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Chapter 1

Introduction

1.1 The strangeness of the strange metal

With the first copper tools dating back more than 10000 years, metals have played a

key role in the development of civilization all throughout human history, with their

fascinating physical properties being exploited in a large variety of applications. To

name just a few, their structural behavior has been extensively used to engineer ever

more complex tools, machines, and buildings, the rare optical traits of gold, silver,

and other metals were used already by ancient Romans (and other civilizations before

them) as a base for their monetary system, and, in more recent times, it is their abil-

ity to conduct electricity that drove the second industrial revolution and ultimately

brought us to the technology-dominated world we live in. It is, then, hardly a surprise

that the study of metals has played a major role in condensed-matter physics, leading

to the proposal of the Fermi-liquid theory that explained the phenomenology of many

of the known metals. What, perhaps, comes more as a surprise, is that nowadays we

still find “strange” metallic systems that elude our understanding and call for the need

for new physical theories. These strange metals, as they have been very descriptively

named, are the topic of this thesis. We explore what a modern computational tech-

nique, called gauge/gravity or holographic duality, can teach us about the complicated

physics of these materials.

In order to understand the reasons behind such a name, we have to define what we

mean by “normal” metals. In a simplified picture, a metal is, from a microscopic point
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1.1. The strangeness of the strange metal

of view, a lattice of fixed atoms with conduction electrons that are loosely bound and

can easily hop from one site to the other. Our current understanding of how the metal-

lic behavior arises from the interactions among the electrons is based, as mentioned,

on the very successful framework of the Fermi-liquid theory. Contrary to what its

name suggests, it was developed in the 1950s by Lev Landau and explains why we can

get a good understanding of metals by treating them as a gas of Fermi particles, i.e.,

particles subject to Pauli’s exclusion principle stating that there cannot be two elec-

trons in the same quantum state. Due to this restriction, in a non-interacting fermion

gas particles build up a Fermi surface, with the low-energy excitations corresponding

to adding or removing a fermion from this Fermi sea. What Landau realized is that,

irrespectively of the details and strength of the interaction at the lattice (ultraviolet)

scale, the low-energy (infrared) physics of the interacting system still admits an effec-

tive description in terms of fermionic electrons and holes, although they are not the

original particles of the free theory. Due to interactions, these emergent particle-like

collective excitations have different properties compared to the elementary particles

(e.g., a renormalized mass and a different energy distribution), and are hence called

quasiparticles. The Fermi-liquid framework then provides for a weakly interacting

picture to study the physical properties of metals, even when at the lattice scale the

interactions are strong. This led to an understanding of many metallic properties such

as, for instance, the specific heat and magnetic susceptibility, the T 2 dependence of the

resistivity at low temperatures T and, together with the Bardeen–Cooper–Schrieffer

(BCS) theory of superconductivity, it helped to explain why common metals become

superconductors when cooled to near absolute zero.

In 1986, however, an experiment on a copper-oxide compound [9] brought to light the

phenomenon of high-temperature superconductivity, sparking a new experimental and

theoretical research interest in this class of materials—also referred to as cuprates—

leading in the following years to the discovery of ever higher critical temperatures

up to 135 K at ambient pressure. While not quite “high-temperature” enough to be

of use in everyday devices at room temperature, it owes its name to the fact that

it greatly exceeds the temperature limit for a transition to a superconducting phase

according to the BCS theory (around 39 K [101]), pointing at a different mechanism

at play and the need for a new physical theory. As the mechanism behind this kind

of superconducting transition is still unclear, there is also not yet a clear way to

give an upper limit on the critical temperature Tc, giving hope for the possibility of

room-temperature superconductivity and making this problem of particular practical

2



Chapter 1. Introduction

appeal. Our strange metal is the normal (i.e., non-superconducting) phase of these

high-Tc superconductors, and it is an example of a non-Fermi-liquid metal, showing

a very different behavior compared to the normal metals that fall under Landau’s

successful framework, as we will highlight with some examples in what follows.

In general, cuprates compounds share a layered structure of CuO2 planes, usually sep-

arated by an insulating layer with an inter-layer distance varying between 6–15Å. In

a simplified picture, the plane is formed by a square lattice with a Cu atom in each

corner and an oxygen atom at the center of each side of the unit cell (see Fig. 1.1),

with a lattice constant around 3.8–4Å. This leaves one hole per Cu atom when there

is no doping. Contrary to what one might expect from the odd number of electrons in

the valence shell, cuprates are insulators. They are an instance of what are known as

Mott insulators, where the strong repulsion between electrons makes it energetically

expensive for an electron to hop onto the neighboring site, hence effectively confining

each electron to its unit cell with an antiferromagnetic ordering (i.e., with an alter-

nating spin on each site). It is only through doping—by either adding or removing

electrons—that the mobility of charge carriers is re-established, and at high doping

levels, the cuprates behave like normal metals as shown in the phase diagram in Fig.

1.2. While the details of the phase diagram depend on the particular cuprate con-

sidered, it shares some generic features such as the “dome-shaped” superconducting

region with a maximum critical temperature at a value of doping, p∗, that is hence

referred to as optimal, and with the strange-metal phase sitting above this optimal

doping. With the aforementioned phase being the focus of this thesis, we will not dis-

cuss here the other regions of the phase diagram—as it is a topic that would deserve

an entire chapter on its own—and instead refer the reader to the good review on the

topic in Ref. [110].

Perhaps the most famous among the strangeness of this phase is the anomalous behav-

ior of the resistivity, which is exactly linear in T from the low temperatures reached

when the superconducting dome is suppressed (e.g., by a high magnetic field) to the

highest temperature, as, contrary to normal metals, it does not saturate above the

Ioffe-Mott-Regel limit. The low-temperature linear resistivity is a universal feature of

all the cuprates and, furthermore, there appears to be a link between the linear-in-

T scattering rate and the pairing mechanism behind superconductivity as deviations

from the Fermi-liquid-T 2 scaling of the resistivity at low temperatures and high dop-

ing appear in conjunction with superconductivity when doping is lowered [110]. For

this reason, we focus on the study of holographic models dual to field theories with

3



1.1. The strangeness of the strange metal

Figure 1.1: Unit cell for the cuprate square lattice in the CuO layers.

this linear behavior, although there are other anomalous features that characterize the

strange-metal phase, such as, for example, the temperature behavior of the Hall angle

[18] and the Hall effect [63].

There is not yet a consensus on the origin of this low-energy scaling behavior, but

experimental results seem to point to the fact that cuprates’ physics is governed by

a quantum critical phase. Measurement performed in a high magnetic field, to sup-

press superconductivity and access the low-temperature regime, point to the fact that

the linear-in-T resistivity is a feature of the strange metal across an extended range

of doping. Moreover, this view is reinforced by recent angle-resolved photoemission

spectroscopy (ARPES) measurements of the spectral function along the nodal direc-

tion, suggesting that the strange-metal phenomenology is governed by a particular

(quasi-)local quantum critical phase, i.e., a phase that is, in first approximation, local

in space and featureless in momentum.

What is interesting, is that some of the simplest holographic theories dual to nonzero-

density field theories naturally describe the physics of these (quasi-)local quantum

critical phases. It is, then, in this context that we employ the gauge/gravity duality

as we explain in the next section. From the practical point of view, it is a tool that

allows for an effective description of the emergent low-energy physics of a strongly

interacting system showing quantum critical behavior, making it possible to study the

4



Chapter 1. Introduction

Figure 1.2: Typical phase diagram for a hole-doped cuprate. Above the superconducting
dome at optimal doping, p∗, we find the strange-metal phase, while at high doping the cuprate
behaves like a normal Fermi liquid.

scaling of transport coefficients as well as the fermion spectral function of relevance to

ARPES experiments.

1.2 A brief tour of holographic metals

As mentioned above, many of the results presented in this thesis follow from the ap-

plication to condensed matter of what is most commonly known under the names

of holographic duality, gauge/gravity duality, or AdS/CFT correspondence. For the

condensed-matter physicist, the relevance of this correspondence is due to the fact

that it allows for the computation of the thermodynamics and transport properties of

a class of strongly interacting electron systems that elude a description in terms of the

established Fermi-liquid theory based on the quasiparticle picture. The key aspect of

this approach resides in the word “duality”, which simply tells us that we have two

different but equivalent ways to describe a system. While one can argue that redun-
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1.2. A brief tour of holographic metals

dancy is not always useful, the power of this correspondence lies in the fact that it is

an example of a strong-weak duality, meaning that if we look at a system with strong

interactions on one side, its equivalent description on the other side of the correspon-

dence is going to be a weakly interacting one that lends itself to the use of perturbation

methods. For our purposes, in short, it implies that properties of the strongly inter-

acting metals we are interested in can be understood by a (computationally speaking)

simpler theory of classical gravity, albeit in one dimension higher.

There are, of course, other approaches to try to understand the physics of these sys-

tems (see for example Ch. 3 of Ref. [133] for an overview), but most other analytical

and numerical techniques rely on constraints such as low-dimensionality of the system

or the assumption of zero density in order to be computationally tractable. What,

instead, sets holography apart is the easiness to deal with both nonzero temperature

and density in any number of spatial dimensions, allowing us to handily compute

response functions in the real-time domain (as opposed to the imaginary-time formal-

ism on which many field-theoretic or numerical methods are based). On the other

hand, holography provides us with an effective description of the emergent low-energy

physics governing the system, but it fails to deliver a microscopic understanding of

the underlying mechanism at play that leads to this emergent physics. It is important

to stress this concept of emergence, as the ultraviolet (UV) physics described by the

holographic model we consider is a highly symmetric one and with an infinite number

of degrees of freedom (the so-called “large-N” limit, with N2 being the number of

degrees of freedom of the matrix-valued fields in the field theory). This is quite dif-

ferent from the atomic lattice of a real cuprate. In particular, for the models used in

this thesis, the UV physics is that of a conformal field theory (CFT)—that is a theory

invariant under the set of transformations of the spacetime that preserve angles (and

in particular, this implies that the theory is scale invariant). Nevertheless, despite

these striking differences on the high end of the energy scale, the correspondence may

deliver us the correct physics in the low-energy regime as—much like for the Fermi

liquid—the emergent infrared physics does not dependent on the UV details of the

theory it flows from. Due to this, in condensed-matter applications of the duality, we

often adopt a “bottom-up” approach. It means that, instead of starting from a known

theory of quantum gravity and reducing it to an effective classical action1 by taking

the appropriate large-N and strong coupling limits, we build—guided by the symme-

1For the reader unfamiliar with the concept, the action is the central player of field theories. It
is a functional, S[ϕ(t,x)], whose saddle point, δS[ϕ] = 0, defines the classical equations of motion of
the fields ϕ(t,x).
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Chapter 1. Introduction

try of the quantum critical system we want to study—a classical gravitational action

from scratch to include all the elements we need to describe the system of interests.

For these reasons, however, we find it extremely important that predictions from

holography can be confronted with experimental measurements for validation. This is

why one of the main objectives of the work presented in this thesis is to strengthen

the link between the “holographic metal” and experimentally observed features of the

strange-metal phase of cuprate high-Tc superconductors. Given this premise, we would

like to make the work presented in the next chapters accessible to a varied audience,

and in what follow we will hence try our best to give a quick but practical introduction

to holography. By now there are plenty of very good introductions to the topic, see for

example Refs. [57, 53, 133], so we will not indulge much in explaining the nitty-gritty

details of the duality but we focus on providing a conceptual understanding of the

use of this peculiar correspondence in the study of the seemingly unrelated physics of

electrons in copper-oxide materials.

In short, the holographic correspondence gives a prescription to obtain the generating

functional2

ZQFT [J(t,x)] =
〈
ei

∫
dtddx JI(t,x)OI(t,x)

〉
, (1.1)

for a certain quantum field theory effectively described, in the limit of strong interac-

tions, by a set of collective single-trace operators {OI(t,x)}, with (t,x) the coordinates

of the (d+1)-dimensional (flat) spacetime3, and with sources {JI(t,x)}, where a sum-

mation over repeated indices is implied. The term “single-trace” highlights the fact

that the operators in the field theory of the correspondence are traces of N×N matrix-

valued fields, with the strong interaction limit going hand-in-hand with the limit of

N → ∞, allowing for a saddle-point description of the theory (see for example section

1.4 of Ref. [57] for more details). For our purposes we always work in this large-N ,

strongly interacting limit, hence, it will often be implicitly assumed from now on.

In this limit, on the other side of the correspondence we have a gravitational theory

2The partition function, ZQFT, is the central object of a quantum field theory in the path inte-
gral formalism. It acts as a generating functional for the theory, meaning that we can obtain the
Green’s functions of the system (and in general any connected n-point function) by taking functional
derivatives of logZQFT with respect to the sources.

3In the convention adopted here d refers to the number of spatial dimensions of the field theory.
However, it is often also used to denote the number of spacetime dimensions of the field theory
(or equivalently the number of spatial dimensions of the dual gravitational theory). These different
conventions for d can often be a source of confusion, we will try to make clear in each chapter which
convention we are using.

7



1.2. A brief tour of holographic metals

described by the bulk action Sbulk[Φ(t,x, r)], with r denoting the extra spatial dimen-

sion. In our conventions, this extra dimension runs perpendicular to the boundary of

the spacetime located at r = ∞, and it is on this boundary that the dual quantum field

theory is defined. The (classical) fields ΦI in the gravitational theory act as sources

for the dual operators OI of the boundary theory so that (upon proper normalization

of the fields) JI(t,x) ≡ limr→∞ ΦI(t,x, r). In a sense then, the quantum theory is

described through a projection on the lower dimensional boundary of the gravitational

theory, giving justice to the name “holography”. This extra physical dimension ge-

ometrizes the energy scaling of the quantum critical boundary theory [133], such that

the deep interior of the spacetime encodes the low-energy scaling of the field theory,

while ultraviolet physics is represented by the near-boundary geometry as depicted in

Fig. 1.3.

The heart of the duality is thus given by the Gubser-Klebanov-Polyakov-Witten (GKPW)

rule, providing the link between the two sides by stating the equivalence between the

quantum field theory partition function and the gravitational path integral:

ZQFT [J(t,x)] =

∫
DΦe

iSbulk[Φ(t,x,r)]
∣∣
Φ(t,x,r=∞)=J(t,x) . (1.2)

The goal of the condensed-matter physicist is then to find the right gravitational theory

that gives rise to the effective infrared description of interesting phases of matter. In

what follows we briefly explain what is needed on the gravity side to build a minimal

model of a cuprate in the above-mentioned bottom-up approach.

The gravitational theories used in this thesis are characterized by being asymptotically

Anti-de-Sitter (AdS), whose symmetries dictate that the dual theory in the high-

energy limit is then a conformal field theory. We can, hence, define the conformal

scaling dimension ∆I of each operator OI(t,x) through its properties under the scaling

(t,x) → (t′,x′) = (λt, λx) according to ⟨OI(t,x)⟩ → ⟨O′
I(t

′,x′)⟩ = λ−∆IOI(t,x). For

a pure AdS spacetime, this conformal scaling completely characterizes the behavior of

the correlation functions at all energies. In order to model the more interesting low-

energy physics of a cuprate strange metal—described by a nonzero particle density as

well as nonzero temperature—we, therefore, need to introduce new elements in the

spacetime that modifies the pure AdS structure for small values of r, hence breaking

the UV conformal invariance. We summarize below the relevant “dictionary entries”

for a minimal holographic model of a strongly interacting strange metal

8



Chapter 1. Introduction

Figure 1.3: Pictorial representation of the AdS spacetime, with the extra radial dimension
encoding for the energy scaling of the dual field theory.

• the metric tensor gµν describing the spacetime geometry of the gravitational

theory is dual to the energy-momentum tensor Tµν of the flat field theory on the

spacetime boundary,

• the Hawking temperature and entropy of a black hole in the deep interior of the

spacetime—whose nonzero radius sets a cutoff in the radial direction—encodes

the nonzero temperature T and entropy density s of the dual field theory,

• a Maxwell gauge field Aµ with a nonzero time component in the bulk gravi-

tational action introduces a chemical potential µ ≡ limr→∞At that acts as a

source for a nonzero density of particles ρ in the field theory,

• a scalar field ϕ, the dilaton, allows for the description of a quantum critical phase

with Lifshitz scaling and hyperscaling violation, i.e., with diverse values of the

exponents (z, θ), the dynamical critical exponent and the hyperscaling violation

exponent, respectively, that characterize the quantum critical theory (and will

be defined in a moment).

In the next chapters, we will be mainly concerned with two models. One is the

Reissner-Nordström (RN) gravitational background that includes the first three dic-

9



1.2. A brief tour of holographic metals

tionary entries, and it is thus given by the Einstein-Maxwell action that we discuss in

detail in chapter 2

SEM =
1

16πG

∫
drdtddx

√
−g
[
R− 2Λ︸ ︷︷ ︸
Einstein

− 1

4g2F
F 2
µν︸ ︷︷ ︸

Maxwell

]
,

(1.3)

with R the Ricci scalar, Λ the cosmological constant and Fµν ≡ ∂µAν − ∂νAµ the

electromagnetic tensor. The second is an instance of Einstein-Maxwell-Dilaton (EMD)

gravity—generically described by an action as in Eq. (1.4) below—proposed by Gubser

and Rocha [50] where the addition of the dilaton allows for a scaling of the resistivity

that is linear in temperature ρ ∼ T , characteristic of the strange metal cuprates.

The RN model is a well-studied example as it allows for an analytical solution for

the background (i.e., the classical equations of motion resulting from variation of the

action are exactly solvable) and hence it serves as a simple starting point to study

thermodynamics and transport properties of holographic quantum matter at nonzero

density and temperatures. The compelling aspect of the RN black-hole model is that

it shows the existence of an emergent local quantum critical phase in the infrared of

the dual field theory. With the term local we mean that the quantum critical phase is

characterized by a scaling that is, in first instance, momentum independent.

If we separate space and time dimensions, a scale transformation acts mathematically

by taking x → λx and t→ λzt, with the exponent z characterizing the different scaling

of space and time known as the dynamical critical exponent. Relativistic theories,

for example, have z = 1, while the emergent critical phase described by the RN

inner spacetime is one with z = ∞. This is—as we will discuss in more detail in

a moment—the (quasi-)local quantum critical phase believed to govern the strange-

metal phenomenology.

One drawback of the RN model, however, is that the entropy density presents a low-

temperature scaling of the form s ∼ s0 + s2T
2, implying a residual entropy at zero

temperature that hints at an instability of the model. One way to overcome this

limitation is by employing the last dictionary entry presented above, that is, with the

addition of a dilaton (scalar) field.

The effect of the dilaton, ϕ(t,x, r), is to further modify the inner spacetime geometry

allowing for a variety of emergent quantum critical phases that are now characterized

by two exponents (z, θ), with θ the hyperscaling-violating exponent that defines how

the metric transform under scaling, ds2 → λ2θ/dds2. The action now takes the general

10



Chapter 1. Introduction

form

SEMD =
1

16πG

∫
drdtddx

√
−g
[
R− (∂µϕ)

2 − V (ϕ)− Z(ϕ)

4g2F
F 2
µν

]
. (1.4)

and through different choices of Z(ϕ) and V (ϕ) we can tune the values of z and θ

(within some bounds, see e.g. Sec. 4.2 of Ref. [57]) and hence the low-energy and low-

temperature physics of the dual field theory. In particular, we have for the entropy

s ∼ T
d−θ
z , (1.5)

and we see that in a z = ∞ theory, for any finite θ, we obtain a nonzero entropy at

zero temperature as in the RN model. However, an interesting class of dilaton models

is given by taking z → ∞ and θ → −∞ such that its ratio is finite and equal to

η ≡ −θ/z. Here we recover local quantum criticality while resolving the problem of

residual entropy in the T → 0 limit. The Gubser-Rocha model is of this kind, with

η = 1 and hence s ∼ T . This is important as in theories with z = ∞ there is a universal

viscous contribution to the DC resistivity, which is proportional to the entropy of the

state [26], consequently ρ ∼ s ∼ T reproducing the famous linear resistivity of the

normal state of the cuprates.

Now that we argued what z = ∞ holographic metals have in common with the cuprate

strange metals, we briefly show in the next sections how to use the correspondence for

computational purposes. Especially, after explaining how the thermodynamic prop-

erties of the field theory are obtained from the equilibrium solution, we show how

to compute response functions—that can be used to study transport properties of

the strange metal—and we discuss the holographic fermionic spectral function, for

comparison with the Fermi surface measured by ARPES experiments on cuprates.

1.2.1 Equilibrium and thermodynamics

Starting from a gravitational theory, the equilibrium properties of the quantum system

are given by the solution to the classical equations of motion obtained by variation of

the Euclidean gravitational action (derived from the bulk action upon the substitu-

tion τ ≡ it, i.e., by performing a Wick rotation). However, there are some subtleties

we first need to take care of. The action evaluated on-shell, i.e., on the classical so-

lution of the equations of motion for the fields, Φcl, is divergent for r → ∞ and it

hence needs to be renormalized. This is done by introducing counterterms defined on

11



1.2. A brief tour of holographic metals

a cut-off surface at r = rUV, with rUV → ∞ at the end of the calculation. Moreover,

in a spacetime with a boundary, the action needs to be supplemented with a boundary

term, named the Gibbson-Hawking-York term, in order to have a well-defined bound-

ary problem where the metric is held fixed. In the rest of this introduction, whenever

we refer to the gravitational action we implicitly refer to the action containing all the

necessary counterterms and boundary terms. It then follows immediately from the

GKPW rule that the thermodynamic potential of the field theory is given by

Ω ≡ −kBT logZQFT = kBTSE[Φcl] , (1.6)

where SE is the Euclidean classical gravitational action.

1.2.2 Linear response and transport

Obtaining real-time response functions at nonzero temperatures is where the holo-

graphic framework really shows its power. What we are after is the response of the

system to small external perturbations, i.e., the change in the expectation value of

the quantum operator OI(ω,k) dual to the field ϕI(r, ω,k) due to the change in the

source JJ(ω,k) dual to ϕJ(r, ω,k), that are related by the retarded Green’s function

as

δ⟨OJ⟩ (ω,k) =
M∑
I=1

GROJOI
(ω,k)δJI(ω,k) , (1.7)

where the Fourier-space retarded Green’s function for the operators OI and OJ is

defined by

GROJOI
(ω,k) ≡ −i

∫
dtddx e−iωt+k·xθ(t) ⟨[OI(t,x), OJ(0,0)]⟩ , (1.8)

where θ(t) is the Heaviside step function. In holography, the computation of the real-

time Green’s function for the strongly interacting quantum critical theory is mapped,

in the large-N limit, to a perturbative problem for the classical fields in the bulk

in Lorentzian signature (as opposed to Euclidean signature for the computation of

thermodynamics quantities)

Sgravity[ΦJ + δΦJ ] ⇒ δ⟨OJ⟩ (ω,k) =
M∑
I=1

GROJOI
(ω,k)δJI(ω,k) . (1.9)

12



Chapter 1. Introduction

To be more precise, by perturbing the bulk action we find the linearized equations

of motion (LEOM) for the set of field fluctuations δΦI . In order to solve this set of

(usually coupled) differential equations for the fluctuations in a nonzero temperature

background, we need to impose boundary conditions at the black-hole horizon and

we are faced with two possible choices, infalling-wave or outgoing-wave boundary

condition. The first describes modes that carry energy into the horizon, encoding for

dissipation and ultimately corresponding to the computation of the retarded Green’s

function, and it is, therefore, the boundary condition of choice for the computation

performed in this thesis4. Using the GKPW rule and the holographic dictionary we

can then show that the change in the expectation value of the operators OI and their

corresponding sources JI are encoded in the asymptotic behavior of the dual field

fluctuations according to (after an eventual redefinition of the field so that its leading

near boundary behavior is constant)

δΦI(r, ω,k) → δJI(ω,k) + · · ·+ Cδ ⟨OI(ω,k)⟩ r(d+1−2∆I) , as r → ∞ (1.10)

with δΦI(r, ω,k) the solution to the linearized equations of motion with an infalling-

wave boundary condition at the horizon, ∆I the conformal scaling dimension of the

operator OI , the “. . . ” stands for eventual terms that need regularization and the

coefficient C is completely determined by the solution to the LEOM.

To summarize, we can compute the retarded Green’s function by taking the following

steps

• perturb the gravitational bulk action Sgravity[ΦJ+δΦJ ] to obtain a set of (usually

coupled) linearized equations of motion for the set of fluctuations δΦJ ,

• find all the independent solutions to the set of linearized differential equations for

the fluctuations after imposing infalling-wave boundary condition at the black-

hole horizon (in most cases this can only be done numerically),

• extract the change in the source δJJ and the change in the expectation value of

the operator δ ⟨OJ⟩ by studying the near-boundary behavior of the solution to

the LEOM for the dual field fluctuations δΦJ ,

• after computing the changes in expectation values and sources solve for the ma-

trix of retarded Green’s function according to δ ⟨OJ⟩ (ω,k) =
∑M
I=1G

R
OJOI

(ω,k)δΦIs(ω,k).

