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Abstract
Researchers increasingly use Bayes factor for hypotheses evaluation. There are two main applications: null
hypothesis Bayesian testing (NHBT) and informative hypothesis Bayesian testing (IHBT). As will be
shown in this article, NHBT is sensitive to the specification of the scale parameter of the prior distribution,
while IHBT is not. As will also be shown in this article, for NHBT using four different Bayes factors, use
of the recommended default values for the scaling parameters results in unpredictable operating character-
istics, that is, the Bayes factor will usually be biased against or in favor of the null hypothesis. As will fur-
thermore be shown in this article, this problem can be addressed by choosing the scaling parameter such
that the Bayes factor is 19 in favor of the null hypothesis over the alternative hypothesis if the observed
effect size is equal to zero, because this renders a Bayes factor with clearly specified operating characteris-
tics. However, this does not solve all problems regarding NHBT. The discussion of this article contains
elaborations with respect to: the multiverse of Bayes factors; the choice of “19”; Bayes factor calibration
outside the context of the univariate normal linear model; and, reporting the results of NHBT.

Translational Abstract
Researchers increasingly use Bayes factor for hypotheses evaluation. However, Bayes factors do not
actually evaluate hypotheses, they evaluate the prior distributions corresponding to these hypotheses.
Loosely formulated, prior distributions represent for each hypotheses how each possible value of the pa-
rameters appearing in the hypothesis should be weighted. Whereas researchers using the Bayes factor
while analyzing their data find it relatively easy to specify hypotheses, it is often not completely clear
how the prior distributions should be specified. As will be shown in this article, in the context of the
normal linear model, one solution to this problem is obtained if the Bayes factor of the null-hypothesis
versus the alternative hypothesis is calibrated such that it is 19 if the observed effect size equals zero. If
this calibration is used, the prior distributions corresponding to each hypothesis can uniquely be deter-
mined and do no longer have to be specified by the researchers using Bayes factor. With this article
come R functions that can be used to apply the approach prosed in combination with the R package
bain (https://informative-hypotheses.sites.uu.nl/software/bain/).

Keywords: Bayes factor, informative hypothesis Bayesian testing, null hypothesis Bayesian testing, prior
sensitivity

The interest in Bayesian hypothesis evaluation is increasing. There
are by now three R packages rendering the Bayes factor: for the evalu-
ation of a null versus the alternative hypothesis BayesFactor1; and,
with the additional option to evaluate informative hypotheses, bain2

and BFpack.3 Parts of the first two packages are also implemented in

JASP4 which is an easy to use and versatile statistical package that
does not require knowledge of R.

Introducing the Bayes Factor

Royal (1997) provides an elaborate discussion of the likelihood
ratio (test). Assuming that yi � Nðl; 1Þ for i ¼ 1; . . . ;N, a simple
instance is

LR01 ¼
f ðy jl ¼ l0Þ
f ðy jl ¼ l1Þ

; (1)

that is, the likelihood ratio of H0 : l ¼ l0 versus H1 : l ¼ l1,
where f ðy j l ¼ l0Þ ¼ N ðy jl0; 1

NÞ denotes the density of the data
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given the hypothesized value l0 with y denoting the average of y,
that is, the maximum likelihood estimate of y. In this simple exam-
ple, the likelihood ratio can be interpreted as the relative support
in the data for H0 and H1, that is, the support for H0 is LR01 times
larger than the support for H1. If LR01 = 5, the support is five times
larger for H0, if LR01 = .2, the support is five times larger for H1,
and if LR01 = 1, H0 and H1 are equally supported.
The likelihood ratio cannot always be interpreted in terms of relative

support. Consider, for example, H0: l = 0 and H1: l= 0, for which

LR01 ¼
f ðy jl ¼ 0Þ
f ðy jl ¼ yÞ ¼ exp � 1

2
Ny2

� �
: (2)

Because the exponent of a negative number is smaller than 1, this
likelihood ratio will always express support in favor of H1 (except
when y ¼ 0 which results in LR01 = 1). This is due to the fact that
H1 can adapt to the data whereas H0 cannot and therefore f ðy jl ¼
yÞ will always be larger than f ðy jl ¼ 0Þ. The classical manner to
deal with this issue is to use �2logLR01 as a test statistic that is
evaluated using a chi-square distribution with one degree of free-
dom to obtain a p-value. However, the interpretation of the likeli-
hood ratio as a measure of relative support remains lost.
The Bayes factor (Hoijtink et al., 2019; Kass & Raftery, 1995)

can be seen as a generalization of the likelihood ratio that always
retains the interpretation as a relative measure of support. The
Bayes factor is the ratio of two marginal likelihoods. Application
to H0: l = 0 and H1: l= 0 renders:

BF01 ¼

ð
l
f ðy j lÞh0ðlÞdlð

l
f ðy j lÞh1ðlÞdl

¼ f ðy j l ¼ 0Þð
l
f ðy jlÞh1ðlÞdl

: (3)

The density h0(l) denotes the so-called prior distribution of l under
H0. Because H0 allows only l = 0, the integral over this density
reduces to f ðy jl ¼ 0Þ. The density h1(l) denotes the prior distribu-
tion of l under H1, that is, which values of l with which weights
are deemed reasonable under H1. For the setup at hand a
Nðl j 0; s2Þ would be a common choice. For the illustration at hand
s2 = 1 will be used. The Savage-Dickey approach (see, e.g., Wagen-
makers et al., 2010) can be used to rewrite Equation 3 into the ratio
of the posterior and prior densities under H1 evaluated in l = 0:

BF01 ¼
Nðl ¼ 0 j lN ;r2

NÞ
N ðl ¼ 0 j 0; 1Þ ¼ 1ffiffiffiffiffiffi

r2
N

p exp � 1
2
l2N
r2
N

 !
; (4)

where

lN ¼ Ny
1þ N

(5)

and

r2
N ¼ 1

1þ N
: (6)

If N = 24 and y ¼ 0 the support in the data should be larger for H0

than for H1. In this case, BF01 ¼ 5 exp 0 ¼ 5, that is, the support

for H0 is five times larger than the support for H1. If N = 24 and
y ¼ :5 the support in the data should be larger for H1 than for H0.

In this case, BF01 ¼ 5 exp� 1
2
:482

1=25 ¼ 5exp �2:88Þ ¼ :28ð , that is,

the support for H1 is about 3.57 times larger than the support for
H0.

As was shown in the previous paragraph, the Bayes factor can
express support for and against H0 and H1, and can therefore be
used as a measure of relative support. If, for example, in null hy-
pothesis Bayesian testing (NHBT, a term introduced by Tendeiro
& Kiers, 2019) the Bayes factor for the comparison of H0: l1 ¼
l2 ¼ l3 and H1: not H0 equals BF01 = 5, then the support in the
data for the null-hypothesis that the three means are equal is five
times stronger than for the alternative hypotheses that the three
means are not equal. Alternatively, in informative hypothesis
Bayesian testing (Gu et al., 2014; Klugkist, et al., 2005; Mulder,
2014) the informative hypothesis Hi : l1 > l2 > l3 can be com-
pared with its complement Hc: not Hi. If BFic = .1, then the support
in the data is ten times stronger for the complement of Hi.

An IssueWith NHBT: Specification of the Scale of the
Prior Distribution

It will now, first of all, be elaborated why the interpretation of
the Bayes factor given in the previous paragraph is imprecise.
However, subsequently, arguments in favor of the imprecise inter-
pretation will be given. In fact, the Bayes factor quantifies the rela-
tive support in the data for two prior distributions. To give another
simple example, what is the support for the prior distributions h(d) =
0 versus hðdÞ�N ð0; :0625Þ (where d denotes Cohen’s d for one
mean; Cohen, 1992; and the normal distribution is specified using
a mean and a variance), that is, what is the relative support for a
hypothesis that specifies that d = 0 versus an alternative hypothe-
sis that specifies that d has about a 95% probability of being
located in the interval �.50 to .50. This specification of hypothe-
ses can be called subjective, because the alternative hypothesis
can only be specified if it is meaningful for the researcher at hand:
“if d is nonzero, I do not expect it to be larger than .50.” However,
the subjective specification of a prior distribution corresponding to
the alternative hypothesis is not without difficulties. To name but
a few: Should the prior variance be chosen such that the expected
effect sizes are covered with a 99%, 95%, or 90% probability?
Furthermore, is a user at all able to specify what the expected
effect sizes are? And, a fortiori, how to specify subjective prior
distributions and answer these questions if multiparameter hypoth-
eses are of interest, and if these parameters are embedded in
encompassing models like, for example, the regression coeffi-
cients and factor loadings in structural equation models. These
questions will not be answered in this article, however, further
research in this area would be welcome and valuable.

Most users of the Bayes factor are only concerned with the eval-
uation of hypotheses and not at all with the subjective specification
of the corresponding prior distributions. The latter can be avoided
if the user only has to specify the hypotheses of interest “I want to
compare H0 with H1” and interprets the Bayes factor as the relative
support in the data for both hypotheses. However, in order to be
able to compute the Bayes factor, this requires the automatic trans-
lation of the hypotheses of interest into completely specified prior
distributions.
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The theoretical contribution of this article is to show that in the
context of the normal linear model it is possible to obtain com-
pletely specified prior distributions and Bayes factors with clear
operating characteristics if it is required that BF01 = 19 if the
observed effect size (e.g., Cohen’s d or the proportion of variance
explained) equals zero. To increase the accessibility of the article,
most of the derivations and statistical elaborations necessary to
show this have been placed in Appendixes. However, this article
also renders a practical contribution, because R functions and
examples are provided that enable researchers to apply the
approach proposed when they use bain to Bayesianly evaluate
hypotheses in the context of the normal linear model. This func-
tion and corresponding examples will be implemented in the next
version of bain but can also be downloaded with this article from
the bain website5 under new publications.
In the next section, in the context of a simple statistical model,

four Bayes factors will be introduced. As will be shown, all are
based on prior distributions with an unknown scaling parameter.
Subsequently, the sensitivity of NHBT to the choice of the scaling
parameter will be addressed. In the two sections that follow, a
choice for the scaling parameter will be proposed and elaborated
for the Bayes factor implemented in the R package bain. There-
after, the concepts introduced in this article will, be applied to
NHBT concerning multiple regression, ANOVA, ANCOVA, and
the Welch test. The article is concluded with a discussion in which,
among other things, it will be highlighted that IHBT is not sensitive
to the choice of the scaling parameter.

