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Abstract  

The development of addictive behaviors has been suggested to be related to a transition from goal-

directed to habitual decision making. Stress is a factor known to prompt habitual behavior and to increase 

the risk for addiction and relapse. In the current study, we therefore used functional MRI to investigate 

the balance between goal-directed ‘model-based’ and habitual ‘model-free’ control systems and whether 

acute stress would differentially shift this balance in gambling disorder (GD) patients compared to healthy 

controls (HCs). Using a within-subject design, 22 patients with GD and 20 HCs underwent stress induction 

or a control condition before performing a multistep decision-making task during fMRI. Salivary cortisol 

levels showed that the stress induction was successful. Contrary to our hypothesis, GD patients showed 

intact goal-directed decision making, which remained similar to HCs after stress induction. Bayes factors 

provided substantial evidence against a difference between the groups or a group-by-stress interaction on 

the balance between model-based and model-free decision making. Similarly, neural estimates did not 

differ between groups and conditions. These results challenge the notion that GD is related to an increased 

reliance on habitual (or decreased goal-directed) control, even during stress.  
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Introduction 

Addiction is commonly defined as a chronic, relapsing neurobiological disease characterized by compulsive 

addictive behaviors despite negative consequences (Volkow, Koob, & McLellan, 2016). One prominent 

theory suggests that the etiology of addiction can be understood as the consequence of a disruption in the 

balance between goal-directed and habitual behavior (Everitt & Robbins, 2005, 2015). While initially goal-

directed, addictive behaviors become increasingly driven by habits during the course of addiction and 

eventually become compulsive. This transition is suggested to be represented by a neural shift from 

prefrontal to (dorsal) striatal control.   

One way to test the balance between goal-directed and habitual behavior is by use of a two-step 

decision task (Daw, Gershman, Seymour, Dayan, & Dolan, 2011). In this task, habit and goal-directed 

behavior are computationally formalized as ‘model-free’ and ‘model-based’ reinforcement learning (Daw, 

Niv, & Dayan, 2005; Keramati, Dezfouli, & Piray, 2011). Critically, individuals’ model-based learning has 

been associated with sensitivity to outcome-devaluation paradigms classically used to probe the balance 

between goal-directed and habitual behavior (Gillan, Otto, Phelps, & Daw, 2015; Sjoerds et al., 2016) and 

linked to a wide range of compulsive symptoms (Gillan, Kosinski, Whelan, Phelps, & Daw, 2016; Voon, 

Reiter, Sebold, & Groman, 2017) including substance addictions (Ersche et al., 2016; Sebold et al., 2017; 

Sjoerds et al., 2013; Voon et al., 2015). Neuroimaging studies using fMRI have indicated that model-based 

and model-free learning systems are implemented in partly dissociable but overlapping cortico-striatal 

circuits in the brain, including the striatum and prefrontal cortex (Daw et al., 2011). 

Few studies have investigated whether impairments in goal-directed control are present in a 

behavioral addiction like gambling disorder, where there is no drug involved (van Timmeren, Daams, van 

Holst, & Goudriaan, 2018). Two recent behavioral studies in GD have used the two-step task to answer 

this question. One study on problem gamblers and healthy controls reported decreased model-based 

learning in people with gambling problems (Wyckmans et al., 2019). The other study included problem 

gamblers with a preference for electronic slot machine games and found that model-based increased 

when problem gamblers were tested in a gambling environment relative to a neutral condition (Wagner, 

Mathar, & Peters, 2022). Interestingly, a study with a similar design but now including a healthy control 

group resulted in group differences between problem gamblers and controls in model-based learning 

during neutral or a gambling situation in virtual reality (Bruder, Wagner, Mathar, & Peters, 2021).  In sum, 

the evidence of goal-directed impairments of GD is scarce, mixed, and potentially influenced by contexts. 

Moreover, whether GD is associated with abnormal neural correlates of model-free and model-based 

behavior is yet unexplored. 

One important factor that has shown to impact clinical outcomes is acute and chronic stress. They 

are both well-known risk factors for the escalation of and relapse to addictive behaviors (Koob & Le Moal, 

2008; Sinha, 2008). Moreover, they have been shown to prompt increased reliance on habitual decision-

making (Radenbach et al., 2015; Schwabe & Wolf, 2009, 2010), mediated through cortisol (Otto, Raio, 

Chiang, Phelps, & Daw, 2013). Theoretically, diminished goal-directed control through stress could be a 

crucial mechanism for addiction. Especially during early abstinence, acute stress may increase the (already 

enhanced) reliance on habitual control in patients with addiction, causing relapse (Schwabe, Dickinson, & 



Wolf, 2011). Remarkably little is known, however, about the behavioral and cognitive processes involved 

in the effects of stress on addictive behavior.  

