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SUMMARY
Humans are remarkably proficient at finding objects within complex visual scenes. According to current the-
ories of attention,1–3 visual processing of an object of interest is favored through the preparatory activation of
object-specific representations in visual cortex.4–15 One key problem that is inherent to real-world visual
search but is not accounted for by current theories is that a given object will produce a dramatically different
retinal image depending on its location, which is unknown in advance. For instance, the color of the retinal
image depends on the illumination on the object, its shape depends on the viewpoint, and (most critically)
its size can vary by several orders ofmagnitude, depending on the distance to the observer. In order to benefit
search, preparatory activity thus needs to incorporate contextual expectations. In the current study, we
measured fMRI blood-oxygen-level-dependent (BOLD) activity in human observers while they prepared to
search for objects at different distances in indoor-scene photographs. First, we established that observers
instantiated preparatory object representations: activity patterns in object-selective cortex evoked during
search preparation (while no objects were presented) resembled activity patterns evoked by viewing those
objects in isolation. Second, we demonstrated that these preparatory object representations were system-
atically modulated by expectations derived from scene context: activity patterns reflected the predicted
retinal image of the object at each distance (i.e., distant search evoking smaller object representations
and nearby search evoking larger object representations). These findings reconcile current theories of atten-
tional selection with the challenges of real-world vision.
RESULTS

The vast majority of the sensory input entering through our eyes

is irrelevant to our current behavioral goals. An influential idea is

that behaviorally relevant visual input can be favored over irrele-

vant visual input by preparatory activation of neural populations

that represent visual properties of the relevant (i.e., target) ob-

ject, such as its color, shape, or size.1–15 These visual properties,

however, are unknown during real-world search, because they

depend on the (inherently unknown) location of the target object.

The retinal image size of an object, for instance, depends on the

distance between observer and object. The main goal of the pre-

sent study was (1) to establish whether observers generate pre-

paratory object representations during naturalistic search where

target objects produce variable retinal images and (2) to investi-

gate whether these object representations are adjusted tomatch

the predicted retinal image that the target object should produce

at the current viewing location. Specifically, we test whether pre-

paratory activity in visual cortex represents a small image of the

target object during distant search and a large image of that

same object during nearby search.

Participants were cued to search for a target object (amelon or

box) in the near or far plane of an indoor-scene photograph (Fig-

ure 1A). In half of the trials, an array of objects briefly appeared at
Curre
the cued distance, and observers reported whether or not the

cued target object was present. Average accuracy was 67%

(74% on target-present trials; 60% on target-absent trials),

which was better than chance; p < 0.0005. All reported p values

reflect the probability of incorrectly rejecting the null hypothesis

(i.e., type-1 error rate), based on bootstrap tests across partici-

pants with 2,000 permutations (see STAR Methods).

The fMRI analyses reported below are based on the other half

of the trials, in which no objects appeared, thus isolating activity

evoked by search preparation. We focused our analyses on two

main regions of interest (ROIs): object-selective cortex (OSC)

(mostly corresponding to the lateral occipital complex) and early

visual cortex (EVC) (mostly corresponding to V1 and V2). Previ-

ous work has shown object-specific preparatory activity in these

two regions while observers prepared to search for objects in

naturalistic scenes.15 Moreover, these two regions are known

to underly the processing of object size.16–23

Preparatory activity contains an object-specific target
representation
We first needed to ascertain that object-specific representations

were instantiated in visual cortex during search preparation (irre-

spective of search distance). In a first analysis, we tested

whether search preparation for melons and boxes (following an
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Figure 1. Methods

(A) Search task: at the start of each trial, a letter (M

or B) indicated which of two possible objects

participants should search for (amelon or box) and

a green bar indicated the vertical location at

which this target object could appear. After

800 ms, an indoor-scene photograph was pre-

sented, which—together with the location cue—

enabled participants to infer the real-world dis-

tance at which the target object should appear,

thus predicting the retinal size of the target object.

In half of the trials, an array of objects appeared for

150 ms, following a variable delay (2 to 3 s), and

participants reported (within 1.5 s) whether the

target object was present or absent (here: present;

circled in purple for illustrational purposes). In the

other half of the trials, the scene remained un-

changed for the full delay period (no objects were

presented), allowing for measuring fMRI activity

evoked during search preparation (for near and far

melons and boxes).

(B) We used sixteen different background scenes,

which categorically varied in their spatial layout, so

that the ‘‘far’’ location could either be in the upper

or lower part of the scene with equal probability.

This ensured that viewing distance had to be ex-

tracted from the scene and could not be inferred

from the cue alone.

