in particular are used to quantify the similarity of geometric objects, such
as point sets, polygons, three-dimensional polygonal meshes, and smooth curves. We
may use such similarity measures to perform tasks like finding a geometric object in a
given set that most closely resembles a query object, or to measure the similarity of a
manufactured part with its (digital) master. In this thesis, we have made some steps
to further understand such geometric similarity measures, to develop algorithms for
computing them, and to find new applications for them.

In Chapter 2, we have developed and analysed algorithms for approximating
the earth mover’s distance between various types of geometric primitives. Previ-
ously, algorithms that are either exact or have provable approximation bounds were
known only for the case of weighted point sets. In our work, we provided (1 + ε)-
approximations for the cases where one set contains weighted points, and the other
set contains line segments, triangles, or higher-dimensional simplices. We also gave
(1+ε)-approximationswith a small additive term for the cases where both sets contain
line segments, triangles or higher-dimensional simplices. All our algorithms rely on
subdividing the continuous objects until they can be approximated sufficiently well
by weighted points. We additionally gave an exact algorithm for calculating the earth
mover’s distance between a set of weighted points and a set of line segments under
the L1 distance. However, it is not clear if this algorithm runs in polynomial time, as
it relies on solving a convex quadratic program that may contain square roots in its
definition.

In Chapter 3, we applied the Hausdorff distance to the concept of shape morph-
ing, introducing a new type of morph we call a Hausdorff morph. Such a morph
interpolates the Hausdorff distance between two input shapes: at time α ∈ [0, 1], it
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has Hausdorff distance α to input shape A, and Hausdorff distance 1 − α to input
shape B. We showed that the maximal morph with this property, which we call the
dilation morph, can be calculated using only Minkowski sums with disks and set
intersections. We showed that the morph is convex if both input shapes are, that it is
connected if at least one input shape is convex, and that there are pairs of connected
input sets for which any Hausdorff morph is disconnected. We also analysed the
complexity of the morphed shape in terms of the number of vertices, line segments
and circular arcs that constitute its boundary. The complexity is linear in the size of
the input when both input sets are simple polygons and at least one of them is convex,
but quadratic in the worst case if neither is convex. We also showed that the dilation
morph is 1-Lipschitz continuous with respect to the Hausdorff distance, meaning
the Hausdorff distance between intermediate shapes at times α and β is bounded by
(and in our case, equal to) |β − α|.

Furthermore, we investigated how the notion of a Hausdorff middle can be ex-
tended to more than two input sets. In this case, we no longer consider morphs, but
instead we simply try to find a single shape that minimises the maximum Hausdorff
distance to any input shape. We showed that, in general, the best achievable distance
may be the maximum of all pairwise Hausdorff distances between the input sets,
but for convex sets we showed that, after normalisation, a distance of α∗ ≈ 0.6068 is
always possible, and that this distance is tight in the worst case. We further showed
that the maximal Hausdorff middle for multiple sets is convex if all input sets are
convex, connected if at most one input set is not convex but still connected, and that
there are inputs with at least two non-convex but connected input sets for which any
Hausdorff middle is disconnected. Next, we studied the question of whether we can
remove any sets from the input without changing the Hausdorff distance our middle
shape can achieve. We showed that, in general, for any given number of input sets,
there is an input in which none of the sets may be removed without changing the
Hausdorff distance. However, if all input sets are convex, then there always exists
a subset of at most three input sets such that the optimal Hausdorff middle has the
same distance for this subset as for the full input. Finally, we provided two algorithms
that compute the optimal distance of a Hausdorff middle to a given set of polygons.
One computes a (1 + ε)-approximation of the optimal distance in O(n2 log2 n log 1/ε)
time, the other computes the optimal distance exactly in O(n6) time.

In Chapter 4, we developed a different Hausdorff morph that addresses several
practical concerns regarding the dilation morph. Instead of taking the maximal
Hausdorff morph, we simply let each point on each shape move linearly towards the
closest point on the other shape. In this way, the intermediate shapes do not grow
into a uniform blob towards the middle of the morph, as is the case for the dilation
morph. The morph can be calculated using Voronoi diagrams to find the closest point
on each set, scaling the part inside each Voronoi cell towards the site of the cell, and
then taking the union of all the scaled pieces. We showed that this morph, which
we call the Voronoi morph, retains important properties of the dilation morph: it is
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still a Hausdorff morph, and it is still 1-Lipschitz continuous. We also showed that
the number of components of the intermediate shapes does not change during the
morph, except possibly at α = 0 and α = 1.

