Property-Based Testing: Climbing the Stairway to

Verification
Zilin Chen Christine Rizkallah Liam O’Connor
UNSW Sydney University of Melbourne University of Edinburgh

Sydney, Australia
zilin.chen@student.unsw.edu.au

Partha Susarla
Melbourne, Australia
partha@spartha.org

Melbourne, Australia
christine.rizkallah@unimelb.edu.au

Gerwin Klein
Proofcraft and UNSW Sydney
Sydney, Australia
kleing@unsw.edu.au

Edinburgh, UK
l.oconnor@ed.ac.uk

Gernot Heiser
UNSW Sydney
Sydney, Australia
gernot@unsw.edu.au

Gabriele Keller
Utrecht University
Utrecht, Netherlands
g.k.keller@uu.nl

Abstract

Property-based testing (PBT) is a powerful tool that is widely
available in modern programming languages. It has been
used to reduce formal software verification effort. We demon-
strate how PBT can be used in conjunction with formal ver-
ification to incrementally gain greater assurance in code
correctness by integrating PBT into the verification frame-
work of CoGENT—a programming language equipped with
a certifying compiler for developing high-assurance systems
components. Specifically, for PBT and formal verification to
work in tandem, we structure the tests to mirror the refine-
ment proof that we used in COGENT’s verification framework:
The expected behaviour of the system under test is captured
by a functional correctness specification, which mimics the
formal specification of the system, and we test the refinement
relation between the implementation and the specification.
We exhibit the additional benefits that this mutualism brings
to developers and demonstrate the techniques we used in
this style of PBT, by studying two concrete examples.

CCS Concepts: « Software and its engineering Software
testing and debugging; Functionality; Formal software
verification; Designing software.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.

SLE °22, December 06—07, 2022, Auckland, New Zealand

© 2022 Association for Computing Machinery.

ACM ISBN 978-1-4503-9919-7/22/12...$15.00
https://doi.org/10.1145/3567512.3567520

84

Keywords: QuickCheck, functional programming, formal
verification, systems programming

ACM Reference Format:

Zilin Chen, Christine Rizkallah, Liam O’Connor, Partha Susarla,
Gerwin Klein, Gernot Heiser, and Gabriele Keller. 2022. Property-
Based Testing: Climbing the Stairway to Verification. In Proceedings
of the 15th ACM SIGPLAN International Conference on Software
Language Engineering (SLE °22), December 06—07, 2022, Auckland,
New Zealand. ACM, New York, NY, USA, 14 pages. https://doi.org/
10.1145/3567512.3567520

1 Introduction

Property-based testing (PBT), in the style of QuickCheck [20],
is a popular testing methodology and is supported in many
modern programming languages [50]. In PBT, tests are spec-
ified using logical properties, which are automatically exe-
cuted on randomly generated inputs in search of counter-
examples. PBT is not only useful in finding bugs in programs,
it has also been leveraged to reduce the effort in formal verifi-
cation [15, 29, 37, 47]. Subjecting code to extensive PBT prior
to verification reduces the number of defects and specifica-
tion inconsistencies, thus reducing verification cost. Proof
engineers can first test a property and only attempt to prove
it after having gained reasonable confidence in its validity.

In program verification, it is common practice to prove
the correctness of a program against a formal specification.
The specification can be given in various forms (e.g. state
machines, process calculi, modal logics), depending on the
application domain. To show that the implementation con-
forms to the specification, the notion of refinement [7, 24, 52]
is frequently used to establish the formal connection.

In this work, we explore the combination of PBT and
refinement-based formal verification. We borrow from veri-
fication the functional correctness specification that is used to
dictate the behaviour of the system in question, and give it

https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://doi.org/10.1145/3567512.3567520
https://doi.org/10.1145/3567512.3567520
https://doi.org/10.1145/3567512.3567520

SLE ’22, December 06-07, 2022, Auckland, New Zealand

to PBT. Instead of testing logical properties about the sys-
tem, which is what PBT is typically designed for, we test
the refinement relation between the implementation and
the specification. Using logical properties to describe the
behaviour of a system has been criticised for its practicabil-
ity [43], especially if the full functional correctness of the
system is desired. Instead, high-level properties of a system
can be proved on top of its functional specification.

We introduce PBT to our development cycle, parallel to
the refinement-based verification framework. Specifically,
we formulate the refinement between the implementation
and the functional specification as the property to be tested,
which is an under-explored application of PBT. Employing
PBT in the formal verification context brings additional ben-
efits beyond detecting bugs in the implementation of the
systems.

In contrast to the high-effort all-or-nothing of a full func-
tional correctness proof, PBT provides a continuum ranging
from no assurance (no tests), to some assurance (good test
coverage), to better assurance (some properties proved, some
tested), and all the way to high assurance (all properties
proved). This allows users to make trade-offs between cost
and assurance according to the criticality of a component.

Tests are more immune to program evolution than formal
proofs. A proof may require significant changes whenever
the code changes, even in scenarios where the specifica-
tion remains the same (e.g. optimisation). On the contrary,
PBT only requires developers’ input when the specification
changes. Therefore, PBT can provide quicker feedback on
the correctness of the change, reducing code maintenance
cost. Furthermore, all proofs depend on assumptions such as
the correctness of the hardware or the external software in-
volved. Some of these assumptions can be tested to increase
the correctness of the overall system.

It is usually challenging to verify software that was not
designed for verification, as the code has to be structured in
a modular fashion, around clearly stated correctness prop-
erties. This means that it is vital to have an effective means
for developers to express their design requirements in order
to experiment with and evaluate their design, and to have a
good set of design guidelines [14] for them to write programs
that can be readily specified and verified.

In large-scale software verification projects, such as
seL4 [41], systems developers and verification experts are
typically from two separate teams. We posit that PBT specifi-
cations can be used to enhance the communication between
these two groups. While the properties are similar to formal
specifications, they represent tests and, as such, feel more
familiar to software engineers than abstract proof require-
ments. Since PBT gives almost immediate benefit to software
engineers, there is an incentive for them to design their code
such that these properties are meaningful and easy to ex-
press, thereby structuring their code for formal specification,
making it amenable to verification.

Z. Chen, C. Rizkallah, L. O’Connor, P. Susarla, G. Klein, G.Heiser, and G. Keller

85

We examine these benefits by integrating PBT into the
CoGeNT framework. The BilbyFs file system [3], developed
in COGENT, provides an example of this effect. The entire Bil-
byFs had been formally specified but only partially verified.
By applying PBT, we uncovered bugs in the specification and
the implementation of BilbyFs. PBT has therefore already
reduced the cost of verifying the remainder of the system by
uncovering mistakes early on.

This work builds on top of a preliminary investigation [18].
To summarise, we make the following contributions:

e We demonstrate how to integrate PBT into a refine-
ment verification framework by using COGENT as the
target platform. Unlike previous use of PBT, our test
specification is defined in terms of refinement proper-
ties (Section 3).

e We argue why PBT is suitable to be employed in paral-
lel with formal verification, and explain the important
role that PBT plays in the design and implementation
of the systems (Section 4).

e We provide two concrete examples from the testing of
components of the BilbyFs file system to demonstrate
techniques that we used for specifying refinement re-
lations, modularising the tests, using mocks, handling
non-determinism, and efficiently generating test data
(Section 5 and Section 6).

e We discuss the engineering implications of our ap-
proach and lessons learnt and proposals resulting from
them (Section 7).

2 Background
2.1 COGENT

From the experience of formally verifying the seL4 microker-
nel, Klein et al. [41] have observed that the proofs connecting
the high-level specifications with the low-level C systems
code are time consuming and tedious to develop, but are
not particularly involved. As such they are good candidates
for automation. The CoGENT verification framework was
conceived to partly automate these proofs.

CoGENT [55, 56, 58] is a purely functional language
that was developed to reduce the cost of developing high-
assurance systems components. Similar to the Rust lan-
guage [39], COGENT is equipped with a uniqueness type sys-
tem [8, 11, 25, 66] that ensures memory safety, easing the bur-
den of verification. COGENT’s type system allows imperative-
style destructive updates, while retaining a purely functional
semantics. The type system eliminates the need for a garbage
collector, making the language more suitable for systems
code and also easier to verify.

The uniqueness types come at a cost: it is impossible in
CoGENT to implement data structures and functions which,
even temporarily, rely on sharing. Instead, they have to be
implemented in C, verified separately, and imported as ab-
stract types and abstract functions through a foreign function

Property-Based Testing: Climbing the Stairway to Verification

legend
|:| manual Functional specification (Isabelle/HOL)
i .1 generated
|:> -'_'_'_:: proof E A
CoGent (L
source generates : Shallow embedding of g
 COGENT in Isabelle/HOL ; K]
e 2
COGENT generates "E éi
compiler ‘Fg
generates : H .
—" C i@ | C library

Figure 1. An overview of COGENT’s verification framework

interface (FFI) that requires the uniqueness constraints to
be satisfied at the interface level. Besides, COGENT does not
natively support loops or recursion; they also need to be
implemented in C. We refer to this collection of C code as
the C library.

CoGENT’s certifying compiler [58, 59], presented in Fig-
ure 1, generates C code, a shallow embedding of the COGENT
code in the interactive theorem prover Isabelle/HOL [54],
and a proof connecting the two. The generated proof ensures
that the C code correctly refines the Isabelle/HOL shallow
embedding. As such any correctness properties proved about
the shallow embedding also hold for the C code. Automating
the refinement proof from CoGeNT to C drastically reduced
the verification effort required compared to directly verifying
C code [4].