4As you might have guessed, the outgoing-wave boundary conditions allows for the computation
of the advanced Green’s function
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1.2. A brief tour of holographic metals

Of particular physical interest are the pole structure of the retarded Green’s function

and its imaginary part that defines the spectral weight AI for an operator OI as

AI ≡ −Im[GROIOI
]. In analogy with the single-particle Green’s function whose poles

define the quasiparticle excitations of the system, with the spectral weight containing

all the information about their decay rate, the pole structure of the holographic Green’s

function defines the quasinormal modes describing the collective excitations of the

strongly interacting quantum critical system in response to the external perturbation.

In the rest of the thesis, we will especially focus on the spectral functions of the current

density operator Jµ, dual to the bulk gauge field Aµ, as it is a quantity of particular

experimental interest. The spectral function of the time component ρ ≡ J t, in fact,

defines the response of the holographic strange metal to charge density fluctuations,

while the one for the spatial component Jx (where we arbitrarily fixed the momentum

of the perturbation in our isotropic system along the x-axis) is particularly relevant

to transport experiments as it is related to the optical conductivity by

σ(ω) =
GRJxJx(ω,0)

iω
. (1.11)

1.2.3 Infrared Green’s function

As we stressed already several times, what we are trying to capture with holography is

the effective description of a metal at low energies without worrying too much about

its precise form in the UV. However, one might have noticed from the previous section

that, in order to obtain the Green’s function, we need to integrate the equations for

the fluctuations over the entire spacetime. One is then left to wonder why we can be

so careless about the UV details. What role do they play in the low-energy Green’s

function we are interested in? What information can be reliably computed from the

inner region of the spacetime independently on the large-r UV region?

The answer to the above questions lies in the fact that dissipative physics is completely

encoded by the near-horizon (inner) geometry. It can indeed be shown that

Im[GR(ω,k;T )] ∝ Im[GRIR(ω,k;T )] for T, ω, |k| ≪ µ , (1.12)

where Im[GRIR(ω,k;T )] is completely determined by the near-horizon geometry alone

and, hence, so is the low-energy limit of the full Green’s function up to a constant

coefficient that depends on the UV. In the following, we briefly sketch why this is the

case (for a more complete treatment, see e.g. Sec. 4.3 of Ref. [57]).
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Chapter 1. Introduction

For the sake of simplicity, let us set T = 0 and forget about momentum k so that the

only energy scale of the field theory to compare with the chemical potential is set by

the frequency (the argument can also be generalized to include nonzero temperature

and momentum). We are interested in the behavior of the full Green’s function in the

low-energy limit ω ≪ µ, but the problem is that we cannot simply send ω → 0 to

find the leading order as this limit does not commute with the small-r limit5. What

we can do is solve the wave equations for the fluctuations in two regimes, one with

r ≪ µ—that defines the above-mentioned inner region (or near-horizon region in the

presence of a black-hole)—and the other for r ≫ ω where the solution to leading order

can be safely found by setting ω = 0. The trick is that for ω ≪ µ there is a large

region of overlap between these two regimes where the solutions can be matched, as

depicted in Fig. 1.4. The frequency-dependent solution in the inner region, in analogy

with the procedure in the full spacetime, defines the infrared Green’s function GRIR(ω)

introduced above, and by matching with the outer solution we find to leading order

GR(ω) =
a+ bGRIR(ω)

c+ dGRIR(ω)
a, b, c, d ∈ R . (1.13)

The coefficients, {a, b, c, d}, are determined by the solution in the outer region where we

could set ω = 0 and are, hence, frequency-independent and real. More in general, these

coefficients are functions of ω, k, T that admit an analytical expansion in ω/µ, k/µ, T/µ

that starts from order zero. To lowest order then, the imaginary part of the full Green’s

function is just a (UV-dependent) constant times the imaginary part of the IR Green’s

function.

Figure 1.4: Pictorial representation of the two regimes in which we solve the wave equa-
tions. For ω ≪ µ there is an overlap region with ω ≪ r ≪ µ where we can match the
solutions.

5In the presence of a black-hole horizon r would then be the distance from the horizon
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1.2. A brief tour of holographic metals

1.2.4 Hydrodynamic modes and plasmons

In the low-energy regime, we should expect the modes of the system to coincide with

what is obtained with another low-energy phenomenological approach, hydrodynamics.

Due to strong interactions the equilibration time of the system after a small pertur-

bation is fast enough (compared to the hydrodynamic characteristic scale) that the

only long-lived excitations are the ones associated with (quasi)conserved quantities

that cannot relax. There is a lot that can be said about hydrodynamics, and in this

section, we only give a short introduction in order to show that, in a neutral system

with conserved momentum, we find linear low-energy excitations, the sound modes,

that also appears in the response of our holographic models, as shown in Fig. 1.5.

Furthermore, we present here how screening effects due to the long-range Coulomb

interaction are going to change these modes giving rise to plasmon excitations. The

relevance of these excitations is due to the fact that they appear to play an important

role in cuprates [59, 100] and have been proposed as a possible mechanism mediating

the superconducting phase transition. Introducing them into the holographic descrip-

tion of the strange metal is the main topic of Ch. 2 of this thesis. For a more extensive

introduction to hydrodynamics, we suggest Ref. [83], or Sec. 5.4 of Ref. [57] and Ch.

7 of Ref. [133] for an introduction with a view towards holography.

0

0.5

1.0

1.5

2.0

Figure 1.5: Linear sound modes in the holographic density spectral function.
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For our CFT deformed by temperature T and chemical potential µ, the equations of

motion of relativistic6 hydrodynamics are:

∂µT
µν = FµνextJµ ,

∂µJ
µ = 0 ,

(1.14)

with Tµν the expectation value of the field theory stress tensor, Jµ a charge current,

and Fµνext describing an (eventual) external electromagnetic field. These equations are

exact, but in order to close the system of equations, we need to find a local expression

for Tµν and Jµ in terms of the hydrodynamic variables. These are called constitutive

relations, and the hydrodynamic approximation consists in writing them in a derivative

expansion. To zeroth order we have

Tµν = (ϵ+ P )uµuν + Pηµν ,

Jµ = ρuµ ,
(1.15)

with uµ the velocity vector given by uµ = (1, 0) as we consider a fluid at rest. Further-

more, ϵ, P , and ρ are the equilibrium energy density, pressure, and particle density of

the system respectively, that can be expressed in terms of the hydrodynamic variables

through the equilibrium equation of state P (µ, T ).

What we want to find are the collective modes of the system under small perturbations

around equilibrium

uµ = (1, δui), T → T + δT , µ→ µ+ δµ . (1.16)

The perturbation of the energy-momentum tensor and current are then [57]

δJ t =δρ, δJ i = ρδui, δT tt = δϵ ,

δT ij =δij(∂ϵPδϵ+ ∂ρPδρ) , δT ti = (ϵ+ P )δui .
(1.17)

In a medium with conservation of energy and momentum, ∂µT
µν = 0, we find from

6Notice that holography defines a relativistic theory. In application to a condensed-matter system
it is hence used as an effective description of a theory with linear dispersion by replacing the speed
of light c with the characteristic velocity of the system v ≪ c.

17



1.2. A brief tour of holographic metals

Eqs. (1.17) and the conservation equations in Eqs. (1.14) for the fluctuations

ωδρ− kρδu = 0 , (1.18)

ω(ϵ+ P )δu = k(∂ϵPδϵ+ ∂ρPδρ) , (1.19)

ωδϵ = k(ϵ+ P )δu , (1.20)

where δu = δux and, given that we are considering a homogeneous and isotropic

background, we wrote the space and time dependence of the fluctuations as e−iωt+ikx,

fixing the momentum along the x direction, without loss of generality. This then gives

an equation of motion for the density fluctuations[
ω2 − k2

(
∂ϵP +

ρ

(ϵ+ P )
∂ρP

)]
δρ = 0 , (1.21)

where we recognize the linearly-dispersing sound excitations with the speed of sound

determined by

v2s ≡ ∂ϵP +
ρ

(ϵ+ P )
∂ρP = (∂ϵP )S,N , (1.22)

with the notation (·)S,N meaning that the derivative is evaluated at constant entropy

and particle number N .

What we want to see now, is what happens to the sound mode if the charges are

subject to screening effects due to the long-range Coulomb interaction.

From Gauss’ law, in a medium with dielectric constant ε, we now have

∇ ·E =
ρ

ε
⇒ ikEx =

ρ

ε
, (1.23)

leading to an effective Fµνext in Eqs. (1.14). The equations for the fluctuations of the

energy-momentum tensor then become

ω(ϵ+ P )δu = k(∂ϵPδϵ+ ∂ρPδρ) +
2

k

ρ2

ε
δρ , (1.24)

ωδϵ =

[
k(ϵ+ P )− 1

k

ρ2

ε

]
δu . (1.25)

Using, as before, the equation for current conservation we then find that the equation
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for the density fluctuations becomes[
ω2 − ρ2

ε(ϵ+ P )
− v2sk

2

]
δρ = 0 , (1.26)

and we see that the linear sound modes turned into a gapped plasmon mode, with

ωpl =

√
ρ2

ε(ϵ+ P )
(1.27)

the characteristic plasma frequency for a relativistic fluid.

Before concluding this section, let us emphasize a distinction between the hydrody-

namic approach and holography even in the regime of overlap of the two approaches.

We only discussed here the modes of the systems, however, a key physical quantity is

the lifetime of these excitations. This is captured by the imaginary part of the Green’s

function and can be described by phenomenological coefficients whose values cannot

be determined from hydrodynamics alone. On the other hand, holography also con-

tains all the information on the decay of the excitations, controlled by the quantum

critical nature of the system.

1.2.5 Double-trace deformation

As of now we always talked about changing the infrared of the theory by introducing

relevant single-trace operators O dual to some classical field ϕ in the bulk that alters

the inner geometry of the spacetime. We can, however, also introduce a double-trace

deformation

S = SQFT +
λ

2

∫
dtddxO2 , (1.28)

that modifies the response of the system leaving, nonetheless, the spacetime geometry

unchanged. From the gravitational side, it can be shown that the multi-trace defor-

mation corresponds to changing the boundary conditions for the dual field [129]. This

has the effect of modifying the Green’s function for the operator O, and it will play

a key role in introducing screening effects in the holographic strange metal. In the

theory deformed by the double-trace operator in Eq. (1.28) the Green’s function for
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1.2. A brief tour of holographic metals

O becomes

Gd.t.(ω,k) =
Gs.t.(ω,k)

1 + λGs.t.(ω,k)
, (1.29)

with Gs.t.(ω, k) the response function for O in the un-deformed theory.

The reader with a background in condensed-matter theory will notice that this takes a

familiar form reminiscent of the random-phase approximation (RPA). It is important,

though, to keep in mind that Gs.t. in Eq. (1.29) has a very different nature from the

free electron Green’s function of condensed-matter RPA, as it is a Green’s function

for a collective excitation of a system governed by strong interactions.

1.2.6 Fermions and the Fermi surface of a non-Fermi liquid

In the previous sections, we focused on the effective description of the collective,

bosonic, modes of the system governing its transport properties. However there is

another quantity of great experimental interest, the fermionic self-energy near the

Fermi surface, Σ(ω, k) = Σ′(ω, k) − iΣ′′(ω, k), as its imaginary part can be probed

by ARPES experiments. In particular, we will be interested in analyzing slices of

the cuprate spectral function at fixed energy, aka momentum-dependent cuts (MDC),

along the nodal direction (see Fig. 1.6). These show a peak near the Fermi surface, as

shown in Fig. 1.7, that can be fitted with a function

A(k;ω) =
W (ω)

π

Γ(ω, k)/2

(k − k∗(ω))2 + (Γ(ω, k)/2)2
, (1.30)

where Γ(ω, k) = 2Σ′′(ω, k)/vF +G0(ω) and G0(ω) includes all the contributions that

are not determined by the electron self-energy (for example, due to phonons, impurities

or instrument sensitivity). Moreover, vF is the renormalized Fermi velocity, k∗(ω)

determines the peak position k∗(ω) ≃ kF +ω/vF with kF the Fermi wave number, and

W (ω) is an overall normalization factor. Experimentally, it was observed that the self-

energy of cuprates near the Fermi surface is dominated by the frequency dependence,

as the MDC curves are well described by a Lorentzian lineshape with

Σ′′(ω, k) ∼ (ω2)α , (1.31)

where the power α depends on doping.

Our goal is to use holography to compute Σ′′(ω, k) and compare the (semi-)holographic
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Figure 1.6: Momentum-space structure of the Fermi surface for a strange metal cuprate.
The blue square represents a unit cell, with the red line showing the position of the Fermi
surface. The so-called nodal direction is represented by the line connecting the (0, 0) and
(π, π) points.

Figure 1.7: Peak in an MDC of the nodal fermionic spectral function near the Fermi
energy, signaling the presence of a Fermi surface.
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prediction with the experimental line-shape from ARPES measurements. The holo-

graphic computation involves solving the Dirac action in the curved background to

extract the fermionic Green’s function, and the details of the procedure will be intro-

duced extensively in Ch. 5. Here we want to highlight the relationship between the

z = ∞ scaling of our holographic models and the electronic self-energy of cuprates.

In an approach called semi-holography [33, 52], the electron self-energy in the nodal

direction can be directly related to the infrared fermionic Green’s function obtained

from the near-horizon geometry as mentioned in Sec. 1.2.3, hence,

Σ′′(ω, k) ∝ Im[GRIR(ω, k)] . (1.32)

The interesting part is that our holographic model is characterized by the z = ∞
near-horizon scaling

t→ λt, r → λr, x→ x , (1.33)

where space (and thus momentum) is dimensionless under scaling. The key implication

is that in the low-energy limit momentum dependence can, hence, only appear in the

exponent and the IR Green’s function is given by a power law in frequency

GRIR(ω, k) ∼ ω2α(k) . (1.34)

For sharp peaks near the Fermi surface α(k) ≈ α(kF ) we recover—upon tuning the

parameters in the Dirac equation to match the experimental doping dependence—the

local self-energy conjectured for the cuprates.

On the other hand, since the semi-holographic self-energy still implicitly depends on

momentum through α(k) (this is the reason why these theories are sometimes called

semi-local quantum critical) we expect small deviations from the Lorentzian lineshape

as we look at MDCs away from the Fermi surface. Showing that deviations compatible

with the semi-holographic prediction are indeed observed in ARPES measurement of

the Fermi surface of a cuprate strange metal is one of the main results of this thesis,

which will be presented in Ch. 4 and Ch. 5.
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1.3 Overview of the rest of the thesis

The chapters that follow are a collection of the papers—either published, under review,

or in preparation for submission—that resulted from the research performed in these

last few years. Here we give a brief overview of the topic of each chapter.

• In Chapter 2 we introduce Coulomb interactions in the holographic description

of strongly interacting systems, by means of a (current-current) double-trace

deformation. We then proceed to show—using as an example the Reissner-

Nordström background—that this leads to gapped plasmon modes in the density-

density response. We then generalize the procedure to describe layered systems,

where for a single layer we recover the expected plasmon dispersion proportional

to
√
k, while in a multi-layer system we find the linear ‘acoustic plasmon’ modes

that have been observed experimentally in a layered cuprate high-temperature

superconductors. Finally, we compute the optical conductivity of the deformed

theory in a three-dimensional metal, where a logarithmic correction is present

and we show how this can be related to the conductivity measured in Dirac and

Weyl semimetals.

• In Chapter 3 we study the Coulomb drag in a two-layer system with strong

in-plane interaction modeled with the holographic framework using the Einstein-

Maxwell-Dilaton background. We show that the low-temperature dependence of

the drag resistivity is ρD ∝ T 4, which strongly deviates from the quadratic

dependence of Fermi liquids. Furthermore, we present numerical results at room

temperature and above, using typical parameters of the cuprates, to provide

an estimate of the magnitude of this effect for future experiments. At this

higher temperature, we find that the drag resistivity is enhanced by the plasmons

characteristic of the two-layer system.

• The work presented in Chapter 4 resulted from a collaboration between ex-

perimental and theoretical physicists, and it has a more experimental incli-

nation. Here we present a highly precise experimental determination of the

cuprate electronic self-energy obtained by angle-resolved photoemission. In par-

ticular, we show that constant energy cuts through the nodal spectral function in

(Pb,Bi)2Sr2−xLaxCuO6+δ have a non-Lorentzian lineshape, meaning the nodal

self-energy contains a momentum dependence. We then present how the exper-

imental data are captured remarkably well by a power law with a k-dependent

scaling exponent that emerges naturally from semi-holography.
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The main share of the experimental work was performed by S. Smit of the Uni-

versity of Amsterdam, and this chapter can also be found in his doctoral thesis.

It is, instead, the theoretical part that formally pertains to this dissertation.

• In Chapter 5 we delve deeper into the theory behind the finding presented

in Chapter 4. We show that the momentum-dependent scaling exponents of

the holographic fermion self-energy of the Gubser-Rocha model for a strange

metal are able to describe the deviation from the Lorentzian line shape that

is expected from the power-law-liquid (PLL) model proposed for the cuprates’

electronic self-energy Σ′′
PLL(ω) ∝ (ω2)α. More precisely, by direct comparison

with experimental results, we provide evidence that this departure from either a

Fermi liquid or the power-law liquid, resulting in an asymmetry of the spectral

function as a function of momentum around the central peak, is captured at

low temperature and all dopings by a semi-holographic model that predicts a

momentum-dependent scaling exponent in the electron self-energy as Σ(ω, k) ∝
ω(−ω2)α(1−(k−kF )/kF )−1/2, with ℏkF the Fermi momentum.

24



Chapter 2

Screening of Coulomb

interactions in holography

2.1 Introduction

The AdS/CFT correspondence [94, 48, 128] has become an important tool for study-

ing strongly coupled quantum field theories, and, in the last decade, it found an ever-

increasing range of applications into the realm of condensed-matter physics [60, 53, 133,

57]. Many recent experiments demonstrate that in strongly interacting systems as, for

example, the cuprates high-temperature superconductors, the observed behavior can

deviate quite drastically from well known condensed-matter results based on weakly

coupled theories that admit a quasiparticles description. In particular, these materi-

als exhibit a strange-metal phase for temperatures higher than the superconducting

critical temperature, where quasiparticle excitations appear to be absent (see e.g. ref.

[57]). The promising aspect of the gauge/gravity duality is that it allows us to study

systems without quasiparticle excitations. It can be used to compute thermodynamic

quantities and response functions with relatively little effort by mapping strongly in-

teracting quantum field theories on the boundary of an asymptotically AdS spacetime,

to classical gravity in the curved bulk spacetime. Trying to tune holographic models

such that they reproduce the properties of laboratory condensed-matter systems as

closely as possible is, therefore, one important goal of ongoing research in holographic

applications to condensed matter.
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2.1. Introduction

A common feature in conventional holographic calculations is that they describe neu-

tral systems, where the low-energy hydrodynamic excitations in the longitudinal chan-

nel contain sound modes. However, it is well established that in metals the density

fluctuations of the charged electrons give rise to a different type of collective excitations

known as plasmons [121]. In order to have more realistic models of strongly interacting

metals and superconductors, it is thus important to modify the holographic theory to

include the effect of the long-range Coulomb interaction that turns the linear sound

modes into plasmon modes.

In textbook condensed-matter response calculations the electron-electron interaction

is introduced in the description through a self-consisted field method known as the

random-phase approximation (RPA) [14, 106, 15, 105], where the induced charge with-

out Coulomb interaction is replaced with the screened charge. In a translational in-

variant system the density-density response function χ(ω,k) then becomes, in terms

of the non-interacting response function χ0(ω,k), equal to

χ(ω,k) =
χ0(ω,k)

1− V (ω,k)χ0(ω,k)
≡ χ0(ω,k)

ϵ(ω,k)
, (2.1)

where ϵ(ω,k) is the dynamical dielectric function, and V (ω,k) the Fourier transform

of the Coulomb potential. In non-relativistic systems, where the Fermi velocity is

much smaller than the speed of light, the latter is only a function of the magnitude

of the momentum |k|. In particular, for 2D and 3D materials, where here we refer to

the spatial dimension of a system living in the usual (3 + 1)-dimensional spacetime,

we have that V (ω,k) = e2

2ϵ0|k| , 2D

V (ω,k) = e2

ϵ0k2 , 3D ,
(2.2)

with −e the charge of the electron, and ϵ0 the dielectric constant.

In this paper, we develop a generic procedure to include the above RPA correction,

and hence the effect of Coulomb interactions, into holographic models at nonzero

density. A first step towards studying plasmon modes in holography was recently

made in refs. [43, 46, 42, 45], where it was shown that plasmon quasinormal-modes

can be studied by imposing a new type of boundary conditions on the bulk linearized

equations of motion. Here we explain how these boundary conditions naturally arise

by introducing a (current-current) double-trace deformation of the boundary theory,
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and how this gives rise to an RPA-like form of the response function. Using also the

example of the Reissner-Nordström metal, we numerically study the full frequency

and momentum dependence of the spectral functions and show how the prescribed

procedure turns the low-energy sound modes into gapped plasmon modes.

In the particular case of a (3+1)-dimensional theory, we also show that by introducing

long-range Coulomb interactions in the holographic theory, we obtain an anomalous

cutoff-dependent logarithmic behavior in the real part of the optical conductivity,

analogous to the one observed in the conductivity of Dirac and Weyl semimetals [115].

In (2 + 1)-dimensions, we adapt our procedure to correctly describe a system where

electrons are constrained to two spatial dimensions, but where the Coulomb potential

exists in three spatial dimensions. This allows us to obtain a low-energy dispersion

relation ω ∝
√
|k| as expected in charged (spatially) two-dimensional system as, for

example, graphene [92, 93]. Furthermore, since experiments on (2 + 1)-dimensional

materials are often performed on a multi-layer system, we propose a toy model describ-

ing an infinite stack of (2+ 1)-dimensional layers, where the dynamics in each layer is

determined holographically through a dual Reissner-Nordström theory and where the

coupling between the layers is given only by the long-range Coulomb interaction. A

recent example of the interest in these multi-layered systems is given in ref. [59], where

the spectral function for a layered copper-oxide high-temperature superconductor has

been measured. These experimental results suggest that it is indeed the Coulomb

interaction that governs the coupling between different layers, validating the assump-

tions of our toy model, and hinting at the fact that low-energy charge fluctuations

might be very relevant for the description of the dynamics of high-Tc superconductors.

We, therefore, show how our toy model qualitatively reproduces the observed spectral

functions, with low-energy linear excitations, often referred to as ‘acoustic plasmons’,

believed to possibly play an important role in the mechanism of high-temperature

superconductivity [69, 85, 11].

The structure of the paper is as follow. In section 2.2 we briefly summarize the

Reissner-Nordström model and its spectral functions containing the sound modes. In

section 2.3 we explain how to deform the theory to describe a charged system with

plasmon excitations and show how the density-density response function obtains the

RPA-like form. In section 2.4 we present the numerical results for the spectral functions

with plasmon excitations in a (2+ 1)-dimensional theory and propose a toy model for

a layered system in 3 + 1 dimensions. Finally, section 2.5 contains the results for the

optical conductivity for a (3 + 1)-dimensional system with Coulomb interactions.
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2.2 Reissner-Nordström black brane

In this section we introduce the Reissner-Nordström model that we use throughout

the paper as a concrete example of the proposed procedure, that we introduce in

detail in section 2.3. The dynamics of this holographic model has been thoroughly

studied in refs. [29, 28, 24, 25]. In order to be able to compare directly with our

later results, however, we briefly review its dynamical properties by computing the

spectral functions. We then recover that the low-energy excitations of the theory in

the longitudinal sector are linear sound modes and a diffusive mode.

Throughout the paper, we call d the spacetime dimension of the boundary theory,

dual to a gravitational (d + 1)-dimensional bulk theory and we use the mostly-plus

metric. We denote with r the coordinate of the extra spatial dimension of the bulk

theory, with the boundary at r → ∞ unless explicitly stated otherwise. When Fourier

transforming in the direction orthogonal to r, we denote with k = (ω/c,k) the d-

dimensional momentum. We use, with a slight abuse of notation, greek lower-case

tensor indices for both the (d+ 1)-dimensional bulk and the d-dimensional boundary,

as the range of the indices is clear from the context. Moreover, in computing dynamical

quantities, we always use a gauge in which all the r-components of the field fluctuations

are zero, so that no confusion should arise.