We observed that, while the area of the intermediate shapes of the Voronoi morph
more closely match the areas of the input shapes than is the case for the dilation
morph, the perimeter of the Voronoi morph may still be too high. This is an artefact
of the requirement that point move strictly to the closest point on the other shape:
even a very unpronounced reflex vertex in one shape may split the other shape in
two parts as soon as α > 0, greatly increasing the perimeter. To remedy this, we
introduced a third Hausdorff morph, which we call the mixed morph. This mixed
morph modifies the Voronoi morph by taking the resulting shape and dilating it with
a small radius φ, before eroding it again with the same small radius. This has the
effect of closing any small gaps in the shape. To ensure our mixed morph is still a
Hausdorff morph, we intersect the shape after erosion with the dilation morph at the
same value of α. This reduces the increase in perimeter, but at the cost of having a
morph that is no longer 1-Lipschitz continuous.

We performed an experimental comparison of the three morphing methods,
looking at their behaviour regarding the area, perimeter, number of components, and
number of holes during themorph. As test data, we used a set of outlines of European
countries, a set of animal shapes, and a set of words and letters. Our results indicate
that the mixed morph performs best on the aspects that we tested. It subjectively also
has the most visually appealing results.

Finally, in Chapter 5, we studied the unrelated topic of graph reconstruction. In
particular, we considered a situation in which a graph is not specified by all connected
induced subgraphs of size two (edges), but by all connected induced subgraphs of
size three instead. This introduces a degree of indeterminacy into the graph: for any
triple in our specification, we know that either two or three of the edges between
the listed vertices are present. The primary question is then whether the original
graph can be reconstructed from such a list of triples. While it is clear that the answer
in general is no (a path of three vertices and a triangle give the same single triple),
we determined that even for graphs of arbitrary size, different graphs may give the
same set of triples. While we could not yet give a full classification of all the graphs
for which the reconstruction is ambiguous, we did show that trees, 2-connected
outerplanar graphs, triangulated planar graphs, and graphs with girth at least five
can be uniquely reconstructed if they are sufficiently large. We also briefly explored
an extension of our specification by triples to a specification by k-tuples, showing
that trees can still be uniquely reconstructed if they have size at least 2k − 1.

6.1 Future outlook
There is much still to be explored on the topic of geometric similarity measures. On a
fundamental level, we need a deeper understanding of the structure of solutions of
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more complicated similarity measures like the earth mover’s distance, and how to
compute them efficiently. Much work has been done on relatively simple similarity
measures like the Hausdorff distance. Its simplicity means that it has seen wide
adoption in many applications, even though it can often be a rather poor measure
of similarity. The Fréchet distance is generally a better measure of similarity, but
can only be applied to more restricted settings. Clearly, there is a need for similarity
measures that better capture the likeness of objects, but are still applicable in a wide
range of settings, and efficiently computable.

The earthmover’s distance seems like a prime candidate: it is a very natural notion
of distance between a wide array of objects, and is sensitive to even small changes
in the input. It has already been widely applied in many different domains, but
unless the situation can be modelled by weighted points, it is always approximated
numerically, without any guarantee of approximation bounds. A great step forward
would be to find an exact algorithm that can compute it for objects other thanweighted
points. Efficiency is currently a secondary concern, as to our knowledge, no algorithm
is known at all.