Four Bayes Factors

The elaborations in this and the next three sections are in the
context of the following simple statistical model:

yi �Nðl;r2Þ for i ¼ 1; . . . ;N; (7)

where yi denotes the datum of the ith person, N the sample size,
and l and r2 the mean and variance, respectively, of a normal dis-
tribution for the data. Note that, in the sequel, d = l/r will denote
Cohen’s d in the population of interest and d the value in the sam-
ple. In the remainder of this section subsequently two Bayes fac-
tors that quantify the relative evidence for H0: l = 0 versus H1: l =
0 and two Bayes factors that quantify the relative evidence for
H0: d = 0 versus H1: d= 0 will be introduced.
The first is the AAFBF, that is, the approximate (Gu et al.,

2018; Hoijtink et al., 2019) adjusted (Mulder, 2014) fractional
Bayes factor (O’Hagan, 1995). The fractional prior distribution
used for testing H0 versus H1 is

N l j 0; 1
b
s2

N

� �
; (8)

where s2 denotes the unbiased sample variance of y. Note that, the
prior distribution has an adjusted prior mean of 0 and a variance
based on a fraction b = J/N of the information in the posterior dis-
tribution. For the simple model at hand, the default choice J = 1 is
implemented in the R package bain. Based on Equations 7 and 8
the Bayes factor for testing H0 versus H1 can be represented using
the Savage-Dickey approach:

BFN ¼
Nðl ¼ 0 j y; s2NÞ
N ðl ¼ 0 j 0; 1b s

2

NÞ
; (9)

where y denotes the sample mean of y. It is the ratio of a normal
approximation of the posterior distribution of l (the nominator of
Equation 9) evaluated in l = 0 and a corresponding normal prior
distribution (the denominator of Equation 9) evaluated in l = 0.
Further elaborations of the AAFBF can be found later in this arti-
cle and in Appendix A.

The second is the AFBF, that is, the adjusted (Mulder, 2014;
Mulder et al., 2019) fractional Bayes factor (O’Hagan, 1995). The
fractional prior distribution used for testing H0 versus H1 is

TNb�1 l j 0; ðN � 1Þs2
NðNb� 1Þ

 !
: (10)

Like for the AAFBF b = J/N and the default choice J = 2 is
implemented in the R package BFpack. Note that, this choice ren-
ders a T distribution with one degree of freedom, that is, a scaled
Cauchy distribution. Because for N ! 1 this posterior distribu-
tion converges to a normal distribution, the main difference
between the AAFBF and the AFBF is the use of a normal and T
prior distribution, respectively. Based on Equations 7 and 8 the
Bayes factor for testing H0 versus H1 can be represented using the
Savage-Dickey approach:

BFT ¼
TN�1ðl ¼ 0 j y; s2NÞ

TNb�1 l ¼ 0 j 0; ðN�1Þs2
NðNb�1Þ

� � ; (11)

that is, the posterior (nominator) and a corresponding prior (de-
nominator) densities of l evaluated in l = 0.

The third is the scaled information Bayes factor BFSI (there is
an online calculator6 for this Bayes factor) as presented in Rouder
et al. (2009). To derive this Bayes factor, the density of the data is
rewritten as:

yi �Nðr3 d;r2Þ for i ¼ 1; . . . ;N; (12)

and combined with a normal prior distribution for d and Jeffrey’s
prior for r2:

hSIðd;r2Þ ¼ N ðd j 0; r2Þ3 1=r2; (13)

with the default r = .707. The equation of BFSI can be derived
using Equations 12 and 13, the interested reader is referred to
Rouder et al. (2009) for the details.

The fourth is the Jeffreys, Zellner, Siow Bayes factor BFJZS as
presented in Rouder et al. (2009) which uses the same density of
the data as BFSI and a T prior distribution with 1 degree of free-
dom, that is, a scaled Cauchy distribution with location parameter
0 and scale factor r:

hJZSðd;r2Þ ¼ T 1ðd j 0; r2Þ3 1=r2: (14)

5 https://informative-hypotheses.sites.uu.nl/software/bain/
6 http://pcl.missouri.edu/bf-one-sample
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The default value implemented in the R package BayesFactor is
r = .707. The equation of BFJZS can be derived using Equations 12
and 14, the interested reader is referred to Rouder et al. (2009) for
the details. The main difference between BFSI and BFJZS is the use
of normal and T prior distributions, respectively.

Sensitivity of NHBT to J and r

In this section the sensitivity of the four Bayes factors to the specifi-
cation of J and r will be illustrated using their operating characteris-
tics. This sensitivity has previously been discussed in terms of
frequentist decision errors by Gu et al. (2016) and Gu et al. (2018).
Their proposal to deal with this sensitivity involves integration over a
distribution for the effect size (not the prior distribution of the model
parameters) that has to be specified by the user. Their approach repla-
ces the sensitivity issue from specification of the prior distribution to

specification of the distribution for the effect size and is therefore not
a solution of the sensitivity issue. In this article sensitivity will be dis-
cussed in terms of operating characteristics in the form of the relative
support BF01 for H0 versus H1 as a function of d ¼ y=s, N, and J or r.
Note that, Hoijtink et al. (2016) used this kind of operating character-
istics to discuss the sensitivity of BFSI for the simple model at hand.

Figure 1 displays the operating characteristics of the four Bayes
factors introduced in the previous section. In Figure 1a for a data
set with N = 50, s2 = 1 and consequently d ¼ y equal to 0 or .35,
the dependence of the two fractional Bayes factors on J (which is
the main determinant of the prior variance through b = J/N, see
Equations 9 and 11) is displayed. In Figure 1b the dependence of
the SI and JZS Bayes factors on r is displayed. Figures 1c and 1d
present the same information, however, here d is equal to 0 and
.45. Figures 1e and 1f also present the same information, however,
here N is equal to 100 and d is equal to 0 and .30. Note that, when

Figure 1
Four Bayes Factors as a Function J and r, Respectively

0 1 2 3 4 5 1 .8 .6 .4 .2

a. (d=0,.35,N=50) J −> b. (d=0,.35,N=50) r −>

0 1 2 3 4 5 2 1.8 1.6 1.4 1.2 1 .8 .6 .4 .2

c. (d=0,.45,N=50) J −> d. (d=0,.45,N=50) r −>

0 1 2 3 4 5 2 1.8 1.6 1.4 1.2 1 .8 .6 .4 .2

e. (d=0,.35,N=100) J −> f. (d=0,.35,N=100) r −>

N
T

SI
JZS

N
T

SI
JZS

N
T

SI
JZS

B
ay

es
fa

ct
or

B
ay

es
fa

ct
or

B
ay

es
fa

ct
or

0
10

20
30

40
50

60
0

10
20

30
40

0
2

4
6

8
10

12

B
ay

es
fa

ct
or

B
ay

es
fa

ct
or

B
ay

es
fa

ct
or

0
10

20
  

30
  

40
50

60
0

10
20

30
40

0
2

4
6

8
10

12

Note. In the top two figures N = 50 and d = 0, .35. In the middle two figures N = 50 and d = 0, .45. In the bottom
two figures, N = 100 and d = 0, .35. The lines going down correspond to Bayes factors BF01 in favor of H0 when
d = 0, and the lines going (mostly) up correspond to Bayes factors BF10 in favor of H1 with d = .35 or d = .45.
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d = 0 the Bayes factor BF01 of H0 versus H1 is displayed (thus, the
support in favor of H0), and when d = 0 the Bayes factor BF10 of
H1 versus H0 is displayed.

Observation 1

As can be seen in each of the six subfigures in Figure 1, the
operating characteristics are sensitive to the choice of J and r, that
is, if BF01 is relatively large for d = 0 then BF10 is relatively small
for d = .35, .45, and vice versa. Stated otherwise, J and r can be
chosen such that the Bayes factor is biased in favor of H0 or H1.
The interested reader is referred to Tendeiro and Kiers (2019)
where this feature of Bayes factors is also discussed.

Observation 2a

There is no justification for the default values of J and r in terms
of the operating characteristics of the corresponding Bayes factors.
As can be seen in Figures 1a and 1b, if the defaults values of J and
r are used, the Bayes factors are biased in favor of H0: With J = 2,
BFT equals 8.72 and 2.17, when H0 and H1 are true, respectively;
with J = 1, the corresponding numbers for BFN are 7.07 and 3.02;
and, with r = .707, BFJZS renders 6.49 and 2.40 and BFSI 5.09 and
3.30. In other words, if N = 50 and d = .35 it is easier to find sup-
port for H0 than for H1. However, as can be seen in Figures 1c and
1d, the bias reverses if d equal to 0 and .45 is used, and, as can be
seen comparing Figures 1a and 1b, to Figures 1e and 1f, the degree
and direction of the bias is also influenced by N.

Observation 2b

When evaluated using the default values of J and r, the Bayes fac-
tors in favor of H0 range from 5.09 to 8.72 in the top two figures,
also from 5.09 to 8.72 in the middle two figures, and from 5.99 to
10.37 in the bottom two figures. The Bayes factors in favor of H1

range from 2.17 to 3.30 in the top two figures, from 12.54 to 22.34 in
the middle two figures, and from about 27 to 42 in the bottom two
figures. As can be seen, there can be relevant variation in the size of
the four Bayes factors if the default values of J and r are used.