2.2.1 Gravity action

The simplest holographic model with a nonzero-density boundary theory is the Reissner-

Nordström model, described by a bulk Einstein-Maxwell action, that in SI units reads

SEM =

∫
dd+1x

√
−g
(

c3

16πG
(R− 2Λ)− 1

4λc
FµνF

µν

)
, (2.3)

where x = (r, ct,x), with r the bulk coordinate, G is Newton’s gravitational constant

in d+ 1 dimensions, and λ is a coupling constant with dimension [λ] = md−2 kg, such

that [Aµ] = mkg s−1. Defining At ≡ cA0, we then see that [At] = m2 kg s−2 = [µ],

i.e., the bulk field At has the dimensions of a chemical potential. Since we want to

describe a homogeneous and isotropic boundary theory, i.e., the chemical potential

and the energy-momentum tensor do not depend on the spacetime coordinates and

there is no preferred direction, we look for a solution of the form Aµ = (0, A0(r),0)

and gµν = gµν(r).

For notational convenience, we first rewrite the action in terms of dimensionless fields
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and coordinates, by redefining the fields as

Ãt =
L

2r0

√
16πG

λc4
At
c

,

Ãx =
L

2r0

√
16πG

λc4
Ax ,

Ãr =
r0
2L

√
16πG

λc4
Ar ,

g̃µν =
L2

r20
gµν ,

(t̃, x̃, r̃) =

(
ctr0
L2

,
xr0
L2

,
r

r0

)
,

(2.4)

with L2 = −d(d − 1)/2Λ the AdS radius squared and r0 denotes the position of the

black-brane (outer) horizon. Notice that this rescaling thus fixes the horizon at r̃0 = 1.

However, using the scaling symmetry of the action

r̃ → ar̃, (t̃, x̃) → (t̃, x̃)/a, Ãµ → aÃµ, (2.5)

we can obtain any solution from the solution with r̃0 = 1. From now on we only use

dimensionless variables and omit the tildes. In the end, the theory we are going to

study, including boundary terms, is described by the action:

S/ℏ =
c3Ld−1

4πℏG

(
1

4

∫
M

dd+1x
√
−g [R− d(d− 1)− FµνF

µν ] +
1

2

∫
∂M

ddx
√
−γK

+

∫
∂M

ddxL(d)
c.t.

)
,

(2.6)

where now every field and coordinate is dimensionless, as is the prefactor in front of

the integral that for now we take to be equal to one, by an appropriate scaling of the

action, but we briefly come back to this prefactor later on. The second term is the

Gibbons-Hawking-York boundary term, with γµν ≡ gµν − nµnν the induced metric

on the boundary, nµ the unit vector normal to the boundary, and the determinant γ

of γµν is taken only in the directions orthogonal to nµ. Finally, K is the trace of the

second fundamental form K = γµν∇µnν . This boundary term is necessary to have a

well-defined Dirichlet problem on the boundary [131, 39, 58]. In the case at hand (see

below Eq. (2.7) where the asymptotically AdS spacetime is a foliation of flat Minkowski
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spacetime) we have nν =
√
grrδ

r
µ and K reduces to K = −√

grrγ
µνΓrµν , with Γrµν

the bulk Christoffel symbols. The last term in the action contains the counterterms

necessary to regulate the divergences in the theory, and its explicit form depends on

the dimension d of the boundary spacetime. We present later the counterterms in the

case of d = 2 + 1 and d = 3 + 1. For a detailed treatment see, for instance, ref. [27].

The classical equations of motion derived from the above action are solved by the

Reissner-Nordström background, describing an asymptotically AdS charged black brane,

that in the units we introduced takes the form

ds2 =− f(r)dt2 +
1

f(r)
dr2 + r2dx2 ,

At(r) =µ
(
1− r2−d

)
,

f(r) =r2
[
1−

(
1 +

2(d− 2)

d− 1
µ2

)
r−d +

2(d− 2)

d− 1
µ2r2(1−d)

]
,

(2.7)

where we defined limr→∞At(r) = µ ≡ A′
t(1)/(d− 2) for d > 2, that, according to the

holographic dictionary, we interpret as the chemical potential of the boundary theory.

Here and below, the prime denotes derivatives with respect to the radial coordinate.

From the solution of f(r), we can see that the mass M and charge Q of the black

brane are expressed in terms of µ as

Q =

√
2(d− 2)

d− 1
µ , (2.8)

M =1 +
2(d− 2)

d− 1
µ2 = 1 +Q2 . (2.9)

The solution is then completely characterized by one dimensionless parameter, that

we take to be T/µ, with the black-brane temperature given by

T (µ) =
f ′(1)

4π
=
d− 2(d−2)2

d−1 µ2

4π
. (2.10)

The equilibrium properties of the theory are well known (see e.g. ref. [133]) and can be

derived from the GKPW rule after regularizing the action at the cutoff scale r = ruv

by inserting the boundary counterterm

Sc.t. = − (d− 1)

2

∫
r=ruv

ddx
√
−γ . (2.11)

We give here for later convenience the nonzero components of the equilibrium expec-
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tation values in the chosen units, that for d > 2, are:

δij ⟨P ⟩ ≡
〈
T ij
〉
= lim
ruv→∞

2r2uv
δScl|r=ruv
δg

(0)
ij

=
1

4
δij
(
1 +

2(d− 2)

d− 1
µ2

)
=

1

4
δijM , (2.12)

⟨ϵ⟩ ≡
〈
T 00
〉
= lim
ruv→∞

2r2uv
δScl|r=ruv
δg

(0)
00

=
(d− 1)

4

(
1 +

2(d− 2)

d− 1
µ2

)
=

(d− 1)

4
M ,

(2.13)

⟨ρ⟩ ≡
〈
J0
〉
= lim
ruv→∞

δScl|r=ruv
δA

(0)
0

= (d− 2)µ . (2.14)

Here Scl is a reminder that the action is evaluated at the classical solution and the

superscript in δg
(0)
µν and δA

(0)
µ means that we are deriving with respect to the leading-

order term in the asymptotic expansion of the field for large r. We see here that,

in order to compare holographic results to experiments, we should choose, in this

bottom-up approach, the prefactor in front of the action in Eq. (2.6), that we conve-

niently scaled away, such to tune the thermodynamic quantities to values close to the

experimental ones.

2.2.2 Fluctuations and response functions

The background solution of the gravity action in Eq. (2.6) defines the equilibrium

properties of the boundary theory. In order to study the response of the field theory

to small perturbations, we have to consider fluctuations of the classical fields on top

of the background solution:

Aµ →Aµ + aµ

gµν →gµν + hµν .
(2.15)

Exploiting rotational invariance to fix the momentum along the x direction, so that k =

(ω,±|k|, 0, . . . , 0), the fluctuations decouple according to their parity under O(d− 2)

acting on x2, . . . , xd−1 [84]. In particular, we are interested in the longitudinal channel

associated with spin 0, as it is the one containing the density-density response function

that in d = 3 + 1 and d = 2 + 1 are described by the components

δΦ ≡ (at, ax, ar, hxt, htt, hxx, hyy = hzz, hrr, htr, hxr) , (2.16)
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and will ultimately lead to hydrodynamic diffusion and sound modes. It is convenient

to work in a gauge where hrµ = 0, as well as Ar = ar = 0. The set of coupled

fluctuations then becomes

δΦ = (at, ax, hxt, htt, hxx, hyy = hzz) . (2.17)

Solving the coupled set of linearized equations of motion for these fluctuations, with

infalling boundary conditions at the black-brane horizon, allows us, after eventual

renormalization of boundary divergences (see ref. [118] for a detailed treatment), to

compute the retarded Green’s functions of the dual boundary theory. To do so, we

follow the procedure in ref. [78]. A caveat is that to extract the matrix of Green’s

functions for a set of M coupled fields we need M independent solutions. In the case

at hand, however, our choice to work in a gauge where all the radial components are

zero does not completely fix the gauge freedom of aµ and hµν , and we are left with four

gauge degrees of freedom. This implies that we can only find two independent solutions

of the linearized equations of motion, corresponding to the two physical degrees of

freedom. The remaining solutions needed to compute the full Green’s function matrix

are pure gauge solutions that can be constructed analytically. In appendix 2.A, we

show how to construct these gauge solutions and we provide their explicit form for

the theory at hand. From the retarded Green’s function GR(ω,k) we can obtain the

spectral function defined as

A(ω,k) ≡ − 2

π
Im[GR(ω,k)] . (2.18)

The spectral function is an interesting quantity as it tells us the rate of work done on

the system by a small external perturbation at a given frequency [121]. Sharp peaks

in the spectral function, that correspond to poles in the Green’s function, denote

long-lived collective modes, with a lifetime determined by the width of the peak.

In figures 2.1 and 2.2 we present the spectral functions of a (2+1)-dimensional system

for the density response Aρρ as well as for the energy-density response Aϵϵ for two

different values of the temperature. Here, as in the rest of the paper, we work in

the grand-canonical ensemble, hence all the plots are rescaled to a solution with unit

chemical potential. Since we are describing a strongly interacting system, we expect

from hydrodynamics considerations (see e.g. ref. [83]) to find two linear sound modes

due to energy-momentum conservation. As the poles are shared by all Green’s func-

tions, although the residues differ, in both spectral functions the low-energy linear
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sound modes ω = ±vs|k| are evident. In particular, up to the numerical precision

obtained, the speed of sound satisfies the relation vs = 1/
√
d− 1 in the low-energy

regime [107, 24]. These hydrodynamic sound modes, known as first sound, are present

even in the low-temperature limit as long as ω, k ≪ µ, with the nonzero chemical

potential setting an effective hydrodynamic scale [28, 24, 25]. This is similar to an

ultra-cold Fermi gas at unitarity where, in the limit T → 0, hydrodynamic first sound

exists at long wavelengths in a range set by the Fermi energy, and where this first

sound mode crosses over to collisionless zeroth sound at shorter wavelengths. In the

density spectral function we observe, in addition to the sound modes, the expected

diffusive mode due to charge conservation that corresponds to the broad quadratic

band. Here the linear modes become less sharply peaked when the temperature is

raised as part of the spectral weight shifts into the diffusive mode. Note that the

diffusive mode is absent in Aϵϵ, because in that mode the charge fluctuations do not

induce a velocity field v(t,x) in the fluid, hence also no energy transport. A thorough

analysis of these modes has been presented for (2+1)-dimensional systems in ref. [24].

In the next section, we turn to the problem of deforming the holographic theory in

order to describe a charged quantum field theory with plasmon excitations.
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Figure 2.1: The density spectral function for two different values of the temperature
in 2 + 1 dimensions. Notice that in addition to the linear sound modes with a low-energy
behavior of the dispersion given by ω = ±|k|/

√
2, we can clearly observe the diffusive mode,

that becomes more dominant as we increase T/µ.
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Figure 2.2: The energy-density spectral function for two different values of the temperature
in 2+1 dimensions. The sound modes are clearly visible and we can notice that the associated
peaks become higher for a higher value of the temperature.

2.3 Plasmon modes in holographic theories

In this section we explain how to introduce Coulomb interactions in the boundary

quantum field theory, and show how this gives rise to an RPA-like form of the response

functions that turns the linear modes observed in the Reissner-Nordström spectral

function into long-lived plasmon excitations.

The holographic theory presented in the previous section is dual to a charge-neutral

boundary theory, that is, the Maxwell field in the bulk acts only as a source for the

current operator Jµ in the boundary theory, and there is no dynamical photon [54].

However, in condensed matter we are often interested in describing charged systems,

i.e., systems with a long-range Coulomb interaction. We, therefore, need to modify

the boundary theory to add dynamical photons coupled to the conserved current ⟨Jµ⟩
obtained from holography in the large-N limit, which are described by the Maxwell

action

Sm =

∫
ddx

(
− 1

4µ0e2
FµνF

µν +Aµ ⟨Jµ⟩
)

, (2.19)

with µ0 the magnetic permeability and −e the electron charge. Note that we also

used the fact that our boundary theory is defined on flat Minkowski spacetime, so

that
√
−η = 1. Integrating out the Aµ field from Eq. (2.19), using the standard ξ
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procedure to account for the gauge freedom, we obtain in momentum space (see for

example ref. [117])

S = −1

2

∫
ddk

(2π)d
µ0e

2 ⟨Jµ(k)⟩
[
ηµν − (1− ξ)kµkν/k

2

k2

]
⟨Jν(−k)⟩ . (2.20)

Notice that Eq. (2.20) assumes the form of a double-trace deformation of the boundary

theory for the current operator.

As first described in refs. [129, 98], a double-trace deformation in the large-N limit can

be incorporated in the holographic dual simply as a change in the boundary conditions

for the corresponding fields. In the gauge/gravity duality without multi-trace defor-

mation, we can obtain the response to small fluctuations from the asymptotic behavior

of the field fluctuations. For example in the case of the Maxwell-field fluctuations we

have

aµ = a(0)µ + · · ·+ ηµν
(d− 2)

δ ⟨Jν⟩ r−d+2 +O(r−d−2) , (2.21)

and according to the holographic dictionary, we interpret the leading-order coefficient

a
(0)
µ as the source asµ of the fluctuations δ ⟨Jµ⟩. Following the prescription in ref. [129],

in order to include a multi-trace deformation of the response
∫
ddx δ ⟨Jµ⟩Mµνδ ⟨Jν⟩ ≡

W (δ ⟨Jµ⟩), we still interpret the subleading term in equation (2.21) as the response to

the source fluctuations, but we impose the boundary condition

lim
r→∞

aµ = asµ +
δW

δ ⟨Jµ⟩
. (2.22)

The reason for this boundary condition can be easily understood by looking at the

boundary behavior of the holographic theory. The boundary contribution from the

Maxwell-field fluctuations in the renormalized holographic action, Eq. (2.6), evaluated

on-shell is given, at second order in fluctuations, by

δS(2) =
1

2

∫
r=∞

ddk

(2π)d
asµ(k)δ ⟨Jµ(−k)⟩ , (2.23)

with

lim
r→∞

aµ = a(0)µ = asµ . (2.24)

By introducing a boundary contribution of the form of Eq. (2.19) at infinity, that, in
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the saddle point approximation of the large-N limit, we write in dimensionless units

as

Sd.t. =

∫
ddx

(
− 1

4α2

[
FµνF

µν +
2

ξ
(∂µA

µ)
2

]
+Aµ ⟨Jµ⟩

)
=− 1

2

∫
r=∞

ddk

(2π)d
α2 ⟨Jµ(k)⟩

[
ηµν − (1− ξ)kµkν/k

2

k2

]
⟨Jν(−k)⟩ ,

(2.25)

with α2 a dimensionless constant that depends on the charge of the system, its per-

mittivity and on the prefactor of the action in Eq. (2.6), the boundary term for the

fluctuations now becomes

δS(2) =
1

2

∫
r=∞

ddk

(2π)d

[
asµ(k)− α2

(
ηµν − (1− ξ)kµkν/kµk

µ

kµkµ

)
δ ⟨Jν(k)⟩

]
δ ⟨Jµ(−k)⟩ .

(2.26)

Since the double-trace deformation does not modify the bulk theory, we see that this is

equivalent to the Reissner-Nordström theory described above, where we simply modify

the boundary conditions

lim
r→∞

aµ = a(0)µ ≡ asµ − α2

(
ηµν − (1− ξ)kµkν/k

2

k2

)
δ ⟨Jν⟩ , (2.27)

that are of the form of Eq. (2.22). Notice that these boundary conditions are equivalent

to the ones used in ref. [46] to study plasmonic quasi-normal modes in a d = 2 + 1

holographic theory, but that were obtained differently by looking for zeros of the

dielectric function.

The effect of the deformation in Eq. (2.25) on the response functions is easily derived,

and in practice there is no need to solve the boundary value problem anew (e.g. by

shooting). In fact, ignoring for the moment the gravitational part, as it does not

influence the procedure for the density-density and current-current spectral functions

we are interested in, we have from linear-response theory without the double-trace

deformation

δ ⟨Jµ⟩ = Gµνasν = Gµνa(0)ν . (2.28)

Since the bulk theory is left unchanged by the deformation, the Maxwell-field fluctua-

tions aµ satisfies the same linearized equations of motion with the same near-boundary

behavior, the only difference is that now we interpret the leading-order coefficient a
(0)
ν
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not as the source alone but according to the right-hand side of Eq. (2.27). In terms

of the source asµ in the presence of a double-trace deformation, expression (2.28) now

becomes

δ ⟨Jµ⟩ = Gµν
(
asν − α2Vνσδ ⟨Jσ⟩

)
, (2.29)

where for convenience we defined Vµν = (ηµν − (1− ξ)kµkν/k
2)/k2. Rearranging the

equation in order to put it into the form δ ⟨Jµ⟩ = χµνasν to extract the response

function χµν we have that

(
δµσ + α2GµνVνσ

)
δ ⟨Jσ⟩ = Gµνasν , (2.30)

and we see that the response function assumes the RPA-like form

χ =
(
I + α2GV

)−1
G . (2.31)

Explicitly, introducing Π by means of

G(ω,k) =

(
k2Π(ω,k) ωkΠ(ω,k)

ωkΠ(ω,k) ω2Π(ω,k)

)
, (2.32)

we obtain

χ(ω,k) =[(
1 0

0 1

)
+

α2

−ω2 + k2

(
k2Π ωkΠ

ωkΠ ω2Π

)(
−1− (1− ξ) ω2

−ω2+k2 (1− ξ) ωk
−ω2+k2

(1− ξ) ωk
−ω2+k2 1− (1− ξ) k2

−ω2+k2

)]−1

·

(
k2Π ωkΠ

ωkΠ ω2Π

)
=

1

1− α2Π(ω,k)

(
k2Π(ω,k) ωkΠ(ω,k)

ωkΠ(ω,k) ω2Π(ω,k)

)
,

(2.33)

that is of course independent of the gauge-choice parameter ξ. In particular, we can

see that the density-density response function is

χ00(ω,k) =
k2Π(ω,k)

1− α2Π(ω,k)
=

G00(ω,k)

1− α2

k2G00(ω,k)
, (2.34)

as expected from RPA calculations.
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From relativistic hydrodynamics we know that in the low-energy limit G00 assumes

the form ([83])

G00(ω,k) ≃ ⟨ρ⟩2

⟨ϵ⟩+ ⟨P ⟩
k2

ω2 − k2v2s
for ω ≳ k , (2.35)

with the equilibrium quantities defined in Eqs. (2.12)-(2.14), and v2s the speed of sound

squared v2s = ∂P/∂ϵ = 1/(d− 1). This suggest that the RPA-like response function in

Eq. (2.34) contains a gapped plasmon mode, with the plasma frequency determined

by

ω2
p = α2 (d− 1) ⟨ρ⟩2

d ⟨ϵ⟩
= α2 lim

ω→0
Gxx(ω,k = 0) . (2.36)

In figure 2.3, we show side by side the density-density spectral function with and

without double-trace deformation, for two different values of the parameter T/µ, where

we see that the linear sound modes turn into a gapped plasmon mode. The dashed

black line represent the hydrodynamic approximation of the plasmon mode from Eq.

(2.35). We can think of higher values of T/µ as moving towards the zero chemical

potential limit, where there is no plasmon mode. By comparing the two figures we can

indeed observe that for higher values of T/µ the low-energy gapped mode becomes less

visible in the spectral function. This can be seen in more details by comparing with

figure 2.4, where we show some slices of the spectral function for different fixed values

of momentum |k|/µ. Here we also notice that the height of the peak of the plasmon

modes is lower than the corresponding peak in the Reissner-Nordström solution. This

is due to the screening effect of the charged particles that opposes density fluctuations.

Moreover, we see that the plasmon peak initially increases as we move to smaller values

of |k|/µ, as was the case for the linear modes, but it then starts to decrease for small

value of |k|/µ, due to the k2 factor in the low-energy limit of the density-density

spectral function. Even though in this paper we mainly focus on the density-density

response, the plasmon modes are of course also present in the current-current spectral

function as we show in figure 2.5. Here the plasmon mode is more easily visible as

there is no k2 suppression, since from Ward’s identities we know that k2Gxx = ω2G00.

This gapped plasmon mode is observed in (3 + 1)-dimensional metals, however, in an

experimental (2+1)-dimensional system we expect to find plasmon modes of the form

ω ∝
√

|k|. Notice that the expression for the RPA-like correction to the response

function in Eq. (2.34) has been derived in an arbitrary spacetime dimension and it
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Figure 2.3: The density spectral function for T ≃ 0.02µ (top) and T ≃ 1.18µ (bottom)
without (left) and with (right) double-trace deformation. Here we have taken α2 = 1/25.
The black dashed line represents the plasmon modes computed in the hydrodynamic approx-
imation. We see that the double-trace deformation turns the low-energy sound modes into
a gapped plasmon mode, although the low-energy excitation are less visible as the height of
the peak for low |k|/µ becomes smaller for higher values of T/µ.

is independent of the value of d. This implies that in any dimension, the qualitative

behavior of the spectral function looks the same as the one in figure 2.3, although the

position and residue of the poles of course change. In the next section we show how to

modify the double-trace deformation to, from an experimental point of view, correctly

describe plasmon modes in (2 + 1)-dimensional systems.

2.4 Plasmon modes in d = 2 + 1

As already noted in ref. [46], the presence of a gapped mode is due to the fact that in

the holographic theory of a (2+1)-dimensional model, we also constrain the boundary

dynamical photons to live in 2 + 1 dimensions, while in layered materials studied
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Figure 2.4: The density spectral function for T ≃ 0.02µ (top) and T ≃ 1.18µ (bot-
tom) without (left) and with (right) double-trace deformation for different values of k/µ
(α2 = 1/25). We see that the height of the peak of the plasmon modes is lower than in the
corresponding sound modes due to screening of the charged particles. Moreover we observe
that for low momenta, the peak in the RPA response function decreases as we move towards
smaller values of |k|/µ.

in laboratories, the current is constrained on the (2 + 1)-dimensional layer, but the

photons are free to move in all the spacetime dimensions, giving rise to an effective

Coulomb potential V (k) ∝ 1/|k|. Put differently, the Coulomb potential between

charges at positions x and x′ behaves as 1/|x− x′| and not as log|x− x′|.

2.4.1 Single Layer

In order to model a more realistic (2 + 1)-dimensional system, where photons that

mediate the Coulomb interaction are free to move in the whole three-dimensional

space, we consider a d = 2 + 1 boundary theory, dual to the (d + 1)-dimensional

bulk theory from Eq. (2.6), but we define the deformation of the boundary theory by

starting from a (d+ 1)-dimensional boundary term. Defining the (d+ 1)-dimensional
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Figure 2.5: The current spectral function for T ≃ 0.02µ (left) and T ≃ 1.18µ (right) with
a double-trace deformation (α2 = 1/25). Here we can clearly see the gapped plasmon mode,
as the height of the peak does not go to zero as k → 0.

vector (x, z) and momentum (k, kz), with x and k living in d spacetime dimensions

while z and kz represent the extra spatial dimension normal to the layer and the

associated momentum respectively, we restrict the current operator to a plane asJµ(x, z) = Jµ(x)δ(z), µ = 0, . . . , d− 1

Jz(x, z) = 0
. (2.37)

Inserting this expression into Eq. (2.25), Fourier transforming and performing the

Gaussian integral over the Maxwell field we obtain

SM = −1

2

∫
ddk

(2π)d

∫
dkz
2π

α2

(
⟨Jµ(k)⟩ ηµν

k2 + k2z
⟨Jν(−k)⟩

)
, (2.38)

that can be integrated over kz to obtain the d-dimensional boundary deformation

−1

2

∫
ddk

(2π)d
α2

2

(
⟨Jµ(ω,k)⟩ ηµν√

−ω2 + k2
⟨Jν(−ω,−k)⟩

)
for k2 > ω2 . (2.39)

This in particular implies that the response function now takes the form:

χ(ω,k) =
1

1− α2

2

√
−ω2 + k2Π(ω,k)

(
k2Π(ω,k) ωkΠ(ω,k)

ωkΠ(ω,k) ω2Π(ω,k)

)
. (2.40)
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2.4. Plasmon modes in d = 2 + 1

However, we are ultimately interested in describing condensed-matter systems, where

the Fermi velocity is considerably smaller than the speed of light, so vF ≪ c and

we look into a regime where |k| ≫ ω in Eq. (2.40). As a result, the density-density

response function is well approximated by the familiar form

χ00(ω,k) =
G00(ω,k)

1− α2

2|k|G
00(ω,k)

, (2.41)

that is expressed in terms of the static Coulomb potential expected in two-dimensional

metals. Notice that the coupling constant for the single layer is α2/2, in accordance

with Eq. (2.2).