Based on the above, we set out to test whether acute stress would differentially affect goal-

directed decision making in GD patients compared to HCs. We used the two-step reinforcement learning 

task, to probe the model-free system and a model-based system, (Daw et al., 2005; Gläscher, Daw, Dayan, 

& O’Doherty, 2010) and their neural correlates (Daw et al., 2011). Using a within-subject crossover design, 

we tested the effect of stress on the balance between model-free and model-based decision-making in GD 

patients and HCs. We hypothesized that goal-directed control in GD patients would be further decreased 

under acute stress. Following the addiction hypothesis of a shift from prefrontal to (dorsal) striatal control 

(Everitt & Robbins, 2005, 2015), we tested for differences in the neural correlates of model based and 

model-free learning in GD patients relative to HCs.  

Materials & Methods  

We recruited 31 HCs and 26 GDs. Seven participants (4 HCs) were excluded due to technical failure in one 

of two sessions, and 7 HCs and 1 GD were excluded because performance on the task indicated a lack of 

motivation: they repeated their choices (‘stay’) on >90% of the trials in at least one of the sessions. Thus, 

all analyses were performed on data from 20 HCs and 22 GD patients. GD patients were recruited from a 

local addiction treatment center (Jellinek, Amsterdam) and included if they were recently diagnosed with 

and started therapy for GD, but were not obliged to abstain from gambling. All subjects underwent a 

structured psychiatric interview [Mini-International Neuropsychiatric Interview–Plus] (Sheehan, Lecrubier, 

& Sheehan, 1998), which further confirmed criteria for DSM-5 Gambling Disorder in the GD group, or the 

lack thereof in HCs. Exclusion criteria for all subjects included: lifetime history of bipolar disorder, anxiety 

disorder, obsessive-compulsive disorder or schizophrenia; past six-month history of major depressive 

episode; current or past-year substance use disorder; current psychiatric treatment (except treatment for 

GD in GD patients); the use of any psychotropic medication; positive alcohol breath test or urine screen 

for (meth)amphetamines, benzodiazepines, opioids, cocaine, ecstasy, PCP, methadone or cannabis; 

history or current treatment for neurological disorders; major physical disorders; brain trauma; exposure 

to neurotoxic factors; colorblindness; or any contraindications for MRI. One subject (GD patient) tested 

positive on THC use, but because marijuana use occurred once, seven days prior to participation, and there 

was no history of dependence, this subject was included for further analyses.  

All subjects provided written informed consent before participation. The study was approved by 

the Ethical Review Board of the Academic Medical Center and procedures were in accordance with the 

Declaration of Helsinki. Participants were reimbursed with 100€ plus additional task earnings (50€ on 

average) for their participation.  

Procedure 

Participants were tested on 2 separate days approximately 1 week apart (mean=8.1, SD=3.8 days), with 

both sessions starting at approximately the same time (average starting time=14:20h; mean time between 

start of sessions=32 min; SD=35min). All subjects were tested in the afternoon to minimize time-of-day 

cortisol effects (Schwabe, Haddad, & Schachinger, 2008), except for one subject who was tested twice in 



the morning. In one of the sessions, participants underwent a stress manipulation (see section below) 

before entering the fMRI scanner to perform the two-step task (Daw et al., 2011) and a structural T1 and 

DTI MRI scan. In the control session, participants were asked to emerge their hand in lukewarm water 

before performing the two-step task, followed by another task (van Timmeren et al., under review) and a 

resting-state fMRI scan (van Timmeren, Zhutovsky, van Holst, & Goudriaan, 2018). On both testing days, 

participants were instructed on and practiced the two-step task before undergoing the stress or control 

manipulation. The order of the two sessions (control and stress) was counterbalanced across subjects.  

On day one, participants completed the MINI interview, the Fagerstrom Test for Nicotine 

Dependence [FTND] (Heatherton, Kozlowski, Frecker, & Fagerström, 1991) and the Alcohol Use Disorders 

Identification Test [AUDIT] (Saunders, Aasland, Babor, de la Fuente, & Grant, 1993). On the second day, 

we tested participants’ verbal IQ (using the Dutch Adult Reading Test (Schmand, Bakker, Saan, & Louman, 

1991) and working memory (using the digit span, part of the Wechsler Adult Intelligence Scale; Wechsler, 

1981). The experience of gambling-related problems was assessed using the past-12-month Problem 

Gambling Severity Index [PGSI] (Ferris & Wynne, 2001) and the Gamblers’ Beliefs Questionnaire [GBQ] 

(Steenbergh, Meyers, May, & Whelan, 2002). The GBQ contains 21 items (e.g. ‘My choices or actions affect 

the game on which I am betting’ or ‘I am pretty accurate at predicting when a “win” will occur’), with 

higher scores reflecting more gambling-related distortions. 