Observation 3a

Given N, J and r can be chosen such that equal support for d = 0
and d = 0 is obtained. In Figures 1a and 1b it can be seen that equal
support for H0 and H1 with d = .35 is obtained using J = 4 for BFT
and r = .32 for BFJZS. As can be seen comparing Figures 1a and 1b
with Figures 1c and 1d, respectively, the values of J and r for which
equal support is obtained depend on the value of d under H1. As can
be seen comparing Figures 1a and 1b to Figures 1e and 1f, the values
of J and r for which equal support is obtained also depend on N.
The values of N and d for which the equilibrium is determined

will from now on be called Nref and dref, the value of J or r for
which the equilibrium is obtained will be called Jref and rref, and
the value of the Bayes factor in the equilibrium will be called
BFref. Note that, BFref is obtained both for d = 0 and d = dref.

Observation 3b

When evaluated using Jref and rref, the four BFref’s range from
3.27 to 4.62 in the top two figures, from 9.37 to 12.57 in the middle

two figures, and from about 17 to about 21 in the bottom two fig-
ures. This variation is smaller than the variation observed when the
default values for J and r are used (compare Observation 2b).

Observation 4

The operating characteristics of the Bayes factor are sensitive to
choice of normal or T prior distributions and the choice of frac-
tional or nonfractional prior distributions. As can be seen in Figure
1 in each of the top, middle, and bottom two figures, in the equilib-
rium BFN is slightly larger than BFT and BFSI is slightly larger
than BFJZS (normal priors render more support than T priors), and
that both fractional Bayes factors are larger than the scaled infor-
mation and JZS Bayes factors.

In the three sections that follow, first of all, Observations 1
through 4 will be used to address Question 1. How to choose
between normal and T and between fractional and nonfractional
prior distributions? Subsequently, further elaborations of the
AAFBF are presented, followed by a discussion of Question 2.
How can Nref, dref, and Jref be determined, and is there a role for a
sensitivity analysis with respect to the choice of Jref?

An Answer to Question 1: How to Choose Between
Normal and T and Between Fractional and

Nonfractional Prior Distributions?

As was presented in Observation 4, with respect to their size in the
equilibrium, the four Bayes factors have the same ordering in each of
the three conditions presented in Figure 1. It is important to stress
that these differences in size are not the result of more or less support
in the data for the hypotheses entertained, it is merely the result of
the specifics of the prior distribution used. These differences can
therefore not be used to argue in favor of one of the Bayes factors.

However, it can be argued that the current default values of J and
r should be replaced by Jref and rref, because then the operating char-
acteristics of the four Bayes factors become more similar (compare
Observations 2b and 3b). This is further illustrated in Figure 2 for
Nref = 50 and dref = .35: If the observed effect size d is between 0 and
(about) .35, the differences between the four Bayes factors computed
using Jref and rref (compare Figure 2a) are smaller than the difference
between the four Bayes factors computed using the default values of
J and r (compare Figure 2c). For d larger than about .35, the differen-
ces between the four Bayes factors may become substantial, irrespec-
tive of whether reference or default values for J and r are used
(compare Figures 2b and 2d). Furthermore, as can be seen in Figure
2a, the four Bayes factors equal one at about the same effect size d
when based on Jref and rref, while, as can be seen in Figure 2c, the
effect size at which each Bayes factor equals one is clearly different
if the default values of J and r are used.

In summary, at least for the simple model at hand, the perform-
ance of the four Bayes factors becomes more similar when based
on Jref and rref. However, there remain differences, and these dif-
ferences cannot be used to argue in favor or against one of the four
Bayes factors because they reflect differences in the prior distribu-
tions used and not differences in the support in the data for the
null and alternative hypothesis. Therefore the best answer to Ques-
tion 1 that is currently available is: Use Jref or rref and report in
research reports explicitly which Bayes factor is used. This issue
will be further elaborated in the Discussion section.
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The remaining question is how to determine Jref and rref. This
article will only consider Jref for BFN which will from now on be
denoted by BF01. The first reason is that it is the most versatile of
the Bayes factors under consideration. It can be used for the evalu-
ation of null, alternative, and informative hypotheses in a wide
range of statistical models. The interested reader is referred to the
vignette included with the R package bain for an illustration of
many options. The second reason is that the author of this article is
one of the authors of this R package and its statistical underpin-
nings. It would be valuable to obtain and implement derivations
analogous to the ones that will be made for BFN (and other instan-
ces of the AAFBF) in the R packages and the online calculator that
render the other three Bayes factors (also beyond the context of
the simple model at hand). However, this is up to the authors of
these packages and the corresponding articles.

A Further Elaboration of the AAFBF

The AAFBF was initially derived for IHBT (Gu et al., 2014).
Subsequently, it was generalized to also include NHBT (Gu et al.,
2018; Hoijtink et al., 2019). In this section, using the simplest
form of the AAFBF, that is, BFN , the AAFBF will be further ela-
borated. Note that, the elaborations that follow generalize straight-
forwardly from BFN to the AAFBF. The interested reader is
referred to Appendix A for elaborations with respect to the consis-
tency of the AAFBF and updating using the AAFBF.

The simplest form of the AAFBF is:

BFN ¼
Nðl ¼ 0 j y; s2NÞ
N ðl ¼ 0 j 0; s2J Þ

: (15)

The normal approximation of the posterior distribution of l can be
written as

N l j y; s
2

N

� �
¼ N l j y; s

2

N

� �1�b

3N l j y; s
2

N

� �b

3C

� N l j y; s
2

N

� �1�b

3N l j 0; 1
b
s2

N

� �
; (16)

that is, the information in the posterior distribution is separated into a
fraction 1 – b representing the information in the density of the data
and a fraction b multiplied with a constant prior C which is the frac-
tional prior distribution hN(l) (Gilks, 1995). Fractional refers to the
fact that the scale of the prior distribution is based on a fraction b = J/
N of the information in the density of the data. For the simple model at
hand, the default choice J = 1 is implemented in the R package bain.

Going from the first to the second line of Equation 16 the prior
mean is adjusted to 0, which explains the about equality separating
both parts of the equation. This adjustment (which is not only used
for BFN but analogously for the AAFBF in general) is necessary
because the unadjusted fractional Bayes factor is inconsistent when
the goal is to (possibly jointly with null-hypotheses) evaluate

Figure 2
The Four Bayes Factors Computed Using Nref = 50 and dref =.35 as a Function of d

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.0 0.1 0.2 0.3 0.4 0.5 0.6

a. Jref and r−ref based on dref=.35 d−> b. Jref and r−ref based on dref=.35 d−>

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.0 0.1 0.2 0.3 0.4 0.5 0.6

c. Using default values for J and r d−> d. Using default values for J and r d−>
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Note. In the top two panels the Bayes factors based on Jref and rref are displayed. In the bottom two panels
the Bayes factors based on the default values of J and r are displayed. In the left hand panels the Bayes factor
BF01 of H0 versus H1 is displayed, in the right hand panels the Bayes factor BF10 of H1 versus H0. JZS =
Jeffreys, Zellner, Siow Bayes factor; SI = scaled information Bayes factor.
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informative hypotheses (Mulder, 2014). If informative hypotheses are
specified without using about equality constraints like, for example,
–.2 , l , .2, IHBT using AAFBF does not depend on J (Mulder,
2014). Therefore, in the generalization of Equation 15 that applies to
the AAFBF, J = 0 can be used, the about equality in the generalization
of Equation 16 can be replaced by an exact equality, and the Bayes
factor based on the resulting posterior and corresponding fractional
prior distribution is an approximate (because of the normal approxi-
mation of the posterior distribution) fractional Bayes factor.
However, the outcomes of NHBT using the AAFBF do depend

on J, therefore it is an approximate adjusted Bayes factor, or, in
other words, a consistent (as will be shown in the next subsection)
information criterion inspired by the Bayes factor. Returning to
Equations 15 and 16, if b is small, that is, J is relatively small com-
pared with N and/or if the observed effect size d ¼ y=s is close to
zero, the contribution of the prior to the posterior is negligible.
Therefore, the approximation in Equation 16 is accurate and the
corresponding Bayes factor is an approximate fractional Bayes fac-
tor. However, if J is large compared with N and the observed effect
size is not close to zero, the about equality in Equation 16 will only
hold asymptotically and BFN (and also the AAFBF in general) is
an approximate adjusted Bayes factor that is, an information crite-
rion inspired by the Bayes factor. The consequence is that BFN is
only asymptotically the ratio of two marginal likelihoods (Kass &
Raftery, 1995) and nonasymptotically the ratio of the posterior den-
sity evaluated in l = 0 (which can be called the fit of an hypothesis,
because the larger this density the more the posterior distribution is
centered around 0) and the prior density evaluated l = 0 (which can
be called complexity because the smaller this density the larger the
precision of H0 relative to H1, that is, smaller densities result from
prior distributions with larger variances). For a further elaboration
of fit and complexity the interested reader is referred to Hoijtink et
al. (2019). Another consequence is that posterior model probabil-
ities computed from these Bayes factors become posterior model
weights. However, for all practical purposes, the interpretation of
the AAFBF will remain the same.

An Answer to Question 2: How Can Nref, dref, and Jref
Be Determined, and Is There a Role for a Sensitivity

Analysis With Respect to the Choice of Jref?