While the CoGENT compiler generates C refinement proofs
automatically, it cannot prove full functional correctness,
which is specified manually by the developer in a functional
correctness specification in Isabelle/HOL. This leaves two
steps that require manual verification (the two solid arrows
in Figure 1): (1) verifying that the purely functional shallow
embedding of the CoGENT code refines the overall functional
correctness specification, and (2) verifying that each C ADT
refines its functional specification. The former, albeit manual,
is eased by virtue of equational reasoning. The latter proof,
which is directly on the C level, is more involved. However,
the C library is to be shared across multiple systems and
hence the effort is amortised over time.

Figure 2 provides an example of a COGENT program. Given
an abstract List datatype with a reduce function (line 15) that
aggregates the List content using a provided aggregation
function and identity element, the function average (line 17)
computes the average of a list of 32-bit unsigned integers. It
accomplishes this by storing the running total and count in a
heap-allocated data structure, called a Bag, defined on line 2,
with external allocation and free functions on lines 3 and 4.
Because COGENT is a purely functional language, intrinsically
impure functions, like the memory (de-)allocation functions,
need to have the heap H threaded through them. This is

86

SLE ’22, December 06-07, 2022, Auckland, New Zealand

type H
2 type Bag = { count : U32, sum :

1
2 u32 }
3 newBag : H— <Success (Bag, H)

4

S

| Failure H >
freeBag : (H, Bag) —@H

6 addToBag : (U32, Bag) — Bag
7 addToBag (x, b { count = c, sum =
8 =b { count =

s 1)

c+ 1, sum=5s + x }
10 averageBag : Bag! — <Success U32 | EmptyBag >
11 averageBag b = if b.count == 0 then EmptyBag

12 else Success (b.sum / b.count)

14 type List a

15 reduce : VY (a, b). ((List a)!, (a!,b) —b, b) —>b
16

17 average : (H, (List U32)!) — (H, U32)

18 average (h, 1s) = newBag h

19 | Success (b, h')—

20 let b' = reduce (ls, addToBag, b)

21 in averageBag b' !b'

22 | Success n— (freeBag (h', b'), n)

23 | EmptyBag — (freeBag (h', b'), 0)

24 | Failure h' — (h',0)

Figure 2. A simple example of a COGENT program

similar to Haskell’s 10 monad. The newBag function returns a
variant (or sum) type to indicate the possibility of allocation
failure. The addToBag function, which adds a new data point
to the bag, is defined on lines 6-8. The averageBag function
(lines 10-12) returns, if possible, the average of the numbers
added to the Bag. The input type Bag! indicates that the input
is a read-only, non-unique view of a Bag, which is created
on line 21 using the ! notation. Lastly, lines 17-24 define the
overall average function, which uses the Bag to compute the
average of the elements of a List.

2.2 Property-Based Testing and QuickCheck

PBT is a quick and effective method for detecting bugs and
finding inconsistencies in specifications [38]. Similar to for-
mal verification, PBT uses logical predicates to specify the
desired behaviour of functions, by defining the allowed rela-
tions between inputs and outputs of the functions. It evalu-
ates the properties on a large set of automatically generated
input values in search of counter-examples.

While PBT is effective, it is not universally applicable—in
practice, it is often hard to describe the full behaviour of
a system solely in terms of logical properties [43]. In the
context of formal verification, however, using a functional
specification to describe the behaviour of a systems is very
common. Thus proof engineers can first run extensive tests
on the conjectures before attempting any proof development.
This technique is not new and has witnessed great success
in the verification community [10].

QuickCheck [20] is a combinator library in Haskell for
PBT. While the QuickCheck functionality is now available

SLE ’22, December 06-07, 2022, Auckland, New Zealand

in many programming languages [50] and theorem provers
[15, 29, 47], we interface COGENT to the Haskell QuickCheck
library, as it is mature, feature-rich and integrates well with
CoGENT and C.

2.3 Data Refinement

Prior verification work in COGENT, e.g. of BilbyFs [3], con-
nects the functional specification to the CoGENT implemen-
tation, and the COGENT implementation to the compiled C
code [59] by proving refinement relations. The notation of
refinement is also central to our testing framework, in which
they are expressed as QuickCheck properties. We use a text-
book definition of refinement [24]. Informally, a program C
is a refinement of a program A if every possible behaviour in
the model of C is observable in that of A.

In an imperative setting, a simple model for both the ab-
stract specification and the concrete implementation would
be relations on states, describing every possible behaviour of
the program as the manipulation of some global state. This
means that if we prove a property about every execution for
our abstract specification, we know that the property holds
for all executions of our concrete implementation.

This state-based model for specifying the behaviours of
systems is a very common paradigm in the world of model-
based testing (MBT) [33, 43, 64]. However, as mentioned in
Section 1, CoGeNT’s purely functional semantics provides
a simple formal model of a program’s behaviour; specifi-
cally, it enables reasoning about programs using equational
principles. The equational semantics is fortunately widely
available in PBT libraries, including QuickCheck.

Since COGENT is a purely functional, deterministic, total
language, there is no global state, and all functions are mod-
elled as plain mathematical functions. In such a scenario,
the only state involved consists of the inputs and outputs to
the function, simplifying the refinement statement. Given
an abstract function abs :: X, — Y, and a concrete COGENT
function conc :: X, — Y., then, assuming the existence of re-
finement relations Rx and Ry, we can express the statement
that conc refines abs as:

Rx iz ic = Ry (abs i;) (conc i;)

This, however, places unnecessary constraints on our ab-
stract specification. While COGENT is deterministic and total,
our abstract specification need not be. In fact, it is often de-
sirable to allow non-determinism to reduce the complexity
of the abstract specification. In the context of testing, we are
required to restrain the degree of non-determinism in the
specification, for the sake of efficient execution of the test
script. This, however, does not preclude us from having a
non-deterministic specification.

We model non-determinism by allowing abstract func-
tions to return a set of possible results. Then, our refinement

Z. Chen, C. Rizkallah, L. O’Connor, P. Susarla, G. Klein, G.Heiser, and G. Keller

87

I:l legend
— manual Executable specification (Haskell)
I generated
> testing £ " A VAN
3
& (1)
g
COGENT [] I
source H :
generates + Shallow embedding of ! 2
l " COGENT in Haskell 1} @) E @
H S
COGENT g
] =
compiler ”aé @
generates : H .
— C 1| C library

Figure 3. An overview of the CoGENT QuickCheck frame-
work

statement merely requires the single concrete result to cor-
respond to one of the possible abstract results:

Rx ig ic = Jog, € abs i,. Ry o, (conc i)

Defining the notation

corresRac défflo €a.Roc
the refinement statement can be formulated as:
Rx iz i. = corres Ry (abs i;) (conc i)

Theorems that capture the functional correctness of COGENT
systems typically have this corres format. We therefore aim to
encode these as machine-testable properties in QuickCheck.

3 The Cogent QuickCheck Framework

The integration of PBT into the COGENT framework mirrors
the verification tasks, as shown in Figure 3. The developer
manually writes a Haskell executable specification, which
plays a similar role to the Isabelle/HOL functional correct-
ness specification. The compiler now generates a Haskell
shallow embedding of the CoGeNT code for PBT. Although
not formally connected, the Haskell and Isabelle/HOL em-
beddings are very similar.

The framework supports testing the C implementation of
ADTs against the Haskell executable specification, shown as
arrow (2) in Figure 3; Section 5 provides an example. It fur-
thermore supports testing the COGENT program along with
ADTs that the COGENT program uses, against the Haskell exe-
cutable specification. This is depicted as arrow (1) in Figure 3
(the included ADTs are not shown in the figure); Section 6
provides a case-study. The included ADTs can either be real
C implementations (via Haskell’s C FFI) or Haskell mocks,
depending on whether the ADTs are also considered the
system under test.

The refinement relation between the C code and the
Haskell embedding of the COGENT program (arrow (4)) can
also be tested, although it does not concern us as much, since
it is certified by the automatic proof. One scenario where
this test can be beneficial is during the development of the

Property-Based Testing: Climbing the Stairway to Verification

CoGeNT compiler, before the automatic refinement proof
pipeline is fully restored.

The complete compiled executable, depicted in Figure 3
as the grey dotted box at the bottom, can be tested against
the executable specification in theory, as indicated by arrow
(3). However, we typically do not perform this test using
the QuickCheck framework in COGENT, as the gap between
their state spaces is usually too large to handle effectively.
The final system can normally be deployed in the production
environment and be tested against third-party test suites
for their specific application domain. In the context of the
BilbyFs, for example, there exist tools such as fstest [9].

On the formal verification end, the Isabelle/HOL func-
tional correctness specification may be highly non-
deterministic in order to succinctly characterise external fac-
tors such as the elapsed time of an operation, out-of-memory
errors or hardware errors. The Haskell specification must
also be capable of modelling non-determinism, but in a more
controlled manner, as the specification must be executable.
Simulating a non-deterministic model can be exponential
in time and space. To allow modelling a minimal amount
of non-determinism in the Haskell specification, the tester
has to ensure that the search domain is finite and reasonably
small by carefully examining the needed quantifiers in the
specification.