(C) Training runs: isolated objects cropped from

the search scenes were presented in a mini-block

design. From this, we retrieved benchmark fMRI

activity patterns evoked by viewing large and

small melons and boxes, which could then be

compared to activity patterns evoked during

search preparation (for near and far melons and

boxes).
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‘‘M’’ or ‘‘B’’ cue in the search task) evoked distinguishable pat-

terns of activity, while no objects were actually presented (Fig-

ure 2A). A multivariate classification approach showed that this

was the case in OSC (p = 0.001), but no such evidencewas found

for EVC (p = 0.259). Although in line with our hypothesis, this

result could also reflect lingering activity evoked by the cues

(M or B) rather than sustained visual-like representations of the

target objects. To preclude contamination by cue-evoked activ-

ity, we next tested whether activity patterns evoked during

search preparation (for melon versus box) could be distinguished

based on benchmark activity patterns evoked by viewing the two

target objects (i.e., images of melons versus boxes presented in

isolation in separate training runs, which evoked distinguishable

activity patterns in both ROIs; p < 0.0005 for both tests). We

observed above-chance cross-classification of the target object

in OSC (p = 0.004), confirming our hypothesis, but not in EVC (p =

0.098; Figure 2B). These findings replicated across a wide range

of voxel inclusion thresholds (Figure 2B, rightmost panels) and

after reversing the train-test direction of the cross-classification

analysis (Figure S1). The generalization from visually evoked ac-

tivity to preparatory activity was not driven by systematic differ-

ences in overall blood-oxygen-level-dependent (BOLD)

response to melon compared to box-related conditions (Fig-

ure S2). Taken together, these findings show that activity pat-

terns in OSC reflect a visual-like representation of the target

object during search preparation. To our knowledge, this
688 Current Biology 32, 687–692, February 7, 2022
provides the first demonstration of preparatory object represen-

tations during concurrent scene processing (a requirement for

real-world visual search).

Preparatory object representations are distance
dependent
The main goal of this study was to find out whether preparatory

object representations, as observed in OSC, are scaled to ac-

count for the current viewing distance. If this were the case, a

classifier trained to distinguish between largemelons and boxes

(in the training runs) should perform best when cross-classifying

target objects during near search (in the search task), and a clas-

sifier trained to distinguish between small melons and boxes

should perform best when cross-classifying target objects dur-

ing far search. In OSC, the data confirmed our hypothesis (Fig-

ure 3): the target object could be cross-classified from prepara-

tory activity when training on size-matching objects (p < 0.0005),

but not when training on size-mismatching objects (p = 0.224;

difference p = 0.017). A similar pattern of results was observed

in EVC (size-matching objects, p = 0.040; size-mismatching ob-

jects, p = 0.244), but classifier performance did not reliably differ

between training regimes (p = 0.197). Confirming our finding in

OSC, 19 out of 20 alternative voxel inclusion thresholds yielded

an even more reliable difference score than the default reported

above (Figure 3, top-right panel). This pattern of results was also

replicated after reversing the train-test direction of the analysis



A B

Figure 2. Object specificity of preparatory activity

(A) First, we tested whether search preparation for melons versus boxes (following an M versus B cue in the search task) evoked distinguishable patterns of

activity in OSC and EVC.Multivariate classificationwas achieved using a linear support vector machine (libsvm)24 on run-based beta-maps following a leave-one-

run-out cross-validation procedure. To probe the robustness of the analyses conducted on the default ROIs, we repeated these analyses for twenty different

voxel inclusion thresholds (rightmost plots; the default ROIs are included as ‘‘all’’). Significance is reported after correction for multiple comparisons and

threshold-free cluster enhancement (see STAR Methods).25

(B) Second, we tested whether a classifier trained on visually evoked activity in training runs (images of melons versus boxes) successfully distinguished which

object (melon versus box) participants were cued to search for in the search task. Small colored dots represent classifier information (derived from distance to

bound) for individual participants, obtained separately from the left and right hemispheres (displayed within the left and right kernel-density plots, respectively).

The central marker reflects the population mean, averaged across hemispheres. Error bars around the central markers, shaded areas within the kernel-density

plots, and shaded area in the robustness plots represent the bootstrapped 95% confidence intervals of the mean (2,000 permutations).

*p < 0.05; **p < 0.005; ***p < 0.0005. See also Figures S1–S3.
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(Figure S1) but was not observed in face- and scene-selective

ROIs (Figure S3). Taken together, the present findings show

that preparatory activity patterns in OSC (1) resemble visually

evoked representations and (2) take into account the predicted

retinal image size of the target object at the current viewing

distance.

DISCUSSION

The present findings demonstrate how preparatory activity can

support attentional selection in the real world, where the visual

input associated with an object depends on scene context: dur-

ing search preparation, OSC contains a representation of the

target object that flexibly adjusts to match the predicted retinal

image that the target object produces at the current search

location.

It is well known that expectations modulate visual process-

ing,26 causing expected visual objects to evoke a reduced but

sharpened neural response.27,28 Much like preparatory activity

for explicit search targets, the expectation of an upcoming ob-

ject suffices for evoking object-specific activity patterns in visual

cortex.29,30 In the present work, we show that observers used

scene context to generate expectations about the appearance

of an object. Specifically, knowing the distance at which an ob-

ject was expected to appear allowed observers to generate

strong predictions regarding the retinal size of the upcoming

target object. Our results show that observers incorporated
these predictions in their top-down attentional set, as reflected

in combined distance- and object-specific preparatory activity.

We interpret the finding of distance-dependent, object-spe-

cific preparatory activity as evidence that object representa-

tions are rescaled to match the current search distance.

Another interpretation of our data is the differential up or

down weighting of object features based on their informative-

ness for the detection of target objects at a given distance.