In figure 2.6 we see, for two different values of T/µ, how this form of the potential does

indeed give rise to ω ∝
√

|k| modes observed in a (spatially) two-dimensional system

such as graphene [93]. As before, the black dashed lines show the hydrodynamic

plasmon modes

ω2
p =

α2

2

2 ⟨ρ⟩2

3 ⟨ϵ⟩
|k| . (2.42)

In figure 2.7, we observe the momentum dependence of the peak for T ≃ 0.02µ, where

again we notice that the height of the peak in the charged system is less pronounced

with respect to the one in the Reissner-Nordström solution, due to the screening effect

of charged particles. Furthermore, in figure 2.8, we study the temperature dependence

of this mode for a fixed value of |k|/µ. In the Reissner-Nordström solution, the posi-

tion of the peak for low enough momenta is independent of the temperature and given

by the speed of sound ω = vs|k| = |k|/
√
2. In contrast, when we introduce Coulomb

interactions we can see that, while the peak still gets sharper and the height increases

as we lower the temperature, the position of the peak is temperature dependent. For

high temperatures, as the temperature is raised the mode shifts towards the position

of the peak of the neutral solution (ω/µ ≃ 0.035 for |k|/µ = 0.05), since tempera-

ture fluctuations start to dominate over the effect of Coulomb interactions. As we

decrease the temperature, however, while the peak initially shifts to higher frequen-

cies, it reaches a maximum frequency for T/µ = 1/2π (purple line in the plots) before

starting to move back on the frequency axis as we further lower the temperature. This

behavior is in accordance with the hydrodynamic prediction for the plasma frequency

in Eq. (2.42). In figure 2.9 we show the temperature dependence of this hydrodynamic

prediction in the grand-canonical ensemble, that is given by the temperature depen-
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Chapter 2. Screening of Coulomb interactions in holography

dence of the thermodynamic quantities in Eqs. (2.12)-(2.14). The green line includes

the higher-order correction expressed in terms of the temperature-independent sound

velocity vs = 1/
√
2

ω2
p =

α2

2

2 ⟨ρ⟩2

3 ⟨ϵ⟩
|k|+ v2sk

2 . (2.43)

The hydrodynamic plasma frequency shows a maximum at T/µ = 1/2π, given by

ωp =

√
α2

3
|k|µ+

k2

2
, (2.44)

that, for α2/2 = 1/10 and |k| = µ/100, gives ωp ≃ 0.0268µ, in agreement with the

holographic results shown in figure 2.8. On the other hand, as T/µ→ ∞, ⟨ρ⟩2 / ⟨ϵ⟩ → 0

and we recover the sound dispersion.
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Figure 2.6: The density spectral function for T ≃ 0.02µ (left) and T ≃ 1.2µ (right).
We have taken α2/2 = 1. Here we see that the sound modes from the Reissner-Nordström
solution turn into ω ∝

√
|k| modes at low energies. The dashed black line represent the

hydrodynamic solution for the dispersion relation ω2 = 2 ⟨ρ⟩2 |k|/3 ⟨ϵ⟩

2.4.2 Layered system

In a similar fashion to what we did in the last section, we present here a toy model for

an infinite stack of (2 + 1)-dimensional layers. We show that we recover the form of

the Coulomb potential for a layered electron gas [122, 35], and we present the density

spectral function for a double-trace deformation of this form. The latter shows a

dispersion relation for the low-energy plasmon excitations that changes from linear to
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Figure 2.7: The density spectral function for different values of |k|/µ in the Reissner-
Nordström solution (left) and with Coulomb corrections (right). We see that due to screening
in the charged system the plasmon peaks shift towards higher frequencies and are lower in
height than the corresponding peak of the sound mode.

a gapped mode as a function of Bloch momentum p in the direction perpendicular to

the layers. This behavior of the plasmon modes has very recently been observed in

high-temperature cuprate superconductors consisting of stacked conducting copper-

oxide layers [59].

For our toy model, we make the approximation that there are both strong in-plane

short-range interactions and a long-range Coulomb interaction that couples the dif-

ferent layers. We, therefore, model each single layer as an independent d = 2 + 1

boundary system dual to the 3 + 1 Reissner-Nordström bulk theory, but we define a

(3 + 1)-dimensional current asJµ(x, z) =
∑
n J

µ(x, z)δ(z − nℓ), µ = 0, . . . , d− 1

Jz(x, z) = 0
, (2.45)

with n ∈ Z the layer index. The layers are stacked along the z axis with ℓ the distance

between each layer, and Jµ(x, nℓ) is the boundary operator computed from holographic

calculations with sources a
(0)
n not necessarily equal to each other.

Using Eq. (2.45) into the boundary deformation in Eq. (2.25) and choosing the gauge

ξ = 1 for convenience, we obtain the action

∫
ddx

∫
dz

(
1

2α2
Aµ(x, z)

[
ηµν∂2

]
Aν(x, z)−

∑
n

Aµ(x, z) ⟨Jµ(x, z)⟩ δ(z − nℓ)

)
,

(2.46)
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Figure 2.8: Temperature dependence of the plasmon mode for |k|/µ = 0.01 and α2/2 =
1/10. We see that the peaks become less pronounced as we raise the temperature due to
the effect of temperature fluctuations. Moreover, for high temperatures, the position of
the plasmon mode shifts towards the position of the sound mode in the neutral system, as
temperature fluctuations start dominating over the Coulomb interaction. As we lower the
temperature we see that the plasma frequency reaches a maximum at T/µ = 1/2π (purple),
before moving to lower values as the temperature is decreased further.

with µ = 0, . . . , d− 1, and we have integrated out Az(x, z). Fourier transforming and

integrating out the Maxwell field, we obtain

−α
2

2

∫
ddk

(2π)d

∫
dkz
2π

(∑
n,m

⟨Jµ(−k, nℓ)⟩ ηµν
e−ikz(n−m)ℓ

k2 + k2z
⟨Jν(k,mℓ)⟩

)
. (2.47)

We can next perform the integral over the momentum kz and further Fourier transform

Jµ(k, nℓ) =
ℓ

2π

∫ π/ℓ

−π/ℓ
dp Jµ(k, p)eipnℓ ,

so that we can then sum over the layer indices to obtain the desired double-trace

deformation (see appendix 2.B for the detailed computation)

−α
2

2

∫
ddk

(2π)d

∫ π/ℓ

−π/ℓ

dp

2π
⟨Jµ(−k,−p)⟩ ηµν

ℓ

2|k|
sinh (|k|ℓ)

cosh (|k|ℓ)− cos(pℓ)
⟨Jν(k, p)⟩ ,

(2.48)

that gives the Coulomb potential for a layered electron gas. Notice that when the layer

sources are in phase, i.e., cos(pℓ) = 1, we recover the potential for a (3+1)-dimensional
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Figure 2.9: Temperature dependence of the hydrodynamic plasma frequency for |k|/µ =
0.01 and α2/2 = 1/10, with (green) and without (blue) a higher-order momentum correction
v2sk

2. We see that the plasma frequency has a maximum at T/µ = 1/2π, corresponding to
ωp ≃ 0.0268µ.

system proportional to 1/k2 for |k| ≪ 1 and ℓ such that |k|ℓ≪ 1, since

ℓ

2|k|
sinh (|k|ℓ)

cosh (|k|ℓ)− 1
=

1

k2
+O(ℓ2) . (2.49)

The spectral function then contains, for pℓ = 0, a gapped plasmon mode, as it is

shown in figure 2.10a, where we plot the density spectral function at T ≃ 0.02µ for a

Reissner-Nordström solution with a double-trace deformation of the form of Eq. (2.48).

However, as the only coupling between the layers is due to the Coulomb interaction,

the Green’s functions of each single layer without the double-trace deformation contain

linear modes typical of a (2+1)-dimensional system and with a dispersion ω = |k|/
√
2

for low energies, and the resulting gapped mode is therefore different from the one in

a (3 + 1)-dimensional material with the same characteristics. On the other hand for

any cos(pℓ) ̸= 0 we can distinguish three different regimes. For |k|ℓ ≪ |cos(pℓ)| we
obtain a constant potential

ℓ

2|k|
sinh (|k|ℓ)

cosh (|k|ℓ)− cos(pℓ)
=

ℓ2/2

1− cos(pℓ)
+O

(
|k|2ℓ4

)
. (2.50)

In the Reissner-Nordström system with a linear low-energy dispersion relation, this has

the effect of renormalizing the speed of these sound modes. However, for |cos(pℓ)| ≪
|k|ℓ ≪ 1, we recover the 1/k2 potential. Finally, for |k|ℓ ≫ 1 we obtain a ℓ/2|k|
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potential. As for the (2 + 1)-dimensional case, in condensed-matter systems we are

interested in the limit where ω in the potential satisfies ω ≪ |k| as it is suppressed

by a factor of vf/c ≪ 1, with vf the Fermi velocity. In this limit, the latter potential

gives rise to a dispersion relation ω ∝
√

|k|. This behavior can be seen in figures

2.10b-2.10d. In particular, by looking at the hydrodynamic approximation

G00(ω,k) ≃ 2 ⟨ρ⟩2

3 ⟨ϵ⟩
k2/ℓ

ω2 − k2v2s
for ω ≳ k , (2.51)

we can see that, by introducing a double-trace deformation as in Eq. (2.48), we obtain

a response function

χ(ω,k) =
k2/ℓ

ω2 − v2sk
2 − α2

2|k|

(
2⟨ρ⟩2
3⟨ϵ⟩

)
sinh(|k|ℓ)

cosh (|k|ℓ)−cos(pℓ)k
2
, (2.52)

whose poles are shown in figure 2.11 for several value of pℓ, from pℓ = 0, that gives

the gapped plasmon mode, to pℓ = π that leads to the lowest speed of sound, since in

the hydrodynamic limit the renormalized speed of sound is given by

ṽ2s =
1

2
+
α2

2

(
2 ⟨ρ⟩2

3 ⟨ϵ⟩

)
ℓ

1− cos pℓ
. (2.53)

In figures 2.10a-2.10d we see that the low-energy behavior of the acoustic plasmon

modes is well described by the hydrodynamics approximation (shown as a black dashed

line). As we move to higher frequencies, however, we observe a discrepancy between

the holographic result and the hydrodynamic approximation. This is not unexpected

as hydrodynamics is only a long-wavelength theory.

2.5 Plasmons in 3 + 1 dimensions and conductivity

In this section we apply the double-trace deformation to the holographic calculation

of the (3 + 1)-dimensional optical conductivity in the Reissner-Nordström metal. Al-

though it would seem straightforward to extend the results of the previous section to

a (3 + 1)-dimensional model, there is an important subtlety as, in all even boundary

dimensions, the theory contains a logarithmic divergence that introduces a scale into

the theory that needs to be determined experimentally. Without a double-trace defor-

mation this scale only enters the real part of the Green’s functions, and it, therefore,

does not modify the spectral functions. However, when introducing the double-trace
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Figure 2.10: The density spectral function for a layered system at T ≃ 0.02µ. When the
sources are in phase (a), i.e., cos(pℓ) = 1, we recover the gapped mode of (3+1)-dimensional
materials. However, if the sources are out of phase, for kℓ ≪ |cos(pℓ)| the dispersion relation
is linear. We can also observe that for |cos(pℓ)| ≪ kℓ ≪ 1, we recover the quadratic modes
(b). For kℓ ≫ 1 we instead recover the dispersion relation ω ∝

√
|k|, as more noticeable in

(c)-(d). The black dashed line represent the plasmon modes computed in the hydrodynamic
approximation. In all the plots we used α2 = 1 and ℓ = 10.

deformation the scale affects the imaginary part of the Green’s functions as well, and

can be observed in the spectral function, or equivalently, in the real part of the (longi-

tudinal) conductivity. We show that this gives rise to a form of the conductivity that

resembles the one measured in Weyl and Dirac semimetals.

2.5.1 Renormalization and anomaly

In order to study the properties of the boundary theory we need to regularize the

divergences of the boundary action. The necessary counterterms depend on the space-

time dimension of the theory, and for the gravitational part of the action they are

treated in detail in ref. [27] up to d = 6.
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Figure 2.11: Effect of the double-trace deformation for a layered system on a response
function with low-energy sound modes. For pℓ = 0 we obtain a gapped plasmon mode, while
for any value of pℓ ∈ (0, π] the low-energy dispersion relation is linear, with pℓ = π having
the lowest speed. The plot shows the plasmon dispersion for pℓ = {0, π/50, π/25, nπ/8}, with
n ∈ [1, 8] an integer.

In the case of d = 2 + 1 treated above, the Maxwell term is finite as r → ∞, and

the only UV divergence comes from the gravitational part that we regularized by

adding the counterterm in Eq. (2.11). More interesting, however, is the case of even

boundary spacetime dimension, as the 3 + 1-dimensional system we are interested in.

The asymptotic expansion of the fields as r → ∞ is

hµν →r2
(
h(0)µν + h(2)µν r

−2 + · · ·+ h(d)µν r
−d + hµνr

−d log (r/|k|) +O(r−d−2 log r)
)

aµ →a(0)µ + a(2)µ r−2 + · · ·+ a(d−2)
µ r−d+2 + aµr

−d+2 log (r/|k|) +O(r−d log r) ,

(2.54)

where the expansion coefficients are functions of k, and the logarithmic terms only

appear in even dimensions. All the higher-order coefficients as well as the coefficient

of the logarithmic term are local functions of the leading-order coefficients a
(0)
µ and

h
(0)
µν and can be determined by a near-boundary analysis. The exceptions are the

coefficients related to the field theory response, h
(d)
µν and a

(d−2)
µ in the present case,

that require the full solution of the linearized equations of motion.1 In d = 3 + 1, we

see that in addition to the divergence regulated by the counterterm in (2.11), both the

Maxwell and the gravitational field then present a logarithmic divergence, related to

1In the asymptotic expansion in Eq. (2.54) it is usually convention to include all the momentum
dependence in the coefficients, hence to adsorb the log(1/|k|) term into the coefficient with the same
power of r. However, here we keep the momentum dependence in the term log(r/|k|), as it makes the
following argument more clear.
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the conformal anomaly of the boundary theory [118].

As we show below, the regularization of the logarithm introduce a renormalization

scale, kuv, that cannot be determined from the theory but enters as an experimental

parameter. Since we are mostly interested in studying the density-density response

function, here we focus on the logarithmic term coming from the expansion of the

Maxwell field. The case of the metric field is analogous. The boundary term relevant

for the ⟨JµJν⟩ correlation functions is

δS
(2)
A,bdy = − lim

ruv→∞

1

2

∫
r=ruv

ddx
√
−γnµγνσaσ∂µaν . (2.55)

Inserting the asymptotic expansion of Eq. (2.54) in d = 3+ 1, and the expressions for

the induced boundary metric and the vector normal to the boundary, we obtain

δS
(2)
A,bdy = − lim

ruv→∞

1

2

∫
r=ruv

d4x ηνσa(0)σ

(
−2a(2)ν + aν − 2aν log (r/|k|)

)
. (2.56)

So, in order to take the limit we need to regularize the logarithmic divergence. This

can be done by inserting a scale-dependent counterterm

Sc.t. = − log(ruv/k̃uv)

4

∫
r=ruv

ddx
√
−γFµνFµν (2.57)

that gives us the regularized boundary term

δS
(2)
A,bdy =

1

2

∫
d4x ηνσa(0)σ 2

[
a(2)ν + aν log

(
kuv
|k|

)]
, (2.58)

where we defined kuv = k̃uv
√
e. We, therefore, see that the response of the current

operator to small fluctuations depends on the choice of scale:

δ ⟨Jµ⟩ =
δS

(2)
A,bdy

δa
(0)
µ

= 2ηµν
[
a(2)ν + aν log

(
kuv
|k|

)]
. (2.59)

The coefficients aν can be expressed in terms of the source term by matching coeffi-

cients in a near-boundary expansion, and we obtain

a0 =− |k|
2
(ωa(0)x + |k|a(0)0 ) ,

ax =
ω

2
(ωa(0)x + |k|a(0)0 ) .

(2.60)
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This implies that the dependence of the Maxwell Green’s functions on the renormal-

ization scale kuv appears in a purely real term

Gµν = G̃µν − kµkν log

(
kuv
|k|

)
, (2.61)

were we denoted with G̃µν the part of the Green’s functions independent of kuv. The

logarithmic correction is thus not visible in the spectral function, nor in the real part

of the conductivity. However, due to the form of the RPA-like response function in Eq.

(2.33), this is not the case anymore when we introduce the double-trace deformation,

and the scale-dependent term can also be observed in the real part of the optical

conductivity

σ(ω) =
χxx(ω,k = 0)

−iω
. (2.62)

In particular for k = 0, the ax fluctuations decouples from all the others, and the

current-current Green’s function takes the form

Gxx(ω,k = 0) = −2a
(2)
x (ω)

a
(0)
x (ω)

− ω2 log

(
ωuv

|ω|

)
≡ G̃xx(ω,k = 0)− ω2 log

(
ωuv

|ω|

)
,

(2.63)

and, as mentioned previously, for the neutral system the scale-dependent logarithm

only affects the imaginary part of the optical conductivity

σ0(ω) =
G̃xx(ω,k = 0)

−iω
− iω log

(
ωuv

|ω|

)
≡ σ̃0 − iω log

(
ωuv

|ω|

)
. (2.64)

When we include the double-trace deformation we see from Eq. (2.29) that the optical

conductivity for a system with Coulomb interactions becomes

σ(ω) =
σ0(ω)

1− α2

iω σ0(ω)
, (2.65)

so that the real part of the conductivity now contains a signature of the scale-dependent

logarithm

Re[σ(ω)] =
Re[σ̃0(ω)](

1− α2

ω Im[σ̃0(ω)] + α2 log (ωuv/|ω|)
)2

+ α2

ω Re[σ̃0(ω)]
. (2.66)
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This form of the conductivity, with a logarithmic term depending on a scale ωuv to

be determined experimentally, resembles the optical conductivity of Dirac and Weyl

semimetals [115]. In the next sections, we give some explicit examples of conductivities

in 3 + 1 dimensions with the double-trace correction. In particular, in section 2.5.2

we compute the optical conductivity in pure AdS5, without backreaction, that can be

found analytically. In section 2.5.3 we instead study the effects of the double-trace

deformation on the optical conductivity of the Reissner-Nordström metal.

2.5.2 Exact solution in AdS5 background

In the simple case of a Maxwell action on a AdS5 background without backreaction,

which is the probe limit where the coupling constant λ → ∞, we can compute the

optical conductivity analytically. We use this example to show the importance of the

logarithmic term in the optical conductivity when adding a double-trace deformation.

In particular, we find that the optical conductivity in the neutral theory matches the

results for a non-interacting Weyl or Dirac semimetal obtained from condensed-matter

calculations [71, 72]. Inserting the deformation then gives us the optical conductivity

expected from Weyl and Dirac semimetals with only long-range Coulomb interactions

in the RPA approximation.

Since we consider the limit of no backreaction on the metric, we are only interested in

the Maxwell action

S = −1

4

∫
dd+1√−gFµνFµν , (2.67)

with the AdS background metric (we use the variable ρ ≡ 1/r for notational conve-

nience)

ds2 =
1

ρ2
(
dρ2 + ηµνdx

µdxν
)
. (2.68)

The linearized equations of motion of the theory are solved, after fixing the momentum

in the x direction, by

ax(ω,k) =

C1Jd/2−1(−ikρ) + C2Yd/2−1(−ikρ), −ω2 + k2 > 0

C̃1H
(1)
d/2−1(k̃ρ) + C̃2H

(2)
d/2−1(k̃ρ), −ω2 + k2 < 0

, (2.69)

with k̃ ≡
√

−(−ω2 + k2) ∈ R, and H(1) and H(2) are the Hankel functions of the
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Chapter 2. Screening of Coulomb interactions in holography

first and second kind, respectively. From now on we focus on the case −ω2 + k2 < 0

as we are ultimately interested in the conductivity for k = 0. The solution with

C̃2 = 0 correspond to the infalling boundary condition and can be used to compute

the retarded Green’s function. We thus set C̃2 = 0 in the following.

For d = 3 + 1, we can then study the near boundary (ρ → 0) behavior of the field

fluctuations

ax = C̃1

(
− 2i

k̃π
+
k̃ρ2

2
+
ik̃(2γe − 1)

2π
ρ2 +

ik̃

π
log

(
k̃ρ

2

)
ρ2

)
(2.70)

that shows the logarithmic term that gives rise to a divergence on the boundary, with

γe ≃ 0.577 the Euler’s gamma constant. After regularizing the boundary action with

a counterterm of the form

Sc.t. = −
log
(
ρuvkuve

(2γe−1)/2/2
)

4

∫
ρ=ρuv

ddx
√
−γFµνFµν (2.71)

we can extract the optical conductivity

σ0(ω) =
Gxx(ω,k = 0)

−iω
=
π

2
ω + iω log

(
|ω|
ωuv

)
=
iω

2
log

(
−
(
ω

ωuv

)2
)

, (2.72)

that exactly reproduces the zero-temperature optical conductivity for a non-interacting

Weyl or Dirac semimetal, up to a prefactor [71]. In particular, the holographic result in

(2.72) describes a system with strong interactions, and, contrary to the non-interacting

Dirac semimetal calculation, the prefactor that for convenience we have set to one by a

rescaling of the action, depends on the coupling constant. The frequency dependence,

however, is the same as it is set by the conformal symmetry of the theory.

When introducing a double-trace deformation the new response function takes the

form

χxx(ω,k) =
Gxx(ω,k)

1− α2

ω2Gxx(ω,k)
, (2.73)

so that the real part of the conductivity in the modified boundary theory with Coulomb

interaction becomes:

Re[σ(ω)] = Re

[
χxx(ω,k = 0)

−iω

]
=

π
2ω

(1 + α2 log(|ω|/ωuv))
2
+ α4π2

4

. (2.74)
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2.5. Plasmons in 3 + 1 dimensions and conductivity

The logarithmic term in the denominator of the conductivity is reminiscent of the

conductivity of Weyl semimetals [115]. From (2.74), we can see that for ω → 0 and

ω → ∞, σ ∼ ω/ log2 (ω), and in both limits we have Re[σ] < Re[σ0]. However, there

is a range of values for the coupling constant α2 where we can have Re[σ] > Re[σ0]

(considering only ω > 0, where the real part of the conductivity is always positive).

Explicitly:

α2 <
2

π
:

σ(ω) > σ0(ω), exp

(
− 1
α2 −

√
1
α4 − π2

4

)
< ω

ωuv
< exp

(
− 1
α2 +

√
1
α4 − π2

4

)
,

σ(ω) < σ0(ω), otherwise

α2 >
2

π
: σ(ω) < σ0(ω), ∀ω ∈ R+ .

(2.75)

This behavior can be observed in figure 2.12, were we plot the conductivity with and

without double-trace deformation for different values of the coupling constant. In all

the plots we fixed the renormalization scale ωuv = 100. Note however that, being the

only scale in the theory, a change in the value of ωuv simply amounts to a change

of scale. Notice also, that there is no plasmon peak in the conductivity. This is an

effect of the probe limit, where the Maxwell field decouples from the gravitational

background and does not backreact on the geometry. This in turns suppresses the

sound modes in a neutral theory, and hence the plasmon modes in a charged system.

α2 = 0

α2 = 0.1

α2 = 1

α2 = 2

0 20 40 60 80 100

0

50

100

150

ω

Re σ]

Figure 2.12: Conductivity for a Maxwell field in AdS5 without backreaction, but with a
double-trace boundary deformation. The value of the coupling constant α2 determines the
importance of the effect of the double-trace deformation. The case α2 = 0 corresponds to the
standard solution Re[σ(ω)] = ωπ/2.
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Chapter 2. Screening of Coulomb interactions in holography

2.5.3 Conductivity with Coulomb interactions

Here we compute the optical conductivity in d = 3+1 boundary spacetime dimensions

for the Reissner-Nordström metal with and without double-trace deformation.
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Figure 2.13: Real (left) and imaginary (right) part of the optical conductivity for the
Reissner-Nordström metal in d = 3 + 1 for different values of the temperature. The black
dashed line is the AdS5 analytical solution. For large frequency we see that both the real and
the imaginary parts go to the AdS5 results, where for the imaginary part we choose the cutoff
scale ωuv to be the same for different values of T/µ. In particular, in the imaginary part,
we can observe the logarithmic behavior for large frequency, as well as the 1/ω behavior for
small ω. This implies that the real part of the conductivity contains a delta function Zδ(ω),
with Z the Drude weight that in this case is given by Z = 2 ⟨ρ⟩2 /3 ⟨ϵ⟩.

In figure 2.13, we show the optical conductivity for a neutral system for different values

of T/µ and compare it with the AdS5 analytical solution obtained in the previous

section. In particular, the short-wavelength limit of the theory is determined by the

geometry of the bulk spacetime for large r, and we therefore expect to recover the

AdS5 result for high frequencies. This is indeed what we observe in figure 2.13, and

we can notice the logarithmic behavior at large frequencies in the imaginary part of the

conductivity, were we chose the value of the cutoff-scale ωuv to be the same for different

values of T/µ, since the asymptotic behavior depends on the choice of scale. Moreover,

we can see that at small frequencies the imaginary part of the optical conductivity

of the Reissner-Nordström solution diverges as 1/ω, signaling the presence of a delta

function at the origin for Re[σ(ω)]. This delta function is expected since we are dealing

with a system with translation invariance, but it is suppressed in the probe limit for

the AdS5 solution as the background is kept fixed [55].