For example, in the Isabelle/HOL abstract specification
of BilbyFs, the afs_get_current_time function is defined as
follows:

definition

afs _get current time ::
TimeT) cogent_monad
where
afs get current time afs = do
time’ « return (a_current time afs);
time <« select {x. x > time’};

return (afsq a_current_time :=
od

afs state = (afs_state X

time), time’)

It non-deterministically picks a time, which is no earlier than
the time stored in the file system state afs. This abstract
specification is not suitable for testing, due to the infinitely
large set of values. In contrast, on line 13 of Figure 5b, the
specification non-deterministically chooses an error code
from a small set of {€I0, eNoMem, eInval, eBadF, eNoEnt}.
This moderate state explosion can potentially be handled by
the testing framework, depending on the context in which
the afs_readpage function is applied.

The Haskell executable specification is thus often strictly
less abstract than the Isabelle/HOL functional specification.
Although it is not necessary to formally connect the two,
as the gap only affects the quality of the tests, ideally we
would want one specification to be generated from the
other one. Automatic refinement mechanisms that allow
verified generation of Haskell from Isabelle/HOL have been
explored [44, 45]. Generating the Haskell specification from
the Isabelle/HOL abstract specification is undoubtedly handy,

88

SLE ’22, December 06-07, 2022, Auckland, New Zealand

when the Isabelle/HOL specification is developed prior to the
Haskell executable specification. This however is not always
the case, and in fact in the workflow that we proposed, the
Haskell specification is used to guide the formulation of the
Isabelle/HOL one.

4 PBT and Systems Design Go
Hand-in-Hand

We argue that the employment of PBT and the design of the
systems are interlinked with each other: appropriate systems
design assures the effectiveness of testing, and the use of
PBT encourages the programmers to design their systems in
a fashion that is amenable to formal verification.

As a purely functional language, COoGENT is well suited
for PBT and verification: the result of a executing a function
only depends on the input, with no hidden state. Instead, a
system state must be explicitly threaded through an impure
function. If the function is not designed appropriately, it is
possible that a PBT test suite hardly yields counter-examples.
Systems code often involves large global states. However, a
function typically only accesses a small portion of the state.
If the entire state is passed in, any random variations to the
parts of the state that are irrelevant to the function will have
no effect on the execution of the function. In this case a large
proportion of the randomly generated test cases in PBT will
be wasted, rendering the test suite ineffective.

In practice, this means that to be suitable for PBT, the
functions must be designed to keep the inputs minimal and
relevant, which is unlikely when naively translating exist-
ing C code with global state into CogeNT. While this may
seem like a high price to pay, a verification-friendly design
has the same requirement for modularity and compartmen-
talisation [3, 5]. Thus PBT imposes few restrictions beyond
existing requirements of verification, and instead helps guide
the design.

In the context of COGENT, developers typically do not have
a formal specification to begin with when implementing a
new system. Systems programmers, together with verifica-
tion experts, not only need to ensure that they are imple-
menting the systems right, but also to ensure that they are
implementing the right systems. PBT helps them structure
the implementation, as well as the specification. Having
good design decisions, such as keeping the states threaded
through small and relevant as we mentioned above, is dou-
bly rewarding: it keeps the refinement relation between the
concrete and the abstract states simple, both in PBT and in
verification.

Expressing design requirements for verification is an on-
going challenge, and we observed in the past that when veri-
fying real-world systems, it is difficult for proof engineers to
communicate these requirements effectively to the software
engineers. The seL4 project [41] overcame this problem by
using an executable Haskell specification of the system as

SLE ’22, December 06-07, 2022, Auckland, New Zealand

prop_corres wordarray_set u8 :: Property
prop corres wordarray set u8 = monadicIO $
forAllM gen wordarray set u8 arg $ \args — run $ do
let ia = mk _hs wordarray set u8 arg args
oa = uncurry4 hs wordarray set ia
ic<—mk c wordarray set u8 arg args
oc <— cogent_wordarray_set u8 ic
corresM' rel wordarray u8 oa oc

Figure 4. The refinement statement for wordarray_set (de-
allocation is omitted for simplicity)

an interface between these two groups [40]. We posit that
QuickCheck properties is a highly suitable language for com-
municating design requirements. They readily translate to
formal specifications, but are expressed in a programming
language, and thus familiar to software developers. As they
lead to effective test generation, software developers get im-
mediate benefit from using these specifications to structure
their code to maximize their use, which consequently makes
the code easier to verify.

5 Example: The WordArray Library

We apply the CoGeNT QuickCheck framework to the
WordArray library, which implements common functions ma-
nipulating arrays of machine words and is shared by all
of our systems implementations. Most of these WordArray
functions are implemented in C, and are invoked via the FFI
mechanism available in COGENT.

We want to test whether each function observes the refine-
ment property from Section 2.3. For example, the behaviour
of the ADT function wordarray set (similar to memset in C)—
which fills the first n elements starting at a certain index
frm into an array arr with a constant value a—is manually
specified in Haskell as follows:

- Haskell spec.
type WordArray a = [a]
hs wordarray set :: WordArray a— Word32 — Word32

— a— WordArray a

hs_wordarray set arr frm n a =

let len = length arr in

if | frm > len = arr
| frm + n > len

take frm arr ++ replicate (len -
otherwise
take frm arr ++ replicate n a ++
drop (frm + n) arr

frm) a

In CoGENT, the function is defined as an abstract function,
whose definition is given in C. The CoGENT function inter-
face looks like:

type WordArray a

wordarray set : (WordArray a, U32, U32, a) —WordArray a

While CoGgenT and Haskell both support polymorphism, C
does not, and QuickCheck cannot perform genuine polymor-
phic testing [12]. In this example, we test the U8 instance of

Z. Chen, C. Rizkallah, L. O’Connor, P. Susarla, G. Klein, G.Heiser, and G. Keller

89

the polymorphic wordarray_set function, whose refinement
statement is given in Figure 4. It can be read roughly as:
for any type-correct concrete input ic and its abstraction
ia, check that the result (i.e. oc) of applying the concrete
function cogent_wordarray set u8 and that of the abstract
function hs wordarray set (i.e. oa) are related via the refine-
ment relation rel wordarray_u8. The corresM' function is a
monadic variant of our corres notation for situations where
the specification is deterministic.

Although the corres predicate contains an existential quan-
tifier for the result of the non-deterministic abstract specifi-
cation, our implementation does not require QuickCheck to
guess the quantified value from a set of all possible values.
Instead, our test driver enumerates over all possible output
values of the abstract function to find the existentially quan-
tified value. In Section 6, we show how to restrict the size of
the abstract function’s codomain for the enumeration to be
tractable.

For the WordArray type, we relate the abstract input data
and the concrete input data in the following way: we ran-
domly generate test data on a middle-ground type, and
then use two thin wrappers mk_hs wordarray_set u8_arg
and mk_c_wordarray_set_u8_arg to convert the generated
data to the types expected by the abstract and the concrete
functions. The test data generation is not very involved, be-
cause the correspondence between the two types is straight-
forward, and the C type is not very convoluted in its under-
lying representation, in particular it does not heavily use
pointers.

Although in the refinement statement, the refinement re-
lation between the input data is expressed as a predicate, this
is usually not the way to implement the test driver. Checking
a predicate is often straightforward, but it requires two sets
of random data generators and forces the two generators to
be coupled. Otherwise the correspondence predicate is likely
to reject the vast majority of the generated data, rendering
the test very inefficient (see Section 7.4).

Broadly speaking, it is more convenient to relate the input
data if we implement the refinement relation as an abstrac-
tion function, computing the abstract data according to its
concrete counterpart. This is contrary to model-based testing
approaches [64], in which the test cases are derived from the
more abstract model. We use abstraction functions because
typically the concrete state contains more data than its ab-
stract counterpart. In order to derive a concrete input from
the randomly generated abstract input, more data need to be
created and this calls for another set of random data genera-
tors. On the other hand, when we generate a concrete input
and abstract it, it only requires a lossy abstraction function.

In the case of WordArray, we compute the abstract in-
put data from the concrete one, relating them by construc-
tion. However, not all values of a C type are valid inputs:
for instance, a null pointer does not correspond to a valid

Property-Based Testing: Climbing the Stairway to Verification

WordArray. To exclude invalid input data, we manually im-
plement a test data generator gen wordarray_set u8 args
which generates values that are isomorphic to valid con-
crete inputs only, and we convert them to Haskell inputs and
C inputs using functions mk_hs_wordarray_set_u8 arg and
mk_c_wordarray_set u8_arg respectively.

The refinement statement as shown in Figure 4 is largely
boilerplate code. To generate this code, we designed a small
domain-specific language (DSL), whose prototype has been
implemented [27]. In this DSL, programmers can specify the
function names, the definition of the abstraction function for
the inputs and the refinement relation between the outputs,
and other properties about the refinement statement, such
as the determinism of the abstract function and whether
the concrete function needs to operate under the 10 monad.
The DSL is written in JSON format, which can be readily
parsed using third-party libraries such as aeson [57]. A piece
of sample code is give below:

1 {

2 "name" : "wordarray set u8",

3 "monad" : true,

4 "nondet": false,

5 "absf" . // the abstraction function
6 "rrel" . // ref. rel. between outputs
7}

Haskell program texts can be embedded in the JSON struc-
ture as the values of the "absf" and "rrel" attributes (lines
5 and 6). This allows programmers to either call a Haskell
function defined elsewhere, or directly write the definition
in-place. The lens [42] style of code is particularly suitable
for accessing and relating parts of deeply nested algebraic
datatypes.