Stress induction 

To induce acute psychosocial stress, subjects underwent the Socially Evaluated Cold-Pressor Test [SECPT], 

a well-validated method for stress induction (Schwabe et al., 2008). Participants were asked to immerse 

one hand into ice water (0o–2o C) and keep it there as long as possible – or until the experimenter told 

them to stop (after 2 minutes). During this procedure, participants looked into a video camera and were 

closely observed by a nonsupportive experimenter who made notes and was dressed in a white doctor’s 

coat. Subsequently, participants were asked to perform a challenging arithmetic task (counting backward 

from 2059 in steps of 17) in front of the experimenter. In the control condition, warm water (34o–38o C) 

was used, no camera was present, the arithmetic task was simple (counting in steps of 10) and the 

experimenter was supportive and casually dressed. After the control or stress induction, participants were 

brought to the fMRI scanner. Subjects started the two-step task approximately 13 (+/- 5) minutes after the 

SECPT; salivary cortisol peaks 15-45 min after stress induction (Schwabe et al., 2008).  

Stress measurements 

Saliva samples were taken using Salivettes® (Sarstedt, Germany) to measure cortisol levels before (at -15 

min) and after (three times: at +10, +60 and +80 minutes) stress induction (t=0). Participants were asked 

to chew a cotton swab for ~1 minute. After testing, the samples were frozen and preserved at −22 °C until 

they were transported to the Dresden LabService (Germany) for analysis. Cortisol levels were not normally 

distributed and log-transformed in all statistical tests (Petzold, Plessow, Goschke, & Kirschbaum, 2010). As 

done previously (Otto et al., 2013), cortisol delta was calculated by subtracting cortisol levels at t0 (pre-

SECPT) from the average of t1 and t2 (post-SECPT) for each subject and session. Additionally, subjects 

rated how unpleasant, stressful and difficult to sustain they had experienced the procedure on a 7-point 

Likert scale immediately after the SECPT or control manipulation. For correlations with task performance, 



we used the difference between the stress and control condition for physiological (delta cortisol) and 

subjective stress measures. To minimize the effects of menstrual cycle on cortisol response (Kirschbaum, 

Kudielka, Gaab, Schommer, & Hellhammer, 1999), women were tested in the luteal phase (first visit 15-19 

days after last menstruation).  

Two-step Markov decision task 

Subjects completed 201 trials of the two-step Markov decision task (Daw et al., 2011), designed to 

distinguish between model-free and model-based learning strategies (Figure 1A). Each trial consists of two 

stages. In the first stage, participants chose between two abstract stimuli depicted on a grey background. 

This probabilistically led to one of two second-stage states, represented by different background colors 

and stimuli pairs. Subjects again made a choice between two options, which then lead to an outcome (20 

cent reward or no reward). Critically, the transition from the first choice to the second stage was 

probabilistic: each choice usually (70%) leads to one of the two second-stage states (‘common transition’) 

but sometimes (30%) to the other state (‘rare transition’). This feature enables the distinction between 

model-based (goal-directed) and model-free (habitual) decisions on a trial-by-trial level, because the two 

decision strategies make distinct predictions on choice behavior (Figure 1B). The second-stage reward 

probabilities slowly drifted over time according to Gaussian random walks (reflecting boundaries at 0.25 

and 0.75), to motivate participants to adjust their choices and learn throughout the task. Participants 

explicitly learned the transition frequencies during the training phase using different stimuli. The task was 

programmed in MATLAB (The MathWorks, Inc., Natick, MA, United States) with Psychophysics Toolbox, as 

previously used by (Sebold et al., 2017).  

Data analysis 

We investigated: 1) whether HCs and gambling disordered patients differed in the behavioral and neural 

signatures of model-free and model-based control; and 2) whether this balance would be differentially 

affected under acute stress in HCs and GDs. Statistical analysis were conducted in JASP software, version 

0.9.0.0 (JASP Team, 2018), unless stated differently. 

Behavioral analysis 

As done previously, we focused on stay-switch behavior on the first stage choice of each trial to derive 

model-free and model-based strategies. First-stage choices were analyzed as a function of the previous 

trial’s reward and transition-type. Because a model-free strategy disregards the structure of the task, a 

rewarding choice is more likely to be repeated and reflected by a main effect of reward on stay probability. 