The goal of this article is to evaluate H0 and H1 (and not the cor-
responding prior distributions) using the Bayes factor. This implies
that the prior distribution has to be constructed such that it is fully
specified. As will be shown in this section, this can be achieved by
choosing a reference sample size Nref and a reference Bayes factor
BFref. Knowing these two quantities is sufficient to be able to sum-
marize the operating characteristics in terms of d1, the effect size for
which BF01 = 1, and dref, the effect size for which BF01 ¼ BFref .
Both quantities are also sufficient to compute Jref. In the next subsec-
tion, first Jref will be derived. Subsequently, it will be shown that
knowledge of Nref and one of d1, dref and BFref is sufficient to deter-
mine the other two and Jref. In the subsection that follows, based on
these quantities, an approach to deal with prior sensitivity will be
proposed. This section is concluded with two examples.

Derivations

Using b = J/N and d ¼ y=s, Equation 9 can be rewritten as

BF01 ¼
1=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ps2=N

p
1=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ps2=J

p exp � 1
2

y2

s2=N

 !

¼
ffiffiffiffi
N

p ffiffiffi
J

p exp �N
2
d2

� �
: (17)

With Nref = N, BF01 computed for a data set in which d = 0 equals
BF10 computed for a data set in which d = dref if (compare Equa-
tion 17) ffiffiffiffiffiffiffiffi

Nref
p
ffiffiffiffiffiffiffi
Jref

p ¼
ffiffiffiffiffiffiffi
Jref

p
ffiffiffiffiffiffiffiffi
Nref

p exp
Nref

2
d2ref

� �
: (18)

Solving for Jref renders

Jref ¼ Nref exp �Nref

2
d2ref

� �
; (19)

with the value of the Bayes factor in the equilibrium equal to

BFref ¼
ffiffiffiffiffiffiffiffi
Nref

p
ffiffiffiffiffiffiffi
Jref

p ¼ exp
Nref

4
d2ref

� �
: (20)

As can be seen in Equation 20, Nref and BFref are sufficient to
compute dref and, as can be seen in Equation 19, Nref and dref are
sufficient to compute Jref. If Nref = N, that is, the reference sample
size is set equal to the realized sample size, Equation 17 simplifies
to

BF01 ¼
ffiffiffiffi
N

pffiffiffiffiffiffiffi
Jref

p exp �N
2
d2

� �
¼ exp

N
4
ðd2ref � 2d2Þ

� �
: (21)

From this equation it can be seen that there is a d = d1 such that
d2ref ¼ 2d21 which results in BF01 = 1. In fact, d1 is the effect size at

which the size of BF01 changes from “larger than 1,” that is,
expressing support in favor of H0 to “smaller than 1,” that is,
expressing support in favor of H1.

Dealing With Prior Sensitivity

As is already clear from the previous section, in this article Nref

is chosen to be equal to the observed sample size N. In Figure 3a
and 3b for Nref = 50 the operating characteristics of BF01 and BF10

are displayed. Note that, each line has three labels: BFref, d1, and
dref. Using d1 = .05 to specify Jref implies that a researcher is inter-
ested in finding support for H1 if d is larger than .05. However,
with Nref = 50 this results in bad operating characteristics, that is,
BFref is “only” 1.06 for both d = 0 and d = dref = .07. If a
researcher chooses d1 = .25 to specify Jref, this results in BFref =
4.77 for both d = 0 and d = dref = .35. This is much better in terms
of operating characteristics and highlights a limitation of Nref = 50,
that is, only d larger than .25 will render support in favor of H1.
Increasing the sample size will of course improve the operating
characteristics. This can be seen comparing Figures 3a and 3b
(Nref = 50) with 3c and 3d (Nref = 100), respectively.
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For each Nref the essence of Figure 3 can be captured using
BFref, d1, and dref, and specifying one of these will render Jref. One
strategy could be to let the researcher interested in the evaluation
of H0 versus H1 specify d1 or dref. However, this would require the
researcher to: (a) do this before the data are collected, (b) preregis-
ter the specification, and (c) report the choice made when BF01 is
presented. A disadvantages of this strategy is that researchers can
use specifications that support preconceptions about the truth of
H0 and H1. They can, for example, use d1 = .05 if evidence in
favor of H1 is desired, because with d1 = .05 BF10 increases more
rapidly with d (see Figure 3b) than for larger values of d1.
Another strategy is to compute BF01 using a value of BFref that

renders adequate operating characteristics and cannot be changed
by the user. This approach has the advantage that researchers can-
not influence BF01 via subjective choice that may favor H0 or H1.
The remaining question is then which value of BFref renders a
Bayes factor with adequate operating characteristics. In Table 1,
for BFref = 9 and 19, d1 and dref are displayed as a function of Nref.
Assuming that a priori H0 and H1 are equally likely (equal prior
model probabilities) this corresponds to posterior model probabil-
ities for H0 and H1 of 9/(1 þ 9) = .90 and 1/(1 þ 9) = .10 for BFref =
9 and 19/(1 þ 19) = .95 and 1/(1 þ 19) = .05 for BFref = 19. Stated
otherwise, if d = 0 the Bayesian error associated with a choice in
favor of H0 is.10 and.05, respectively. Although a choice for nine
or 19 is to some extend arbitrary, it comes with reasonable error
probabilities and adequate operating characteristics. The latter can

be illustrated using Table 1. As can be seen, medium effect sizes
d = dref = .50 require about Nref equal to 40 or 50, to obtain BF01

equal to 9 and 19, respectively. As can also be seen, small effect
sizes d = dref = .20 require sample size larger than Nref = 100 in
order to obtain BF01 equal to 9 and 19, respectively.

This article will continue with BFref = 19, because, if in the data
d = 0, there should be substantial support in favor of H0. This
choice will return in the Discussion section. With this choice, an
answer to the first part of Question 2 “How can Nref, dref, and Jref
be determined?” has been provided. The second part of Question 2
—“Is there a role for a sensitivity analysis with respect to the
choice of Jref?”—should now be rephrased as “Is there a role for a
sensitivity analysis with respect to the choice of BFref?” The an-
swer “no” is in line with the choice for BFref = 19. This choice
reflects that the desired Bayesian error associated with a choice for
H0 if d = 0 is.05. Because there is no uncertainty about this choice,
there is no need for a sensitivity analysis.

Example 1

Imagine a researcher who wants to evaluate the hypothesis H0:
l = 0 versus H1: l= 0, where l ¼ l1 � l2, that is, l is the differ-
ence in means between two repeated measures of the same vari-
able (a NHBT counterpart of the paired samples t test). The
researcher will collect paired measurement for N = 50 participants
in his experiment, that is, Nref = 50. Based on BFref = 19 (which

Figure 3
BF01 and BF10 Calibrated Using Jref as a Function of Nref = 50 (Figures 3a and 3b) and Nref =
100 (Figures 3c and 3d)

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.0 0.1 0.2 0.3 0.4 0.5 0.6

a. BF01 with Nref=50 d−> b. BF10 with Nref=50 d−>

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.0 0.1 0.2 0.3 0.4 0.5 0.6

c. BF01 with Nref=100 d−> d. BF10 with Nref=100 d−>

d1 = .05
d1 = .15
d1 = .25
d1 = .35
d1 = .45

BFref = 1.06
BFref = 1.75
BFref = 4.77
BFref = 21.38
BFref = 157.99

dref = .07
dref = .21
dref = .35
dref = .49
dref = .63

BFref = 1.13
BFref = 3.01
BFref = 21.38
BFref = 404.43
BFref = 20383.89
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Note. dref ¼ :07; :21; :35; :49; :63 corresponds to d1 ¼ :05; :15; :25; :35; :45. The legends in the left hand fig-
ures apply to all figures, that is, each line is labeled by both a dref and a d1. Additionally, each line is labeled
by a BFref which can for both the top and bottom row of figures be found in the legend in the right hand figure.
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renders Jref = .14, d1 = .34, and dref = .49) the Bayes factor BF01

will be computed.
If in the data d =.10, BF01 = 14.80, that is, there is substantial

support in favor of H0. Because d =.10 is a rather small effect size
and N is “only” 50, this is a reasonable quantification of the sup-
port in the data in favor of H0. If in the data d =.40, BF01 = .35,
there is about three times more (but not convincingly more) sup-
port for H1 than for H0. Because d =.40 is between a small and a
medium effect size, and N is “only” 50, this too is a reasonable
quantification of the support in the data in favor of H1.

Example 2

Bayesian updating (Rouder, 2014; Schonbrodt et al., 2017;
Schonbrodt & Wagenmakers, 2018) is the process where (a) for an
initial batch of Nmin persons BF01 is computed, and (b) after each
additional (batch of) person(s) BF01 is recomputed, until (c) BF01

exceeds a prespecified threshold BFthresh or the maximum sample
size Nmax has been achieved. The interested reader is referred to
Appendix A where the statistical underpinnings of Bayesian
updating using BF01 are elaborated.
Imagine again a researcher who wants to evaluate the hypotheses

from Example 1, but now using Bayesian updating. The minimal
sample size the researcher will collect is Nmin = 20, the maximum
achievable sample size is Nmax = 80. The desired threshold is
BFthresh = 10. Compared with Example 1, while updating, the addi-
tional question is how to specify Nref. When Nmin and Nmax are speci-
fied a natural choice seems to be Nref ¼ ðNmin þ NmaxÞ=2 ¼ 50.
Therefore, BF01 will be computed based on Nref = 50 and BFref =
19, that is, for N = 50 the same operating characteristics as in Exam-
ple 1 are obtained.
After collecting the data from 20 persons, d = .15 and BF01 =

9.59. Because the threshold has not been achieved, the researcher
collects the data of another 20 persons. This renders d = .11 (based
on all 40 persons) and BF01 = 13.34 which is larger than BFthresh =
10, and therefore it is concluded that the data favor H0 over H1.
Another scenario could be that after collecting the data from 20

persons, d = .5 and BF10 = 1.01. Because the threshold has not
been achieved, the researcher collects the data of another 20 per-
sons. This renders d = .48 and BF10 = 5.90. Given that the thresh-
old has still not been achieved, the researcher collects the data of
another 20 persons. This renders d =.49 and BF10 = 64.54 which is

larger than BFthresh = 10, and it is concluded that the data convinc-
ingly favor H1 over H0.