With respect to abstract morphing, there are many possible avenues for future
research. We have investigated the problem from the perspective of the Hausdorff
distance; an obvious choice would study the situation for a different metric. For
instance, we could consider the case where our input are curves, and we want to
interpolate between them with respect to the Fréchet distance. We trivially get an
interpolated curve from the reparameterisations of the input curves: for an interpola-
tion variable γ ∈ [0, 1], simply take the curve given byA(α(t))+γ(B(β(t))−A(α(t))).
Similarly, computing the earth mover’s distance gives us a mapping of mass fromA to
B, which lets us compute a natural middle shape by moving each point on A partway
along the line segment to the point on B it is mapped to. The interesting questions
would be what properties such a middle has, depending on the input shapes, or if
it can be calculated directly from the input shapes, instead of via first computing
the reparameterisations or transport plan. For the case of the earth mover’s distance,
another interesting question is how to handle shapes with different areas. For other
metrics, like the area of symmetric difference, it is not clear how to compute a good
middle shape. One option is to simply “flood fill” the parts of each shape containing
the symmetric difference over time, with the flood filling from B to A being reversed
in time, but this may not give appealing results.

Another aspect of the problem is the degree to which the results are visually
convincing. Practical morphing methods are generally more controlled than the
ones presented in our work. It would be interesting both to analyse existing “good”
morphs from a theoretical perspective, to see if the resulting shapes can be bounded
in terms of e.g. the Hausdorff distance to the shapes being morphed between, but
also to see if our abstract methods can be made more practical. For instance, we
could consider extensions of our Hausdorff morphing methods to allow for semantics
to be maintained throughout the morph. For example, if both shapes have a part
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representing a head, then the intermediate shapes should also have a head. This
would be challenging, as this is directly at odds with our Hausdorff requirements,
so we may need to redefine our framework to only consider the Hausdorff distance
between the semantic features.

Finally, an obvious open problem with our model of indeterminacy in graphs is to
give a full characterisation of all ambiguous sets of triples. Our extension to k-tuples
could also be investigated further: we have shown that trees of sufficient size can
be reconstructed, but does the same hold for other classes of graphs? Furthermore,
the problem of determining whether a set of k-tuples is ambiguous in polynomial
time is still open for k > 3; our method using a 2-SAT formula does not directly
generalise to larger tuples. Many other models for indeterminacy could also be
studied. For instance, can we reconstruct more graphs if we also specify for each
triple or k-tuple how many edges were present in the original graph? We could also
consider a model where not all tuples necessarily have the same size. This would
allow us tomake any set of tuples unambiguous by including some number of positive
and negative 2-tuples, specifying the existence or non-existence some of the edges
explicitly. What is the maximum number of 2-tuples needed to make a set of triples
unambiguous, relative to the size of the set of triples? Are there any sets of k-tuples
that can be made unambiguous by including k′-tuples for 2 < k′ < k? There is also an
algorithmic question here: for a given set of triples (or k-tuples), find the minimum
number of edges and non-edges (or k′-tuples) that need to be specified to make the
reconstruction unambiguous. Finally, it would be interesting to find applications that
are naturally modelled by this type of indeterminacy.
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Nederlandse samenvatting

Computers en automatisering vervullen een steeds belangrijkere rol in onze samenle-
ving. Nieuw vergaarde kennis en inzicht uit onderzoek binnen de informatica is een
van de drijvende krachten achter deze groeiende rol, en de theoretische informatica
vormt de basis van dit vakgebied. In de theoretische informatica houden we ons bezig
met wat het betekent als we zeggen dat een probleem door een computer opgelost
kan worden, en proberen we te bepalen welke problemen dit zijn. We ontwikkelen al-
goritmes en datastructuren waarmee we deze problemen op de beste manier kunnen
oplossen. ‘Beste’ kan dan refereren aan veel verschillende relevante aspecten, zoals
snelheid, precisie of betrouwbaarheid. Veel werk is gericht op het wiskundig bewijzen
dat een probleem door een computer opgelost kan worden, of op het bewijzen dat
een specifiek algoritme een gegeven probleem optimaal oplost.

In de computationele geometrie bestuderenwedeze vraagstukken voor problemen
met een geometrisch aspect. In plaats van ons alleen bezig te houden met abstracte
zaken als getallen en vergelijkingen, focussen we ons op de gevallen waarbij de
objecten die we bestuderen geometrisch zijn. Het aantal geometrische problemen
dat we mogelijk willen oplossen is bijna eindeloos. Sommige problemen zijn vrij
abstract, zoals het volgende: gegeven een verzameling cirkels, bepaal of er een punt
bestaat dat binnen alle cirkels ligt. Andere problemen hebben voor de hand liggende
praktische toepassingen, zoals: bereken het kortste pad tussen twee gegeven locaties
in een omgeving met obstakels.