In the refinement statement, the CoGeENT-compiled C code
can be called from Haskell using its C FFI facility. The Haskell
representation of C types, marshalling functions, and foreign
function calls are generated by the CoGENT compiler and
are further compiled by FFI tools such as hsc2hs [32] and
c2hs [16].

Running a small number of randomly generated tests
(by default 100 but this can be customised) by passing
prop_corres _wordarray set u8 to the quickCheck function,
we get:

*WordArray> quickCheck prop corres wordarray set u8
+++ OK, passed 100 tests.

We have specified most of the ADT functions for WordArrays
and tested them [17]. We found bugs in two C functions,
which had not been uncovered by our earlier test suites nor
the file systems built with them. The bugs went undetected
as they involved invalid inputs and corner cases which were
handled by the callers, whereas the Haskell specification in
our QuickCheck framework does not preclude these input
values.

For example, for the wordarray_copy function that copies a
number of bytes from one memory area to another (similar to

90

SLE ’22, December 06-07, 2022, Auckland, New Zealand

memcpy in C), the old implementation implicitly assumed that
the index into the source array was always within bounds.
This precondition was satisfied by our file system implemen-
tations, but it was unspecified. In fact, the wordarray_copy
function, as part of a generic library, should not carry this
implicit precondition. Otherwise it may introduce bugs to
other customers of this library function but do not perform
the check.

PBT also helped us uncover problems in the Isabelle/HOL
ADT specifications, which had overly specific assumptions
about inputs. While these assumptions are valid for the func-
tions we verified, they do not hold in general. Thus, the
specifications we had written did not represent a general
purpose specification of the function.

TheWordArray library in COGENT was initially axiomatised
in the verification of the file systems [4], and then tested
using the PBT framework, before they were finally formally
verified [19]. This is an example of how the developers can
progressively increase their confidence in the correctness
of the code by upgrading PBT to formal verification in a
modular fashion.

6 Example: A Top-Level File System
Operation

BilbyFs [3] is a flash file system that was designed from
scratch, focusing on modularity and verifiability; it has 19
top-level file system operations. Two functions have been
previously verified in Isabelle/HOL to demonstrate how Co-
GENT facilitates equational reasoning. fsop_sync, a top-level
function, consists of about 300 lines of COGENT code and
took approximately 3.75 person months to verify with 5700
lines of proof. The other function, iget, directly called by the
top-level fsop_lookup function, consists of approximately
200 lines of code, and took about one person month to verify
with 1800 lines of proof.

We conducted PBT on one of BilbyFs’s top-level func-
tion fsop_readpage [17], which had previously been formally
specified in Isabelle/HOL but not yet verified. Figure 5 shows
the Isabelle/HOL specification as well as the manually writ-
ten Haskell executable specification; they are very similar in
this case. Therefore, testing gives us reasonably high assur-
ance of the implementation with respect to the Isabelle/HOL
specification. As discussed in Section 3, this is not always
the case, making it occasionally more difficult to connect
the two specifications, and sometimes requiring additional
manual reasoning.

6.1 The Haskell Executable Specification

In a nutshell, as shown in the Haskell specification in Fig-
ure 5a, the function hs_fsop_readpage fetches a designated
data block of a specific file to the buffer. The argument afs is
a map from inode numbers to files; each file is represented as
a list of blocks of data. The hs_fsop_readpage function looks

SLE ’22, December 06-07, 2022, Auckland, New Zealand

1 hs_fsop _readpage :: AfsState

2 — VfsInode

3 — 0SPageOffset

4 — WordArray U8

5 —> NonDet (Either ErrCode (WordArray U8))

6 hs fsop readpage afs vnode n buf =

7 let size = vfs _inode get size vnode :: U64
8 limit = size “shiftR™ bilbyFsBlockShift
9 in if | n > limit — return $ Left eNoEnt

| n
return $ Right buf

== limit && (size “mod~ bilbyFsBlockSize == 0) —

| otherwise — return (Right $ fromJust (M.lookup (vfs inode get ino inode) afs)
(Left <$> [eIO, eNoMem, elInval, eBadF, eNoEnt])

Z. Chen, C. Rizkallah, L. O’Connor, P. Susarla, G. Klein, G.Heiser, and G. Keller

'n) <|>

(a) The Haskell executable specification

1 definition

2 afs_readpage :: afs_state

3 = vnode

4 = U64

5 = U8 WordArray

6 = (U8 WordArray X (unit, ErrCode) R) cogent monad
7 where

8 afs_readpage afs vnode n buf
9 if n > (v_size vnode >> unat bilbyFsBlockShift) then

else if (n =
then return (buf, Success ())

bilbyFsBlockSize), Success ()) Il
return (buf, Error err)
od

else do err « {eI0, eNoMem, eInval, eBadF, eNoEnt};
return (WordArray.make (pad block ((i_data (the $ updated afs afs (v_ino vnode))) ! unat n)

return (WordArrayT.make (replicate (unat bilbyFsBlockSize) 0), Error eNoEnt)
(v_size vnode >> unat bilbyFsBlockShift)) A ((v_size vnode) mod (ucast bilbyFsBlockSize) =

0)

(b) The Isabelle/HOL functional specification

Figure 5. Functional specifications of the fsop_readpage function

up a file, whose inode number is given by vnode, in the map
afs, and copies the n-th block of the file to buf. It returns
non-deterministically an updated buffer or an error code.

As a first step, hs_fsop_readpage calculates the number of
blocks that the wanted file occupies. If the block in question
is out of bounds (n > limit), the function returns a no-entry
error eNoEnt. If the file size is a multiple of the block size,
n points to the last block in the wanted file, and the last
block is empty (because the file data ends at the prior block
boundary), then the function returns the original buffer as
there is no data to read. Otherwise, hs_fsop readpage reads
the block by looking up the inode number in the map (see
Figure 6 for a pictorial example).

This, however, is not the only possible correct behaviour.
As the implementation has to access buffers and read from
the physical medium, this may fail, in which case it should
throw an error. We specify this as a non-deterministic be-
haviour. The specification states that the function can read
a block or it can give one of the following five errors: eI0,
eNoMem, eInval, eBadF, or eNoEnt. The NonDet monad used

91

here is essentially a finite set containing all allowed be-
haviours. This monad is commonly used in proving refine-
ment (e.g. [3, 22]). The alternative operator (<|>) acts as a
non-deterministic choice, admitting the behaviour of either
of its operands by taking the union of their behaviours.

6.2 Mock Implementations

It is not always feasible to test systems code in its exact pro-
duction environment [53]. For instance, the fsop_readpage
example has many low-level functions which call into the
operating system’s kernel, and it is currently not feasible to
run QuickCheck tests in kernel mode. Instead of testing the
monolithic object file obtained from compiling the C code,
we mock up parts of the code in Haskell. A mock abstracts
from low-level kernel calls and can be thought of as a black
box, which provides to its caller the same observable effects
as the actual implementation.

Mocks can also be used as substitutes for unimplemented
functions, enabling systems developers to test functionality
before they have a full system implementation. The use of

Property-Based Testing: Climbing the Stairway to Verification

data

DN

I blocko |

DN o

data

block1 | block2 | block3

Figure 6. An example of the read_page algorithm. In case
(A), limit = 3. When n = 0,1, 2 we just read. When n = 3,
because the size of the data is not perfectly aligned at the
end, we still read. When n > 4, we return the no-entry error.
In case (B), limit = 3. When n = 3, that’s the special case.
We return the old buffer unmodified.

mocks restricts the scope of debugging to a small number of
functions, reducing the effort required to locate bugs.

The CoGeENT implementation of fsop_readpage calls a
read_block function to fetch one block of file data, which in
turn retrieves the data with the function ostore read. The
read_block function, which retrieves the file data from the
physical medium, is conceptually simple. However it is com-
plicated in its internal implementation, which involves a
red-black tree lookup to locate the address, several layers of
caching, and thorough error-handling.

Because read block relies on kernel mode access to caches
and complex data structures, it is a good candidate for a
mock implementation. In addition to the ostore_read func-
tion, we also substitute some kernel ADT functions for
mock implementations. For WordArray functions invoked
by fsop_readpage, we use the Haskell models described in
Section 5 as mocks.

The implementation of a mock is simplified by the fact
that it does not need to provide the full functionality of the
operation, as long as the callers in the specific test cases
cannot observe the difference in its behaviours.

For example, the original COGENT signature of the function
ostore read is:

type RR x a e = (x, <Success a | Error e>)

ostore read : (SysState, MountState!, OstoreState, ObjId)

— RR (SysState, OstoreState) Obj ErrCode
The function takes a quadruple as input, containing a read-
only (denoted by the ! operator) MountState, and returns the
parametric RR type, which is further defined as a pair of a
variant type <Success a | Error e>and a result type x that
is common to both cases.

The purely functional nature of COGENT makes it easy
for developers to identify the observable behaviours—they
are necessarily within the return type of a function. In the
case of the fsop_readpage function, the only behaviours
of ostore_read that can be observed are the returned 0bj
value or the error code ErrCode. Therefore, we can tailor

92

SLE ’22, December 06-07, 2022, Auckland, New Zealand

the mock to the specific use case of fsop_readpage. The
mock ostore_read function can be modelled as a simple map
lookup: given a map OstoreState and a key of type 0bjId, it
returns the corresponding object or an error. The relevant
Haskell definitions are given as follows (the use of the Oracle
can be ignored for now; it will be explained shortly):

type OstoreState = Map ObjId Obj
data Res a e = Success a | Error e

ostore _read :: Oracle
— (OstoreState, 0bjId) — Res 0Obj ErrCode
ostore read orc (ostore st, oid) =
if orc == 0 then
case M.lookup oid ostore st of
Nothing — Error eNoEnt
Just obj — Success obj
else Error orc

6.3 Oracles and Non-determinism

The CoGENT implementation of ostore_read interacts with
the physical media and kernel data structures, therefore its
behaviour is dependent on that of the underlying systems
and hardware. However, as we have introduced in Section 2.1,
COGENT is a total, purely functional language, meaning that
all functions in COGENT have to be deterministic. This non-
determinism, therefore, has to be modelled by threading a
global state SysState through the impure functions, similar
to the H type in Figure 2.