Multiple Regression

The concepts and ideas introduced so far in this article general-
ize seamlessly to hypothesis evaluation in the context of multiple
regression (this section) and analysis of variance (the next two sec-
tions). The main equation of the multiple regression model is

yi ¼ aþ b1x1i þ . . .þ bMxMi þ ei; (22)

with

ei �Nð0;r2Þ for i ¼ 1; . . . ;N; (23)

where, yi denotes the score of person i ¼ 1; . . . ;N on the dependent
variable, xmi denotes the score of person i on predictor
m ¼ 1; . . . ;M, a denotes the intercept, bm the regression coefficient
of the mth predictor, ei the residual of the ith person, and r2 the re-
sidual variance. The null and alternative hypotheses are given by

H0 : b1 ¼ . . . ¼ bM ¼ 0; that is; H0 : R
2 ¼ 0 (24)

and

H1 : not H0; that is; H1 : R
2 > 0; (25)

where R2 denotes the proportion of variance explained.
As is shown in Appendix B, the AAFBF for the comparison of

H0 with H1 is

BF01 ¼
N
J

� �M
2

exp �N �M � 1
2

R2

1� R2

� �
: (26)

As is also shown in Appendix B, like for the simple model dis-
cussed in the previous sections, with Nref = N and BFref = 19 it is
straightforward to compute R2

1; R
2
ref (the multiple regression coun-

terparts of d1 and dref), and Jref.
An overview of the operating characteristics of the resulting

Bayes factor is provided in Table 2. As can be seen, if the sample
size is small, Nref = N = 20, the Bayes factor will favor H1 from R2 =
.25 onward and will reach 19 for R2 = .40 (for M = 1). The

Table 1
Operating Characteristics in Terms of d1 and dref as a Function
of Nref and BFref

Nref

BFref = 9a BFref = 19b

d1 dref d1 dref

10.00 0.66 0.94 0.77 1.09
20.00 0.47 0.66 0.54 0.77
30.00 0.38 0.54 0.44 0.63
40.00 0.33 0.47 0.38 0.54
50.00 0.30 0.42 0.34 0.49
60.00 0.27 0.38 0.31 0.44
70.00 0.25 0.35 0.29 0.41
80.00 0.23 0.33 0.27 0.38
90.00 0.22 0.31 0.26 0.36
100.00 0.21 0.30 0.24 0.34

a If BFref = 9, b ¼ Jref =Nref ¼ :012. b If BFref = 19, b ¼ Jref =Nref ¼ :003.

Table 2
R2
1 and R2

ref as a Function of Nref

Nref

M = 1a M = 4b

R2
1 R2

ref R2
1 R2

ref

20.00 0.25 0.40 0.28 0.44
40.00 0.13 0.24 0.14 0.25
60.00 0.09 0.17 0.10 0.18
80.00 0.07 0.13 0.07 0.14
100.00 0.06 0.11 0.06 0.11
120.00 0.05 0.09 0.05 0.09
140.00 0.04 0.08 0.04 0.08
160.00 0.04 0.07 0.04 0.07
180.00 0.03 0.06 0.03 0.06
200.00 0.03 0.06 0.03 0.06

a For M = 1 and BFref = 19, Jref =Nref ¼ :003. b For M = 4 and BFref = 19,
Jref =Nref ¼ :229.
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corresponding numbers for M = 4 are .28 and .44, respectively.
Consequently, with a sample as small as N = 20 only substantial
proportions of variance explained provide evidence in favor of H1.
With Nref = N = 100 (note that R2

1 and R2
ref become independent of

M with increasing N) the Bayes factor will favor H1 from R2 = .06
onward and will reach 19 for R2 = .11. These are the consequences
in terms of operating characteristics if it is required that BFref = 19
if the observed R2 = 0. Note finally, that Jref=Nref ¼ :003 if M = 1
and .229 if M = 4. As was elaborated earlier in this article, this
implies that the former renders an approximate fractional Bayes
factor and the latter an approximate adjusted fractional Bayes fac-
tor, that is, an information criterion inspired by the Bayes factor.

Example 3

Imagine a researcher who predicts y from x1 and x2 and evalu-
ates H0 : b1 ¼ b2 ¼ 0 (M = 2) versus H1: not H0. The researcher
has collected data from N = 100 persons, that is, Nref = 100. In line
with the previous sections, BFref is chosen to be 19. The resulting
Jref = 5.26, R2

1 ¼ :06, and R2
ref ¼ :11. This first of all implies that Jref

is relatively small compared to N = 100 which implied that BF01 is
an approximate fractional Bayes factor. It furthermore implies that
from observed R2 . .06 onward, BF01 will express support in favor
of H1 and that BF01 reaches 19 for R2 = .11. The observed R2 turns
out to be equal to.10, which results in BF01 = .09, that is, BF10 =
11.52 which is relevant support in favor of H1 over H0.

ANOVA

Consider the ANOVA model with possibly unequal group sizes

yig ¼ lg þ eig; with eig �Nð0;r2Þ for i ¼ 1; . . . ;Ng and

g ¼ 1; . . . ;G; (27)

where yig denotes the score of the ith person in group g, lg denotes
the mean in group g, eig the residual of person i in group g, and r2

the residual variance. With b ¼ ½l1 � l2; . . . ; lG�1 � lG�,the null
and alternative hypotheses are H0: b = 0, that is, H0 : R2 ¼ 0 and
H1: not H0, that is, H1 : R2 > 0, where R2 denotes the proportion of
variance explained, in the context of ANOVA often referred to as
eta-squared.
As is shown in Appendix C, the AAFBF for the comparison of

H0 with H1 is

BF01 ¼
ðG � G

J
G�1Þ

1
2

jX j 1
2

exp �N � G
2

R2

1� R2

� �
; (28)

where N ¼
X
g

Ng,

X ¼ C0 diag½1=N1; . . . ; 1=NG�C; (29)

and C is a G (the number of means) 3 G – 1 (the number of con-
trasts between means) matrix with C[g, g] = 1 and C[g,g þ 1] = – 1
for g ¼ 1; . . . ;G� 1, and all other entries equal to 0, that is, BF01
can be computed using N1; . . . ;NG, G, J, and R2. Note furthermore
that, as is also shown in Appendix C, using Nref = N and BFref = 19
it is straightforward to compute R2

1; R
2
ref , and Jref.

ANCOVA

As is elaborated in Appendix C, it is conjectured that the approach
for ANOVA generalizes straightforwardly to the ANCOVA model
with equal sample sizes per group:

yig ¼ lg þ c1x1ig þ . . .þ cPxPig þ eig; with eig �Nð0;r2Þ for

i ¼ 1; . . . ;Ng and g ¼ 1; . . . ;G; (30)

where yig denotes the score of the ith person in group g on the de-
pendent variable, lg denotes the adjusted mean in group g, cp the
regression coefficient of the p ¼ 1; . . . ;P th covariate, xpig the
score of person i in group g on covariate p, and N1 ¼ . . . ¼ NG.
The null and alternative hypotheses are H0 : l1 ¼ . . . ¼ lG, that
is, H0 : R2

partial ¼ 0 and H1 : R2
partial > 0, where R2

partial denotes the

proportion of variance explained after the effect of the covariates
is partialed out, which in the context of ANCOVA is often referred
to as partial eta-squared. Equation 28 applies to ANCOVA with
equal sample sizes per group if the term Nref – G (the degrees of
freedom of the residual sum of squares in an ANOVA) is replaced
by Nref � G� P (the degrees of freedom of the residual sum of
squares in an ANCOVA) and if R2, R2

1 and R2
ref are replaced by

R2
partial; R

2
partial;1 and R

2
partial;ref , respectively.

As is elaborated in Appendix C, with unequal sample sizes
per group, Equation 28 does not apply to ANCOVA. In this case
the best option currently available is to determine Jref using
N1 ¼ . . . ¼ NG ¼ N=G.

Example 4

Imagine a researcher who predicts y using G = 4 groups with
sample sizes 25 each and evaluates H0 : l1 ¼ l2 ¼ l3 ¼ l4
versus H1: not H0. In line with the previous sections, Nref ¼
½25; 25; 25; 25� and BFref = 19 renders Jref = 14.04, R2

1 ¼ :06, and
R2
ref ¼ :11. Because Jref=Nref is relatively large, BF01 is an ap-

proximate adjusted fractional Bayes factor, that is, an information
criterion inspired by the Bayes factor. With respect to operating
characteristics it can be seen that from R2

1 ¼ :06 onward BF01 is
increasingly larger than 1 and reaches 19 at R2

1 ¼ :11.
The observed R2 = .16 renders BF01 = .002, that is, BF10 = 500,

that is, there is overwhelming evidence in favor of H1. After the
addition of two covariates x1 and x2, a R2

partial ¼ :08 is observed.

This renders BF01 = .32, that is, BF10 = 3.12, that is, there is still
some evidence in favor of H1, but it is also clear that the differen-
ces between the adjusted means are less convincing than the dif-
ferences between the observed means.