In de bovengenoemde problemen is het relatief makkelijk om te definiëren wat
een correcte oplossing is. Dit is echter niet het geval voor alle computationele vraag-
stukken. Neem bijvoorbeeld de vraag wat in een gegeven schaakpositie de beste zet is.
Of de vraag om aan de hand van een 3D-model van een boom nieuwe 3D-modellen
van dezelfde boomsoort te genereren. In zulke gevallen is het niet altijd mogelijk om
een optimale oplossing te berekenen, en is het vaak niet eens duidelijk wat ‘optimaal’
betekent.

We kunnen meerdere technieken toepassen om dit soort complexere problemen
toch op te laten lossen door een computer. We zouden bijvoorbeeld een AI kun-
nen trainen om goede schaakzetten te maken, of een genetisch algoritme kunnen
gebruiken om een procedure te vinden die nieuwe boommodellen kan genereren.
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Voor zo’n soort aanpak is het vaak nodig om te kunnen meten hoe goed een gegeven
oplossing is. Schaakprogramma’s hebben bijvoorbeeld vaak een evaluatiefunctie die
probeert in te schatten hoe gunstig een bepaalde bordpositie is voor de speler. Deze
evaluatiefunctie kan dan gebruikt worden om efficiënter naar goede zetten te zoeken.
Voor het genereren van boommodellen zouden we een functie kunnen definiëren die
de gelijkenis met het voorbeeldmodel meet, en die dan gebruikt kan worden om het
evolutionaire proces te sturen.

In dit proefschrift onderzoeken we zulke maten van gelijkenis voor geometrische
objecten, en kijken we ook naar hoe deze gebruikt kunnen worden in bepaalde toepas-
singen. In Hoofdstuk 2 kijken we naar de earth mover’s distance, een afstandsmaat die
veel gebruikt wordt om discrete data, zoals foto’s, te vergelijken. Deze afstandsmaat
kan informeel als volgt worden uitgelegd. Stel dat je een aantal hopen aarde hebt
liggen, en een aantal gaten in de grond van exact dezelfde totale omvang. De gaten
in de grond moeten gevuld worden met de stapels aarde, maar er zijn bepaalde
kosten verbonden aan het verplaatsen van de aarde: deze kosten zijn gelijk aan het
product van de massa van de aarde die verplaatst wordt en de afstand waarover deze
verplaatst wordt. De earth mover’s distance tussen de stapels aarde en de gaten is
gelijk aan de totale kosten van de goedkoopste manier om de gaten te vullen.

Deze beschrijving kunnen we formeel maken zodanig dat de afstandsmaat goed
gedefinieerd is voor massadistributies van verscheidene objecten, zoals punten, po-
lygonen en 3D-objecten. Bestaande algoritmes om de afstand te berekenen vallen
echter uiteen in twee categorieën. Aan de ene kant is er veel bekend over het geval
waarbij de afstand tussen twee verzamelingen (gewogen) punten wordt uitgerekend.
Deze variant kan efficiënt exact uitgerekend worden, of nog efficiënter worden bena-
derd. Aan de andere kant wordt het probleem in toepassingen, zoals het interpoleren
tussen 3D-objecten, vaak numeriek opgelost. Hierbij kan over het algemeen wel
gegarandeerd worden dat de oplossing convergeert naar de juiste oplossing, maar
kunnen geen garanties gegeven worden over hoe goed de uiteindelijke benadering is.

Onze bijdrage is het eerste approximatie-algoritme voor de earth mover’s distance
voor situaties waarbij minstens een van de twee verzamelingen andere objecten
dan punten bevat. Wij geven algoritmes die, in polynomiale tijd, de earth mover’s
distance tussen een verzameling gewogen punten en een verzameling lijnsegmenten,
driehoeken of hoger-dimensionale simplices benaderen tot een factor 1 + ε, waar ε
een door de gebruiker gekozen kleine constante is. Ook geven we algoritmes die, in
polynomiale tijd, de earth mover’s distance tussen twee verzamelingen lijnsegmenten,
driehoeken of hoger-dimensionale simplices benaderen tot een factor 1 + ε plus een
kleine additieve term.