The texture of a cantaloupe melon, for instance, might be a

more useful feature during near search (when texture is more

visible) than during far search. Such a distance-based feature

weighting mechanism could contribute to the current findings,

as feature-specific preparatory activity (in the testing runs)

may generalize to visually evoked activity (in the training

runs): classifiers trained to distinguish large melons from large

boxes may rely more strongly on texture than classifiers trained

to distinguish small melons from small boxes. Crucially, both

the scaling and the differential-feature weighting interpretations

support the same general conclusion that object-specific pre-

paratory activity incorporates contextual expectations about

target appearance. Future research is needed to isolate the

features that are most important for distance-dependent updat-

ing of preparatory activity.

The setting of the current study differs in many ways from

perception in the real world.31 The aim of the current study, how-

ever, was not to recreate real-world viewing conditions in the lab

but, instead, to isolate one key aspect of real-world perception.
Current Biology 32, 687–692, February 7, 2022 689



Figure 3. Size specificity of preparatory ob-

ject representations

We tested whether cross-classification of target

object (as shown in Figure 2B) improves when

training a classifier on appropriately sized objects

given the current viewing distance (e.g., large

melons versus large boxes when testing on near

search) compared to inappropriately sized objects

(e.g., large melons versus large boxes when

testing on far search). All analysis and data visu-

alization approaches are identical to those

described under Figure 2. *p < 0.05; **p < 0.005;

***p < 0.0005. See also Figures S1–S3.
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In our study, viewing distance (as inferred from a photograph)

determined the size with which a target object was represented

during search preparation. This implies that participants were

able to infer the viewing distance at which they were searching

for a target object from our scene stimuli with sufficient precision,

using only pictorial depth cues. Real-world vision provides ob-

servers with many more cues to obtain an even better estimate

of viewing distance,32–34 presumably making distance-depen-

dent preparatory activity an evenmore effective mechanism dur-

ing real-world search than in the present experiment. At the

same time, it remains unknown how the present paradigm, in

which observers were cued to search at two substantially

distinct distances (1.5 and 3 m) within a static display, would

generalize to attentional selection during dynamic visual input.

Besides the retinal image size of an object, scene context

provides various other predictions that could inform object pro-

cessing.35–37 For example, the position of an object in a scene

also predicts the shape of its retinal projection: a round clock

on a wall to the left of the observer produces an elliptical projec-

tion on the retinae. Behavioral work has shown that, when ob-

servers searched for elliptic targets, their attention is captured

by canonically circular objects (i.e., a coin) when they are

rotated so as to produce an elliptic projection.38 This shows

that, at the processing stage that is relevant to visual search,

objects are (at least partly) represented in terms of their retinal

projection, rather than their canonical real-world shape. Conse-

quently, predicting the shape of the retinal projection of an ob-

ject based on the angle of incidence could potentially benefit

search. Object-selective cortex exhibits different degrees of

invariance for such location-dependent factors as illumination,

viewpoint, and size.18 Consequently, it remains unknown

whether viewing distance and the angle of incidence are simi-

larly incorporated in preparatory activity. The current work can

be regarded as a proof of principle, showing that context-based
690 Current Biology 32, 687–692, February 7, 2022
predictions can be incorporated in pre-

paratory activity, optimizing visual pro-

cessing for goal-directed behavior.

There are at least two additional

mechanisms that could work together

with the preparatory scaling mechanism

described here to support visual search

at different distances. First, scene

context could rapidly modulate the rep-

resentations of target and distractor ob-

jects once these appear (or once they
are fixated),39 perhaps even before competition is biased by

preparatory activity. Supporting this view, we recently showed

that spatial attention is captured by objects whose distance-in-

ferred size matches the size of objects currently held in short-

term memory,40 with such memory templates resembling

preparatory activity.41–43 Second, preparatory activity can be

instantiated at multiple levels of the visual hierarchy, from

low-level features to high-level object categories.5 For some

objects, it may thus be possible to pre-activate high-level rep-

resentations that are invariant to size and viewpoint. In line with

this, behavioral work showed that, when observers searched

for a highly familiar object category (people or cars) in natural

scenes, attention was automatically captured by outlines of a

person (or car), regardless of their orientation.44 In sum, prepa-

ratory activity can comprise multiple features, each of which

might be more or less diagnostic under different circum-

stances, and can be instantiated at different processing levels,

allowing either for relatively early image-like selection or for

higher-level selection (e.g., view invariance). Considering hu-

man observers’ remarkable proficiency in detecting objects in

naturalistic scenes,45–50 it is probable that we flexibly switch

between search mechanisms to optimally match situational

demands.