By introducing the double-trace deformation the delta function in the origin disap-

pears, as it is turned into a peak at the plasma frequency by Coulomb interactions. In

figure 2.14, we can clearly observe this peak, that becomes sharper and higher as we

lower the temperature. In figure 2.15 we plot the imaginary part of the conductivity,
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Figure 2.14: Real part of the optical conductivity for the Reissner-Nordström metal in
d = 3 + 1 with a double-trace deformation (α2 = 1/10). On the right we show an enlarged
version of the figure on the left. We clearly see a peak at the plasma frequency, that becomes
increasingly higher (left) and sharper (right) as we lower the temperature. Moreover, we
notice that the conductivity goes to zero as ω → 0, contrary to the neutral system.

where we see that the pole in the origin present in the optical conductivity of a neutral

system is shifted to the nonzero plasma frequency. Moreover, with the double-trace

deformation, the real part of the conductivity goes to zero as ω → 0, as is expected

from Eq. (2.66).

2.6 Conclusion and Outlook

In summary, we proposed a general procedure to introduce screening effects of the

Coulomb interaction in the holographic description of strongly interacting system.

This allows us to study spectral functions of systems with charged particles that

contain plasmon excitations, as it is the case in many condensed-matter systems

of interest. In particular, we numerically studied the effect of this procedure in a

Reissner-Nordström theory, where we observed properties expected from traditional

condensed-matter calculations.

In d = 3 + 1 we obtained a gapped plasmon mode in the density-density response

function, and we showed that the optical conductivity with Coulomb interactions

contains scale-dependent logarithms, resembling the conductivities predicted in Dirac

and Weyl semimetals.

In d = 2+1, our main result is a toy model of a system composed of a stack of (spatially)

two-dimensional layers, with strong in-plane interaction and with coupling between

layers governed by the Coulomb interaction. In this model we see that the behavior

of the low-energy dynamics depends on the out-of-plane Bloch momentum p. When
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Figure 2.15: Imaginary part of the optical conductivity for the Reissner-Nordström metal
in d = 3 + 1 with a double-trace deformation (α2 = 1/10). We see that Im[σ(ω)] → 0 for
ω → 0. This implies that there is no pole at the origin, as screening effects shift the pole to
the nonzero plasma frequency.

pℓ = 0, with ℓ the inter-plane distance the density-density spectral function contains

a gapped plasmon mode. However, for pℓ ̸= 0, we obtain an ‘acoustic plasmon’, with

a linear low-energy dispersion relation with a renormalized speed of sound. These

results show that the model qualitatively reproduces recent experimental results [59].

This suggests that the Coulomb interaction between layers might play a key role in

high-temperature cuprate superconductors, proving the necessity of incorporating this

interaction in holographic models if we want to study properties of these layered high-

Tc materials. In a single layer, we instead showed that the dispersion relation assume

the form ω ∝
√
|k|, as observed in graphene.

In conclusion, we have seen that, even with a relatively simple holographic model

as the Reissner-Nordström background, the addition of long-range Coulomb inter-

actions presents interesting features that can more closely reproduce experimental

results in strongly interacting materials. Therefore, it would be very interesting in

future work to apply the double-trace deformation introduced here to different holo-

graphic backgrounds, such as the holographic superconductor model and Lifshitz so-

lutions, in order to study the behavior of their longitudinal low-energy excitations in

the presence of Coulomb interactions. These gravitational theories, contrary to the

Reissner-Nordström model, allow for the description of systems with zero entropy at

zero temperature. As the ultimate goal is to describe laboratory condensed-matter

system, a next important step is to relax the assumption of momentum conservation,

as impurities in experimental materials necessarily break momentum conservation.
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Finally, the addition of a hyperscaling-violation factor to the metric of the Lifshitz

solution can be used to study the effect of Coulomb interactions on quantum phases

with hyperscaling violation [86].

2.A Gauge Solutions

In the theory considered in this paper, we have two gauge fields, the one-form Aµ

and the metric tensor gµν . In order to compute the Green’s function, we then in-

troduce fluctuations of these fields δAµ ≡ aµ and δgµν ≡ hµν . As explained in

section 2.2, using rotational invariance to fix the momentum along the x direction

kµ = (ω,±|k|, 0, . . . , 0), the remaining fluctuations decouple according to their par-

ity under O(d − 2) acting on x2, . . . , xd−1 [84]. In the longitudinal channel, in both

d = 3 + 1 and d = 2 + 1, we are then left with (where obviously in d = 2 + 1 there is

no hzz)

δΦ = (at, ax, ar, hxt, htt, hxx, hyy = hzz, hrr, htr, hxr) . (2.76)

Using the gauge freedom to choose a gauge where hrµ = 0, as well as Ar = ar = 0,

the set of coupled fluctuations reduces to

δΦ = (at, ax, hxt, htt, hxx, hyy = hzz) . (2.77)

This set of fluctuations contains only two physical degrees of freedom, therefore, we

can only find two independent solutions to the coupled system of linearized equations

of motion. However, after setting the r components to zero, we still have some left-

over gauge freedom, and the remaining solutions necessary to compute the Green’s

functions are pure gauge solutions that can be extracted once we know the residual

gauge freedom we are left with, as we explain below.

The fields are invariant under the gauge transformation

Aµ + aµ → Aµ + aµ − ∂µΛ , (2.78)

and diffeomorphisms. The latter gives

aµ → aµ − ξν∇νAµ − (∇µξ
ν)Aν

hµν → hµν −∇µξν −∇νξµ .
(2.79)
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In order to set the r-components of the metric fluctuations to zero we have to choose

a vector ξ̄ν such that

hrµ = ∇r ξ̄µ −∇µξ̄r = ∂r ξ̄µ − 2Γλrµξ̄λ + ∂µξ̄r . (2.80)

This defines a set of partial differential equations. Working in Fourier space and using

rotational invariance to fix the momentum in the x direction, we obtain a set of coupled

ordinary differential equations of the form

ξ′(r, ω, k) +A(r)ξ(r, ω, k) = B(r, ω, k) , (2.81)

that has the general solution

ξ̄(r, ω, k) =

(∫
dr
[
B(r, ω, k)e

∫
drA(r)

]
+ C(ω, k)

)
e−

∫
drA(r) . (2.82)

We therefore see that ξµ is determined up to an arbitrary factor Cµ(ω, k)e
−

∫
drAµ(r),

that corresponds to the left over gauge freedom. In particular from Eq. (2.80) we find

that the residual gauge transformations are given by

ξr =Cr(ω, k)e
2
∫
drΓr

rr , (2.83)

ξα =Cα(ω, k)e
2
∫
drΓα

rα , (2.84)

where α = t, x, y and there is no summation on the two repeated indices in Γαrα. In the

same way, we want to choose the scalar Λ in (2.78) in order to set the r component of

the gauge field to zero. Under the diffeomorphism used to set hrµ = 0, we have that

Ar + ar transformed as

Ar + ar → Ar + ar + 2gttξ̄tΓ
t
rtAt − gttξ̄′tAt , (2.85)

so we need to choose Λ to be

Λ(r, ω, k) =

∫
dr
(
Ar + ar + 2gttξ̄tΓ

t
rtAt − gttξ̄′tAt

)
+ λ(ω, k) (2.86)

where λ(ω, k) is an arbitrary constant in r. Notice that this expression is also invariant

under the residual gauge transformation ξ̄t → ξ̄t + cte
2
∫
drΓt

rt . Since we have some

gauge freedom left, and we know that the linearized equations of motion are invariant

under all allowed gauge transformation, we have, given a solution Φ̄ of the linearized
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equations of motion, that Φ̄ transformed under all residual gauge transformation is

also a solution. Moreover, we know that Φ = 0 is a solution. We can thus construct

pure gauge solutions by choosing n independent residual gauge transformation, i.e.,

by fixing n linearly independent values of the vector C = (λ,Cα).

For example, in d = 2 + 1 we have from Eqs. (2.80) and (2.82) that the gauge where

there are no r-components of the fluctuations is defined by

ξ̄r =

(
1

2

∫
dr
[
hrre

−
∫
drΓr

rr

]
+ Cr

)
e
∫
drΓr

rr ,

ξ̄t =

(∫
dr
[
(hrt + iωξr)e

−2
∫
drΓt

rt

]
+ Ct

)
e2

∫
drΓt

rt ,

ξ̄x =

(∫
dr
[
(hrx − ikξr)e

−2
∫
drΓx

rx

]
+ Cx

)
e2

∫
drΓx

rx ,

ξ̄y =

(∫
dr
[
hry + e−2

∫
drΓy

yt

]
+ Cy

)
e2

∫
drΓy

ry ,

(2.87)

and we are left with the gauge transformations defined by

Λ =λ(ω, k) ,

ξi =Ci(ω, k)e
2
∫
dr/r = r2Ci(ω, k) ,

ξt =Ct(ω, k)e
∫
dr f′

f = fCt(ω, k) ,

ξr =Cr(ω, k)e
−

∫
dr f′

2f =
1√
f
Cr(ω, k) .

(2.88)

Remembering that the behavior of the considered field fluctuations under a gauge

transformation is given, in Fourier space, by

ax →ax − ikΛ ,

at →at + iωΛ ,
(2.89)
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and

ax →ax + ikAt/fξt ,

at →at − fA′
tξr − iω/fAtξt ,

hxt →hxt − ikξt + iωξx ,

htt →htt + 2iωξt + ff ′ξr ,

hxx →hxx − 2ikξx − 2frξr ,

hyy →hyy − 2frξr ,

(2.90)

we can generate 4 independent pure gauge solutions by setting the fluctuations to zero

on the right-hand side of (2.89) and (2.90) and plugging in the expressions for the

residual gauge freedom (2.88) with C = Cµδ
µ
ν̄ and ν̄ ranging over the 4 indices.

Notice that in (2.87), ξ̄t and ξ̄x depends on ξr, therefore, when performing a residual

gauge transformation ξ̄r → ξ̄r+1/
√
fCr, ξ̄t and ξ̄x will change as well. We ultimately

find that the pure gauge solutions are:

δΦ(1) =(−ω, k, 0, 0, 0, 0)

δΦ(2) =
(
0, 0, iωr2, 0,−2ikr2, 0

)
δΦ(3) =(−iωAt, ikAt,−ikf, 2iωf, 0, 0)

δΦ(4) =

(
−
√
fA′

t + ω2At

∫
dr

f
√
f
,−ωk

∫
drAt

f
√
f
+ ωk

∫
drAt

f
√
f
,

ωk

[
f

∫
dr

f
√
f
+ r2

∫
dr

r2
√
f

]
,−2ω2f

∫
dr

f
√
f
+
√
ff ′,

− 2k2r2
∫

dr

r2
√
f
− 2
√
fr,−2

√
fr

)
(2.91)

This results can now easily be checked by substitution in the linerarized equations of

motion.

2.B Details of the calculations for the layered sys-

tem

Using the notation of section 2.4.2, with d = 2+ 1, the (3 + 1)-dimensional boundary

deformation in Fourier space, after integrating out the Maxwell field, is, up to a factor
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of −α2/2 that we neglect here for notational convenience∫
ddk

(2π)d

∫
dkz
2π

⟨Jµ(−k,−kz)⟩
ηµν

k2 + k2z
⟨Jν(k, kz)⟩ , (2.92)

with Jµ(k, kz) the Fourier transform of Jµ(x, z) defined as

Jµ(x, z) =
∑
n

Jµ(x, z)δ(z − nℓ) . (2.93)

The Fourier transform along the z direction can easily be computed as

J(x, kz) =
∑
n

∫
dz

∫
J(x, z)δ(z − nℓ)e−ikzz =

∑
n

J(x, nℓ)e−ikznℓ . (2.94)

Inserting this into (2.92) we then have

∫
ddk

(2π)d

∫
dkz
2π

(∑
n,m

⟨Jµ(−k, nℓ)⟩ ηµν
e−ikz(n−m)ℓ

k2 + k2z
⟨Jν(k,mℓ)⟩

)
, (2.95)

and we can perform the integral over kz that gives

∫
ddk

(2π)d

(∑
n,m

⟨Jµ(−k, nℓ)⟩ ηµν
e−|n−m||k|ℓ

2|k|
⟨Jν(k,mℓ)⟩

)
. (2.96)

In order to perform the summation, we first Fourier transform J(k, nℓ) in the first

Brillouin zone, that is, we can write

J(k, nℓ) =
ℓ

2π

∫ π/ℓ

−π/ℓ
dp J(k, p)eipnℓ , (2.97)

to obtain∫
ddk

(2π)d

∑
n,m

ℓ2

(2π)2

∫ π/ℓ

−π/ℓ
dp dp′ ⟨Jµ(−k, p)⟩ ηµν

e−|n−m||k|ℓ

2|k|
⟨Jν(k, p′)⟩ einℓp+imℓp

′
.

(2.98)
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We can now perform the summations∑
n,m

e−|n−m||k|ℓeinℓp+imℓp
′

=
∑
m

e−m|k|ℓ+imℓp′
∑
n<m

en|k|ℓ+inℓp +
∑
m

em|k|ℓ+imℓp′
∑
n>m

e−n|k|ℓ+inℓp +
∑
m

eimℓ(p+p
′)

=
∑
m

eimℓ(p+p
′)

(∑
n<0

en|k|ℓ+inℓp +
∑
n>0

e−n|k|ℓ+inℓp + 1

)

=
2π

ℓ
δ(p+ p′)

(
2
∑
n>0

e−n|k|ℓ cos(pℓ) + 1

)
=

2π

ℓ
δ(p+ p′)

sinh (|k|ℓ)
cosh (|k|ℓ)− cos(pℓ)

,

(2.99)

to finally obtain∫
ddk

(2π)d

∫ π/ℓ

−π/ℓ

dp

2π
⟨Jµ(−k,−p)⟩ ηµν

ℓ

2|k|
sinh (|k|ℓ)

cosh (|k|ℓ)− cos(pℓ)
⟨Jν(k, p)⟩ . (2.100)

For the boundary theory coming from holography, we use a set of d-dimensional so-

lutions dual to a d + 1 bulk theory, whose boundary terms read, up to a factor of

1/2 ∫
ddxA(n)

µ (x)
〈
Jµ(n)(x)

〉
, (2.101)

so that the (d+ 1)-dimensional stack of layers can be modelled as

∑
n

∫
ddxA(n)

µ (x)
〈
Jµ(n)(x)

〉
=

∫
ddx

∫
dz
∑
n

Aµ(x, z) ⟨Jµ(x, z)⟩ δ(z − nl) .

(2.102)

Fourier transforming as described above, we can rewrite this last integral as∫
ddk

(2π)d

∫
dkz
2π

∫ π/ℓ

−π/ℓ

dp

2π
ℓAµ(k, kz) ⟨Jµ(−k, p)⟩ ei(p+kz)nℓ

=

∫
ddk

(2π)d

∫ π/ℓ

−π/ℓ

dp

2π
ℓAµ(k, p) ⟨Jµ(−k,−p)⟩ .

(2.103)
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Studying the second-order variation to extract the Green’s function, we have∫
ddk

(2π)d

∫ π/ℓ

−π/ℓ

dp

2π
ℓasµ(k, p)δ ⟨Jµ(−k,−p)⟩

=

∫
ddk

(2π)d

∫ π/ℓ

−π/ℓ

dp

2π

(
ℓasµ(k, p)

) Gµν(k)
ℓ

(ℓasν(−k,−p))

=

∫
ddk

(2π)d

∫ π/ℓ

−π/ℓ

dp

2π
δ ⟨Jµ(k, p)⟩

[
ℓG−1(k)

]
µν
δ ⟨Jν(k, p)⟩ ,

(2.104)

where ℓasµ(k, p) is the (d + 1)-dimensional source. In addition, G(k), which is inde-

pendent of the Bloch momentum p, is the Green’s function coming from a holographic

calculation for a d-dimensional boundary theory, so that G(k)/ℓ has the dimensions

of a (d + 1)-dimensional response. When we introduce the double-trace deformation

that couples the layers, the total boundary action, second order in fluctuations, then

reads∫
ddk

(2π)d

∫ π/ℓ

−π/ℓ

dp

2π
δ ⟨Jµ(−k,−p)⟩

[
ℓaµ(k, p)− ηµν

α2ℓ

2|k|
sinh (|k|ℓ)

cosh (|k|ℓ)− cos(pℓ)
δ ⟨Jν(k, p)⟩

]
=

∫
ddk

(2π)d

∫ π/ℓ

−π/ℓ

dp

2π
δ ⟨Jµ(−k,−p)⟩

[
ℓG−1

µν (k)− ηµν
α2ℓ

2|k|
sinh (|k|ℓ)

cosh (|k|ℓ)− cos(pℓ)

]
δ ⟨Jν(k, p)⟩ ,

(2.105)

that gives a (d+ 1)-dimensional density-density response function of the form

χ00(k, p) =
G00(k)/ℓ

1− α2

2|k|
sinh (|k|ℓ)

cosh (|k|ℓ)−cos(pℓ)k
2G00(k)/k2

. (2.106)

Notice that in the limit ℓ→ ∞ the above boundary action, Eq. (2.105), becomes∫
ddk

(2π)d
δ ⟨Jµ(−k)⟩

[
G−1
µν (k)− ηµν

α2

2|k|

]
δ ⟨Jν(k)⟩ , (2.107)

giving the effective two-dimensional response for a single layer.
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Chapter 3

Coulomb Drag between Two

Strange Metals

3.1 Introduction

The cuprates have been of interest to both the experimental and theoretical physics

community for the past three decades due to their peculiar metallic properties that

cannot be explained within the standard Fermi-liquid framework [110, 80]. In this

class of materials, that have in common a layered structure of CuO2 planes, strong

Coulomb interactions between the electrons give rise to unusual and still unclear

quantum behavior, of which the high-temperature superconducting phase is of most

technological importance. Above the maximum critical temperature of the super-

conducting phase, we find the so-called strange metal, whose anomalous linear-in-

T resistivity [23, 20, 16, 2, 88, 90] characterizes its non-Fermi-liquid behavior, even

if the superconductivity is suppressed by a magnetic field [64]. Given the impor-

tance of understanding the physics at play in the strange-metal phase in order to

also get a better grasp on the instability towards high-temperature superconductiv-

ity, there have been a variety of attempts to model the strongly interacting cuprates

[87, 104, 99, 75, 81, 132, 30, 10, 127, 135]. One technique, in particular, is the applica-

tion of the AdS/CFT correspondence, or holographic duality [94], conjectured and first

developed by the string-theory community, but that has proven to be a powerful tool

to qualitatively study low-energy properties of strongly interacting quantum matter
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as well [57, 133, 1]. In fact, the more easily tractable classical limit of a gravitational

theory allows for an effective description of the generic behavior of a strongly inter-

acting system in one lower spatial dimension, such as a cuprate strange metal layer

with its strong (on-site Hubbard U) electromagnetic repulsion.

In this paper we use a holographic Einstein-Maxwell-Dilaton model (EMD) of the

strange metal [50] to study a two-layer system where the interaction among the dif-

ferent layers is only mediated by the long-range Coulomb force. The importance of

such a setting is motivated by the experimental relevance of multi-layered systems.

For simplicity most of the holographic studies of the cuprates focus on describing the

behavior of a single-layer, however, there has been recent experimental interest in

probing also the bulk response of the cuprates [59, 100]. Experimental results in both

hole- and electron-doped cuprates show that the density response is governed by the

inter-layer Coulomb interaction, giving rise to low-energy acoustic plasmon modes.

Plasmons are ubiquitous in condensed-matter materials due to the electric charge of

the electron, but only recently a way to capture dynamical Coulomb interactions and,

hence, screening effects due to the charged nature of the system, has been proposed in

holography [43, 46, 44, 96, 114], opening the door to the possibility of studying ‘holo-

graphic’ plasmons and providing a simplified framework to test experimental results

on acoustic plasmons in multi-layered cuprates [96].

Figure 3.1: Experimental set-up for a Coulomb drag measurement. A current I flows
through the active layer and the voltage drop ∆V = −RDI induced in the passive layer is
observed to measure the drag resistance. In the holographic description under study we have
two types of interactions, i.e., strong in-plane interactions leading to strange-metal behavior
(blue) and the long-range Coulomb interactions (red).
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In view of these developments, our main aim is here to present a link between holo-

graphic predictions and experimental results by studying the density response of two

holographic strange-metal layers. In particular, by considering the Coulomb drag re-

sistivity, we are able to obtain also quantitative estimates of the drag effect in the hope

to provide a verifiable prediction to either validate the holographic model or to show

its shortcomings. Here Coulomb drag refers to a transport phenomenon of a system

of closely spaced but electrically isolated layers, where a current driven through the

‘active’ layer gives rise to a current in the nearby ‘passive’ layer due to inter-layer

scattering of the charge carriers mediated by the long-range Coulomb interaction that

couples density fluctuations among the different layers [102]. A typical experimental

set-up is shown in Fig. 3.1, where a known current is driven through one layer and

the drag effect, parametrized by the drag resistivity ρD, is studied by measuring the

voltage drop in the passive layer.

In the holographic description we are using, the system is characterized by two kinds

of interactions, a strong one that is of short range and therefore does not contribute

to the inter-layer scattering, and the long-range Coulomb interaction that instead also

gives rise to the coupling between the separate layers. The success of the holographic

duality relies on the fact that it naturally describes a strongly interacting system,

such as a strange metal [53], and we thus can take two copies of such a model to

describe the two layers. On the other hand, it is important to realize that holographic

models present always a ‘neutral’ response, where there are no photons in the system.

However, by performing a so-called double-trace deformation [129, 130, 95], we have

recently shown how to add within holography also the long-range Coulomb screening

effects to multi-layered models on top of the strong neutral interactions [96]. We use

this procedure here to couple the holographic strange-metal layers in order to study

the Coulomb drag resistivity, as we explain in detail in the following.

3.2 Einstein-Maxwell-Dilaton theory

Let us briefly review how we obtain the strange-metal response function for a sin-

gle layer from holography. The holographic duality states the equivalence between a

strongly interacting quantum theory and a classical gravitational theory with one

additional spatial dimension, where the coordinate r of this additional dimension

parametrizes the energy scale of the quantum field theory. In particular low-energy

physics is described by the geometry in the deep interior (r → 0) of the spacetime,
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3.2. Einstein-Maxwell-Dilaton theory

while the near-boundary geometry (r → ∞) characterizes the ultra-violet details of

the dual field theory.

As a holographic model of a single-layer cuprate strange metal, we use a (3 + 1)-

dimensional Einstein-Maxwell-Dilaton theory proposed by Gubser et al. [50]. This is

one model in a class of holographic theories dual to a quantum field theory character-

ized at low energies by a ‘semi-local’ quantum critical phase with a dynamical critical

exponent z = ∞, with the important implication that the scaling of the electron

self-energy is then dominated by its frequency dependence ℏΣ(ω,k) ≃ ω(−ω2)νk−1/2,

with momentum dependence only entering through the exponent νk. The relevance of

this result is due to the fact that, upon tuning the adjustable parameters in the holo-

graphic model, the holographic result reproduces the ‘power-law liquid’ model, with

ℏΣ′′(ω,k) ∝ ω2α that is found to accurately describes the experimentally observed

electron self-energy in angle-resolved photoemission spectroscopy (ARPES) measure-

ments near the Fermi surface [113]. Here, α is a doping-dependent constant, with

α = 1/2 at optimal doping and the holographic model reducing to the famous marginal

Fermi liquid [75, 81] proposed for the qualitative description of the optimally-doped

strange metal. Moreover, the momentum-dependence in the exponent predicted by

the Gubser-Rocha model used here has been recently shown to accurately describe de-

viations from the power-law liquid model away from the Fermi surface in high-quality

ARPES measurements [119, 97], providing further support for the usefulness of the

model in studying the response function of the strange metal. On the other hand, it is

also important to keep in mind that the strange metal is further characterized by an

anomalous scaling of some quantities at nonzero magnetic field, such as the Hall an-

gle, and, while of no relevance for the results presented in this paper, the holographic

model used here might fail to reproduce such a scaling [12].