The Welch Test

Consider the statistical model underlying the Welch Test, that
is, the counterpart of Student’s t test that does not require equal
within group variances:

yig ¼ lg þ eig; with eig �Nð0;r2
gÞ for i ¼ 1; . . . ;Ng and

g ¼ 1; 2; (31)

where yig and eig denotes the score on the dependent variable and
residual, respectively, of person i in group g, r2

g is the residual
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variance in group g, and the null and alternative hypotheses are
H0 : l1 ¼ l2 and H1 : l1 6¼ l2.
As is shown in Appendix D, the AAFBF for the comparison of

H0 with H1 is:

BF01 ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
2
J þ 2

J r
q
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
N1
þ r

N2

q exp � 1
2
d2

ðN1�1ÞþðN2�1Þr
N1þN2�2
1
N1
þ r

N2

0
@

1
A; (32)

where

d2 ¼ ðy1 � y2Þ
2

ðN1�1Þs21þðN2�1Þs22
N1þN2�2

; (33)

and r ¼ s22=s
2
1. As is also shown in Appendix D, such as the mod-

els discussed in the previous sections, with r equal to the variance
ratio in the data set at hand (which with increasing sample sizes
converges to the true value), N1;ref ;N2;ref and BFref = 19, it is
straightforward to compute d1, dref, and Jref.

Example 5

Imagine a researcher who wants to evaluate the H0 : l1 ¼ l2
versus H1 : l1 6¼ l2, using Welch’s Test and Bayesian updating.
The minimal sample size the researcher will collect is Nmin = 20
per group, the maximum achievable sample size is Nmax = 80 per
group, and therefore Nref = 50 per group. The desired threshold is
BFthresh = 10. Using BFref = 19 results in the operating character-
istics displayed in the middle line of Table 3. As can be seen,
compared with each of the sample sizes Jref is small, that is, BF01

is an approximate fractional Bayes factor. It can furthermore be
seen that with N ¼ Nref ¼ 50 and r = 2.02, BF01 = 1 if d = .49
and BF01 = 19 if d = .69. Note that these values where recom-
puted for each observed value or r, however, because the numbers
hardly changed, they are only displayed for the reference sample
size.
The results of the updating process are also summarized in Ta-

ble 3. As can be seen, with 20 persons per group, the observed r =
1.90, d = .52, and BF01 = 3.11. There is some, but not convincing,
evidence in favor of H0, but the desired threshold of 10 has not
been achieved. Increasing the sample size in steps of 10 per group
shows that finally, at the maximum sample size of 80 per group,
the variance ratio r has converged to 2.00, d to .53 and BF01 = .09,
that is, BF10 = 11.11 that is, the threshold has been achieved and
there is substantial evidence in favor of H1.

Frequency Properties of the Bayes Factor Calibrated
Using BFref = 9, 19, and 99

This article has shown that the Bayes factor can be calibrated such
that BF01 = 19 if the observed effect size equals zero, that is, the sup-
port in the data D for H0 is 19 times stronger than the support for H1.
The choice for BFref = 19 was inspired by the fact that, using equal
prior model probabilities PðH0Þ ¼ PðH1Þ ¼ :5, the posterior model
probabilities are PðH0 jDÞ ¼ :95 and PðH1 jDÞ ¼ :05, respectively.
This means that numerically PðH1 jDÞ is equal to the usual a level
of.05. However, note that, the interpretation of PðH1 jDÞ and a are
quite different. The former is the Bayesian error, that is, the probabil-
ity of incorrectly rejecting H0 given the information in the data set at
hand, while the latter is the probability of incorrectly rejecting H0 if
data are repeatedly sampled from a population in which H0 is true.
To clarify this further, in this section, the frequency properties of
BF01 calibrated using BFref ¼ 9; 19; 99 will be explored and com-
pared to those of the likelihood ratio test.

Nine populations consisting of G = 3 groups and one dependent
variable (an ANOVA setup) were constructed. Two factors were
manipulated: R2 ¼ 0; :06; :14 which are populations were, consec-
utively, H0 is true, and, H1 is true with (according to Cohen, 1992)
medium and large effect sizes; and N = 21, 52, 104 per group
(according to Cohen, 1992; with a = .05 a large effect size can be
detected with a power of .80 if N = 21 and a medium effect size if
N = 52). From each population 10,000 data sets were simulated
and for each BF01 calibrated using BFref ¼ 9; 19; 99 and LR01

were computed. Frequentist error probabilities and power were
computed using the proportion of BF01 smaller than 1 (which
denotes evidence in favor of H1) and the proportion of LR01

smaller than .10, .05, and .01, respectively. The results for BFref =
19 and a = .05 are displayed in Figure 4.

A number of features can be observed. As can be seen in the top
panel of Figure 4, the Bayes factor is a measure of support that
can express support in favor of H0 (values larger than 1) and H1

(values smaller than 1). As can be seen in the bottom panel of Fig-
ure 4 the likelihood ratio is not a measure of support because it
always expresses support in favor of H1 (all values are smaller
than 1). As can furthermore be seen in the top panel of Figure 4,
choosing BFref = 19 implies that BF01 equals 19 if the observed
value of R2 = 0. However, if data sets are repeatedly sampled from
a population in which R2 = 0, the observed values of R2 are usually
somewhat larger than zero resulting in Bayes factor values that
range from slightly smaller than one to almost 19 with a median
value of about 10.

As can be seen in Figure 4 the frequency properties of the Bayes
factor and the likelihood ratio test are about equal. When the null-
hypothesis is true, both the Bayes factor and the likelihood ratio test
have a nominal a level of about .05. Furthermore, when 52 persons
per group are used, a medium effect size is detected with a power
of about .80, and when 21 persons per group are used, a large effect
size is detected with a power of about .80. This figure suggests (but
as will be elaborated below, incorrectly) that the frequency proper-
ties of the Bayes factor and the likelihood ratio test are similar. This
is further highlighted in Table 4 which compares the frequency
properties of the Bayes factor (for BFref ¼ 99; 19; 9, that is,
PðH1 jDÞ ¼ :01; :05; :10 if the observed effect size equals zero)
with those of the likelihood ratio test with a levels of .01, .05, and

Table 3
An Application of Welch’s Test

N1 N2 r Jref d1 dref d BF01

20.00 20.00 1.90 0.52 3.11
30.00 30.00 2.10 0.49 2.43
40.00 40.00 2.05 0.50 1.39
50.00 50.00 2.02 0.28 0.49 0.69 0.51 0.74
60.00 60.00 2.01 0.52 0.36
70.00 70.00 2.00 0.53 0.16
80.00 80.00 2.00 0.53 0.09
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.10, respectively. However, this similarity is a coincidence as will
be elaborated in the next paragraph.
In Table 5 the results of a simulation study based on a multiple

regression model using one and three predictors, respectively, are
displayed (both the dependent variable and the predictors are
standardized and the correlation among the three predictors are set
to .3). Again R2 and N are based on Cohen (1992). As can be seen
in both the top and bottom panel of Table 5 the correspondence
between the frequency properties of the Bayes factor and the like-
lihood ratio test that was observed in Table 4 is lost. Stated other-
wise, if the observed effect size equals zero, for the Bayes factor
there is no longer a close correspondency between PðH1 jDÞ and
the nominal error probabilities, whereas for the likelihood ratio

test, the a level and the nominal error probabilities are rather close
and asymptotically the same. Also, for the likelihood ratio test, the
power is close to the nominal level according to Cohen (1992; see,
e.g., the .82 and .80 in the fourth line of numbers in the top panel
of Table 5). For the Bayes factor the power levels can be higher or
lower, depending on whether the nominal a level is higher or
lower, respectively.

As this section has highlighted, the strength of the Bayes fac-
tor is its interpretation as a measure of relative support which
can, assuming equal prior model probabilities, also be expressed
in terms of posterior model probabilities. However, both with
respect to their interpretation and their numerical value, poste-
rior model probabilities are not frequentist error probabilities.

Figure 4
Frequency Properties of BF01 Calibrated Using BFref = 19 and LR01 Evaluated Using a = .05
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On the other hand, the likelihood ratio cannot be interpreted as a
measure of support, but the likelihood ratio test has excellent
frequency properties. Therefore, researchers wanting to test H0

versus H1 face a principled decision: Do they prefer to evaluate
these hypotheses in terms of support or in terms of frequentist
error probabilities? Readers interested in exploring the Bayesian
point of view are referred to Wagenmakers (2007) who discusses
classical and Bayesian inference when the focus is on hypothesis
evaluation.

Discussion

In my experience, users of Bayes factors almost exclusively want
to determine the support in the data for the null and alternative
hypotheses. Stated otherwise, they do not want to determine the
support for and specify the prior distributions corresponding to the
null an alternative hypotheses. To be able to do this, fully specified
prior distributions that do not require user input are required. As
was illustrated using four Bayes factors for the evaluation of H0:
l = 0 versus H1: l = 0 this can currently be achieved using default

values for the unknown scale parameters that are proposed by the
developers of these Bayes factors. However, as was also shown, in
terms of the operating characteristics of the resulting Bayes factors,
there is no justification for these default values.

In this article it is proposed to use reference scale parameters
(Jref for the AAFBF) chosen such that BF01 = 19 for a data set in
which the effect size (d or R2) is equal to zero. This renders a
clearly defined Bayes factor with clear and adequate operating
characteristics that can be summarized using Nref, and d1 or R2

1 and
dref or R2

ref . This has been elaborated for the AAFBF applied to

NHBT for the one group model, multiple regression, AN(C)OVA,
and Welch’s Test. Annotated R functions and examples showing
how to determine Jref and how to use it for NHBT using bain can
be downloaded from the bain website.