In the Haskell mock implementation of ostore_read, the
non-determinism can be modelled in a different manner for
simplicity. When testing this function independently, we
emulate the non-determinism by adding an additional oracle
input orc.! This oracle can be deemed to be the source of all
non-determinism. A similar oracle is passed to our mocks of
many WordArray functions, such as wordarray_create, which
allocates memory and creates a fresh array.

We have seen how oracles can be used in mock implemen-
tations to emulate non-determinism. The oracle technique
can be similarly applied to the Haskell executable specifi-
cation. When we test that an oracle-carrying mock refines
a non-deterministic specification, the specification can ab-
stract over the values that the oracle can possibly possess
with the NonDet monad. If the specification is to be made
more precise, we can also introduce an oracle to it to ascribe
the source of the non-determinism. In this case, care needs
to be taken to ensure that the oracle in the specification and
that in the implementation are in synchronisation, so that
they do not make conflicting choices.

Using oracles in the specification can be problematic if
the implementation is not a mock and is genuinely non-
deterministic due to, say, the hardware or the operating sys-
tem. There is in general no way to predict accurately which

In our implementation, we pass the oracle around using GHC Haskell’s
implicit parameter extension [48], making it more transparent to users. In
the presentation of this paper, however, we pass them explicitly for clarity.

SLE ’22, December 06-07, 2022, Auckland, New Zealand

execution path the concrete implementation will take (e.g.
malloc failures). Hence, the specification and the implemen-
tation can make inconsistent choices when they encounter
non-determinism, which can lead to spurious test failures. In
this case, we have to step back and use a non-deterministic
specification with the NonDet monad instead. This, however,
has a negative cosmetic effect on the entire Haskell specifica-
tion, as the NonDet monad is infectious and it would render
all ancestor functions in the call graph monadic.

To address this problem, we can establish an equivalence
relation between the non-deterministic specification using
NonDet and the oracle-carrying deterministic one by testing.
Concretely, we test that the two specifications return the
same set of results, by enumerating every possible oracle
in the deterministic specification, collecting a finite set of
results, and then checking that set against the set of results
produced by the non-deterministic specification.

The NonDet monad and the oracle approach are two ex-
tremes of the spectrum, and developers can choose a suitable
degree of non-determinism by combining these two to meet
the needs of a specific test case.

6.4 Test Data Generation

By using mocks, not only can we use simpler algorithms to
simulate the functionality of the original components, but we
can also fine-tune test data generators to restrict the domain
of inputs given to the mock, allowing us to only implement
a partial mock of the original code.

When testing a cluster of functions and the mock func-
tion’s input depends on the output of other functions, the
aforementioned partial mock should be used with care. The
input to a function can be directly controlled by the tester
by defining appropriate test data generators, while the out-
put of a function is not so easy to predict as it may have
been heavily processed and manipulated by the functions.
When such an input value reaches the partial mock imple-
mentation, it is harder to know a priori whether it falls into
the unhandled sub-domain of the mock. It poses a greater
challenge in writing good test data generators to ensure the
pre-condition of the mock function is met even after the ran-
domly generated data have flowed through other functions
in the system under test. More general remarks on this point
can be found in Section 7.4.

Domain-specific knowledge can be leveraged to write
good test data generators, which makes the checking pro-
cess more efficient and practicable. For example, when we
generate the OstoreState, all entries we generate belong
to the same inode. In reality, there are many data objects
for other files, or other types of objects; but none of these
facts will be observed by its caller. This in turn simplifies the
implementation of the mock and the abstraction functions.

Z. Chen, C. Rizkallah, L. O’Connor, P. Susarla, G. Klein, G.Heiser, and G. Keller

93

6.5 Results

The shape of the top-level refinement statement for the
Haskell shallow embedding of the COGENT fsop_readpage
function (shown below) closely resembles that of the
WordArray example. An oracle is also generated and passed to
the Haskell embedding, which will be further passed to the
mock implementation of ostore_read as discussed earlier.

prop corres fsop readpage ::

prop corres_fsop readpage =

forAll gen fsop readpage arg $ \ic —
forAll gen oracle $ \o—

Property

let ia = abs fsop readpage arg ic
oa = uncurry4 hs fsop readpage ia
oc = fsop readpage o ic

in corres rel fsop readpage ret oa oc

From the counter-examples produced by QuickCheck, we
found that the Haskell executable specification was flawed,
which in turn exposed a problem with the Isabelle/HOL
abstract specification, from which the Haskell specification
was derived. These specifications did not take errors returned
from ostore_read into account. Testing the above property
helped us rectify this mis-specification.

7 Design Decisions and Key Takeaways

We have showcased two applications of the PBT framework
in CoGENT. Since the examples we examined are from a real
file system, they have given us some good insights into how
much boilerplate code is required, which components of the
testing infrastructure can be automatically generated, and
how these pieces can be integrated.

7.1

Our QuickCheck machinery does not require the user to
test the entire system at once. Instead, the user may test
refinement for each function or for a cluster of functions at
a time. Typically, the ADTs implemented in C form a com-
mon module, shared across many systems. Accordingly, our
framework allows developers to test the ADTs in isolation,
with no regard to how they are used within systems. This
modularity is aided by CoGeNT’s functional semantics.

For the fsop_readpage example, we chose to employ modu-
lar testing as opposed to whole-system testing, which would
have required extra effort in developing the infrastructure
to run tests in kernel mode (see Section 7.3). Whole-system
testing allows for more abstract top-level properties to be
specified: for instance, that read and write are inverse opera-
tions.? Alternatively, these logical properties can be tested

Modular Testing and Whole-System Testing

2It might be surprising to some readers that we claim that this property
is suitable for whole-system testing, instead of PBT. After all, this kind
of round-trip properties are typical in the realm of PBT. The reason is
that, systems software, or file systems in this case, are not implemented
cleanly in a purely functional manner. They always involve heavy /O,
kernel interaction, locking, etc., which cannot be precisely and concisely
specified in the functional specification and thus fall under the global state.

Property-Based Testing: Climbing the Stairway to Verification

on top of the executable specification rather than directly on
the concrete implementation.

As our specification becomes more abstract, the single
step simulation style of refinement becomes less relevant,
because several low-level functions may be specified as a
single function on the abstract level. Modular testing, on
the other hand, is more comprehensive, as it also examines
the interfaces among different components in a system. In
this case, it uncovered issues in the WordArray implementa-
tion that whole-system testing would have, and indeed had,
missed.

7.2 Functional Specification Versus Logical
Properties

Traditional PBT tests specifications against a set of logi-
cal properties (e.g. get and set are inverse operations on
WordArrays). We instead test functions against a full exe-
cutable specification that models the functions. This is con-
ceptually similar to model-based testing [43] (also see Sec-
tion 8). The functional specification is most akin to the func-
tional notions of model paradigm as classified in the work
by Utting et al. [64, § 3.3].

It is often easier to use a model rather than a set of prop-
erties to define the behaviour of functions [43]; our exper-
iments concurred. For example, functions in the C library
can be readily modeled in terms of Haskell library functions.
Moreover, low-level functions in systems programming, e.g.
setting a flag, are often very simple in its functionality, but
can hardly be characterised by traditional properties that are
abstract and intuitive enough for users to comprehend.

Using functional specifications encourages composition-
ality. The functional specification of one module can also
be used as a mock implementation when testing other
modules that depend on this module. For instance, in our
fsop_readpage case study, we used the previously defined
Haskell functional specification of the WordArray functions
as mocks.

Furthermore, functional specifications serve as a commu-
nication interface between system programmers and proof
engineers. They are key to designing verification-friendly
systems programs, whereas logical properties alone fall short
in this aspect.

7.3 Testing Kernel Modules

A file system is typically compiled as a kernel module and
runs in kernel mode, while our test framework runs in user
mode. To handle this discrepancy, for our prototype, we have
ported our file systems code to run in user mode, using mocks
to simulate the kernel APIs. Emulating the kernel is common
practice in systems programming, with libraries such as
FUSE [31] facilitating user-space execution of kernel code.
However, these tools expect a complete kernel module, thus
precluding the use of mocks or other user-land code during
testing. A possible alternative to explore is using a system

94

SLE ’22, December 06-07, 2022, Auckland, New Zealand

such as KML [51], House [34] or HaLVM [35] to run PBT in
kernel mode. This would allow the testing environment to
more closely resemble the real run-time environment of the
software. We leave it for future investigation.