Model-based choices, on the other hand, consider the transition probabilities from the first to the second 

stage; therefore, receiving a reward after a rare transition increases the propensity to switch, reflected by 

an interaction between transition and reward on stay probability. Following previous work (Daw et al., 

2011; Otto et al., 2013; Piray, Toni, & Cools, 2016; Smittenaar, FitzGerald, Romei, Wright, & Dolan, 2013), 

we analyzed the behavioral data in two complementary ways: using a logistic regression model that 

captures model-free and model-based approaches by examining how the previous trial’s outcome affects 

the next choice; and by using a full reinforcement learning model (the hybrid model from Daw et al., 2011) 

which allows choices to be influenced by the entire preceding history of outcomes.  



For each subject, first-stage choices, encoded as binary stay/switch responses, were regressed 

against the factors reward, transition and stress and their interactions, resulting in a total of seven 

regressors and an intercept, reflecting the general tendency to stay (we used the glmfit routine in MATLAB, 

see also Table 2). Model-free and model-based control are represented, respectively, by the main effect 

of reward and the interaction effect between reward and transition. We then performed one-sample t-

test on the individual coefficient estimates across all subjects and two-sample t-test to compare groups.  

 Additionally, data was fitted to the hybrid reinforcement learning model from Daw et al. (2011). 

This model contains seven parameters (see Figure 3), of which the weight parameter w captures the 

balance between model-free and model-based control. This weight parameter ranges from 0 (pure model-

free) to 1 (pure model-based), with higher values of w reflecting a higher level of dependence on the 

model-based system. For model fitting, we used the ‘computational and brain/behavior modeling’ (CBM) 

toolbox (https://github.com/payampiray/cbm) in MATLAB. This toolbox offers a hierarchical and Bayesian 

inference framework for parameter estimation, which regularizes individual estimates according to group 

statistics through Hierarchical Bayesian Inference (HBI) to produce better individual estimates and 

permitting reliable group-level tests (for details see (Piray, Dezfouli, Heskes, Frank, & Daw, 2019). To 

facilitate optimization, the hybrid model with analytical gradient and Hessian was used, as originally 

implemented in (Piray et al., 2016).  

Magnetic Resonance Imaging  

Magnetic resonance imaging (MRI) was performed on a 3 Tesla, full-body Intera MRI scanner (Philips 

Medical Systems, Best, The Netherlands) equipped with a 32-channel phased array SENSE radiofrequency 

(RF) receiver head coil. A high-resolution T1-weighted structural image was acquired for each participant 

(6.862 ms repetition time; 3.14 ms echo time; 8º flip angle; 1x1x1 mm voxel size; 236.679 x 180 x 256mm 

field of view; 212 x 212 matrix size; 150 slices; 1.2 mm slice thickness). Functional MRI scans were acquired 

using a T2*-weighted gradient multi-echo echoplanar imaging sequence (2375 ms repetition time; 9 / 26.4 

/ 43.8 ms echo times; 76º flip angle; 3x2.95x3 mm voxel size; 76 x 73 matrix size; 37 slices, acquired in 

interleaved order; 3mm slice thickness; 0.3mm slice gap). This sequence was chosen for its improved blood 

oxygen level dependent (BOLD) sensitivity and lower susceptibility for artefacts, especially for ventral 

regions (Poser, Versluis, Hoogduin, & Norris, 2006). The first three scans were discarded to allow T1 

saturation to reach equilibrium. 

fMRI analysis 

Imaging data were preprocessed using SPM12 (Wellcome Centre for Neuroimaging, London). Raw multi-

echo data were combined as reported in van Timmeren et al. (van Timmeren, Zhutovsky, van Holst, & 

Goudriaan, 2018). In short, realignment parameters were estimated for the images acquired at the first 

echo time and consequently applied to images resulting from the two other echoes. The first thirty 

volumes, during which a fixation cross was shown, were used to calculate the optimal weighting of echo 

times for each voxel by applying a PAID-weight algorithm (Poser et al., 2006). The multi-echo fMRI data 

were then combined into single volumes using these weightings. Next, all functional images were slice-

time corrected and co-registered with the high-resolution T1-weighted image using normalized mutual 

information. The high-resolution structural scan was segmented and used to normalize the slice-time 

https://github.com/payampiray/cbm


corrected functional images. Finally, all functional images were smoothed with an 8mm isotropic full-width 

at half maximum (FWHM) Gaussian smoothing kernel.  

For each participant, a first-level general linear model was constructed including the two sessions. 