Conclusions
We proposed that, for preparatory biases to work as a selection

mechanism in naturalistic conditions, thesewould have to (1) op-

erate when participants concurrently process visual information

(i.e., looking at a scene while preparing to search) and (2) dynam-

ically update as a function of the current search location (to ac-

count for viewing distance, illumination, angle of incidence,

etc.). Here, we show for the first time that human observers

generate visual-like representations of target objects in object-

selective cortex while (1) actively processing the scene that
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they are searching and (2) adapting these object representations

as a function of viewing distance. By doing so, we demonstrate

that preparatory biases in visual cortex are a viable mechanism

for visual selection in the real world.
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KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Deposited data

Raw data (fMRI & behavior) This study https://data.donders.ru.nl/collections/di/dcc/

DSC_2018.00046_549

Processed data (fMRI & behavior) This study https://osf.io/nqf6p/ and https://data.donders.ru.

nl/collections/di/dcc/DSC_2018.00046_549

Stimulus material (training and search task runs) This paper https://osf.io/nqf6p/ and https://data.donders.ru.

nl/collections/di/dcc/DSC_2018.00046_549

Stimulus material (functional localizer runs) Epstein and Kanwisher51 https://osf.io/nqf6p/ and https://data.donders.ru.

nl/collections/di/dcc/DSC_2018.00046_549

Population-level regions-of-interest Julian et al.52 https://osf.io/nqf6p/ and https://data.donders.ru.

nl/collections/di/dcc/DSC_2018.00046_549

Sofftware and algorithms

MATLAB (versions r2018a, r2021a) Mathworks https://www.mathworks.com/products/matlab/;

RRID: SCR_001622

SPM (version 12) Wellcome Centre for Human

Neuroimaging53
https://www.fil.ion.ucl.ac.uk/spm/software/

spm12; RRID: SCR_007037

The Decoding Toolbox, TDT (version 3.98) Hebart et al.54 https://sites.google.com/site/tdtdecodingtoolbox/

; RRID: SCR_017424

CosmoMVPA (last git pull: 16-12-2020) Oosterhof et al.55 http://cosmomvpa.org; RRID: SCR_014519

Psychtoolbox (version 3.0.14) Brainard56 and Pelli57 http://psychtoolbox.org/; RRID: SCR_002881

Image Processing Toolbox (version r2018a) Mathworks https://nl.mathworks.com/products/image.html

Other

MATLAB code for running experiment This study https://osf.io/nqf6p/ and https://data.donders.ru.

nl/collections/di/dcc/DSC_2018.00046_549

MATLAB code for fMRI data pre-processing,

region-of-interest creation, analyses, and

statistical testing

This study https://osf.io/nqf6p/ and https://data.donders.ru.

nl/collections/di/dcc/DSC_2018.00046_549

MATLAB code for analysis of behavioral data This study https://osf.io/nqf6p/ and https://data.donders.ru.

nl/collections/di/dcc/DSC_2018.00046_549
RESOURCE AVAILABILITY

Lead contact
Further information and requests for resources should be directed to and will be fulfilled by the Lead Contact, Surya Gayet (surya.

gayet@gmail.com or s.gayet@uu.nl). This study did not generate new unique reagents.

Materials availability
All stimuli are publicly available at the Open Science Framework (OSF) project page associated with this study (https://osf.io/nqf6p/)

and the Donders Institution repository project page (https://data.donders.ru.nl/collections/di/dcc/DSC_2018.00046_549), which are

listed in the Key resources table. Both project pages are publicly available per the date of publication, but note that access to the

Donders Institution repository requires a one-time registration.

Data and code availability

d Behavioral data and processed fMRI data (beta-maps and regions of interest in MNI space) have been deposited at the OSF

project (https://osf.io/nqf6p/) and the Donders Institution repository (https://data.donders.ru.nl/collections/di/dcc/DSC_2018.

00046_549) listed in the Key resources table, both of which are publicly available. Raw fMRI data in native subject space (ac-

tivity maps and defaced structural scans) and pre-processed fMRI data (registered activity maps normalized to MNI space) are
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deposited only at the Donders Institution repository. Privacy regulations require one-time registration to access these data in

the Donders Institution repository.

d Experiment scripts and analysis files (accompanied by comprehensive read-me files, and in-script annotations) have been

deposited at the OSF project (https://osf.io/nqf6p/) and the Donders Institution repository (https://data.donders.ru.nl/

collections/di/dcc/DSC_2018.00046_549) listed in the Key resources table, both of which are publicly available.

d Any additional information required to reanalyze the data reported in this paper is available from the lead contact upon request.
EXPERIMENTAL MODEL AND SUBJECT DETAILS

Participants
Participants were recruited through the Radboud university participant pool (SONA systems) and participated for monetary reward,

after providing informed consent. The study was in accordance with the institutional guidelines of the local ethical committee (CMO

region Arnhem-Nijmegen, the Netherlands, Protocol CMO2014/288).

A total of 24 participants (12 females, mean age = 24.1, SD = 5.2) took part in this study, and none were excluded. All participants

completed two two-hour experimental sessions on separate days. The predetermined samplesize of 24 followed from a trade-off

between (A) the sample size to achieve 80% power for obtaining an effect of medium size (N = 34), and (B) our preference for having

more within-subject power (i.e., two sessions instead of one), totaling to 48 experimental sessions. Maximizing the within-subject

power was deemed necessary, because the hypothesized object-selective responses in preparatory activity were expected to yield

small effect sizes, and key (decoding) analyses were performed within participants.

METHOD DETAILS

Apparatus
Participants viewed the stimuli through amirrormounted on the head coil of the scanner. Stimuli were presented on a 10243 768 EIKI

LC – XL100 projector (60 Hz refresh rate), back-projected onto a projection screen (Macada DAP diffuse KBA) attached to the back of

the scanner bore. The effective viewing distance (eyes-mirror + mirror-screen) approximated 1440mm. Participants provided re-

sponses with the index fingers of the left and right hand, on a HHSC-2x4-C button box in each hand, connected to the serial port

of the computer handling the stimulus presentation. All stimulus materials and experimental scripts described below can be found

in the online repository, listed in the Key resources table.