The gravitational action for the model is

SEMD =
c3

16πG

∫
drd(ct)d2x

√
−g
[
R− (∂µϕ)

2

2

+
6

L2
cosh

(
ϕ√
3

)
− eϕ/

√
3

4g2F
F 2
µν

]
+ Sct ,

(3.1)

with r denoting the additional spacial direction of the curved bulk spacetime, R the

Ricci scalar, ϕ a dimensionless scalar field known as the dilaton [17, 40], and Fµν the
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electromagnetic tensor with coupling constant

g2F =
c4µ0

16πG
, (3.2)

where [µ0] = m kg/C2 is a constant with the dimension of a magnetic permittivity. Fi-

nally, L is the anti-de Sitter (AdS) radius and Sct contains the boundary counterterms

necessary to have a well-defined boundary problem, and that are specified in the ap-

pendix. The dilaton field is such that the emergent low-energy theory is described by

a semi-local quantum critical phase with both the dynamical critical exponent z = ∞
and the hyperscaling violation exponent θ = −∞ divergent but with a fixed ratio

equal to −1. As previously mentioned, the dynamical exponent z = ∞ implies that at

energies well below the Fermi energy, quantum critical correlations can only depend

on momentum through the power of the frequency dependence, while θ/z = −1 en-

sures that the entropy goes linearly to zero at zero temperature [57]. Ultimately, this

scaling allows for the description of a quantum critical phase with a linear-in-T resis-

tivity and entropy [3] and an electron self-energy that is dominated by its frequency

dependence as desired for a strange metal [49]. On the field-theory side, the dilaton

is dual to a scalar operator O sourced by ϕ(0), that leads to a nonzero trace of the

energy-momentum tensor according to
〈
Tµµ

〉
= ϕ(0) ⟨O⟩. This in turn implies, as we

will see, that the speed of sound of the low-energy excitations of the system differs

from that of a conformal invariant liquid.

For computational purposes it is convenient to re-write the action in Eq. (3.1) in

dimensionless quantities by expressing everything in terms of physical constants and

the dimensionful scale L of the theory, that is by measuring distances in units of L

and energies in terms of ℏc/L. We, therefore, define the dimensionless coordinates

(r̃, t̃, x̃) ≡ (r, ct,x)/L, and we absorb the gauge coupling into the field Ãµ ≡ Aµ/gF .

The action then becomes

S̃EMD =
c3L2

16πℏG

∫
dr̃ dt̃d2x̃

√
−g
[
R− (∂µϕ)

2

2

+ 6 cosh

(
ϕ√
3

)
− eϕ/

√
3

4
F̃ 2
µν

]
.

(3.3)

From now on, we will mostly use dimensionless quantities and we will drop the tilde

for notational convenience and explicitly state when we write expressions in terms of

dimensionful quantities. Moreover, we follow the convention of setting the prefactor
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3.2. Einstein-Maxwell-Dilaton theory

of the integral, NG ≡ c3L2/16πℏG, to unity for computational convenience, but we

will comment extensively on its role in fixing the plasma frequency in a later section.

This prefactor is related to the large-N number of species of the boundary quantum

field theory [133].

The thermodynamics of this holographic strange-metal model is described by a solution

to the coupled set of Einstein equations for the metric gµν , Maxwell equations for the

U(1) gauge field Aµ, and the Klein-Gordon equation for the real scalar field ϕ as

obtained from the variation of the action:

Rµν −
1

2
Rgµν = Tµν , ∇µ(e

ϕ/
√
3Fµν) = 0 ,

∇µ∇µϕ =
eϕ/

√
3

4
√
3
F 2 − 2

√
3

L2
sinh(ϕ/

√
3) , (3.4)

where Rµν and R are the Ricci tensor and scalar, respectively, and the energy-

momentum tensor equals

Tµν =
1

2
∂µϕ∂νϕ+

eϕ/
√
3

2
F σ
µ Fνσ (3.5)

− gµν

(
eϕ/

√
3

8
F 2 +

(∂σϕ)
2

4
+

3

L2
cosh(ϕ/

√
3)

)
.

In particular, we are looking at long-wavelength excitations in the nodal direction,

neglecting possible anisotropy, so that the fields in Eq. (3.4) are a function of the

radial coordinate r only. This set of equations for (gtt = −1/grr, gxx = gyy, At, ϕ)

then support a fully analytical black-hole solution [50], with a non-zero temperature

and entropy, and with At(r) setting a non-zero density in the dual boundary theory

through the radially conserved quantity n ≡
√
−g(r) eϕ(r)/

√
3F rt(r), g(r) being the

determinant of the metric. It is important to notice that the definition of the density

given here is related to the density of the boundary field theory by the unknown

dimensionless prefactor NG in the action in Eq. (3.3) that we set to unity, as explicitly

shown in the appendix. This holds true for all operators and response functions

so that, while with a ‘bottom-up’ holographic computation we are able to study the

qualitative response of the system, we cannot make a quantitative comparison between

the holographic model and the response measured experimentally. However, as we

argue in a later section, the introduction of screening effects allows us to fix this

constant by matching the experimental plasma frequency, opening up the opportunity

for a further, quantitative, test of holographic predictions.
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⇒

Figure 3.2: (Left) Picture of a single-layer with strong short-range interactions and (right)
the imaginary part of the holographic density-density response, Π′′(ω, q), at a fixed tempera-
ture kBT/ℏvF

√
n ≃ 0.038. We see that the density-density response contains a linear sound

mode with ω = vsq.

In order to also compute the response of the holographic strange metal to small external

perturbations, we have to linearize the gravitational equations in Eq. (3.4) around

the black-hole solution. We obtain in this way a set of coupled equations for the

fluctuations (δgtt, δgtx, δgxx, δgyy, δAt, δAx, δϕ) that can only be solved numerically.

According to the holographic dictionary [53, 57, 1, 133], finding such a solution with

infalling-wave boundary conditions at the black-hole horizon, allows us to extract all

the retarded Green’s function of the system, and hence the density-density response

function Π(ω, q), by studying the near-boundary behavior of the field fluctuations.

This is a response of a two-dimensional layer with strong in-plane interactions but

without screening effects due to the long-range Coulomb interactions, as depicted in

Fig. 3.2 and evident from the density-density response function that shows a linear

sound mode ω = vsq instead of the typical plasmon mode expected in the presence of

screening ω ∝ √
q. Here we used rotational invariance to fix q = (q, 0) without loss of

generality.

In order to introduce screening effects, we need to couple dynamical photons to the

current operator ⟨Jµ⟩. To do so, as shown in Refs. [96, 114], we introduce a boundary

“double-trace” deformation for the electromagnetic field, i.e., we add to the gravita-
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tional action in Eq. (3.1) a boundary term

S =

∫
drd2xdtLgravity +

+

∫
d2xdt

∫
dz
(
− ϵ

4
FµνF

µν +Aµ ⟨Jµ⟩
)

,

(3.6)

with z the spatial direction orthogonal to the x-y plane, and we used the convention

of omitting the tilde on the dimensionless coupling ϵ̃ ≡ ℏcϵ/e2, with ϵ the dielectric

constant of the material surrounding the layer and e the electric charge. The addition

of this boundary term does not change the linearized equations of motions needed to

compute the response function, but it only changes the boundary conditions [43, 44]

for the field fluctuations. In particular, by restricting the current operator to the

x-y plane where the holographic boundary theory is defined we can see that, with

the addition of the boundary double-trace deformation, the density-density response

function is related to the ‘neutral’ response function Π(ω, q) by

χ2D(ω, q) =
Π(ω, q)

1− Π(ω,q)
2ϵ|q|

≡ Π(ω, q)

ϵ(ω, q)
, (3.7)

and we recognize a RPA-like form with a Coulomb potential V (q) = 1/2ϵ|q|, where we
neglect retardation effects, i.e., a frequency dependence in the potential, by assuming

vF ≪ c (see Ref. [96] for details). Two things to keep in mind here are that, contrary

to textbook RPA, Π(ω, q) is the density-density correlation function of a strongly

interacting system computed from holography, and it hence accounts for the effect of

strong interactions as can be seen in Fig. 3.2 where we show that Π′′ contains a linear

sound mode. Moreover, these interactions are effectively two-dimensional, living only

in the plane, and should then be thought of as strong interactions that are short-ranged

compared to the inter-layer distance, as depicted in Fig. 3.1. On the other hand, the

long-range Coulomb interactions described by the addition of the boundary action in

Eq. (3.6) are three-dimensional, as depicted in Fig. 3.3, where we also show that this

induces the expected plasmon dispersion for a single layer.

In order to obtain a simple model of a two-layer cuprate strange metal where the long-

range Coulomb interaction is the dominant inter-layer interaction [59], we take two

independent copies of a two-dimensional holographic strange metal described by the

action in Eq. (3.1) and couple them through the three-dimensional boundary double-
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⇒

Figure 3.3: (Left) Picture of a single-layer with in-plane short-range strong interactions
(blue) and long-range Coulomb interactions (red) and (right) the holographic density-density
response Π′′(ω, q) at a fixed temperature kBT/ℏvF

√
n ≃ 0.038. We see that the density-

density response contains the plasmon mode with ω ∝ √
q.

trace deformation, where the current Jµ takes the form

Jµ(x, z) = Jµ(1)(x, z)δ(z + ℓ/2) + Jµ(2)(x, z)δ(z − ℓ/2) , (3.8)

hence describing two layers laying parallel to the x-y plane and separated by a distance

ℓ along the z-axis orthogonal to the x-y plane. This again, gives rise to an RPA-like

form of the inter-layer density-density response, as we briefly show here.

First of all, let us remark that, as we want to describe the physics of the strange metal

where the linear dispersion has a Fermi velocity vF , we replace from now on the speed

of light in the gravitational theory with the Fermi velocity c→ vF . From holography,

the effective boundary action for the field fluctuations in Fourier space takes the form

1

2

∫
d2qdω

(2π)3

2∑
i=1

ai(0)µ (ω, q)jµi (−ω,−q) , (3.9)

where a
i(0)
µ ≡ limr→∞ δAiµ(r) and jµi ≡ δ ⟨Jµi ⟩. Adding the boundary term from

Eq. (3.6) and using the Fourier transform of the current in Eq. (3.8), J(ω, q, qz) =

Jµ(1)(ω, q)e
iqzℓ/2+Jµ(2)(ω, q)e

−iqzℓ/2, we can integrate out the Maxwell field fluctuations

to obtain an effective boundary action for the currents. We define the absolute value

of the four-vector k ≡ |k| =
√
q2 − ω2v2F /c

2, where the factor of v2F /c
2 is due to the

above-mentioned fact that the holographic theory is dual to a quantum field theory

describing excitations with bare velocity vF and the dimensionless ω then contains a
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factor of vF while the Coulomb interactions propagate at the speed of light c. Then,

the three-dimensional double-trace deformation gives a boundary term

1

2

∫
d2qdω

(2π)3
(jµ1 (ω, q) j

µ
2 (ω, q))

(
ηµν

2ϵk
ηµνe

−kℓ

2ϵk
ηµνe

−kℓ

2ϵk
ηµν

2ϵk

)(
jν1 (−ω,−q)

jν2 (−ω,−q)

)
. (3.10)

As we are interested in the limit vF /c→ 0, upon a redefinition of ϵc/vF → ϵ, we then

obtain the effective action for the current fluctuations

1

2

∫
d2qdω

(2π3)
(jµ1 j

µ
2 )

(
Π1

−1
µν +

ηµν

2ϵq
ηµνe

−qℓ

2ϵq
ηµνe

−qℓ

2ϵq Π2
−1
µν +

ηµν

2ϵq

)
︸ ︷︷ ︸

χ−1

(
jν1

jν2

)
, (3.11)

with χ(ω, q) the two-layer response and q ≡ |q|. The coupling ϵ here plays an impor-

tant role. As mentioned above, in bottom-up computations of holographic theories

we can study the behavior of the response function up to an undetermined constant,

meaning that we cannot provide a quantitative estimate of the magnitude of the effect,

as this is only possible from a top-down construction from a known string theory that

fixes the prefactor of the action NG. With the introduction of plasmons and hence

a known scale ϵ, we can fix this unknown constant to match the plasma dispersion

defined by the low-energy pole of Eq. (3.7). This allows us a novel check for the

holographic framework. Namely, we can further verify if the dual gravitational theory

and the proposed plasmon set-up provide also a quantitative agreement with exper-

imental measurements. Looking at it the other way around, studying the plasmon

response in cuprates could give insight into the dual string theory needed to match

the correct prefactor. We give further details on the relationship between NG and the

plasmon dispersion, and how to translate the dimensionless results from holography

into physical units in the appendix.
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3.3 Coulomb Drag resistivity

Our starting point is the drag resistivity within the random-phase approximation that

is given in dimensionful units by the expression [73, 136, 38, 76]

ρD =
ℏ2

16π3e2n1n2kBT

∫ +∞

−∞

dω

sinh2 (ℏω/2kBT )

∫
dq q2 Im[Π1(ω, q)]

|Π1(ω, q)|2
|χ12(ω, q)|2

Im[Π2(ω, q)]

|Π2(ω, q)|2

≡ℏ2

e2

∫ +∞

−∞
dω

∫ ∞

0

dq I(ω, q)
,

(3.12)

where in the second line we defined the dimensionless integrand I(ω, q) and use ro-

tational invariance to choose, without loss of generality, a direction for the in-plane

momentum. Here, n1 and n2 are the densities of the active and passive layers, respec-

tively, Πi(ω, q) are the corresponding intra-layer density-density response functions,

and the dynamically screened inter-layer density response is given by the off-diagonal

element of χ(ω, q) defined through Eq. (3.11), that is

χ12 = − Π1Π2

Π1Π2
e2

ϵq sinh (qℓ) +
[
2qϵ
e2 −Π1 −Π2

]
eqℓ

. (3.13)

This approximation ignores the effect of vertex corrections. However, as mentioned

above, the electron self-energy in cuprates depends mostly on frequency. This feature

is also captured in our holographic model where the low-energy theory is described by

a ‘semi-local’ quantum critical phase, where the electron self-energy ℏΣ(ω,k) scales

like ω2νk , with the momentum dependence only entering in the power νk [50, 3].

We, therefore, expect Eq. (3.12) to be a valid approximation for the Coulomb drag

resistivity for a cuprate two-layer system in the strange-metal regime.

From Eqs. (3.12) and (3.13) we see that the only input we need to compute the

drag resistivity are the single-layer response functions Πi(ω, q). The power of our

holographic approach now lies in the fact that it allows us to compute this response

in a strongly interacting system. Here in particular, we focus on a regime where

the length scale characterizing the strong interaction is much smaller than the lattice

scale and, to first order, the behavior of the drag resistivity depends solely on the

nature of the inter-layer interactions and not on disorder that would only give higher-

order corrections to the drag. This may reveal interesting features of the cuprates,

and possibly verify if the proposed holographic model of the strange metal correctly

75



3.4. Results

describes this phenomenon.

3.4 Results

We work in each layer with electrons at the same fixed equilibrium density n, sepa-

rately conserved in each layer, and we study the holographic density-density response

function that is anticipated to describe the physics of the strange metal near the Fermi

momentum, in the regime where the dispersion of the electrons can be linearized. In

the low-temperature regime and at energies and momenta much smaller than the Fermi

energy and Fermi momentum, respectively, we find that the response function is well

approximated by a hydrodynamic model, that takes the form (see Ref. [83] for details

on the derivation)

Π(ω, q) =
q2
(
ωD + iv2sDdχq

2
)

ω3 + iω2q2(2Ds +Dd)− ωq2v2s − iv2sDdq4
. (3.14)

Analyzing its pole structure, we see that Π(ω, k) contains a linear sound mode at

ω = ±vsq − iDsq
2 + O(q4), and a diffusive mode at ω = −iDdq

2 + O(q4), with D
the Drude weight, and χ = − limq→0, ω→0 Π(ω, q) the (hydrodynamic) compressibility.

This form of Π implies that the integrand in Eq. (3.12), i.e. I(ω, q), contains, for our
symmetric case Πi ≡ Π (it is straightforward to generalize the results to layers with

different densities and three different surrounding dielectric constants [7]), in addition

to a diffusive mode ω = −iDdq
2, the out-of-phase acoustic plasmon mode and the

in-phase optical plasmon characteristic of a two-layer system [65, 125, 109, 120, 7].

The plasmon modes have been shown to play a key role in the drag resistivity in

two-dimensional electron gases [36, 37, 61]. The latter frequencies are

ω =±
√
v2s +

Dℓ
2ϵ
q +O

(
q2
)

(3.15)

ω =±
√
e2Dq
ϵ

(
1 + e2

v2s − e2Dℓ/2ϵ
2Dϵ

q

)
+O

(
q2
)
. (3.16)

All three modes are clearly visible in the numerical result for the integrand in Fig. 3.4.

These modes thus determine the low-temperature behavior of the drag resistivity. We

emphasize here that compared to a purely hydrodynamic approach as in Refs. [5,

62], the holographic model gives also a prediction for the coefficients in Eq. (3.14)

and for their temperature dependence, allowing us to fully determine the dominant

low-temperature behavior of ρD. In particular, we numerically explored the pole
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Figure 3.4: Typical integrand I(ω, q) in Eq. (3.12), showing the in-phase and out-of-phase
plasmon modes, and the low-energy diffusive mode.

structure of the retarded density-density correlators in the limit of T → 0 to find that

in this low-temperature hydrodynamics [28, 79, 24], the sound diffusion coefficient

equals Ds = (1/6
√
3)kBT/ℏn, whereas the charge diffusion constant obeys [57] Dd =

(4π/
√
3)kBT/ℏn. Notice that these scalings differs from the one found in the Reissner-

Nordström background where there is no linear-in-T resistivity (see, e.g., Ref. [133]).

Both coefficients are fully determined by background (thermodynamic) quantities, as is

the zero-temperature ‘Drude weight’D = (1/31/4)vF
√
n/ℏ, where we use a slight abuse

of terminology since the Drude weight for a system with translation invariance usually

refers to the strength of the delta function in the zero-frequency limit of the optical

conductivity σ(ω). As it is defined here D is such that limω→0 σ(ω) = πe2Dδ(ω).
The factor vF /3

1/4 appearing in the Drude weight is, as expected, the low-energy

speed of sound vs, as we verified numerically finding vs ≈ 0.76vF . This differs from

the vF /
√
2 of a conformal field theory as conformal invariance is broken in the low-

energy limit by the dilaton field. It is also slightly higher than expected from the

thermodynamic potential Ω via vs = (−∂Ω/∂ε)1/2 =
√

17/31vF , with the Ω defined

as the gravitational action in Eq. (3.3) evaluated on-shell, and the equilibrium energy
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density ε such that it satisfies the thermodynamic relation −Ω/V = −ϵ+sT+µn, with

s the entropy density. Accordingly, to zeroth order in T , χ = D/v2s ≈ 1.32
√
n/ℏvF

so that the height of the diffusive peak is determined by the subleading behavior

(D/v2s − χ)/2 ≈ 2.56(kBT )
2/
√
n(ℏvF )3, with the proportionality constant obtained

numerically.

The hydrodynamic model in Eq. (3.14), together with the above results, can be inte-

grated to compute the drag resistivity according to Eq. (3.12). In general, this can

only be done numerically, however, we can look at the dominant behavior in the low-

temperature and large ℓ limit. In this regime, the dominant contribution to the drag

resistivity is determined by the diffusive modes, and we can make the approximation

Im[Π] =− ωq2Dd(D/v2s − χ)

ω2 +D2
dq

4
. (3.17)

Moreover, for large ℓ the contributions to the drag from the diffusive mode lie at low-

energies ω ≈ Ddq
2, as the integration range is controlled by a factor e−2qℓ in χ12 from

Eq. (3.13). Hence, sinh(ω/2T )−2 ≈ 4T 2/ω2 and Π ≈ −χ, and we can then perform

the frequency integral to obtain

ρD =
(D/v2s − χ)2ℏ2kBT

4πDdn2e2

∫ ∞

0

dq
e−2qℓ

| 2qϵe2 + 2χ+ e2(1−e2qℓ)
2qϵ χ2|2

≈ (D/v2s − χ)2ℏ2kBT
4πDdn2e2

∫ ∞

0

dq
e−2qℓ

|2χ+ e2(1−e2qℓ)
2qϵ χ2|2

.

(3.18)

Given the scaling of the coefficients presented above, this shows that–in the low-

temperature limit–ρD(T ) ∝ T 4, strikingly different from the Fermi liquid result ρD(T ) ∝
T 2 due to thermal broadening of the Fermi surface [41, 73, 136]. In Fig. 3.5 we show

a plot of ρD/(kBT )
3 at low temperature for ℓ = 75Å with the numerical integration

of the full hydrodynamic model from Eq. (3.14) (blue line) and the diffusive-mode

expression in Eq. (3.18), that shows the validity of the approximation in this regime.

The dashed black line gives an upper-bound analytical estimate of the resistivity given

by

ρD ≲
(D/v2s − χ)2ℏ2kBT

4πDdn2e2

∫ ∞

0

dq
e−2qℓ

| e
2(1−e2qℓ)

2qϵ χ2|2

=
3ζ(3)ℏ2

8πn2e2α4

(D/v2s − χ)2kBT

Ddχ4ℓ4
∝ T 4

ℓ4
.

(3.19)
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Figure 3.5: Low-temperature scaling of the resistivity in the hydrodynamic approximation
(blue line) that shows ρD ∝ T 4 and comparison with the model that only accounts for a
diffusive mode as in Eq. (3.18) (red dashed line). The dashed black line shows the upper-
bound estimate in Eq. (3.19) that can be computed analytically.

For the realistic system we want to model, we use the density n = 6.25 × 1014 cm−2,

the Fermi velocity obeying ℏvF = 3 eVÅ as typical in the cuprates, and the inter-layer

spacing ℓ = 6.2 Å, that is of the order of the effective inter-layer distance of LCCO

planes used in the experiment on plasmons by Hepting et al. [59], and we assumed a

dielectric constant of the insulating material between the layers of ϵ = 2ϵ0. Further,

we are able to give a quantitative result thanks to the above-mentioned matching of

the prefactor NG, otherwise undetermined in a bottom-up approach, with the experi-

mentally determined plasma dispersion (see appendix for the details). For this smaller

value of the interlayer distance, the full hydrodynamic result is considerably larger

than expected from the response function with only a diffusive mode. Nonetheless, it

shows the same T 4 dependence at small temperatures, where the contribution of the

plasmon modes is still irrelevant, as shown in Fig. 3.6. It is important to notice that

the temperature dependence of the dissipative coefficients Dd and Ds, that ultimately

leads to the T 4 scaling of the drag resistivity, is characteristic of the particular holo-

graphic model used. However, the linear dependence on T of these coefficients comes

from the linear-in-T resistivity, which is a fundamental requirement of any strange-

metal model.

While the T 4 scaling controls the low-temperature behavior, at room temperature

and higher temperatures, the above approximation breaks down. In this regime, the

contribution of both the optical and the acoustic plasmon modes cannot be neglected

and the drag resistivity grows faster with temperature. This is shown in Figs. 3.7 for

the hydrodynamic approximation, where we plot for different temperatures the result
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Figure 3.6: Low-temperature scaling of the resistivity in the hydrodynamic approximation
(blue line) that shows ρD ∝ T 4. Here we used the parameters of the cuprate modeled in this
paper, that we introduced above. This shows that in this regime the resistivity presents
the scaling expected from the diffusive mode (dashed red line), even though considering the
diffusive mode alone underestimates its magnitude.

of the frequency integral in Eq. (3.12), i.e. I(q) ≡
∫
dω I(ω, q), rescaled with a factor

(kBT )
4. We see that at low temperatures the contribution from the plasmon modes

is negligible and the integrand scales as expected from the argument presented above.

As the temperature is increased the function develops a peak at low momenta, which

is due to the contribution of the plasmon modes and does not scale with T 4. The effect

of the plasmons and the change of the scaling behavior can also be seen in the log-log

plot in Fig. 3.8. With the cuprate we are modeling in this paper, characterized by the

quantities specified above, the system at higher temperatures enters a regime where

both plasmon modes are relevant and we cannot simply neglect the contribution of

one or the other. For this reason, together with the fact that at the higher values of

T the exponential factor sinh(ω/2T )−2 in Eq. (3.12) starts to dominate, the scaling of

the resistivity in this regime cannot be described by a simple power law.

As of now, we looked at a hydrodynamic model, where the input from holography

comes in the form of a prediction for the temperature dependence of the coefficients

in the model. While we expect a deviation between the hydrodynamic model and

the holographic response at larger temperatures, we show below that in the low-

temperature limit we do not expect such a deviation to change the drag resistivity

significantly. The low-energy physics described by the holographic EMD model is, in

fact, not fully described by hydrodynamics, as it contains a quantum critical contribu-

tion characterized by a dynamical critical exponent z = ∞. In particular, this implies
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Figure 3.7: Result of the integral over frequency in Eq. (3.12) for the drag resistivity as a
function of momenta rescaled with (kBT )

4. We see that at low temperatures the contribution
from the plasmon modes is negligible and the resistivity scale as ρD ∝ T 4, while as the
temperature is raised the contribution to the drag of the plasmon modes becomes more and
more dominant.

that there is a quantum critical contribution to the low-energy spectral function, with

ℏω ≪ kBT , that scales with temperature as Π ∝ T 2νq , with νq a momentum dependent

exponent [56]. One might then wonder if this low-energy scaling could affect the low-

temperature scaling of the drag resistivity. However, in the holographic model used

in this paper, we found, for the lowest temperatures accessible to our numerics where

the drag resistivity is determined mostly by the low-frequency behavior of Π, that the

temperature dependence of the modes in the integrand in Eq. (3.12) is well described

by the hydrodynamic model, and corrections due to the momentum-dependent tem-

perature scaling from the quantum critical sector can be neglected. This is pictured

in Fig. 3.9 and 3.10 where we show, for some fixed momenta in our range of interest,

that the diffusive mode in Im[Π] computed from holography scales as expected from

the hydrodynamic model (dashed red line in the plots), with deviations that are only

of higher order in temperature. It might be nonetheless an interesting point for fu-

ture studies to check if there might be a setting where the quantum critical scaling

becomes relevant to the drag resistivity even at low temperatures and if it could then

be possible to observe it experimentally.