First level analyses were conducted according to Daw et al. (2011). Model-free and model-based reward-

prediction errors (RPEs) were derived from the computational model and the median across each group 

was used to generate a group-representative set of parameters. Model-free RPEs were used as parametric 

modulators at the second stage and outcome delivery onset to find BOLD activity that correlated with the 

model-free RPE signal. Similar to Daw et al. (2011), we also included a second parametric regressor that 

captured BOLD activity related to model-based values, which was defined as the difference between the 

model-free and model-based RPEs. This regressor is only non-zero at the second-stage onset; to prevent 

the effect from being driven by the outcome delivery phase, we mean-corrected the regressor for each 

subject and session and included a nuisance regressor at the time of outcome onset (see Supplemental 

Material of Daw et al., 2011). Six additional regressors nuisance regressors were included to capture first 

stage onset and movement. A high-pass filter (128-s cutoff) was used to remove low frequency drifts and 

regressors were convolved with the canonical hemodynamic response function. Four first-level contrast 

images were constructed capturing the main effect of model-free and model-based RPE and their 

interaction with stress. These single-subject contrast images were then entered into second-level random-

effects analysis, comparing within-group activation (one-sample t tests) and between-group differences 

(two-sample t tests). In line with Daw et al (2011), the model-based effect was captured by adding a 

second-level covariate with individual w values to the single-subject first-level contrast images capturing 

model-based RPE (i.e., from the second parametric regressor, see above). 

Results 

Sample characteristics 

Demographics and clinical information are presented in Table 1. Groups were matched for age, 

handedness, education, IQ and alcohol use (AUDIT). The number of GD subjects who were dependent on 

nicotine (n=11) was higher than in the HC group (n=3). 

Stress measures 

Cortisol data for one HC was missing. A significant time-by-stress interaction indicated that cortisol was 

elevated in the stress compared to the control condition following the SECPT (F3,114=2.9, p=0.02, η2=0.08), 

indicating that stress induction was successful. Raw data are plotted in Figure 2. Moreover, the SECPT 

significantly elevated subjective stress levels, reflected by significantly higher ratings of unpleasantness 

(5.3±1.6 vs 1.4±0.9; t39=12.9, p<0.001), stressfulness (4.5±2.0 vs 1.3±0.5; t39=11.8, p<0.001) and difficulty 

to sustain (4.7 ± 2.0 vs 1.3 ± 1.0; t39=10.0, p<0.001). No significant main effects or interactions with group 

were found (all p>.13). 

Results Logistic Regression  



Results from the logistic regression analysis across groups are shown in Table 2. One sample t-tests on the 

coefficient estimates across all subjects indicated significant effects of reward (p<0.001, Cohen’s d=0.91) 

and an interaction between reward and transition (p=0.01, Cohen’s d=0.43), as predicted by model-free 

and model-based strategies, respectively (see Figure 1). The significant positive intercept (p<.001) 

indicated a general tendency to stay with the same choice regardless of transition and reward. Moreover, 

a significant reward-by-stress interaction (p=0.039) indicated that participants tended to repeat their 

responses more often when the previous trial was rewarding in the control condition than after stress 

induction. Group comparisons (Table 3) furthermore revealed that this effect of reward was significantly 

different between groups (t39=2.03 p=.049, Cohen’s d=0.64), as was the interaction between reward and 

stress (t39=2.03 p=.049, Cohen’s d=0.64). Post-hoc tests revealed that the effect of reward was lower in GD 

patients compared to HCs only during the control condition (t41=2.22, p=0.03, Cohen’s d=0.68), but not 

during stress (t43=1.09, p=0.28, Cohen’s d=0.33). Furthermore, only in HCs stress had a significant effect 

on reward (t18=2.88, p=0.01, Cohen’s d=0.66), not in GDs (t21=0.14, p=0.89, Cohen’s d=0.03).   

Results computational modeling  

Parameter estimates are plotted for both sessions and groups separately in Figure 3. A repeated measures 

ANOVA tested for an effect of group, stress and their interaction on the weighting parameter w. Contrary 

to our expectations, there was no significant difference between the two groups, nor did stress have a 

significant impact on the balance between model-based and model-free control (all p values>0.4). As this 

was the main question of the current study, we additionally quantified the evidence in favour of the null 

hypothesis against the evidence for the alternative hypothesis by means of the Bayes Factor BF01. A 

Bayesian repeated measures ANOVA provided substantial evidence for the absence of a group difference 

(BF01=2.9), and for the interaction between group and stress (BF01=3.1).  