General experimental procedure
Upon arrival at the scanner facilities, participants were guided through the three different tasks that they would perform inside the

scanner (i.e., the search task, the training runs, and the functional localizer runs), as described below. Instructions were provided

verbally, accompanied by a click-through demo and followed by a brief practice session on the experimenter’s laptop, to verify

that participants understood the task instructions before going into the scanner. In the scanner, participants practiced the search

task during the five-minute anatomical scan, while the experimenter monitored the behavioral responses. Participants performed

a total of 24 functional runs. Each functional run started and ended with 15 s of fixation.

Experimental design & stimuli: Search task
The search task was designed to measure fMRI BOLD responses evoked during search preparation for different types of objects.

Participants were instructed that they would search for one of two specific objects in scene photographs; a Cantaloupe melon

and a small cube-shaped cardboard box (which was physically present during the instructions). On each trial, the letter ‘M’ or ‘B’

indicated whether they had to search for a melon or box, respectively. A green marker would indicate at what vertical location of

the upcoming scene the target object could appear. After 1600ms, the scene appeared and, after a variable delay, an array of objects

was briefly (150ms) presented within the scene. The array consisted of 14 to 20 objects, of which 12 to 18 distractor objects (drawn

from of a pool of about 35 objects) such as a sweater, a laptop, a tea mug, a plant, and a watering can. The entire scene was then

removed and backward masked (100ms), and participants were required to swiftly respond whether the target object was present or

absent (within 1500ms), using button boxes in the left and right hand. After the response they would get feedback (correct, incorrect,

or too slow), and the fixation dot changed color to announce the start of the next trial (1500ms inter-trial-interval). Participants were

instructed that on half of the trials, no array of objects would appear within the scene, and hence no response would be required.

Finally, it was stressed that participants were required to maintain fixation on the green marker throughout the trial, to ensure that

they could detect the target object irrespective of its horizontal location (i.e., left or right of fixation). The two possible target locations

always contained an object: either the target object, or a foil. The foil was either the non-target object (e.g., the melon when the box

was cued) or an object that matched the shape (but not the size) of the target object (e.g., a football when the melon was cued on the

far plane).

The study comprised sixteen search task runs, totaling to 512 trials per participant. Each search task run consisted of 32 trials, in an

event-related design.Within each of these runs, five factors were counterbalancedwithin-participant and presented in randomorder.

First, a green marker cued participants to fixate the upper part or the lower part of the upcoming scene (see Figure 1A). Second, one
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of two distinct types of scenes could be presented: scenes in which the far region was in the upper part of the image or the lower part

of the image (see Figure 1C). Jointly, these two factors determined the search distance (i.e., near or far). Third, one of two possible

object cues could be presented (i.e., the letter ‘M’ or ‘B’ indicating whether participants had to search for the presence of a melon or

box respectively. Fourth, after a variable delay an array of objects appeared, or not. Fifth, on those trials in which an array of objects

appeared, the cued target object could either be present in the array or not. One additional factor was counterbalanced with the five

factors listed above across all eight search task runs of an experimental session, but not within each run: the scene background was

chosen from one of eight scenes per scene type (sixteen scenes in total). Then a number of factors were (maximally) equated within

runs, but could not be counterbalanced with the factors listed above. First, the type of distractor object at the non-target location

could either be of a shape or a size that was similar to the cued target object. Second, the variable asynchrony between the scene

onset and the onset of the search array could either be 2, 2.5 or 3 s (on trials in which no array was presented, the trial ended after the

longest delay had elapsed). Finally, the mapping of the present/absent responses with the left/right button boxes was counterbal-

anced across participants. Participants never saw the same array of objects more than once.

The indoor scenes were photographed at sixteen different indoor locations within the Radboud University campus (Nijmegen, the

Netherlands), using a digital camera on a tripod. A custom-made script was used to compute object positioning and camera angle,

ensuring that the target objects would produce the same two retinal image sizes (large and small, corresponding to viewing distances

of 1.5 and 3m), at the same eccentricity (left and right of fixation, in the near and far regions of the scene) in all sixteen different scene

families. By doing so we ensured that the (predicted) sizes of the different target objects would be nearly identical within each of the

two distance conditions (thus allowing for training binary classification algorithms). The images were turned grayscale, and any text

appearing in the photographs was blurred using Photoshop 2017 (Adobe Inc.). Themasks consisted of Pink (1/f filtered) noise, gener-

ated prior to each trial. The scene stimuli subtended 20 (width) by 14.4 degrees of visual angle (dva), and the target objects subtended

about 0.9 by 0.9 dva (far) and 1.8 by 1.8 dva (near), with their inner edges positioned at an eccentricity of 3.2 dva from fixation. The

upper and lower fixation positions were separated by 5.4 dva.

All sixteen different scenes (without objects), and all 512 unique search arrays used in the present experiment are publicly available

via the Open Science Framework project page listed in the Key resources table.