Beyond the context sketched in the previous two paragraphs, there
still remain issues with respect to NHBT deserving further attention
that will be addressed in this section. In contrast to NHBT, the oper-
ating characteristics of IHBT do not depend on the prior scale param-
eter; that is, the prior distributions follow directly from the
hypotheses under consideration (Mulder, 2014). In line with Cohen

Table 4
ANOVA: Frequency Properties of the Bayes Factor Calibrated Using BFref

ANOVA with G = 3 groups

R2 = 0 R2 = .06 R2 = .14

N per group 21 52 104 21 52 104 21 52 104

BFref = 99 .01 .01 .01 .21 .60 .93 .62 .98 1
a = .01 .01 .01 .01 .20 .60 .93 .60 .98 1
BFref = 19 .06 .05 .06 .42 .81 .98 .82 1 1
a = .05 .05 .05 .05 .41 .81 .98 .82 1 1
BFref = 9 .12 .12 .11 .55 .89 .99 .90 1 1
a = .10 .11 .11 .10 .54 .88 .99 .89 1 1

Note. The table contains the proportion of BF01 smaller 1 and proportion of p-values smaller than a obtained for 10,000 simulated data sets.

Table 5
Multiple Regression: Frequency Properties of the Bayes Factor Calibrated Using BFref

Multiple regression with M = 1 predictors

R2 = 0 R2 = .13 R2 = .26

N 26 58 116 26 58 116 26 58 116

BFref = 99 .01 .00 .00 .17 .46 .86 .47 .90 1
a = .01 .02 .01 .01 .26 .61 .94 .60 .95 1
BF ref = 19 .02 .02 .02 .33 .68 .95 .67 .96 1
a = .05 .06 .06 .05 .49 .82 .99 .80 .99 1
BF ref = 9 .05 .04 .04 .44 .78 .98 .77 .98 1
a = .10 .12 .11 .11 .61 .89 .99 .88 1 1

Multiple regression with M = 3 predictors

R2 = 0 R2 = .13 R2 = .26

N 34 76 152 34 76 152 34 76 152

BFref = 99 .04 .04 .03 .35 .73 .97 .73 .98 1
a = .01 .01 .01 .23 .59 .94 .93 .60 .96 1
BFref = 19 .14 .13 .12 .59 .89 .99 .89 1 1
a = .05 .07 .06 .05 .45 .80 .98 .80 .99 1
BFref = 9 .25 .23 .22 .72 .94 1 .94 1 1
a = .10 .13 .12 .10 .57 .88 .99 .88 1 1

Note. The table contains the proportion of BF01 smaller 1 and proportion of p-values smaller than a obtained for 10,000 simulated data sets.

816 HOIJTINK

T
hi
s
do
cu
m
en
ti
s
co
py
ri
gh
te
d
by

th
e
A
m
er
ic
an

Ps
yc
ho
lo
gi
ca
lA

ss
oc
ia
tio

n
or

on
e
of

its
al
lie
d
pu
bl
is
he
rs
.

T
hi
s
ar
tic
le
is
in
te
nd
ed

so
le
ly

fo
r
th
e
pe
rs
on
al
us
e
of

th
e
in
di
vi
du
al
us
er

an
d
is
no
tt
o
be

di
ss
em

in
at
ed

br
oa
dl
y.



(1994) and Royal (1997, pp. 79–81) it is therefore argued that null-
hypotheses should only be considered if they present a plausible
description of the state of affairs in the population of interest. If they
do not, use IHBT which is straightforward. If they do, see Wainer
(1999) for examples where null hypotheses are plausible. Realize
that NHBT requires a reference scale value, which, however reasona-
ble, is still a choice that needs to be communicated.

Issue 1: AMultiverse of Bayes Factors

In the beginning of this article, four Bayes factors were intro-
duced. However, there may very well be more Bayes factors
that can be used to evaluate H0: l = 0 versus H1: l = 0. Stated
otherwise, there is a multiverse of Bayes factors that render a
different quantification of the support in the data, not only for
the one group model, but also for other statistical models. There
is no objective reason to prefer one of these Bayes factors over
the other, because, if the goal is to evaluate H0 versus H1 and
not the corresponding prior distributions, the only objective in-
formation with respect to H0 and H1 is contained in the data.
Further research is needed to address the consequences of this
multiverse and to show how to deal with it when evaluating null
hypotheses.
It is conjectured that this problem is more or less irrelevant for

IHBT. Momentarily, IHBT in the context of the normal linear
model can be executed with bain (based on a normal approxima-
tion of the posterior distribution) and BFpack (based on a T poste-
rior distribution). For N not too small, the T posterior distribution
converges to a normal and both Bayes factors will render the same
results independent of whether normal or T prior distributions are
used.

Issue 2: Nevertheless a Subjective Choice

However reasonable it is to choose Jref such that BF01 = 19 if
the observed effect size equals 0 and Nref = N (which renders a
Bayesian error of .05 if H0 is preferred over H1), it remains
annoying that for NHBT the results depend on this subjective
choice. Further discussion among Bayes factor developers and
users should address whether “19” is the number we can agree
on. As argued in this article, the number should not be user-
specified, because it would allow the user to calibrate the Bayes
factor such that it becomes less (or more) supportive of H0. An
exploration of both this and the previous issue will benefit from
an implementation of the approach proposed in this article for
the Bayes factors contained in the R packages BFpack and
BayesFactors.

Issue 3: Beyond the Models Discussed in This Article

This article developed a calibration of the AAFBF for null
hypotheses evaluated for the one group model, multiple regres-
sion, AN(C)OVA, and Welch’s Test. It is up to unexplored terri-
tory how to calibrate the AAFBF when used for NHBT in other
models like logistic regression and structural equation modeling
and also for the ANCOVA with unequal group sizes. This is an
area for further research that will be explored in the future.

Issue 4: Reporting the Results of NHBT

As was discussed in in this article, for the AAFBF the outcomes
of IHBT do not depend on J and it is therefore an approximate
fractional Bayes factor. Furthermore, for N not too small the nor-
mal approximation of the posterior distribution will be very accu-
rate and the AAFBF is a fractional Bayes factor. However, for the
AAFBF the outcomes of NHBT do depend on J, therefore it is an
approximate adjusted Bayes factor, or, in other words, a (as was
shown in Appendix A) consistent information criterion inspired by
the Bayes factor. If J is relatively small compared with N and/or if
the observed effect size is close to zero, the AAFBF behaves like
an approximate fractional Bayes factor. However, if J is large
compared with N and the observed effect size is not close to zero,
the AAFBF is an information criterion. When using the AAFBF
for NHBT and the approach proposed in this article it is therefore
important that users report: (a) that the AAFBF was used; (b) it
was calibrated choosing Jref such that BF01 = 19 if the observed
effect size equals 0 and Nref = N; and (c) whether Jref=Nref is small
(say, smaller than .05) which allows an interpretation of the out-
comes as approximate Bayes factors, or large (say, larger than .05)
in which case the outcomes should be interpreted as Bayes factor
inspired information criteria. Note that, with the availability of a
multiverse of Bayes factors, reporting of (a) which Bayes factor
was used, and (b) which scale parameter was used, is always nec-
essary. This is an issue because currently this information is not
reported by many users of Bayes factors.
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Appendix A

Consistency of and Udating Using the AAFBF

Consistenty of the AAFBF

Note that, Equation 15 can be written as:

BFN ¼
N ðl ¼ 0 j y; s2NÞ
N ðl ¼ 0 j 0; s2J Þ

¼
ffiffiffiffi
N

p ffiffiffi
J

p exp �N
2
y2

s2

� �

¼
ffiffiffiffi
N

p ffiffiffi
J

p exp �N
2
d2

� �
: (34)

If H0 is true, then d ! 0 for N ! 1, and the remaining termffiffiffi
N

p ffiffi
J

p ! 1 because J is fixed. If H1 is true, as can be seen from the
second term of Equation 34, then for N ! 1 s2 ! r2, that is,
the denominator becomes a constant, while in the nominator y !
l and the variance s2=N ! 0, that is, the nominator goes to zero
and, consequently, BFN ! 0. This implies that BFN is consistent.

Updating Using BFN

Note that, in this paragraph, the subscripts for y and s2 denote
upon which sample size each is based. Using this notation,
Equation 16 becomes:

N l j yN ;
s2N
N

� �
� N l j yN ;

s2N
N

� �1�
Jref
N

3N l j 0; s
2
N

Jref

 !
: (35)

The updated counterpart after the addition of Nadd additional
observations is:

N l j yNþNadd
;
s2NþNadd

N þ Nadd

 !
� N l j yNþNadd

;
s2NþNadd

N þ Nadd

 !1�
Jref

NþNadd

3N l j 0;
s2NþNadj

Jref

 !
; (36)

which for Nadd ! 1 reduces to

� N l j yN ;
s2N
N

� �

3N l j yNadd
;
s2Nadd

Nadd

 !
3N l j 0; r

2

Jref

 !
; (37)

because Jref =ðN þ NaddÞ ! 0 and s2NþNadd
! r2. Asymptotically,

updating using the posterior and prior distributions upon
which BFN is based, is similar to the classical “update a
fixed prior into a posterior using additional batches of
data.”
It is important to stress that, while updating, it is not an

option to make Jref a function of N instead of Nref because the
resulting Bayes factor is inconsistent. Inserting Equation 19
with Nref replaced by N into the last term of Equation 34
renders:

(Appendices continue)
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BF01 ¼
ffiffiffiffi
N

pffiffiffiffiffiffiffi
Jref

p exp �N
2
d2

� �

¼
ffiffiffiffi
N

pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Nexp �N

2
d2ref

� �s exp �N
2
d2

� � ¼ exp �N
2

d2 � 1
2
d2ref

� �� �
: (38)

If H1 is true and N ! 1, then d ! d. If 0, d2 , 1
2 d

2
ref then

BF01 ! 1, which is inconsistent.