We additionally compared all other parameters for differences between sessions, groups or their 

interaction. The only significant group difference was seen on 2, which was lower in GD patients than HCs 

(main effect of group: F1,39=4.2, p=0.04, η2=0.10), indicating that GD patients were generally more random 

in their choices. Following previous work (Otto et al., 2013; Radenbach et al., 2015), we also investigated 

the relationship between delta cortisol (i.e. the difference between post minus pre-SECPT and post minus 

pre-control cortisol values) and the weight parameter (repeated measures ANOVA with w-control and w-

stress as within- and group as between-subject factor including delta cortisol as covariate) but failed to 

find any significant relationship (no main effect of delta cortisol, p=0.8, or an interaction with the weight 

parameter, p=0.18).  

fMRI results 

Across groups and conditions (control/stress), there was a main effect of model-free RPEs in regions 

previously associated with RPEs, including bilateral ventral striatum, caudate nucleus, putamen, anterior 

cingulate cortex, pallidum, and insula (Table 4 and Figure 4), but no significant correlates of model-based 

RPEs. No significant differences between groups were observed on the main effects of model-free or 

model-based RPE learning signals. Furthermore, no main effect of stress was observed on model-free or 

model-based RPEs, nor did these effects differ between the groups.  



Discussion 

This study tested the hypotheses that patients with gambling disorder show disrupted goal-directed 

‘model-based’ and increased habitual ‘model-free’ decision making, and that stress would further shift this 

balance. Logistic regression analyses showed that the main effect of reward on the next choice (predicted 

by the model-free system) was borderline significantly lower in GD patients, and that stress lowered the 

main effect of rewards on the next choice in HCs but not in GD patients. However, these were very when 

analyzed using the more comprehensive computational model, we found no evidence for differential 

model-free or model-based involvement in GD patients or under stress as an explanation for these group 

differences. In fact, there was substantial Bayesian evidence against a difference between the groups or a 

group-by-stress interaction on the balance between model-based and model-free decision making. 

Additionally, while replicating previous neural model-free learning signals, we found no differences in 

neural activity between HCs and GD patients or interactions with stress.  

Regarding the role of goal-directed learning deficits in addiction, a central but unresolved question 

relates to the role of changes induced by drugs: is impaired goal-directed control the consequence of prior 

drug use, of the repetitive addiction-related behavior itself, or a pre-existing vulnerability marker? 

According to one prominent theory of addiction, progressively increased reliance on the habit system 

underlies the transition towards addiction (Everitt & Robbins, 2005, 2015). However, this theory does not 

explicitly distinguish between the effect of drug exposure and addictive behavior itself. When seeing GD 

as a model for addiction without the confounding neurotoxic effects that characterize substance use 

disorders, our results suggest that goal-directed control is intact in the absence of drug abuse, as indicated 

by the weight parameter of the hybrid computational model. This is also reflected in our finding of a lack 

of group differences in the neural correlates of behavioral control. Our findings are in contrast to the 

findings of increased model-free (Wyckmans et al., 2019) or reduced MODEL-BASED (Bruder, Scharer, & 

Peters, 2021) behavior in GD relative to controls. Studies assessing substance use disorders, have also 

reported mixed findings regarding the balance between model-based and model-free control. One study 

reported increased reliance on model-free control in abstinent methamphetamine dependent subjects, 

but no difference with participants with alcohol use disorder compared to HCs (Voon et al., 2015). 

Similarly, Sebold et al. (2017) found no overall differences in model-free/-based behavior and their neural 

correlates in patients with alcohol use disorder compared to HC, while no significant associations were 

found between individual differences in alcohol consumption and (neural) model-free/-based control in 

young adults (Nebe et al., 2018). A study comparing non-smokers with nicotine smokers also did not find 

differences in goal-directed versus habitual behaviors (Luijten et al., 2019). Integrating these findings, one 

may conclude that substance use disorder induced changes are not responsible for goal-directed control 

deficits, and substance-specific and individual differences affect these findings. 

A second question of our research pertained to goal-directed control under acute stress. Stress is 

an important factor in the onset and progression of addiction, and is known to increase relapse risk (Sinha, 

2007). In the case of GD, gambling may serve as a coping mechanism for acute or sustained stress (Coman, 

Burrows, & Evans, 1997; Raylu & Oei, 2002). As stress has previously also been shown to increase habitual 

control (Otto et al., 2013; Schwabe & Wolf, 2009, 2011), we investigated whether acute stress would 

promote habitual decision-making more in GD patients than in HCs. Contrary to our expectations, we 



found no evidence for such an interaction, suggesting that acute stress did not selectively shift the balance 

between goal-directed and habitual decision-making in GD patients. However, although acute stress had 

a significant impact on salivary cortisol and subjective stress levels, this did not significantly influence goal-

directed control in HCs. On closer look, the reported effects of stress on participant’s performance on this 

task in previous studies in healthy populations have been subtle. Using a between-subject design, Otto et 

al. (2013) found no main effect of condition (stress vs control), but instead a negative relation between 

individual cortisol stress response (independent of the stress manipulation) and model-based weight. 