Experimental design & stimuli: Model training
The purpose of the training runs was twofold: (1) retrieving benchmark activity patterns evoked by viewing isolated objects to train the

multivariate models, and (2) identifying voxels that are visually responsive to the specific target stimuli used in our study (i.e., for

defining the early visual cortex ROIs).

Participants were instructed to fixate the center of the screen, while pairs of objects were simultaneously presented to the left and

right of fixation. Their task was to press a button whenever one of the two objects was 20% smaller or 20% larger than the remainder

of the stimuli (i.e., an oddball detection task). The presentation of objects was subdivided into series (mini-blocks) comprising specific

image categories (namely large and small melons and boxes), but this was irrelevant to the participants’ task.

Training runs consisted of a mini-block design, and the study comprised four training runs. Each run comprised 16 mini-blocks

(four repetitions of four conditions, followed by a baseline fixation block). Each mini-block lasted 14.7 s and comprised 20 unique

images (presented for 450 ms each, with a 250 ms blank in between). These images consisted of the target objects from the search

tasks (i.e., melons and boxes) that were cropped from the scenes, equated in luminance, and presented on a uniform gray back-

ground. The objects were presented in pairs, one to the left and one to the right of fixation, at the exact same position (relative to

fixation) as the target objects in the search task runs.

Experimental design & stimuli: Functional localizer
The purpose of the functional localizer runs was to identify object-selective voxels in individual participants. Participants were

instructed to fixate the center of the screen, while different images were presented at fixation. Their task was to press a button when-

ever any image was presented twice in succession (i.e., a 1-back task). The presentation of images was subdivided into series (mini-

blocks) comprising specific image categories (namely objects, scrambled objects, faces, and houses / landscapes), but this was

irrelevant to the participants’ task.

The design of the localizer runs was identical to the design of the training runs, and the study comprised a total of four localizer runs.

The stimuli and design of the localizer runs were based on (and nearly identical to) that of Epstein and Kanwisher.51 In our set-up, the

stimuli subtended 12 by 12 dva.

Acquisition of fMRI data
fMRI data were acquired on a 3TMagnetom PrismaFit MR Scanner (Siemens AG, Healthcare Sector, Erlangen, Germany) using a 32-

channel head coil. A T2*-weighted gradient echo EPI sequence with 6x multiband acceleration factor was used for acquisition of

functional data (TR 1 s, TE 34ms, flip angle 60�, 2 mm isotropic voxels, 66 slices). For the search task, 295 images were acquired

per run and 318 images were acquired per run for the training and localizer runs. A high-resolution T1-weighted anatomical scan

was acquired at the start of each experimental session, using an MPRAGE sequence (TR 2.3 s, TE 3.03ms, flip angle: 8�, 1 mm

isotropic voxels, 192 sagittal slices, FOV 256 mm).
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Preprocessing of fMRI data
Data preprocessing was performed using SPM12. Preprocessing steps included field-map correction, two-step spatial realignment

of the functional images, normalization to MNI 152 space (no down-sampling), and smoothing with a 3mm (FWHM) Gaussian filter.

The two experimental sessions were independently warped into MNI space, and then combined.

Creating regions-of-interest: Object-selective cortex (OSC)
We ran a general linear model to model the responses evoked by viewing intact objects and scrambled objects in the localizer runs.

Individual mini-blocks were modeled as boxcars and convolved with the canonical hemodynamic response function (HRF) provided

in SPM12, and six motion parameters were included as nuisance regressors. Next, we computed a univariate contrast on the result-

ing run-based beta-maps to identify voxels that exhibited a significantly (puncorrected < 0.05) stronger response to intact objects than to

scrambled objects. The ensuing collection of object-selective voxels for each participant was then intersectedwith a population-level

functionally-defined object-selective mask (retrieved from Julian et al.52), constraining the ROIs to lateral occipital regions, including

the lateral occipital complex. The size of the OSC ROI varied across participants, with an average size of 1497 voxels (SD = 672;

range = [181, 2693]) in the left hemisphere, and of 1173 voxels (SD = 512; range = [148, 2377]) in the right hemisphere.

To assess the robustness of our results, we created twenty additional ROIs for each participant, in which we differently constrained

the maximum number of object-selective voxels. To this end, we sorted participants’ object-selective voxels within the group-level

mask frommost to least object-selective. Then, we created ROIs by keeping only the Nmost object-selective voxels within themask,

where ‘‘N’’ was a number increasing from zero to themedian number of (significantly) object-selective voxels across all participants in

twenty equidistant steps. Thus, this resulted in twenty additional OSC sub-ROIs of increasing size, and with increasingly liberal voxel

inclusion.

All ROIs were initially constrained to a single hemisphere, allowing us to perform classification analyses within the left and right

hemisphere separately (and averaging the results across hemispheres later).