At higher temperatures, however, the relevant energy range for the computation of the

drag resistivity becomes large enough that the deviation of the holographic solution

from its approximation with the hydrodynamic model cannot be neglected, and we

hence need a full numerical solution of the holographic model to compute the resistiv-
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Figure 3.8: Log-log plot of the drag resistivity in the hydrodynamic approximation (blue
dots) where we can clearly see the deviation from the T 4 behavior (represented by the red
line) above room temperatures. We also show the results for the drag resistivity obtained
from the holographic model (orange dots), as explained below.

ity integral. In particular, there is an enhancement of the plasmon modes contribution

in the holographic solution, due to higher-order corrections neglected in the hydrody-

namic model, as well as the quantum critical contribution. A distinction between the

roles of these two contributions goes beyond the scope of this paper, but it can be an

interesting problem to address in future studies. The greater contribution from the

plasmon mode is shown for example in Fig. 3.11, where we plot the acoustic plasmon

peak in the integrand I(ω, q) at a fixed value of q = 0.066
√
n for both the holographic

model and its hydrodynamic approximation. As highlighted in Fig. 3.12, where we

look at the integral over frequency rescaled with temperature, I(q)/(kBT )4, the T 4

scaling that governs the low-temperature resistivity follows closely the hydrodynamic

approximation (dashed blue line). Hence we expect the holographic drag resistivity

to deviate more significantly from the hydrodynamic result at higher temperatures, as

the contribution from the plasmon modes becomes more and more dominant. This is

shown in Fig. 3.13 where we present the result for ρD(T ) up to high temperatures in

holography (solid blue line) and hydrodynamics (dashed blue line). In particular, we

see that in the holographic model just above room temperature there is a regime with

a contribution to the temperature dependence coming from the different lifetimes of

plasmon excitations at different temperatures. On the other hand, as we increase the

temperature further, we enter a regime where the behavior of the drag resistivity is

determined by the sinh(ω/2T )−2 factor, hence ρD(T ) ∝ e−∆/T , (dashed red curve in

the plot). We found ∆ ≈ 6240K, consistent with the acoustic plasmon energy.
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Figure 3.9: Data collapse of the imaginary part of the density-density response function at
low energies - that determines the low-temperature drag resistivity - for several temperatures,
together with the behavior expected from the hydrodynamic model (dashed black line), for
one value of momentum relevant to the low-temperature resistivity q = 0.00132

√
n

3.5 Conclusions and outlook

We have here studied by holography the Coulomb drag between two strange metals and

have shown how to determine the drag resistivity in such a strongly interacting system.

We performed the computation within a particular model for which an analytical

background solution exists and showed the important role of the plasmon modes in

the drag resistivity at easily accessible temperatures. We found that the temperature

scaling of the drag resistivity is governed at low temperatures by the hydrodynamic

modes, whose scaling is fixed by the background solution of our holographic theory

and is related to the fact that the model describes a strongly interacting system with

linear-in-temperature resistivity. In particular, we showed that in the low-temperature

limit the contribution from the plasmon modes is negligible and the scaling of drag

resistivity follows from the scaling of the diffusion constants in the holographic density

response function Π(ω, q), implying ρD ∝ T 4 contrary to the T 2 behavior at low

temperature in a Fermi liquid where the drag is governed by thermal broadening of

the Fermi surface. As the temperature is raised above room temperature we found

that the drag resistivity departs from the T 4 scaling due to the contribution of both

the in-phase and out-of-phase plasmon modes. Here the holographic solution shows

an enhancement of the drag resistivity compared to the hydrodynamic approximation,

which neglects the quantum critical contribution.

The holographic model used captures various qualitative features of the low-energy
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Figure 3.10: Data collapse of the imaginary part of the density-density response function
at low energies, together with the behavior expected from the hydrodynamic model (dashed
black line), at q = 0.0132

√
n

properties of the strange metal. However, we also have to keep in mind that it de-

scribes a system with a very different ultra-violet behavior compared to a laboratory

cuprate material as the electronic dispersion is implicitly linearized and no lattice

bandstructure is involved in the calculation. While this does not affect the emergent

T 4 scaling behavior expected at low temperatures, it may affect the quantitative esti-

mate of the drag resistivity somewhat. An important matter of future studies is the

thermodynamics of the strange metal, as an analytical understanding of the observed

values for the speed of sound and susceptibility is still lacking, as well as an analytical

understanding of the role of the quantum critical sector in the drag resistivity. We,

nevertheless, hope that the theory presented here may stimulate further experiments

on drag transport to test holographic quantum matter in general and strange metals

in particular.

3.A Prefactors and physical quantities

Here we explicitly show the relations between the dimensionless units used in the

main text and the dimension-full variables, taking particular care in considering all the

prefactors that have been set to unity in the main text for notational convenience. This

makes clear the choice of parameters used to match the expected plasma frequency.

In this section, we reintroduce the tilde notation for dimensionless variables, e.g. ñ =

L2n. Remember that with our definition of dimensionless quantities we have that
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Figure 3.11: Comparison of the integrand function I(ω, q) as defined in Eq. (3.12) at
fixed q = 0.066

√
n and high temperatures. We can see that the holographic result (solid

lines) shows an enhancement of the plasmon contribution compared to the one expected from
the hydrodynamic model (dashed lines).

lengths are measured in units of L, the AdS radius, energies in units of ℏvF /L and

the electric charge in units of ℏ/LgF . The action in these units then takes the form

of Eq. (3.3). In order to further simplify the notation, we redefined the dimensionless

action to set the prefactor c3L2/16πℏG ≡ NG to 1, which led to the definition of

the dimensionless density as in the main text. However, the expectation values of

boundary operators and, hence, boundary response functions are proportional to this

unknown coefficient. To give a concrete example, using the holographic dictionary

[134] that defines the chemical potential of the boundary theory as limr→∞ Ã0 ≡ µ̃/ẽ,

with ẽ the dimensionless electric charge, the corresponding density of the dual field

theory can be computed by studying the (renormalized) boundary action to be

ñ = L2n =
1√
3

NG
ẽ

(
µ̃

ẽ

)2
√
1 +

ẽ2T̃ 2

3µ̃2
. (3.20)

From now on, we redefine µ̃/ẽ → µ̃ and s̃0 = NG/ẽ, in order to get rid of the dimen-

sionless charge.

In bottom-up holography, the unknown constant s̃0 is usually neglected and we are

simply concerned with the qualitative behavior of the response function. By intro-

ducing the double-trace deformation that leads to plasmon modes in the system, we

introduce a known scale given by the plasma frequency that we can use to uniquely

determine the constant s̃0. Looking at a single-layer cuprate, we have that the plasma
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Figure 3.12: Result of the integral over frequency in Eq. (3.12) for the drag resistivity
as a function of momenta rescaled with (kBT )

4 for the holographic model (solid lines). We
see that the contribution ∝ T 4 that dominates at low temperatures is well captured by
hydrodynamics (dashed blue line).

frequency is defined by the solution of

Π−1(ω, q)− e2

ϵ

1

2q
= 0 , (3.21)

with ϵ the dielectric constant of the insulating material surrounding the layer. At

low momenta, we found that the holographic model takes the hydrodynamic form in

Eq. (3.14), which allows us to express the plasma frequency in terms of the Drude

weight. In particular, we found that in our EMD theory the Drude weight in the units

used in the main text is

D̃(n, T ) ≡ ℏL
vF

D =
s̃0√
3
µ̃(n, T ) , (3.22)

where we remind the reader that the dimensionfulD is defined such that limω→0 σ(ω) =

πe2Dδ(ω), and we made it explicit that µ̃ is a function of the background density and

temperature. In fact, for the numerical computation, it is often convenient to work

at a fixed chemical potential and work with quantities that are rescaled by it, like

ω̃/µ̃, Π̃/µ̃ etc. Ultimately however, we work in a system at a fixed density and tem-

perature, so that for every value of T and n, µ̃ is determined according to Eq. (3.20),

by µ̃(ñ, T̃ ) =

√√
108s̃20ñ

2 + T̃ 2 − T̃ 4/
√
6. At T = 0 it reduces to the expressions

presented in the main text in terms of ñ, since for s̃0 = 1 we have µ̃ = 31/4
√
ñ.

There we were only interested in the leading temperature behavior and we could ne-

86



Chapter 3. Coulomb Drag between Two Strange Metals

0 200 400 600 800 1000

0.00

0.05

0.10

0.15

0.20

0.25

0.30

T (K)

ρ
D
(m

Ω
)

Figure 3.13: Coulomb drag behavior at large temperatures, where its behavior is deter-
mined by the plasmons, departing from the ρD ∝ T 4 scaling of the low-temperature limit.
Here we show the results of the holographic resistivity (solid blue line) and compare it with
the hydrodynamic model (dashed blue line), showing an enhancement at high temperatures.
In particular at temperature above approximately 800K the drag resistivity enters a regime
where ρD(T ) ∝ e−∆/T (dashed red line), where we found ∆ ≈ 6240K

glect the above subleading temperature correction from the chemical potential. From

Eq. (3.21), we find that the plasma dispersion at low momenta is given by

ℏωpl(q) = ℏ
√

D
2πϵ

√
q =

√
s̃0µ(n, T )

2
√
3ϵ̃

√
ℏvF q , (3.23)

with ϵ̃ ≡ ℏvF ϵ/e2. Hence, for every fixed value of the density and temperature, we

can determine s̃0 from the plasmon dispersion.

In this paper, we aimed at modeling the cuprate layers as in Ref. [59], where they look

at an (effectively) infinite stack of layers. In such a system they find that the plasma

frequency for in-phase plasma excitations (i.e., when the out of plane momentum

qz = 2πN , N ∈ N) obeys ℏωpl(qz = 0) = 1.17 eV. The equivalent expression for the

plasma frequency in terms of the quantities defining our holographic model is

ℏωpl = ℏ
√

D
πϵ

1√
ℓ
=

√
s̃0µ(n, T )√

3ϵ̃

√
ℏvF
ℓ

= 1.17 eV . (3.24)

(See Ref. [96] for details of the computation). Notice that here µ(n, T ) is the boundary

chemical potential in dimensionful units. This is what we use to fix the scale s̃0 and to

translate the quantities obtain from the holographic computation in terms of SI units.
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In particular, at T = 0 we have that

√
s̃0 = 31/4

ℓ√
n

(ℏωpl)
2

ℏvF
ϵ

e2
. (3.25)

Once we determined s̃0, all the results obtained from the numerical computation can

then be expressed in terms of SI units by fixing a value for T , n, ℓ, and vF . Calling

PD the numerical integral for the drag in rescaled dimensionless units where NG = 1,

we have that the drag resistivity in Ohm is then related to PD by

ρD =
ℏ
e2s̃20

PD . (3.26)

Explicitely, in this paper we used n = (0.25Å
−1

)2 = 6.25 × 1014cm−2, ℏvF = 3eVÅ,

ℓ = 6.2Å, ϵ = 2ϵ0 = 2 × 55.2610−4e2eV−1Å
−1

. Fixing the in phase infinite-layer

plasma frequency to be independent of temperature and equal to ℏωpl = 1.17eV we

obtain a (temperature-dependent) s̃0 and a value for the holographic scale µ shown in

Fig. 3.14. This last scale is what we then use to set all of the dimensionless quantities

used in the numerical computation.

Figure 3.14: Value of the dimensionless parameters s̃0 and the dimensionful chemical
potential of the holographic theory µ chosen such that the plasma frequency of a layered
system is fixed at all temperatures. We see that these value vary very little with temperature,
with s̃0(T = 0) ≈ 0.027 and µ(T = 0) ≈ 6eV
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Chapter 4

Momentum-dependent scaling

exponents of nodal

self-energies measured in

strange metal cuprates and

modelled using

semi-holography

4.1 Introduction

The rich temperature versus doping diagram of the cuprate high-Tc superconductors

presents a cornucopia of non-conformity [80]. In their normal state, these unusual

metals have qualitatively different experimental behaviour than the Fermi liquid, with

in particular the linear-in-T resistivity and its dissonant twin, the quadratic-in-T Hall

angle, being among the most strange.

One intruiging possible explanation of strange metal phenomenology is that it is con-

trolled by a strongly interacting quantum critical phase. If so, the immediate question
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follows whether their properties can be described by holographic emergence principles,

as these approaches are uniquely suitable for describing such physics. Evidence for

a quantum critical phase comes from high magnetic-field electrical transport experi-

ments on overdoped cuprates [19, 6], and from laser-based Angle-Resolved PhotoE-

mission Spectroscopy (ARPES) on Bi2Sr2CaCu2O8+δ (Bi-2212), in which the normal

state self-energy of the electrons in the nodal direction not only showed power-law

behaviour in both ω and T , but the power varied smoothly from less than unity for

underdoping, to the marginal Fermi-liquid value of unity for optimal doping [124] (a

result first reported in 1999 [123]), to 1.2 for overdoping such that Tc ≃ 0.75Tmaxc

[113].

Here, we explore the normal state over a much larger frequency and temperature

range than before by studying overdoped samples of the single-CuO2-plane cuprate

(Pb,Bi)2Sr2−xLaxCuO6+δ (Pb,Bi)-2201, using high-resolution ARPES. We uncover a

qualitatively new facet of the self-energy of the nodal electrons, namely that it is not

only a function of ω and T , but also dependent on the magnitude of the momentum

away from the Fermi momentum k − kF , yielding constant energy cuts through the

spectral function (MDCs) with a non-Lorentzian lineshape.

After presenting the experimental data, we switch gears to test whether a quantitative

theoretical description can be found using the tools of the holographic duality known

as the Anti-de Sitter/Conformal Field Theory correspondence (AdS/CFT) from string

theory [57, 133]. AdS/CFT approaches have been shown to successfully capture both

Fermi-liquid-like [21] and non-Fermi-Liquid-like aspects of strange metallic behavior

[31], including power-law self-energies with smoothly varying scaling exponents [91,

89].

Adopting a semi-holographic theoretical treatment [33], whose details are given in the

Methods section, we can match its predicted k-dependent spectral function to the

high-precision ARPES data across the doping range studied, for a wide energy range

below the Fermi level EF , and for momenta well away from kF .

The combination of our experimental and theoretical results show that the k depen-

dence of the exponents is not only experimentally detectable, but also quantifiable in

sufficient detail to pose a real test for any theoretical explanation, one such theory

being semi-holography.

What emerges is that, firstly, our ARPES data confirm that nodal electronic self-

energies display a power law in frequency and temperature. Secondly, the scaling
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exponents describing the self-energies are experimentally shown to be momentum de-

pendent. Thirdly, the observed exponents at kF grow smoothly from unity at optimal

doping towards the Fermi-liquid value of two, though this is never reached, even for

non-superconducting samples. These results further strengthen the notion that the op-

timally and overdoped Bi-based strange metals do represent a novel quantum critical

phase.

4.2 Nodal ARPES data and power-law analysis with

k-independent self-energy

In Fig. 4.1 we show the imaginary part of the nodal self-energy of (Pb,Bi)2Sr2−xLaxCuO6+δ

over a large range in frequency, doping and temperature. Assuming the bare dispersion

to be linear, ε(k) = vF (k−kF ), with vF being the Fermi velocity and kF the Fermi wave

vector, the commonly made assumption of negligible k dependence - Σ(k, ω) ≃ Σ(ω) -

reduces the single-particle spectral function to a Lorentzian lineshape as a function of

momentum k at each fixed frequency ω, i.e., L(k) = W
π

Γ/2
(k−k∗)2+(Γ/2)2 . Here W (ω) is

the intensity, k∗(ω) the peak position, and Γ(ω) its width. For the results presented

in the rest of this paper, W (ω) is not a key parameter and will not be discussed fur-

ther. In practice, the peaks are better fit using a Voigt lineshape, the Gaussian part of

which accounts for experimental resolution. In this commonly adopted framework, the

imaginary part of the self-energy is then proportional to the width of the Lorentzian

component as Σ
′′
(ω) = vFΓ(ω)/2 [123].

Confirming and extending the results in [113], the (ω,T )-dependent self-energy ex-

tracted in this way and shown in Fig.4.1 can be very well described by a remarkably

simple phenomenological model dubbed the Power Law Liquid (PLL) [113], with three

dimensionless parameters α, β and λ:

Γ =
2Σ

′′
(ω, T )

vF
= G0(ω, T ) + λ

[(ℏω)2 + (βkBT )
2]α

(ℏωN )2α−1
. (4.1)

Here λ is a coupling constant describing the strength of the interaction, normalized

to an energy scale ℏωN = 0.5eV for all dopings, and the parameter β sets the balance

between the relative influence of temperature and frequency. G0(ω, T ) is an extra term,

combining a self-energy contribution from impurity scattering, as well as electron-
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self-energy

Figure 4.1: Nodal self-energy of single-CuO2-layer (Pb,Bi)-2201. a-e:
Temperature-dependent self-energies from ARPES for five different doping levels, extracted
using symmetric Voigt fits to MDCs, plotted using colour-coded solid lines for temperature.
The dashed, black lines are results to two-dimensional (in T and ω) fits employing three
parameters (α, β, λ), using the power-law-liquid formalism introduced in [113] and given in
Equation 1. Fitting parameters used are indicated in each data panel, and gathered together
with the analogous parameters for Bi-2212 [113] in panel h. The red dashed lines indicate
the marginal Fermi liquid (α = 0.5 at optimal doping), which is shown above the canonical
Presland dome i used to determine the doping level of the measured samples. Panel g shows
a typical measured ARPES dataset, containing both the positive-k and negative-k nodal
branches, along the k-space direction indicated in the schematic Fermi-surface in f. Table S1
in the SI lists all temperatures measured for each doping level.

phonon coupling, described in the SI1 (S1). The electron-phonon contribution is most

1The supplementary information (SI) will be made available online when the paper is approved
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clearly seen around an energy of 70 meV [13, 22], and is prominent because the normal

state ARPES data presented here access much lower temperatures than those from

Bi-2212 [113]. Note that Equation (4.1) describes the marginal Fermi-liquid [124] with

a power of unity (α = 1/2) at optimal doping, and the quadratic temperature and

frequency behaviour of a Fermi liquid emerges when α = 1.

Figs.4.1b-f show the experimentally extracted self-energies (coloured lines), together

with the result of a two-dimensional (ω,T ) fit to the data using Equation (4.1) (dashed

lines). An overview of the parameters extracted from the fits is given in Fig. 4.1g,

together with the parameters for Bi-2212 [113]. Compared to the latter, the ARPES

data presented here cover a complementary doping range from near optimal doping

(p = 0.14) to such overdoping that superconductivity disappears. Across this doping

interval, the power increases smoothly from 1.04 (α = 0.52) to 1.68 (α = 0.84),

meaning that even on overdoping out of the superconducting dome, the quadratic

power of the Fermi-liquid (α = 1) is not yet reached.

The continuity in α values evident in Fig. 4.1g emphasises the remarkably good agree-

ment between the nodal self-energy behaviour in both single- and bi-layer cuprates,

also illustrating that these self-energies near EF are well described by Equation 4.1

for a temperature range spanning 200K.

4.3 Momentum-dependent power-law exponent and

asymmetric ARPES MDCs

The above analysis does hinge on the aforementioned assumption of negligible k de-

pendence: such that the spectral function part of the MDC lineshape can be well

fit using a symmetric Lorentzian for each peak [77]. In Fig. 4.2a-d we show the

Lorentzian fits in detail. Panel a shows that a Lorentzian spectral function gives a

very good fit close to EF , and yields a small residual. However, at higher binding

energy, such as at 200 and 300meV, the foot of the peaks clearly show that the data

(black crosses) are not captured completely by the two symmetric peaks in the fit (red

lines). The experimental bottom line is that the MDC peaks in Fig. 4.2b & 4.2c are

asymmetric: showing more spectral weight at large momenta |k| > |k∗(ω)|, compared

to |k| < |k∗(ω)| (leading to residual values of differing signs inside and outside the

MDC peak pair). This behaviour cannot be captured by a fit based on Lorentzians

for publication.
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ARPES MDCs

and the power law liquid. The analysis and discussion covered by Figs. S2-S4 of

the SI excludes that the MDC asymmetry comes from the non-zero curvature of an

underlying ‘bare band’, from inhomogeneous detector response, or from strongly struc-

tured background signals. A simple yet profound possible explanation of the MDC

asymmetry is then a k dependency of the electronic self-energy itself.

Figure 4.2: Closer look at MDC lineshapes for UD32 nodal ARPES data. a-c:
a trio of MDCs at energies indicated, with symmetric peak fits in red. The residuals grow as
the binding energy grows. Here d shows the resulting 2Σ′′(ω)/vF = Γ(ω) from the symmetric
fits. e-g: The same three MDCs now fit in purple using our model given by Equation 4.3,
including the holographically-predicted k dependence, with V set to -1. The residuals are
clearly superior to the symmetric fit for energies further from EF . h: The imaginary part
of the self-energy 2Σ

′′
(k, ω)/vF = ΓH(k, ω) at k∗(ω) (red), which includes the k-dependent

self-energy (blue), and the free fitting parameter G0 (green).

Inclusion of a k-dependent self-energy, which is missing in the PLL ansatz of Equation

(4.1), provides a significant experimental extension to the data-based fitness tests for

aspiring theories for these materials. One model-independent approach would be to

linearly expand the measured self-energy around kF , reported in the SI (Fig. S8),

which significantly enlarges the set of fitting parameters, by means of an additional

frequency and temperature dependent function. Instead, we can rely on the theoretical

input provided by AdS/CFT, and adjust the fitting ansatz without any expansion in
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the number of parameters.

4.4 Semi-holographic theoretical description

Physically, a semi-holographic model describes an electron that interacts with a CFT

(accounting for a quantum critical state deformed by non-zero T and chemical po-

tential) via linear coupling to a fermionic operator O that has a unique scaling di-

mension. As a result, the self-energy becomes proportional to the correlation function

⟨OO†⟩(k, ω, T ) in the CFT. The latter can be determined from the holographic dictio-

nary [133, 57], and automatically inherits certain scaling properties from the ‘critical’

CFT. To be applicable to the cuprate strange metals, the model must have a dynam-

ical critical exponent z → ∞ in order to recover the power law liquid when k is close

to kF . From this imposition of local quantum criticality, there follows a fundamen-

tal condition from the theory side that the scaling exponents have to be momentum

dependent [32].

Here, for the CFT we use an Einstein-Maxwell-Dilaton model of holography, specif-

ically the Gubser-Rocha model [51, 49], as it offers an analytical treatment of the

gravitational spacetime. In the long-wavelength limit, within the framework of an

emergent particle-hole symmetry, our semi-holography model then gives at T = 0:

2Σ
′′
(k, ω)

vF
= λ

[(ℏω)2]α(k)

(ℏωN )2α(k)−1
, (4.2a)

α(k) = α

(
1− k − kF

kF

)
. (4.2b)

The semi-holographic self-energy can also be generalized to non-zero temperature [32,

49], and under our conditions is well approximated by replacing (ℏω)2 with (ℏω)2 +
(βkBT )

2 in Equation (4.2a). This also eases comparison to the PLL in Equation

(1), and highlights the key new insight that as frequency increases, and k ≃ kF −
ω/vF departs from kF , a k dependence emerges in the exponent describing the (ω, T )-

dependence of the self-energy. For low frequencies, where k ≃ kF , one returns to

Equation (4.1) of the PLL. The behaviour predicted by holography should leave a

clear experimental fingerprint, namely that the ARPES MDCs are asymmetric: the

data shown in Fig. 4.2 show this is the case.

Fig. 4.3a shows a simulated spectral function, generated using the semi-holographic

self-energy shown in Figs. 4.3c & 4.3d. The resulting MDC asymmetry at non-zero
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energy is illustrated in Fig. 4.3b, visible as an increased intensity at the |k| > |k∗| side
of the peak maximum, just like in the experimental data of Fig. 4.2c. The next step

is to test whether this holographic approach can yield superior quantitative fits to the

ARPES data.