Appendix B

Derivations for the Multiple Regression Model

The approximate adjusted fractional Bayes factor for the
comparison of H0 with H1 is:

BF01 ¼
Nðb1 ¼ 0 . . . bM ¼ 0 j b̂;RbÞ
N ðb1 ¼ 0 . . . bM ¼ 0 j 0; NJ RbÞ

¼ N
J

� �M
2

exp � 1
2
b0R�1

b b

� �
(39)

where b̂ denotes the estimates of the regression coefficients
and Rb their covariance matrix. This can be simplified to

BF01 ¼
N
J

� �M
2

exp � 1
2
b0X0Xb

s2

� �
(40)

because Ra;b ¼ s2ðZ0ZÞ�1, where Z is a (1 þ M) 3 N matrix
containing a column of 1’s and the scores on all M predictors.
Rb is obtained by deleting the first row and column of Ra,b, and
R�1
b ¼ X0X=s2 where X is aM3 Nmatrix containing the scores

on the centered predictors for m ¼ 1; . . . ;M.
Because b0X0Xb is the explained sum of squares, and ðN �

M � 1Þs2 is the unexplained sum of squares

BF01 ¼
N
J

� �M
2

exp �N �M � 1
2

E
U

� �

¼ N
J

� �M
2

exp �N �M � 1
2

R2

1� R2

� �
; (41)

where E denotes the explained sum of squares,U the unexplained
sum of squares, and R2 the proportion of variance explained.
With sample size Nref, BF01 computed for a data set in which
R2 = 0 is equal to BF10 computed for a data set in which R2 ¼
R2
ref if

Nref

Jref

� �M
2

¼ Nref

Jref

� ��M
2

exp
Nref �M � 1

2

R2
ref

1� R2
ref

 !
(42)

which results in

Jref ¼ Nref exp �Nref �M � 1
2M

R2
ref

1� R2
ref

 !
: (43)

The Bayes factor value in the equilibrium is equal to

BFref ¼ ðNref

Jref
Þ
M
2 ¼ exp

Nref �M � 1
4

R2
ref

1� R2
ref

 !
: (44)

Using N = Nref and J = Jref, Equation 41 reduces to

BF01 ¼ exp
Nref �M � 1

4

R2
ref

1� R2
ref

� 2
R2

1� R2

 ! !
; (45)

which implies that BF01 = 1 if

R2
ref

1� R2
ref

¼ 2
R2

1� R2
; (46)

that is, R2
1 ¼ x=ð1þ xÞ, with

x ¼ 1
2

R2
ref

1� R2
ref

: (47)

Like for the simple model discussed in the first half of the
article, given Nref = N, one of BFref, R2

ref and R2
1 is sufficient to

specify the other two.

(Appendices continue)
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Appendix C

Derivation of Jref for ANOVA With Unequal Group Sizes

The approximate adjusted fractional Bayes factor for the com-
parison of H0 with H1 is:

BF01 ¼
Nðb ¼ 0 j b̂;RbÞ
N ðb ¼ 0 j 0;UbÞ

¼
jRb j �

1
2expð� 1

2 b̂
0R�1

b b̂Þ
jUb j �

1
2

; (48)

where the mean vector of the posterior distribution b̂ ¼
½y1 � y2; . . . ; yG�1 � yG�, the covariance matrix of the posterior
distribution

Rb ¼ C0RlC; (49)

where, Rl ¼ diag½s2=N1; . . . ; s2=NG� ¼ s2X and C is a G (the
number of means) 3 G – 1 (the number of contrasts between
means) matrix with C[g, g] = 1 and C[g, g þ 1] = – 1 for
g ¼ 1; . . . ;G� 1, and all other entries equal to 0, and the co-
variance matrix of the prior distribution

Ub ¼ C0UlC; (50)

where Ul ¼ diag½GJ s2; . . . ; GJ s2� ¼ s2 G
J C

0C. In the same man-
ner as in Appendix B, Equation 48 can be written as

BF01 ¼
jRb j �

1
2expð� N�G

2
R2

1�R2Þ
jRU j �1

2

; (51)

where N ¼
X
g

Ng.

Equal support for R2 = 0 and R2 ¼ R2
ref is obtained if J is cho-

sen such that

jRb j �
1
2

jUb j �
1
2

¼ jUb j �
1
2

jRb j �
1
2exp � Nref�G

2

R2
ref

1�R2
ref

� � ; (52)

that is,

jC 0Xref C j �1exp �Nreg � G
2

R2
ref

1� R2
ref

 !
¼ j G

J
C0C j �1:

(53)

Solving for J renders:

Jref ¼ G � jC 0Xref C j
G

� �G�1

exp � Nref � G
2ðG� 1Þ

R2
ref

1� R2
ref

 !
;

(54)

where the subscript ref in Xref denotes that this matrix is based
on the reference sample sizes in each group. Combining
Equation 51 with R2 = 0 and 54 renders

BFref ¼ exp
Nref � G

4

R2
ref

1� R2
ref

 !
: (55)

Using N = Nref and J = Jref Equation 51 can be rewritten as

BF01 ¼ exp
Nref � G

4

R2
ref

1� R2
ref

� 2
R2

1� R2

 ! !
: (56)

which implies that BF01 = 1 if

R2
ref

1� R2
ref

¼ 2
R2

1� R2
; (57)

that is, R2
1 ¼ x=ð1þ xÞ, with

x ¼ 1
2

R2
ref

1� R2
ref

: (58)

Like for the simple model discussed in the first half of the pa-
per, given Nref = N, one of BFref, R2

ref and R
2
1 is enough to spec-

ify the other two. Note that, for N1 ¼ . . . ¼ NG, the equations
presented in this section are equal to those presented in the pre-
vious section.

ANCOVA

It is conjectured that Equations 51 through 58 also apply to
ANCOVA with equal sample sizes per group if the terms N – G
and Nref � G are replaced by N � G� P and Nref � G� P,
respectively, and if R2, R2

1, and R2
ref are replaced by the corre-

sponding partial proportions of variance, that is, what is the pro-
portion of variance explained by the grouping variable, if the
effects of the covariates are partialed out. This conjecture is sup-
ported by experiments with the following setup: (a) create a data
set containing a dependent variable, a grouping variable (with
equal sample sizes per group) and covariates; (b) compute the
partial proportion of variance; (c) compute BF01 using Equation
28; and (d) compute BF01 using Equation 48 which is imple-
mented in the R package bain. In all experiments the Bayes
factors resulting from (c) and (d) where exactly the same. The
same does not hold for ANCOVAwith unequal sample sizes per
group. This is shown by one experiment in which (a) through (d)
were repeated for a data set with unequal sample sizes per group.
The Bayes factors resulting from (c) and (d) were not the same.

(Appendices continue)
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Appendix D

Derivation of Jref and BFref for Welch’s Test

The approximate adjusted fractional Bayes factor for the
comparison of H0 with H1 is:

BF01 ¼
Nðb ¼ 0 j b̂;RbÞ
N ðb ¼ 0 j 0;UbÞ

¼
ffiffiffiffiffiffi
Ub

p
ffiffiffiffiffiffi
Rb

p exp � 1
2
b̂2

Rb

 !
(59)

where the mean of the posterior distribution b̂ ¼ y1 � y2 the
variance of the posterior distribution Rb ¼ s21=N1 þ s22=N2, and
the variance of the prior distribution Ub ¼ 2=J � s21 þ 2=J � s22.
Rewriting in terms of Cohen’s d:

d2 ¼ ðy1 � y2Þ
2

ðN1 � 1Þs21 þðN2 � 1Þs22
N1 þN2 � 2

(60)

renders

BF01 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2
J
s21 þ

2
J
s22

r
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s21
N1

þ s22
N2

s exp � 1
2
d2

ðN1 � 1Þs21 þ ðN2 � 1Þs22
N1 þ N2 � 2
s21
N1

þ s22
N2

0
BBB@

1
CCCA

¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2
J
þ 2

J
r

r
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
N1

þ r
N2

r exp � 1
2
d2

ðN1 � 1Þ þ ðN2 � 1Þr
N1 þ N2 � 2

1
N1

þ r
N2

0
BBB@

1
CCCA

(61)

where r ¼ s22=s
2
1.

Equal support for d = 0 and d = dref is obtained if J is chosen
such thatffiffiffiffiffiffiffiffiffiffiffiffi

2
J þ 2

J r
q
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
N1
þ r

N2

q ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
N1
þ r

N2

q
ffiffiffiffiffiffiffiffiffiffiffiffi
2
J þ 2

J r
q exp

1
2
d2

ðN1 � 1Þþ ðN2 � 1Þr
N1 þN2 � 2
1
N1
þ r

N2

0
@

1
A; (62)

that is,

1
J
2þ 2r
1
N1
þ r

N2

¼ exp
1
2
d2

ðN1 � 1ÞþðN2 � 1Þr
N1 þN2 � 2
1
N1
þ r

N2

0
@

1
A; (63)

Solving for J with N1;ref ¼ N1 and N2;ref ¼ N2 and the
observed value of r (which for N1;N2 ! 1 converges to the
true value) renders:

Jref ¼
2þ 2r

1
N1;ref

þ 1
N2;ref

r
exp � 1

2
d2ref 3

ðN1;ref � 1ÞþðN2;ref � 1Þr
N1;ref þN2;ref � 2
1

N1;ref
þ 1

N2;ref
r

0
@

1
A;

(64)

and also:

BFref ¼ exp
1
4
d2ref3

ðN1;ref � 1ÞþðN2;ref � 1Þr
N1;ref þN2;ref � 2
1

N1;ref
þ 1

N2;ref
r

0
@

1
A: (65)

If N = Nref and J = Jref, Equation 61 can be rewritten as:

BF01 ¼ exp
1
4
ðd2ref � 2d2Þ 3

ðN1;ref � 1Þþ ðN2;ref � 1Þ
N1;ref þN2;ref � 2
1

N1;ref
þ 1

N2;ref
r

0
@

1
A; (66)

that is, d1 ¼
ffiffiffiffiffiffiffiffiffiffiffi
:5d2ref

q
.
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