Creating regions-of-interest: Early visual cortex (EVC)
We ran a general linear model to model the responses evoked by viewing target objects in the training runs (large and small melons

and boxes). Individual mini-blocks weremodeled as boxcars and convolvedwith the canonical HRF, and sixmotion parameters were

included as nuisance regressors. Next, we computed a one-sample univariate contrast on the resulting run-based beta-maps to

identify voxels that exhibited a significantly (puncorrected < 0.05) stronger response to all four object categories in the training runs

(i.e., large and small melons and boxes) relative to the implicit baseline. The ensuing collection of visually responsive voxels for

each participant was then intersected with an anatomical mask constituted of Brodmann’s Areas 17 and 1858, thus constraining

the ROIs to a brain region mostly corresponding to primary and secondary visual cortex59. The EVC ROI had an average size of

1713 voxels (SD = 604; range = [540, 2968]) in the left hemisphere, and of 1939 voxels (SD = 747, range = [690, 3244]) in the right

hemisphere. Akin to the approach described above for the OSC ROI, we created twenty additional EVC sub-ROIs per participant

that included an incremental number of visually responsive voxels. Again, separate ROIs were created for the left and right

hemisphere.

QUANTIFICATION AND STATISTICAL ANALYSIS

Behavioral analyses
The search task comprised a total of 256 trials that required a behavioral response (i.e., in which an array of objects was presented),

half of which were target-present trials, and half of which were target-absent trials. Trials that did require a response but in which no

response was provided within the time limit were excluded from further behavioral analysis, so that the eventual analysis comprised

an average of 126 (SD = 3.3) target-present trials, and 125.8 (SD = 3.4) target-absent trials per participant. Participants were 73.7%

(SD = 9.7%) accurate on the remaining target-present trials (corresponding to a hit rate of 0.74), and 60.1% (SD = 13.3) accurate on

target-absent trials (corresponding to a false-alarm rate of 0.40). To test for above-chance performance at the group level, we sub-

tracted individual participants’ false alarm rates from their hit rates, to obtain a single performance metric for each participant. Then,

on each of 2,000 iterations, we drew N values from the resulting performance metrics, and computed the arithmetic mean (with N

corresponding to the sample size of 24). To test for significant above chance-level performance, we computed the fraction of iter-

ations (out of 2,000) that yielded a positive average performance at the group level. If a positive value was observed on more than

95% of iterations, this was regarded as significant above chance performance, given an alpha level of 0.05.

Using the same general analysis approach, we observed no difference in behavioral performance between trials in which the target

was amelon and trials in which the target was a box, p = 0.873. There was a small difference in behavioral performance between near

targets (69% correct) compared to far targets (65% correct), p = 0.048, and between scenes in which the far plane was above the

near plane (69% correct) compared to scenes in which the far plane was below the near plane (65% correct), p = 0.0016.

In the training runs, participants correctly reported 79%of size changes (i.e., hit rate) within our predefined response deadline of 1.5

s. Behavioral performance was slightly lower for melons (78% correct) than for boxes (80% correct), p = 0.0139, but did not differ

between small and large objects, p = 0.810. It should be noted that no performance difference (e.g., between near-far or melon-

box conditions) was shared between the search task runs and the training runs. It is therefore unlikely that successful cross-classi-

fication capitalized on differences in task difficulty.
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General linear model (GLM) estimation
Tomodel responses evoked by viewing target objects in themodel training runs (large and small images ofmelons and boxes), we ran

a general linear model on the data of each participant. Individual mini-blocks were modeled as boxcars and convolved with the ca-

nonical hemodynamic response function provided in SPM12. The GLM captured four conditions of interest, based on the factors

‘object size’ and ‘object type’: large images of melons, large images of boxes, small images of melons, and small images of boxes.

To model responses evoked during search preparation in the search task, the search delays of individual trials (from scene onset to

scene offset) were modeled as boxcars and convolved with the canonical HRF. Note that this included only the 50% of trials in which

no array of objects appeared, and the scene thus remained unchanged and devoid of objects. For each participant, a single GLMwas

used to model all sixteen runs across two scanning sessions. This GLM captured the four conditions of interest based on the factors

‘search distance’ and ‘object cue’: near search for melons, near search for boxes, far search for melons, far search for boxes. In all

GLMs, six motion parameters and one run-based regressor were included as nuisance regressors, and betas were estimated on a

run-basis.

Multivariate pattern analyses
All multivariate classification analyses were performed with The Decoding Toolbox54 using a linear support vector machine (hereafter

SVM; libsvm24). Classification analyses were performed on the run-based beta weights obtained from the GLMs (described in the

previous paragraph), and were conducted within the left and right hemispheres separately. The results from both hemispheres

were combined in the final step just prior to statistical testing. A leave-one-out cross-validation approach was used for the within

run-type classification (i.e., within search task, or within model training runs), and a single-step cross-classification approach was

used for the cross-classification analyses (e.g., training on visually evoked activity from themodel training runs, and testing on activity

evoked during search preparation in the search task runs).

For classification of object cue (melon versus box in the search task; Figure 2A), object type (melon versus box in the training runs),

and cross-classification of object cue from object type (Figure 2B), all melon versus boxmaps were used, ignoring whether they were

large or small, far or near. For the main analyses depicted in Figure 3 (cross-classification of object cue from size-matching and size-

mismatching objects in the training runs) two separate classifiers were trained. First, a classifier was trained to distinguish between

small melons and boxes, and tested on search preparation for melons versus boxes in the far plane (matching condition) and in the

near plane (mismatching condition). Second, a classifier was trained to distinguish between large melons versus large boxes, and

tested on search preparation for melons versus boxes on the near plane (matching condition) and in the far plane (mismatching con-

ditions). The two matching conditions were then combined, and the two mismatching conditions were combined.