7.4 Test Generation Strategies

There are two main factors to consider when generating test
data for PBT. The first is how to sample the data: we choose
user-guided random test generation a la QuickCheck in this
work. Exhaustive testing (for small values) is another popular
strategy and has gained great popularity, e.g. SmallCheck for
Haskell [60]. However, the small scope hypothesis on which
SmallCheck is based does not hold in general in the context
of systems software.® For instance, integer overflow, which
is a common bug in systems code, can hardly be triggered
by small values. The second main concern is the effective
generation of test data which satisfies the premises of the
properties. If a property has the form p = g and the premise
p is very strong (i.e. difficult to satisfy), and the test data is
not sampled with great care, then a lot of them will falsify
the premise and thus be discarded in the test, rendering the
test inefficient. All refinement statements in this work have
the form p = ¢ with a strong precondition p. The Luck
framework [46] couples the predicates of the property and
the test data generation, which could simplify writing custom
test data generators. There is a rich body of research devoted
to test generation techniques [28]. In the future, we plan to
explore more options to automate our test data generators.

7.5 Shrinking

Counter-example shrinking reduces the size of counter-
examples before reporting them to testers, which helps
developers better understand and fix bugs. The Haskell
QuickCheck provides a customisable shrinking library with
a default shrinking algorithm for many datatypes. A rich
body of research can be found on more advanced shrinking
algorithms. For example, test data shrinking that preserve
invariants about the generated data has been explored in
[49, 62]. But due to the lack of recursively defined datatypes
in CoGeNT and thus in the CoGENT-powered file systems, the
effectiveness of shrinking is dubious, as the size of the input
data chiefly comes from the sheer complexity of the (non-
recursive) datatypes, rather than from recursion. Shrinking
is nevertheless useful for testing ADTs, but basic shrinking
strategies work reasonably well in our context.

8 Related Work

QuickCheck has been used for testing a variety of high-level
properties, such as information flow control [23, 37], mutual

«

3The small scope hypothesis is stated in Runciman et al. [60]’s paper as: “(1)
If a program fails to meet its specification in some cases, it almost always
fails in some simple case. Or in contrapositive form: (2) If a program does
not fail in any simple case, it hardly ever fails in any case”

SLE ’22, December 06-07, 2022, Auckland, New Zealand

exclusion [21], and the functional correctness of AUTOSAR
components [6, 53]. To the best of our knowledge, our frame-
work is the first to use PBT for testing refinement-based
functional correctness statements.

The hs-to-coq tool [61] translates Haskell code into the
Coq proof assistant [13]. Breitner et al. [14] used it to verify
parts of Haskell’s container library in Coq. In addition to
proving the functional correctness of various functions in
the library, they also verified that the QuickCheck proper-
ties that the library is tested against are correct. By contrast,
our QuickCheck properties are refinement properties that
directly resemble the those used for full verification. Veri-
fying these properties is already a substantial step towards
proving functional correctness, and in some cases directly
implies functional correctness.

QuickCheck is available as a built-in tool in Isabelle/HOL
and is used for quickly finding counter-examples to proposed
lemmas [10, 15]. We chose to build on Haskell’s QuickCheck
rather than Isabelle/HOL’s QuickCheck because it is easier
for CoGENT programmers to use a testing framework that
lies in the ecosystem of a functional programming language
rather than interact with a theorem prover. Haskell acts as
a good communication medium between programmers and
proof engineers [14, 26]. Moreover, due to Isabelle/HOL’s
interactive nature, testers would have to wait for Isabelle to
re-process the proof scripts affected by a change in a theory
file, before they can run tests again. Even if Isabelle’s quick-
and-dirty mode is enabled, which skips proofs, testers would
still have to wait for Isabelle/HOL to process definitions. In
fact, a large portion of the time is spent on reading in the
deep embeddings of the COGENT program into Isabelle, due
to the large terms generated by the CoGENT compiler. This
would cause a significant and unnecessary reduction to their
productivity, and destroy the user experience.

The SPARK language [2], a formally defined subset of Ada,
also uses a combination of testing and verification to facil-
itate the development of high-reliability software. SPARK
developers can attach contracts, that is, specifications of pre-
and postconditions, to critical procedures. Tools of the frame-
work can use these contracts as input to automatically test
the procedures, or attempt to formally prove that the imple-
mentation observes these contracts. Ada language features
that are hard to verify, such as side-effects in expressions,
access types, allocators, exception handling and many others,
are not permitted in SPARK. SPARK focuses on selectively
verifying safety critical components, rather than fully veri-
fied systems from high-level specification to machine code.

DoubleCheck [30] integrates PBT into Dracula [65], a ped-
agogical programming environment which enables students
to develop programs and then prove theorems about them in
ACL2 [1], a theorem prover based on term rewriting. As with
our work, the motivation of this integration is to facilitate
formal verification, though its focus is on education, not on
producing verified real-world applications.

Z. Chen, C. Rizkallah, L. O’Connor, P. Susarla, G. Klein, G.Heiser, and G. Keller

95

In the PBT framework we presented, as we test the re-
finement statement between the implementation and the
Haskell executable specification, which can be considered
a conformance relation, it does appear that we are instead
conducting model-based testing [63, 64]. Our approach does
indeed share a lot in common with MBT, but we identify
our approach as PBT for the following reasons. Firstly, in
MBT, the starting point of testing is a model of the software
under test. In contrast, as we have demonstrated, testing in
our framework does not necessarily have an existing model
to start with. In developing formally verifiable operating
systems components, which is the application domain that
concerns us, it is of paramount importance to find the right
balance between verifiability and performance. PBT gives
developers insights in both aspects. Therefore, testing plays
a role in the design of the system, and subsequently its spec-
ification. This is similar to the iterative development process
reported in the seL4 formal verification work [36]. Secondly,
test cases are systematically and algorithmically generated
from the model in MBT. Test inputs are typically concretised
from the abstract test suite and the test results are abstracted
to be validated against the model by an adapter. In contrast,
as we have shown in the examples, our test cases are not gen-
erated from the specification; test data is directly produced
on the concrete level. Lastly, from the tooling perspective,
our approach uses a PBT library QuickCheck as the core of
the testing infrastructure.

9 Conclusion

In this paper, we showed how we augmented the CoGENT
verification framework with PBT. Testing and formal verifi-
cation complement each other, which is well acknowledged
among researchers and developers. In this work, we further
demonstrated this common belief in the specific context of
PBT and interactive theorem proving. The central idea is to
mirror the refinement proof in testing, using a functional
specification as the model instead of a set of logical proper-
ties as commonly done in PBT.

Using this method, we tested an abstract data type from a
library, as well as an operation of a real-world file system.
The tests exposed several bugs in the ADT implementation
and uncovered errors in the specification of the ADT and of
the file system.

Besides the main purpose of testing—detecting bugs—
we exhibited other benefits of employing PBT. It reduces
the effort in formal verification, guides the development of
verification-ready specifications and programs, and acts as
a precise and effective communication media among devel-
opers. We believe PBT offers developers the opportunity
to gradually tackle the verification challenge in large and
complex systems development, serving as a helpful stepping
stone in the endeavour into full formal verification of high
assurance software.

Property-Based Testing: Climbing the Stairway to Verification

References

(1]
(2]
(3]
(4]

—
=)
—

[10

[t

(11

—

[12

—

[13

[t

[14

=

[15

=

(16]

(17]

(18]

ACL2. 2022. ACL2. Retrieved October 2022 from http://www.cs.
utexas.edu/users/moore/acl2/
AdaCore. 2022. SPARK Pro.
//www.adacore.com/sparkpro/
Sidney Amani. 2016. A Methodology for Trustworthy File Systems. PhD
Thesis. CSE, UNSW, Sydney, Australia.

Sidney Amani, Alex Hixon, Zilin Chen, Christine Rizkallah, Peter
Chubb, Liam O’Connor, Joel Beeren, Yutaka Nagashima, Japheth Lim,
Thomas Sewell, Joseph Tuong, Gabriele Keller, Toby Murray, Gerwin
Klein, and Gernot Heiser. 2016. Cogent: Verifying High-Assurance File
System Implementations. In International Conference on Architectural
Support for Programming Languages and Operating Systems. Atlanta,
GA, USA, 175-188.

Sidney Amani and Toby Murray. 2015. Specifying a Realistic File
System. In Workshop on Models for Formal Analysis of Real Systems.
Suva, Fiji, 1-9.

Thomas Arts, John Hughes, Ulf Norell, and Hans Svensson. 2015. Test-
ing AUTOSAR software with QuickCheck. In International Conference
on Software Testing, Verification and Validation (ICST) Workshops. Graz,
AT, 1-4. https://doi.org/10.1109/ICSTW.2015.7107466

R.J. R. Back. 1988. A calculus of refinements for program derivations.
Acta Informatica 25, 6 (Aug. 1988), 593-624. https://doi.org/10.1007/
BF00291051

Erik Barendsen and Sjaak Smetsers. 1993. Conventional and Unique-
ness Typing in Graph Rewrite Systems. In Foundations of Software
Technology and Theoretical Computer Science (Lecture Notes in Com-
puter Science, Vol. 761). 41-51.

Brian Behlendorf. 2011. POSIX Filesystem Test Suite. Retrieved August
2022 from https://github.com/zfsonlinux/fstest

Stefan Berghofer and Tobias Nipkow. 2004. Random Testing in Is-
abelle/HOL. In Proceedings of the Software Engineering and Formal
Methods, Second International Conference (SEFM °04). IEEE Computer
Society, Washington, DC, USA, 230-239. http://dx.doi.org/10.1109/
SEFM.2004.36

Jean-Philippe Bernardy, Mathieu Boespflug, Ryan R. Newton, Simon
Peyton Jones, and Arnaud Spiwack. 2017. Linear Haskell: Practical
Linearity in a Higher-order Polymorphic Language. Proc. ACM Pro-
gram. Lang. 2, POPL (Dec. 2017), 5:1-5:29. http://doi.acm.org/10.1145/
3158093

Jean-Philippe Bernardy, Patrik Jansson, and Koen Claessen. 2010. Test-
ing Polymorphic Properties. In Programming Languages and Systems.
Springer Berlin Heidelberg, Berlin, Heidelberg, 125-144.