Using a within-subject design, Radenbach et al. (2015) found a similar negative relationship between 

cortisol and model-based responding (again no main effect of stress), an effect that was even more 

pronounced with higher levels of chronic stress.  

Despite the fact that there was no group difference and stress effect on the weight parameter w, 

which reflects the balance between model-free and model-based learning strategies, the logistic 

regression analysis indicated a significant group difference on the main effect of reward. This difference 

was driven by a lower beta coefficient in GD patients, indicating that the main effect of reward (reflective 

of model-free responding) was significantly lower in GD patients than in HCs. This finding implies that, 

although GD patients were more likely to repeat their actions when the previous trial was rewarding (there 

was a significant main effect of reward), this probability was lower than in HCs. One explanation may be 

found in the more comprehensive computational modeling analysis, which showed significantly lower beta 

values in GD patients, indicating that choices were overall more random. Additionally, the logistic 

regression analysis showed a group difference in the interaction between reward and stress, which was 

driven by a significant effect of stress on reward in HC, but not GD patients: when stressed, HCs repeated 

their choices less after rewarding trials relative to the control session, whereas stress had no significant 

impact decision making in GD patients.  

Several limitations of the current study need to be addressed. First, we had to exclude a relatively 

large number of subjects, in part due to the within-subject design which increases the chance of excluding 

participants due to drop-out in one of the two sessions. We excluded eight participants (one GD) because 

their choices on the task suggested unmotivated performance. This may reflect a lower motivation in HC 

participants to perform the (relatively complex) task. Second, after exclusions there were significantly 

more males in the GD group, which also contained significantly more smokers. Both gender and smoking 

are known to impact salivary cortisol stress responses (Kudielka & Kirschbaum, 2005). Although there were 

no group differences on cortisol measures, these factors may still have impacted cortisol measurements 

and obscured possibly relevant effects, such as the relationship between the weight parameter w and 

cortisol values. Previous studies investigating the effect of acute stress on model-based/-free decision 

making tested only non-smoking males (Radenbach et al., 2015), or did not report these sample 

characteristics (Otto et al., 2013).  

In sum, this study shows intact goal-directed decision-making in GD patients, which remained 

similar to HCs after stress induction. Although these results initially seem surprising based on the habit 

theory of addiction (Everitt & Robbins, 2015), they appear to converge with a larger body of recent findings 

in addicted populations suggesting that addicted populations are not robustly associated with goal-



directed control deficits but may be sensitive to related to other factors such as contextual, drug-specific, 

as well as individual, differences (Hogarth, 2020).  
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Table 1. Demographical & Clinical information GD patients and matched controls. GD, Gambling 

Disordered patients; HC, Healthy Controls; SD, Standard Deviation; IQ, Verbal Intelligence Quotient; 

AUDIT, Alcohol Use Disorders Identification Test; PGSI, Problem Gambling Severity Index; GBQ, Gamblers’ 

Beliefs Questionnaire; ap value of chi-square test. bNon-normally distributed data analyzed using Mann-

Whitney U 

Table 1. Sample characteristics 

 GD (n=22) 

Mean (SD) 

HC (n=20) 

Mean (SD) p value 

Age, years 33.3 (12.7) 32.2 (13.8) 0.79 

Males / females 18 / 4 9 / 11 0.01a 

Handedness: right / left 20 / 2 17 / 3 0.56a 

Education, years 7.6 (2.6) 9.1 (4.3) 0.14 

Smokers (%) 11 (52%) 3 (15%) 0.04a 

IQ 87.8 (9.5) 89.5 (11.9) 0.63 

AUDIT 5.8 (4.7) 3.1 (2.1) 0.07b 

PGSI (12 months) 14.5 (5.1) 0.2 (0.4) <0.001b 

Weeks abstinent 17.3 (23.7) - - 

 

 

Table 2. The regressors included in the logistic regression analysis, indicating a main effect of reward 

(=model-free), an interaction between reward and transition (=model-based), an interaction between 

reward and stress and a main of the intercept, which represents the general tendency to repeat the same 

choice regardless of the other factors.  