The number of training examples per classification analysis depended on the type of run used to train the classifier (there were 16

search task runs, and 4model training runs), and the number of conditions included in the classification analysis (4 in total: large/near

melon, small/far melon, large/near box, small/far box). To illustrate, we used 16 training examples per classification analysis to distin-

guish between visual presentation of melons versus boxes in the model training runs: 8 melon beta-maps and 8 box beta-maps

(collapsed over size). Similarly, there were 64 test examples for the main classification analyses: 32 melon beta-maps and 32 box

beta-maps.

To quantify the amount of information that is present in patterns of neural activity as retrieved by SVM classification (e.g., informa-

tion about object type in OSC) we derived the following metric of classifier information from the distance-to-bound values D:

Classifier information =
rank number

�
D
!�

$ L
!

ð1 : NÞ$ L!
(Equation 1)

where N refers to the number of test examples for a given classification analysis (e.g., 64 for melon versus box classification in search

task runs); D is an array of length N comprising the distance-to-bound values for each of the N test examples; and L is an array of

length N containing the N labels (i.e., either �1 or 1) describing the correct classification category of the corresponding values in

D (e.g., ‘‘-1’’ for ‘‘melon’’ and ‘‘1’’ for ‘‘box’’). Put simply, the numerator of this equation reflects the amount of classifier information

(positive for correct classification and negative for incorrect classification), and the denominator is a constant, which normalizes the

classifier information metric to the range [-1, 1].

The sign of the distance-to-bound values reflects binary classification decision, with negative and positive values reflecting clas-

sifier decision ‘‘melon’’ and ‘‘box,’’ respectively. The magnitude of these values can be regarded as the classifier’s certainty of this

classification decision. By computing the dot product of these distance-to-bound values (negative for ‘‘melon’’ and positive for

‘‘box’’), with their associated correct test labels (‘‘-1’’ for ‘‘melon’’ or ‘‘1’’ for ‘‘box’’), the ensuing metric provides an increasingly pos-

itive value for increasingly correct classification and an increasingly negative value for increasingly incorrect classification. Instead of

using the raw distance-to-bound values, we use their rank values (where the most negative value is ranked 1, and the most positive

value is ranked N). This is important, because the hyperspaces obtained from different linear classifiers are not directly comparable

(e.g., when averaging across hemispheres or conditions of non-interest, or comparing across conditions of interest and participants).

Using this approach, we remain agnostic to the shape or space of the different hyperspaces, while still penalizing incorrect classi-

fications more when they are very ‘certain’ (e.g., rank 1 or 64 out of 64) more than when they are very uncertain (e.g., rank 32 or 33 out

of 64).
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This metric of classifier information has two crucial advantages over traditional binary classification accuracy. First, continuous

(i.e., distance-to-bound) measures are more sensitive than binary classification decisions60. Second, this approach is inherently im-

mune to classification biases that systematically favor one label over the other. Importantly, because ourmetric relies on rank order, it

does share the key advantage of binary classification metrics: being agnostic as to the shape or range of the hyperplane of the linear

classifier, thus allowing for comparison across multiple classifiers.

Significance testing
For each main ROI (e.g., OSC), and each condition of interest (e.g., classification of object type within-training runs) we performed

bootstrap tests against chance, with 2,000 permutations (allowing for a lower bound of pMIN < 0.0005). Specifically, on each iteration,

we drew 24 samples with replacement from the 24 classifier information metrics (i.e., one for each participant), and computed the

arithmetic mean. To test for significance, we then computed the fraction of iterations (out of 2,000) that yielded above chance-level

classifier information at the group level. If a positive value was observed on more than 95% of iterations, this was regarded as sig-

nificant above chance-level classifier performance, given an alpha level of 0.05. Note that this approach entails a directional test,

which followed from the strong prediction that classifier information should be either at chance or above chance but not below

chance.

To evaluate the robustness of our results observed in our primary ROIs, we conducted each classification analysis in each generic

ROI (EVC and OSC) an additional twenty times, in the twenty sub-ROIs of increasing size (see ROI description above). In all twenty

additional analysis, a new SVM was trained and tested (following the same classification procedure described above) and classifier

information metrics were computed as described above. In addition, we also computed classifier information metrics after pseudo-

randomly permuting the correct test-labels (e.g., melon or box) against which the classifier outcomes were pitted. Importantly, the

same (permuted) labels were used across all twenty sub-ROIs, to preserve inherent correlations between sub-ROIs. This procedure

was repeated 2,000 times to generate a null distribution that has the same variance and autocorrelations as the actual data, but

should not carry any information about object type. Next, we applied threshold-free cluster enhancement25 (TFCE) using the CoS-

MoMVPA toolbox55. TFCE boosts belief in consecutive data-points with signal (i.e., representing cluster-like spatial support of indi-

vidual data-points). TFCE-scores were computed for the observed data as well as the null data. The eventual test statistic, as re-

ported in the figures, conveys how likely a given TFCE-score is (for each sub-ROI), given the maximum TFCE-score across all

sub-ROIs in the null data, thus accounting for cumulative Type I error. Importantly, using this method, statistical significance estab-

lishes the existence of above-chance classification; it does not allow for making claims about the location or extent (i.e., sub-ROIs) of

this effect61.
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