Yves Bertot and Pierre Castéran. 2004. Interactive Theorem Proving and
Program Development. Coq’Art: The Calculus of Inductive Constructions.
Springer.

Joachim Breitner, Antal Spector-Zabusky, Yao Li, Christine Rizkallah,
John Wiegley, and Stephanie Weirich. 2018. Ready, set, verify! applying
hs-to-coq to real-world Haskell code (experience report). PACMPL 2,
ICFP (2018), 89:1-89:16.

Lukas Bulwahn. 2012. The New Quickcheck for Isabelle: Random,
Exhaustive and Symbolic Testing Under One Roof. In International
Conference on Certified Programs and Proofs. Springer-Verlag, Berlin,
Heidelberg, 92-108. http://dx.doi.org/10.1007/978-3-642-35308-6_10
Manuel M. T. Chakravarty. 1999. C — Haskell, or Yet Another Interfac-
ing Tool. In Implementation of Functional Languages, 11th International
Workshop, IFL’99, Lochem, The Netherlands, September 7-10, 1999, Se-
lected Papers. 131-148. https://doi.org/10.1007/10722298 8

Zilin Chen. 2022. COGENT property-based testing case studies. https:
//github.com/au-ts/cogent/tree/master/impl/fs/bilby/quickcheck.
Zilin Chen, Liam O’Connor, Gabriele Keller, Gerwin Klein, and Gernot
Heiser. 2017. The Cogent Case for Property-Based Testing. In Work-
shop on Programming Languages and Operating Systems (PLOS). ACM,
Shanghai, China, 1-7.

Retrieved October 2022 from https:

96

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

SLE ’22, December 06-07, 2022, Auckland, New Zealand

Louis Cheung, Liam O’Connor, and Christine Rizkallah. 2022. Over-
coming Restraint: Composing Verification of Foreign Functions with
Cogent. In Proceedings of the 11th ACM SIGPLAN International Confer-
ence on Certified Programs and Proofs (CPP 2022). ACM, New York, NY,
USA, 13-26. https://doi.org/10.1145/3497775.3503686

Koen Claessen and John Hughes. 2000. QuickCheck: A Lightweight
Tool for Random Testing of Haskell Programs. In Proceedings of the
5th International Conference on Functional Programming. 268-279.
Koen Claessen, Michal Palka, Nicholas Smallbone, John Hughes, Hans
Svensson, Thomas Arts, and Ulf Wiger. 2009. Finding Race Conditions
in Erlang with QuickCheck and PULSE. In International Conference on
Functional Programming. ACM, New York, NY, USA, 149-160. http:
//doi.acm.org/10.1145/1596550.1596574

David Cock, Gerwin Klein, and Thomas Sewell. 2008. Secure Microker-
nels, State Monads and Scalable Refinement. In Proceedings of the 21st
International Conference on Theorem Proving in Higher Order Logics.
Springer, Montreal, Canada, 167-182.

Arthur Azevedo de Amorim, Nathan Collins, André DeHon, Delphine
Demange, Catalin Hritcu, David Pichardie, Benjamin C. Pierce, Randy
Pollack, and Andrew Tolmach. 2014. A Verified Information-Flow
Architecture. In ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages. San Diego, CA, USA, 165-178.
Willem-Paul de Roever and Kai Engelhardt. 1998. Data Refinement:
Model-Oriented Proof Methods and their Comparison. Number 47 in
Cambridge Tracts in Theoretical Computer Science. Cambridge Uni-
versity Press, United Kingdom.

Edsko de Vries, Rinus Plasmeijer, and David M. Abrahamson. 2008.
Uniqueness Typing Simplified. In Implementation and Application of
Functional Languages (Lecture Notes in Computer Science, Vol. 5083).
Springer, 201-218.

Philip Derrin, Kevin Elphinstone, Gerwin Klein, David Cock, and
Manuel M. T. Chakravarty. 2006. Running the Manual: An Approach
to High-Assurance Microkernel Development. In Proceedings of the
ACM SIGPLAN Haskell Workshop. Portland, OR, USA.

Oscar Downing. 2021. Enhancements to the COGENT Property-Based
Testing Framework. Undergraduate Thesis. CSE, UNSW, Sydney, Aus-
tralia. https://people.eng.unimelb.edu.au/rizkallahc/theses/oscar-
downing-honours-thesis.pdf

Jonas Duregard, Patrik Jansson, and Meng Wang. 2012. Feat: Functional
Enumeration of Algebraic Types. In Proceedings of the 2012 Haskell
Symposium (Haskell ’12). ACM, New York, NY, USA, 61-72. http:
//doi.acm.org/10.1145/2364506.2364515

Peter Dybjer, Haiyan Qiao, and Makoto Takeyama. 2003. Combining
Testing and Proving in Dependent Type Theory. In Theorem Proving
in Higher Order Logics. Springer Berlin Heidelberg, Berlin, Heidelberg,
188-203.

Carl Eastlund. 2009. DoubleCheck Your Theorems. In Proceedings of
the Eighth International Workshop on the ACL2 Theorem Prover and
Its Applications (ACL2 *09). ACM, New York, NY, USA, 42-46. http:
//doi.acm.org/10.1145/1637837.1637844

FUSE. 2022. The FUSE Project. Retrieved October 2022 from https:
//github.com/libfuse/libfuse

GHC. 2022. GHC User’s Guide. Retrieved October 2022 from https:
//downloads.haskell.org/ghc/latest/docs/users_guide/

Havva Gulay Gurbuz and Bedir Tekinerdogan. 2018. Model-based
testing for software safety: a systematic mapping study. Software
Quality Journal 26, 4 (Dec 2018), 1327-1372. https://doi.org/10.1007/
s11219-017-9386-2

Thomas Hallgren, Mark P. Jones, Rebekah Leslie, and Andrew Tol-
mach. 2005. A principled approach to operating system construction
in Haskell. In Proceedings of the 10th International Conference on Func-
tional Programming. Tallinn, Estonia, 116-128.

HaLVM. 2018. The Haskell Lightweight Virtual Machine (HaLVM)
source archive. Retrieved October 2022 from https://github.com/
Galoislnc/HaLVM

http://www.cs.utexas.edu/users/moore/acl2/
http://www.cs.utexas.edu/users/moore/acl2/
https://www.adacore.com/sparkpro/
https://www.adacore.com/sparkpro/
https://doi.org/10.1109/ICSTW.2015.7107466
https://doi.org/10.1007/BF00291051
https://doi.org/10.1007/BF00291051
https://github.com/zfsonlinux/fstest
http://dx.doi.org/10.1109/SEFM.2004.36
http://dx.doi.org/10.1109/SEFM.2004.36
http://doi.acm.org/10.1145/3158093
http://doi.acm.org/10.1145/3158093
http://dx.doi.org/10.1007/978-3-642-35308-6_10
https://doi.org/10.1007/10722298_8
https://github.com/au-ts/cogent/tree/master/impl/fs/bilby/quickcheck
https://github.com/au-ts/cogent/tree/master/impl/fs/bilby/quickcheck
https://doi.org/10.1145/3497775.3503686
http://doi.acm.org/10.1145/1596550.1596574
http://doi.acm.org/10.1145/1596550.1596574
https://people.eng.unimelb.edu.au/rizkallahc/theses/oscar-downing-honours-thesis.pdf
https://people.eng.unimelb.edu.au/rizkallahc/theses/oscar-downing-honours-thesis.pdf
http://doi.acm.org/10.1145/2364506.2364515
http://doi.acm.org/10.1145/2364506.2364515
http://doi.acm.org/10.1145/1637837.1637844
http://doi.acm.org/10.1145/1637837.1637844
https://github.com/libfuse/libfuse
https://github.com/libfuse/libfuse
https://downloads.haskell.org/ghc/latest/docs/users_guide/
https://downloads.haskell.org/ghc/latest/docs/users_guide/
https://doi.org/10.1007/s11219-017-9386-2
https://doi.org/10.1007/s11219-017-9386-2
https://github.com/GaloisInc/HaLVM
https://github.com/GaloisInc/HaLVM

SLE

(36]

(37

—

(38]

(39]

(40]

[41]

(42]

(43]

[44]

[45]

[46]

(47]

(48]

(49]

(50]

’22, December 06-07, 2022, Auckland, New Zealand

Gernot Heiser, June Andronick, Kevin Elphinstone, Gerwin Klein, Thor
Kuz, and Leonid Ryzhyk. 2010. The Road to Trustworthy Systems.
In ACM Workshop on Scalable Trusted Computing (ACMSTC). ACM,
Chicago, IL, USA, 3-10.

Catalin Hritcu, John Hughes, Benjamin C. Pierce, Antal Spector-
Zabusky, Dimitrios Vytiniotis, Arthur Azevedo de Amorim, and
Leonidas Lampropoulos. 2013. Testing Noninterference, Quickly. In
International Conference on Functional Programming. 455-468.