Logistic regression analysis of behavioral data (one-sampled t-tests) 

Effects Estimate (SEM) t p 

Reward 0.24 (0.04) 5.808 < .001 

Transition 0.01 (0.03) 0.300 0.765 

Reward X Transition 0.11 (0.04) 2.725 0.009 

Reward X Stress 0.06 (0.03) 2.135 0.039 

Transition X Stress 0.03 (0.02) 1.473 0.149 

Reward X Transition X Stress -0.01 (0.02) -0.331 0.743 

Stress 0.02 (0.05) 0.457 0.650 

Intercept 0.63 (0.10) 6.365 < .001 

 

 

 



Table 3. Comparing the regression coefficients between groups indicates that the effect of reward was 

weaker in GD patients than in controls. Furthermore, the groups differed on the interaction between 

reward and stress, driven by an effect of stress on reward in HCs but not in GD patients. Compare Figure 

1C and 1D, which illustrate this difference.  

Group comparison of logistic regression analysis (independent-samples t-tests) 

Effects 
HCs 

Estimate (SE) 
GDs 

Estimate (SE) t p 

Reward 0.32 (0.07) 0.16 (0.04) 2.03 0.049 

Transition 0.03 (0.04) 0.01 (0.03) 0.87 0.391 

Reward X Transition 0.18 (0.07) 0.05 (0.04) 1.73 0.092 

Reward X Stress 0.12 (0.04) 0.01 (0.04) 2.03 0.049 

Transition X Stress 0.02 (0.04) 0.04 (0.03) -0.40 0.694 

Reward X Transition X Stress -0.04 (0.03) 0.02 (0.03) -1.32 0.194 

Stress 0.10 (0.07) -0.05 (0.06) 1.61 0.116 

Intercept 0.76 (0.13) 0.52 (0.15) 1.24 0.224 

 

Table 4. fMRI results across all participants (HC and GD groups). X, Y and Z coordinates are reported in 
MNI space. All p-values peak-level FWE-corrected, except *=cluster level FWE-corrected; k=cluster size; 
ACC= Anterior Cingulate Cortex; mPFC=medial prefrontal cortex. 

Anatomical Region L/R X Y Z k FWE p t value Z 

Fusiform gyrus L -33 -61 -10 498 <0.001 7.85 5.99 

VS , Putamen, Caudate, 
Pallidum, hippocampus L&R -12 8 -7 477 <0.001 7.33 5.73 

Middle Cingulate R 3 -37 35 253 0.001 6.75 5.42 

Parietal cortex R 51 -40 47 154 0.002 6.55 5.3 

Inferior Frontal L -48 44 8 165 0.006 6.02 4.99 

Inferior Occipital R 36 -85 -4 169 0.010 5.85 4.89 

Inferior Parietal L -48 -49 47 308 0.016 5.67 4.78 

Cerebellum L -39 -70 -37 86 *0.017 5.65 4.77 

ACC, mPFC R 9 41 17 195 *0.003 4.62 4.08 

 



Figure 1: A. Schematic task, B. Model-free and model-based reinforcement learning strategies predict 

different responses based on the outcome of the previous trial. Model-free decisions are more likely to be 

repeated when the previous trial was rewarding, independent of the transition-type (common or rare). 

Model-based decisions, on the other hand, do take the transition probabilities into account and therefore 

an interaction between reward and transition-type is expected. C. and D. Across groups and sessions, a 

main effect of reward and an interaction between reward and transition-type was observed, indicating the 

presence of both model-free and model-based strategies. Additionally, the groups significantly differed in 

in the main effect of reward and the reward by stress interaction, driven by overall lower stay probability 

after rewards in GD patients in the control condition.  

  



Figure 2: Salivary cortisol concentrations at different stages of the experiment. Cortisol was significantly 

increased after the SECPT compared to the control session, as measured both before (t1) and after (t2) 

performing the two-step task. There were no significant differences between HCs and GD patients. Data 

represent mean ± SEM across groups. **p<0.01.   

 

Figure 3: Mean estimates from the computational model for all seven parameters: learning rates for the 

first and second stage choices, 1 and 2; the eligibility trace parameter, ; the weighting parameter w, 

which reflects balance between model-based and model-free values; repetition parameter , reflecting 

perseveration; and two free inverse temperature parameters, 1 and 2, which reflect choice reliability. 

The first four parameters were logit-transformed and 1 and 2 were log-transformed ( was not 

transformed); thus, w=0 indicates an equal balance between the model-free and model-based values. Data 

represent mean ± SEM.  

 



Figure 4: main effect of model-free RPEs, with significant activations seen in several regions including the 

bilateral ventral and dorsal striatum and the mPFC (p<0.05, FWE-corrected). Displayed at p<0.001, 

uncorrected.  

 

 