In de Hoofdstukken 3 en 4 kijken we naar hoe we kunnen interpoleren tussen
twee vormen. Interpolatie tussen twee vormen wordt ook wel morphing genoemd,
en heeft toepassingen in bijvoorbeeld medische beeldvorming en animatie. Wij
bekijken morphing specifiek in de context van de Hausdorff-afstand. Dat is een
simpele afstandsmaat die iets kan zeggen over de mate waarin twee objecten op
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elkaar lijken. Deze afstandsmaat kijkt voor alle punten op een van de twee objecten
naar het dichtstbijzijnde punt op het andere object, en is gelijk aan het maximum van
al deze afstanden.

In Hoofdstuk 3 definiëren we een morphing-methode die, gegeven twee invoer-
vormen, als eigenschap heeft dat hij op tijdstip α ∈ [0, 1] altijd Hausdorff-afstand α tot
de eerste invoervorm heeft, en Hausdorff-afstand 1−α tot de tweede invoervorm. We
bewijzen enkele belangrijke eigenschappen die deze morphing-methode heeft. Zo is
de vorm op ieder tijdstip de maximale vorm met de genoemde Hausdorff-afstanden,
en is hij 1-Lipschitz continu. Ook analyseren we structurele eigenschappen, zoals de
verbondenheid en de beschrijvingscomplexiteit van de tussenvormen. We bestuderen
ook een uitbreiding naar een situatie met meer dan twee invoervormen, waarbij
we laten zien dat het niet altijd mogelijk is om een vorm te vinden die een kleinere
Hausdorff-afstand dan 1 heeft tot alle invoervormen. Wel geven we algoritmes die de
kleinst haalbare afstand kunnen berekenen.

De Hausdorff morph uit Hoofdstuk 3 heeft mooie eigenschappen, maar in de
praktijk heeft hij de neiging om halverwege een vorm te geven die op geen van de
twee invoervormen lijkt. In Hoofdstuk 4 geven we een alternatieve morph die veel
van de goede eigenschappen behoudt, en er in de praktijk subjectief beter uitziet. Dit
onderbouwen we door een experimentele vergelijking van de twee morphs op basis
van oppervlakte, omtrek, en het aantal componenten en gaten van de tussenvormen.
De alternatieve morph definiëren we als volgt: op tijdstip α ∈ [0, 1] bewegen we
alle punten op de eerste invoervorm een factor α naar het dichtstbijzijnde punt op
de tweede invoervorm toe. Alle punten op de tweede bewegen analoog, maar met
een factor 1− α. De vereniging van al deze punten vormt de tussenvorm op tijdstip
α. Deze morph noemen we de Voronoi morph, omdat hij met behulp van Voronoi-
diagrammen berekend kan worden. We testten ook een aangepaste versie van deze
morph, mixed morph genaamd, die een veel voorkomend probleem met de Voronoi
morph probeert op te lossen. Onze experimenten laten zien dat de mixed morph het
beste presteert op de eigenschappen die we getest hebben.

Als laatste behandelen we in Hoofdstuk 5 een ongerelateerd onderwerp dat te
maken heeft met graafreconstructie. We kijken specifiek naar een informatiemodel
waarin we de structuur van een graaf niet expliciet gegeven krijgen. In plaats daarvan
krijgen we alleen een lijst van alle combinaties van drie knopen in de graaf die een
verbonden geïnduceerde subgraaf vormen. We noemen deze combinaties van drie
knopen triples. De vraag is nu of de oorspronkelijke graaf op basis van deze informatie
gereconstrueerd kan worden. We bewijzen dat dit in het algemeen niet mogelijk is:
er zijn meerdere oneindige families van paren van verschillende grafen die dezelfde
set triples opleveren. Tegelijkertijd laten we zien dat voor sommige klassen grafen
de reconstructie wel altijd uniek is als de graaf groot genoeg is. Ook geven we een
simpel algoritme gebaseerd op 2-SAT dat een graaf efficiënt reconstrueert op basis
van een verzameling triples. Als laatste bestuderen we kort een generalisatie naar
verbonden subgrafen van meer dan drie knopen.
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