John Hughes. 2016. Experiences with QuickCheck: Testing the Hard
Stuff and Staying Sane. In A List of Successes That Can Change the World.
Lecture Notes in Computer Science, Vol. 9600. Springer, 169-186.
Steve Klabnik and Carol Nichols. 2017. The Rust Programming Lan-
guage. No Starch Press.

Gerwin Klein, June Andronick, Kevin Elphinstone, Toby Murray,
Thomas Sewell, Rafal Kolanski, and Gernot Heiser. 2014. Compre-
hensive Formal Verification of an OS Microkernel. ACM Transactions
on Computer Systems 32, 1 (Feb. 2014), 2:1-2:70.

Gerwin Klein, Kevin Elphinstone, Gernot Heiser, June Andronick,
David Cock, Philip Derrin, Dhammika Elkaduwe, Kai Engelhardt, Rafal
Kolanski, Michael Norrish, Thomas Sewell, Harvey Tuch, and Simon
Winwood. 2009. seL4: Formal Verification of an OS Kernel. In ACM
Symposium on Operating Systems Principles. ACM, Big Sky, MT, USA,
207-220.

Edward A. Kmett. 2022. lens: Lenses, Folds and Traversals. Retrieved
August 2022 from https://hackage.haskell.org/package/lens

Pieter Koopman, Peter Achten, and Rinus Plasmeijer. 2012. Model
Based Testing with Logical Properties versus State Machines. In Im-
plementation and Application of Functional Languages. Springer Berlin
Heidelberg, Berlin, Heidelberg, 116-133.

Peter Lammich. 2013. Automatic Data Refinement. In Proceedings of
the 4th International Conference on Interactive Theorem Proving. Lecture
Notes in Computer Science, Vol. 7998. Springer, 84-99.

Peter Lammich and Andreas Lochbihler. 2018. Automatic Refinement
to Efficient Data Structures: A Comparison of Two Approaches. Journal
of Automated Reasoning (Mar 2018). https://doi.org/10.1007/s10817-
018-9461-9

Leonidas Lampropoulos, Diane Gallois-Wong, Catalin Hritcu, John
Hughes, Benjamin C. Pierce, and Li-yao Xia. 2017. Beginner’s Luck: A
Language for Property-based Generators. In ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages. ACM, New York,
NY, USA, 114-129. http://doi.acm.org/10.1145/3009837.3009868
Leonidas Lampropoulos and Benjamin C. Pierce. 2022. QuickChick:
Property-Based Testing in Coq. Retrieved October 2022 from https:
//softwarefoundations.cis.upenn.edu/qc-current/index.html

Jeffrey R. Lewis, John Launchbury, Erik Meijer, and Mark B. Shields.
2000. Implicit Parameters: Dynamic Scoping with Static Types. In ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages.
ACM, New York, NY, USA, 108-118. http://doi.acm.org/10.1145/325694.
325708

David R. Maclver. 2016. Integrated vs Type-based Shrinking. Article. Re-
trieved October 2022 from http://hypothesis.works/articles/integrated-
shrinking

David R. Maclver. 2016. QuickCheck in Every Language. Retrieved
October 2022 from https://hypothesis.works/articles/quickcheck-in-

Z. Chen, C. Rizkallah, L. O’Connor, P. Susarla, G. Klein, G.Heiser, and G. Keller

97

[51]

[52]

[53]

[54]

[55]

[56]

[57]

[58]

[59]

[60]

[61]

[62]

[63]

[64]

[65]

[66]

every-language

Toshiyuki Maeda. 2015. Kernel Mode Linux: Execute user processes
in kernel mode. Retrieved October 2022 from http://web.yl.is.s.u-
tokyo.ac.jp/~tosh/kml/

Carroll Morgan. 1990. Programming from Specifications (2nd ed.).
Prentice Hall.

Wojciech Mostowski, Thomas Arts, and John Hughes. 2017. Modelling
of Autosar Libraries for Large Scale Testing. In Workshop on Models
for Formal Analysis of Real Systems (MARS@ETAPS). 184-199. https:

//doi.org/10.4204/EPTCS.244.7
Tobias Nipkow and Gerwin Klein. 2014. Concrete Semantics with

Isabelle/HOL. Springer.

Liam O’Connor. 2019. Type Systems for Systems Types. Ph. D. Disser-
tation. UNSW, Sydney, Australia. http://handle.unsw.edu.au/1959.4/
64238

Liam O’Connor, Zilin Chen, Christine Rizkallah, Sidney Amani,
Japheth Lim, Toby Murray, Yutaka Nagashima, Thomas Sewell, and
Gerwin Klein. 2016. Refinement Through Restraint: Bringing Down
the Cost of Verification. In International Conference on Functional Pro-
gramming. Nara, Japan.

Bryan O’Sullivan. 2022. aeson: Fast JSON parsing and encoding. Re-
trieved August 2022 from https://hackage.haskell.org/package/aeson
Liam O’Connor, Zilin Chen, Christine Rizkallah, Vincent Jackson, Sid-
ney Amani, Gerwin Klein, Toby Murray, Thomas Sewell, and Gabriele
Keller. 2021. Cogent: uniqueness types and certifying compilation.
Journal of Functional Programming 31 (2021).

Christine Rizkallah, Japheth Lim, Yutaka Nagashima, Thomas Sewell,
Zilin Chen, Liam O’Connor, Toby Murray, Gabriele Keller, and Gerwin
Klein. 2016. A Framework for the Automatic Formal Verification of
Refinement from Cogent to C. In International Conference on Interactive
Theorem Proving. Nancy, France.

Colin Runciman, Matthew Naylor, and Fredrik Lindblad. 2008. Small-
check and Lazy Smallcheck: Automatic Exhaustive Testing for Small
Values. In Proceedings of the First ACM SIGPLAN Symposium on Haskell
(Haskell '08). ACM, New York, NY, USA, 37-48. http://doi.acm.org/10.
1145/1411286.1411292

Antal Spector-Zabusky, Joachim Breitner, Christine Rizkallah, and
Stephanie Weirich. 2018. Total Haskell is reasonable Coq. In Interna-
tional Conference on Certified Programs and Proofs. Los Angeles, CA,
USA, 14-27.

Jacob Stanley. 2022. Hedgehog will eat all your bugs. Open Source
Project. Retrieved October 2022 from https://github.com/hedgehogga/
haskell-hedgehog

Jan Tretmans. 2011. Model-Based Testing and Some Steps towards Test-
Based Modelling. Springer Berlin Heidelberg, Berlin, Heidelberg, 297~
326. https:/doi.org/10.1007/978-3-642-21455-4_9

Mark Utting, Alexander Pretschner, and Bruno Legeard. 2012. A Tax-
onomy of Model-Based Testing Approaches. Softw. Test. Verif. Reliab.
22,5 (aug 2012), 297-312. https://doi.org/10.1002/stvr.456

Dale Vaillancourt, Rex Page, and Matthias Felleisen. 2006. ACL2 in
DrScheme. In Proceedings of the Sixth International Workshop on the
ACL2 Theorem Prover and Its Applications (ACL2 *06). ACM, New York,
NY, USA, 107-116. http://doi.acm.org/10.1145/1217975.1217999
Philip Wadler. 1990. Linear types can change the world!. In Program-
ming Concepts and Methods.

https://hackage.haskell.org/package/lens
https://doi.org/10.1007/s10817-018-9461-9
https://doi.org/10.1007/s10817-018-9461-9
http://doi.acm.org/10.1145/3009837.3009868
https://softwarefoundations.cis.upenn.edu/qc-current/index.html
https://softwarefoundations.cis.upenn.edu/qc-current/index.html
http://doi.acm.org/10.1145/325694.325708
http://doi.acm.org/10.1145/325694.325708
http://hypothesis.works/articles/integrated-shrinking
http://hypothesis.works/articles/integrated-shrinking
https://hypothesis.works/articles/quickcheck-in-every-language
https://hypothesis.works/articles/quickcheck-in-every-language
http://web.yl.is.s.u-tokyo.ac.jp/~tosh/kml/
http://web.yl.is.s.u-tokyo.ac.jp/~tosh/kml/
https://doi.org/10.4204/EPTCS.244.7
https://doi.org/10.4204/EPTCS.244.7
http://handle.unsw.edu.au/1959.4/64238
http://handle.unsw.edu.au/1959.4/64238
https://hackage.haskell.org/package/aeson
http://doi.acm.org/10.1145/1411286.1411292
http://doi.acm.org/10.1145/1411286.1411292
https://github.com/hedgehogqa/haskell-hedgehog
https://github.com/hedgehogqa/haskell-hedgehog
https://doi.org/10.1007/978-3-642-21455-4_9
https://doi.org/10.1002/stvr.456
http://doi.acm.org/10.1145/1217975.1217999

	Abstract
	1 Introduction
	2 Background
	2.1 Cogent
	2.2 Property-Based Testing and QuickCheck
	2.3 Data Refinement

	3 The Cogent QuickCheck Framework
	4 PBT and Systems Design Go Hand-in-Hand
	5 Example: The WordArray Library
	6 Example: A Top-Level File System Operation
	6.1 The Haskell Executable Specification
	6.2 Mock Implementations
	6.3 Oracles and Non-determinism
	6.4 Test Data Generation
	6.5 Results

	7 Design Decisions and Key Takeaways
	7.1 Modular Testing and Whole-System Testing
	7.2 Functional Specification Versus Logical Properties
	7.3 Testing Kernel Modules
	7.4 Test Generation Strategies
	7.5 Shrinking

	8 Related Work
	9 Conclusion
	References