Figure 4.3: Simulated spectral function at optimal doping, using the k-
dependent self-energy from semi-holography. a: Spectral function with a linear bare
band (vF = 4 eVÅ, kF=0.45Å), convoluted with the experimental k resolution and b MDC
at non-zero binding energy generated using the full ω and k-dependent self-energy plotted
in panels c and d from the semi-holographic model at T=20 K. Note that c includes the
imaginary part of a k-independent phonon self-energy.
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4.5 Fitting the semi-holographic theoretical model

to the ARPES data

As non-Lorentzian MDCs force a major departure from a cornerstone of ARPES data

analysis methodology, we now describe how to deal with this in the analysis of real

data from (Pb,Bi)2Sr2−xLaxCuO6+δ . The non-zero-T version of the self-energy with

the k-dependence in Equation (4.2b), suggests a modified fit-function LH(k) at the

fixed ω and T relevant for each MDC:

LH(k) =
W

π

ΓH

2

(k − k∗)2 +
(
ΓH

2

)2 , (4.3a)

ΓH(k) = G0 + λ
[(ℏω)2 + (βkBT )

2]α(k)

ℏω2α(k)−1
N

, (4.3b)

α(k) = α

(
1 + V

[
k − kF
kF

])
. (4.3c)

ΓH(k) in Equation (4.3b) captures both the peak width and its asymmetry via mo-

mentum dependence built into the exponent α(k) in Equation (4.3c). By fixing α, β,

λ and ωN to the PLL values at low energies, only G0 and the asymmetry parameter

V remain free to vary in the fitting process for each MDC.

The Gubser-Rocha holographic model used here, however, actually requires that V =

−1 for all frequencies. Thus, in this case the resulting fit function has exactly the same

number of free parameters as the PLL, and is used to fit the experimental MDCs as

shown using the purple lines in Fig. 4.2e-g.

Comparing Figs. 4.2b and 4.2c (PLL, k-independent) with Figs. 4.2f and 4.2g (k-

dependent scaling exponents), it is clear that on adopting Equation (4.3), the residuals

in the panels f and g for energies well below EF drop, becoming as low as they were

for the PLL at EF . In particular, the zoom to Figs. 4.2c and 4.2g illustrates clearly

that the asymmetry of the MDC peaks is now captured almost perfectly. Fig. 4.2h

shows the total self-energy along the loci of the MDC peak-maxima in red, with the

holographic, k-dependent part in blue, and the free fitting parameter G0(ω, T ) in

green. The latter can be seen to automatically take on the combined form of an offset

(impurity scattering) plus a step function centered at the phonon energy of 70 meV.
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4.6 Testing the semi-holographic prediction

Upon determining all the free parameters in the theory (see Methods), two experimen-

tal tests of the semi-holographic results can then be performed. The first is a mild one,

unconnected to the observed MDC asymmetry, and concerns the value of β, shown in

Fig. 4.4a. The experimental values (blue squares) all reside in an interval between

β = 3− 4 across the doping levels studied. Those coming from our model lie between

β = 2−3, and show a doping-dependent (generally upward) trend very similar to that

of the experimental values. A detailed derivation of parameters such as β falls outside

the experimental focus of this paper, and will be presented in a separate publication.

Figure 4.4: Testing the predictions from semi-holography a: Comparison between
the coefficient β, determining the amount of temperature dependence in the self-energy,
obtained from the PLL fit to the ARPES data (blue squares) and predicted by the holographic
model (black line), as a function of the doping-dependent power α, which is translated into
doping on the upper x-axis. b: Asymmetry parameter V of the momentum-dependent scaling
exponent extracted from the experimental ARPES data over the full doping range measured
at 8K, obtained by performing MDC fits to the data using Equation (4.3), where the leading
scaling exponent α, the coupling constant λ and the quantity (ℏω)2 + (βkBT )

2 are fixed. A
value V = 0 means there is no asymmetry, and V = −1 is the prediction from the semi-
holographic Gubser-Rocha model. The high temperature fits are shown in the SI section
S6.

The second, more stringent test is given by the experimentally observed MDC asym-

metry. The non-zero value of V is a non-trivial result, which is built into holography,

but must be accounted for by other theoretical approaches aiming to describe the spec-

tral function of the nodal charge carriers in cuprates. For the Gubser-Rocha model

adopted here, the asymmetry parameter should have a frequency-independent value
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of V = −1. We test this by performing a second fit of the ARPES data, now leaving

V as a free parameter for each ω. Fig. 4.4b shows that - with no guiding restraint at

all applied to V (ω) - the experimental data yield for all doping levels, temperatures

(see SI) and frequencies a value of V ≈ −1, close to the semi-holographic prediction.

Fig. 4.4 shows that there is still some room for improvement as regards to both β and V

in the current approach. Thus, these ARPES data and their parametrization presented

here are an invitation to the many existing z = ∞ holographic models besides the

analytical Gubser-Rocha model - or to completely different theoretical methods - to

take the next step in capturing the observed β values and modest frequency dependence

of V seen in experiment.

Before providing a discussion of other contexts in which k-dependent self energies have

been discussed, we re-iterate the main results of this paper. The ω and T dependence of

the electronic self-energy of nodal carriers in the normal state of the single-layer cuprate

(Pb,Bi)-2201 is shown in ARPES experiments to follow a single power law with a k-

dependent scaling exponent, yielding asymmetric, non-Lorentzian MDCs for energies

away from EF . From fits to the ARPES data from optimal doping across the whole

overdoped portion of the phase diagram that work well over wide ranges in energy

and temperature of more then 200 meV and 250 K, respectively, at k = kF the k-

dependent power-law exponent is found to take a nearly marginal Fermi-liquid value of

unity (α = 0.51) at optimal doping, growing to 1.68 (α = 0.84) for the most overdoped,

non-superconducting system studied. For k = kF , these results connect smoothly to

those of [113]. However, for values k ̸= kF these powers change. Such a k dependence

is a key prediction from (semi)holographic models of strange metals as a quantum

critical phase. The form of the k dependence and the asymmetry parameter describing

its magnitude are all successfully fitted using semi-holographic single-fermion spectral

functions. Importantly, any competing theoretical model for strange metals must be

able to account for the observed ARPES MDC peak-asymmetry that is well described

here by a momentum-dependent power-law self-energy.

There are few studies of the k dependence of the self-energy in solids. In the cuprate

context, [111] and [126] present theory/modelling of possible k dependence in the

self-energy resulting in a change in the dispersion velocity or arising from strong

electron-phonon coupling, respectively. In a different condensed-matter realisation, k-

dependent power laws have recently been observed in the zero-bias conduction anomaly

in transport spectroscopy of nanowires [74], and linked to non-linear Luttinger liquid

theory [66]. One might therefore wonder if there is a link between the 1D physics in the
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nanowire case, and the carriers in the nodal k-space direction of the quasi-2D (Pb,Bi)-

2201 system that seem well described by the 1D CFT encoded semi-holographically

in the AdS2 infrared geometry of the z = ∞ models.

The results presented here herald future comparisons of the experimentally-tested,

theoretical spectral function to other experimental probes such as optical and DC con-

ductivities [70]. Alternatively, many-body condensed-matter theories can be guided by

both the experimental self-energies presented here and the results from the AdS/CFT

analogue, opening up possible pathways out of phenomenology and into a microscopic

understanding of strange metals.

4.7 Methods

4.7.1 ARPES measurements

All ARPES data presented here were recorded at beamline I05 of Diamond Light

Source, using (horizontally) linearly polarized light at a photon energy of 28 eV. Due

to this chosen photon energy we can combine excellent energy resolution (12meV) with

enough range in k space to measure both the negative-k and positive-k nodal branches

in a single I(k, ω) image (see Fig. 4.1A), which is very helpful in distinguishing the

subtle effects at play from possible complicating factors such as signal background.

The energy resolution, together with the Fermi energy position - was confirmed by

means of reference data from an amorphous Au film held in electrical contact with

the sample. To account for resolution in the angular direction, both the Lorentzian

MDC fit function used for the PLL analysis, and the LH MDC fit function from

Equation(4.3) are convolved with a Gaussian of width 0.01 Å−1. In the symmetric

PLL case this yields a Voigt lineshape as indicated in the main text and in Fig. 4.2.

All data were recorded in swept mode, to ensure any detector-response inhomogeneity

is averaged out in the energy direction, and were also confirmed to be free of detector

non-linearity effects [112]. All data were recorded in the XΓX direction in the Brillouin

zone.

High quality single crystals of diffraction replica-free (Pb,Bi)2Sr2−xLaxCuO6+δ , or

(Pb,Bi)-2201), were grown using floating-zone techniques. Individual crystals were

annealed in varying atmospheres for varying lengths of time, so as to change the oxygen

content and with it the hole doping, controlling the carrier concentration and Tc.

The critical temperatures were determined either via resistivity or AC-susceptibility
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measurements and the doping level was read off using Tc and the Presland formula

[108, 4]. For the sample OD0K, Tc ≲ 2K ≲ 0.05Tmaxc .

4.7.2 Holography and semi-holography

The Anti-de Sitter/Conformal Field Theory correspondence (AdS/CFT) links a clas-

sical gravitational theory with one additional spatial dimension to a strongly interact-

ing quantum theory on the boundary of the extended space. In practice, it provides a

systematic way to compute the response functions for a quantum theory with strong

interactions, even at non-zero temperature and in the presence of a chemical potential,

by means of solving a (relatively speaking) simpler problem, namely solving classical

gravitational equations. For our purposes, therefore, the curved space is three dimen-

sional and the quantum theory should describe the correlated physics of the maximally

entangled fermions in the quasi-2D high-Tc cuprates [133, 57]. To be precise, hologra-

phy describes the physics of a composite fermion O with a large number of degrees of

freedom, i.e., in the so-called large-N limit. However, as we here are interested in test-

ing theoretical predictions against spectral functions obtained through ARPES data,

we ultimately want to compute the response function for an elementary fermion ψ.

The solution is found within the semi-holographic framework [33], where the fermion

ψ is linearly coupled to the composite fermion O and the Green’s function describing

the dynamics of ψ then acquires the form

Gψψ(ω, k) =
1

ω − vF (k − kF )− gsG−1(ω, k)
, (4.4)

where G−1(ω, k), assuming the role of the self-energy, is the two-point function of the

composite fermionic operator O, and Gψψ can be shown to be properly normalized

as the Green’s function of an elementary fermion [52]. The most important piece of

the puzzle, the qualitative form of the complex self-energy at energies near the Fermi

level, thus comes from holography. It is in this context that we compute the inverse

Green’s function G−1(ω, k) appearing in Eq. (4.4). This is done by solving the Dirac

equation on the curved gravitational background spacetime [68].

In general, as it has been done for the model in this paper, the gravitational equations

needed to compute the holographic Green’s function can only be solved numerically.

Nonetheless, the qualitative behavior of the low-energy Green’s function of such a

fermionic operator can be obtained analytically and it is completely determined by
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the infrared properties of the theory, captured in the duality by the inner geometry

of the gravitational spacetime. The electron self-energy obtained in this a way is

the one we use for the nodal holes near the Fermi surface within the framework of an

emergent particle-hole symmetry, and it possesses the desired (ω, T )-scaling properties,

i.e., power-law exponents matching the experimental ARPES data. In particular, this

implies that in the class of Einstein-Maxwell-Dilaton geometries characterized by the

dynamical critical exponent z = ∞, and in the presence of a Fermi surface, the inverse

Green’s function at T = 0 (the low-energy behavior can be easily generalized to small

non-zero temperature [49, 32]) has to assume a low-energy form near kF [57] given by

G−1(ω, k) = gω(−ω2)νk−1/2 + . . . , (4.5)

where g is constant in the limit ω, k − kF → 0. It is important to note that the k-

dependent power νk is solely dictated by the IR of the theory and thus is independent

of any of the UV details. The lifetime of the fermionic excitations near the Fermi

surface are then described by

Σ
′′
(ω, k) = −λvF

2
(ω2)νk + . . . . (4.6)

Theoretically, the constant α ≡ νkF in the exponent in Eq. 2b, depends on the two

(dimensionless) parameters in the Dirac equation, the mass m and the charge q, that

encode certain defining properties of the conformal field theory [57]. We keep the

mass fixed close to the limit of m = −1/2 of the range allowed for by semi-holography

(−1/2 < m < 1/2) [52]. Then, varying only q as a function of the hole doping p,

captures the doping dependence of the exponent α(p) seen in the experimental data,

using the numerically obtained linear relationship α ≈ 1.9q. Finally, the value of λ

(see Eq. 2a) leading to a match with experiment at each doping level can be obtained

by adjusting the strength of the coupling gs between the fermion ψ and the conformal

field theory.

We can see that Eq. (4.5) has the same qualitative form as the semi-holographic

response (4.4) for ω, k − kF → 0. Semi-holography thus only changes the UV of the

theory, i.e. the constant g, but it does not change the emergent behavior Σ′′ ∝ (ω2)νk .

In this sense, while we showed that in our ‘bottom-up’ approach we possess enough

tuning knobs so as to get a semi-holographic spectral function that closely resembles

the one observed in the ARPES experiments, we do not know whether the values used

do indeed correspond to a consistent theory of gravity. Nonetheless, our main point
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that the self-energy contains a momentum-dependent power is a universal feature of

z = ∞ holographic calculations, independent of the particular UV completion applied.

In fact, while the theoretical model proposed here is rooted in holography, any quantum

critical theory with infinite dynamical exponent and a large-N suppression of higher-

order correlation functions will be able to give rise to an effective correlation function

of the same form as in Eq. (4.4) [57].
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Chapter 5

Gauge/gravity duality comes

to the lab: evidence of

momentum-dependent scaling

exponents in the nodal

electron self-energy of cuprate

strange metals

5.1 Introduction

Back in 1986, in one of the most exciting experimental discoveries in condensed-matter

physics, the phenomenon of high-temperature superconductivity was observed for the

first time in a layered copper-oxide perovskite by Bednorz and Müller [9]. Since then,

other copper-oxide compounds or cuprates - a class of materials whose common trait

is a layered structure of CuO2 planes - have been found with increasingly higher crit-

ical temperatures. This sits well above the expected limit from the BCS theory of

superconductivity [8] that successfully describes the underlying physics of “conven-
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tional” superconductors. The desire to understand this phenomenon sparked a huge

effort from both the experimental and the theoretical community to unveil the mys-

tery behind the anomalous behavior of copper-oxide materials [80, 47], that eludes an

explanation within the standard Fermi-liquid framework. This effort is still ongoing,

underlining the challenges that these materials present due to the strongly interacting

physics at play [80, 87, 116].

Peculiarities do not lie only within the superconducting phase, and the normal phase

of the cuprates just above the maximum critical temperature in the phase diagram

is known as the strange-metal regime. As the name suggests, this phase is charac-

terized by a non-Fermi-liquid behavior as highlighted, for example, by an anomalous

temperature behavior of the Hall angle [18] and by a linear-in-T resistivity, that does

not saturate at high temperatures [23, 20, 16, 2, 88, 90] and persist at low temper-

atures even if superconductivity is suppressed by a magnetic field [64]. There have

been a variety of attempts and techniques to model the properties of high-Tc cuprates,

such as t − J models, starting from the physics of the Mott insulator in the under-

doped region of the cuprate phase diagram [87, 104, 99], the marginal Fermi liquid

for describing the optimally doped strange metal [75, 81], and stripe phases in high-

temperature superconductors [132, 30, 10, 127, 135], to mention a few. One tech-

nique, in particular, that has been used to describe a class of non-Fermi liquids that

at low energies shares some of the properties of the strange-metal phase is based on

the gauge/gravity (holographic) duality [34], which relates the response of a strongly

interacting system to a higher-dimensional gravitational theory. With roots in high-

energy and particle physics [94, 128, 48], it has proven to be a powerful tool when

applied to strongly interacting condensed-matter systems to model their qualitative

behavior [57, 133, 1], and also being able to describe some of the anomalous prop-

erties observed in transport experiments on cuprates [57]. Moreover, angle-resolved

photoemission spectroscopy (ARPES) measurements pointed to a possible explanation

of the phenomenology of the strange metal in the presence of a particular quantum

critical phase that is local in space, and hence featureless in momentum [80, 113], in

accordance with the marginal Fermi-liquid model. This is also well captured by the

holographic realization of a strongly interacting fermion system [34, 67, 68, 91, 32, 21],

that reproduces the marginal Fermi-liquid results near the Fermi surface. However,

moving away from the Fermi surface these holographic models start to deviate from

the completely featureless in momentum scaling of the marginal Fermi liquid, as they

predict momentum-dependent scaling exponents [34, 67, 68].
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Our main objective in this paper is to bring holography to the test of recent ex-

perimental ARPES measurements along the nodal line, to see what it can tell us

about real samples of single-layer cuprates. In particular, we aim at verifying if its

prediction of momentum-dependent scaling exponents in the electron self-energy can

provide an explanation of the recently observed peak asymmetry in experimental data

[119], that present a deviation from the previously proposed power-law liquid (PLL)

model [113] of a momentum-independent self-energy, with an imaginary part obeying

Σ′′
PLL(ω;T = 0) ∝ (ω2)α. Here α is a scaling exponent increasing (approximately lin-

early) with doping, from α = 1/2 at optimal doping towards, but never reaching, the

Fermi-liquid value of 1 [119, 103] at higher dopings. The analysis of the experimental

data from ARPES measurements is performed on each momentum distribution curve

(MDC), which measures the spectral function as a function of momentum at a fixed

(negative) energy ℏω. For a range of energies close to the Fermi surface, the PLL

model predicts a Lorentzian lineshape for the distribution peaks as

A(k;ω) =
W (ω)

π

Γ(ω)/2

(k − k∗(ω))2 + (Γ(ω)/2)2
, (5.1)

where Γ(ω) = 2Σ′′
PLL(ω)/vF + G0(ω) is the full-width at half maximum (FWHM)

with G0(ω) describing contributions other than the electron self-energy to the width

in the data, e.g., due to phonons, impurities, and instrument sensitivity. We define

Σ ≡ Σ′ − iΣ′′, thus a negative imaginary part of the self-energy requires Σ′′ > 0. In

addition, vF is the renormalized Fermi velocity and k∗(ω) determines the peak position

k∗(ω) ≃ kF + ω/vF with kF the Fermi wave number.

In holography, a prediction, common to a large class of models proposed for the the-

oretical description of the strange metal, is that the electron self-energy is dominated

by its frequency dependence, with the momentum dependence confined to its scaling

exponent νk, so Σ ∝ ω(−ω2)νk−1/2, with ω = ω + i0. Notice that in the literature

this result is often quoted as Σ ∝ ω2νk , here however, in the range of interest to us

1/2 < νk < 1, we want to make the analytic structure of the self-energy explicit, with

a branch cut everywhere on the real axis. In particular, we show that in the model

analyzed in this paper we have

Σ(ω, k;T = 0) ∝ ω(−ω2)α(1−(k−kF )/kF ) , (5.2)

and we explain how this peculiar momentum dependence, that reduces to the PLL form

for the sharp distribution peaks near the Fermi surface, provides a much better descrip-
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Figure 5.1: Comparison of the smoothed experimental data (blue dots) for an overdoped
sample α = 0.65 at T = 8K, with a Lorentzian fit based on the PLL (green line), and a fit
based on the holographic prediction in Eq. (5.2) (red line). While there is little difference
near the Fermi surface with ℏω = 0 (left panel), it is evident that the holographic model
accurately captures the peak asymmetry as we move away from the Fermi surface (right
panel). The details of the fit are presented in section 5.5.

tion of the experimental data away from the Fermi surface. Indeed, this is found to

well describe deviations from the typical symmetric Lorentzian shape of the peaks, as

observed in very recent high-quality angle-resolved photoemission measurements [119],

that are reproduced in Fig. 5.1, convincingly breaking the long-standing assumption of

a self-energy that is completely independent of momentum. Note that, while our anal-

ysis arises from a holographic calculation of the self-energy, momentum-dependent

exponents have also been theorized in a one-dimensional nonlinear-Luttinger liquid

model [74]. The successful description of nodal MDCs by a momentum-dependent

scaling exponent could, then, also hints at the emergence of one-dimensional physics

along the nodal line.

In the hope to make this paper more accessible to a wider audience, we start first

with a brief summary of holographic fermions in Section 5.2, where we introduce the

gravitational background used and its main properties, and explain how to compute

fermionic spectral functions in such a background. In particular, in order to make the

connection with experimental results more clear, we express the holographic solution

in terms of the only two energy scales of the boundary theory, namely the chemical

potential µ and the thermal energy kBT . The reader already familiar with holography

might want to skip straight to Section 5.5 where the main new results are presented,

and refer back to the first sections to check the notation, the conventions adopted as

well as details of the derivations that led to the model given there. In Section 5.3
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we then show how the low-energy behavior of the spectral function is related to the

solution of the Dirac equation in the geometry of the deep interior of the spacetime,

and in particular how this leads to an imaginary part of the self-energy described

by momentum-dependent scaling exponents. We also explain how this gives rise to

an asymmetry in the spectral function peaks. In Section 5.4 we introduce a semi-

holographic construction as proposed in Ref. [52] and explain the limitations of this

approach in describing quantitatively experimental data due to the non-universal real

part of the self-energy. We then proceed to decouple the non-universal physics from the

low-energy emergent quantum critical behavior in order to accurately model ARPES

measurements on a single CuO2-layer cuprate. The details of the modeling of the

experimental data are the topic of Section 5.5, where we, in particular, explain how

we need to interpret the holographic fermion response as the one for the holes with an

emergent particle-hole symmetry. We also show how to change the parameters in the

Dirac equation to describe different dopings in the cuprate and we finally introduce

also the self-energy corrections due to the coupling to phonon degrees of freedom, so

as to correctly capture the experimentally observed behavior of the MDC’s at both

low temperatures and higher frequencies.

5.2 Introduction to fermions in Einstein-Maxwell-

Dilaton theories

In this section we summarize how to use the tools provided by the so-called AdS/CFT

correspondence to compute fermionic spectral functions for a strongly interacting sys-

tem. In particular, we introduce the gravitational background used for the computa-

tion and explain how it captures some key characteristics of the cuprates, as well as

remind the reader how to add fermions in this background to compute the Green’s

function in the holography framework. Although the foundations on which this sec-

tion is based can be found in Refs. [91, 68, 49], we use this section to introduce the

notation used throughout the paper, with special emphasis on deriving the solution in

terms of the boundary energy scales and in keeping track of dimensionful factors.

5.2.1 Gravitational background

For our background we use a 3D Einstein-Maxwell-dilaton theory [50] (where with the

notation nD, we use the condensed-matter convention to denote with n the number

of spatial dimensions only), that has been proposed as a holographic dual for the de-
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scription of the low-energy physics of the strange-metal phase of the 2D and strongly

interacting cuprates. The reasons are that it captures the linear in temperature be-

havior of the resistivity, it does not become unstable in the zero-temperature limit

and, as will we show in this paper, it describes extremely well their fermionic response

obtained by ARPES measurements. This is part of a large class of models character-

ized by a dynamical scaling exponent z = ∞ - of which the most studied one is the

Reissner-Nordström background [91] - that describes an emergent low-energy quantum

critical phase where, under a scaling transformation, time scales while space does not,

with the deep implication that momentum becomes dimensionless under scaling and

the electron self-energy is dominated by the frequency dependence. The Gubser-Rocha

model considered here, is further characterized by a hyperscaling-violating exponent

θ = −∞ that allows for the linear in temperature resistivity ρ and entropy S as

ρ ∝ S ∝ T (d−θ)/z in d spatial dimensions of the boundary, making it part of a sub-

class of models named “conformal-to-AdS2” metals [133].

The Gubser-Rocha model is obtained from the gravitational action

SEMD =
c3

16πG

∫
drd(ct)d2x

√
−g

[
R− (∂µϕ)

2

2
+

6

L2
cosh

(
ϕ√
3

)
− eϕ/

√
3

4g2F
F 2
µν

]
,

(5.3)

with r denoting the additional spacial direction of the curved bulk spacetime, R the

Ricci scalar, ϕ a dimensionless scalar field known as the dilaton, and Fµν the electro-

magnetic tensor with coupling constant

g2F =
c4µ0

16πG
, (5.4)

where [µ0] = m kg/C2 is a constant with the dimension of a magnetic permittivity.

Finally, L is the anti-de Sitter (AdS) radius. The equations of motion following from

the action in Eq. (5.3) define a metric of the form ds2 = e2α(r)(−f(r)dt2 + dx2) +
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dr2e−2α(r)/f(r) and are solved by

A0(r) =gF

√
3Q(r0 +Q)

L

(
1− r0 +Q

r +Q

)
,

ϕ(r) =

√
3

2
log

(
1 +

Q

r

)
,

α(r) = log
( r
L

)
+

3

4
log

(
1 +

Q

r

)
,

f(r) =1−
(
r0 +Q

r +Q

)3

,

(5.5)

with Q a positive integration constant with the dimension of a length and r0 ∈ [0,∞)

the horizon radius [50]. The chemical potential µ of the boundary field theory is

defined through the asymptotic behavior of the bulk gauge field

lim
r→∞

A0(r) = gF

√
3Q(r0 +Q)

L
≡ µ

cq
, (5.6)

with q the electric charge of the fermions introduced later and c the speed of light.

At high-energies, this describes a system with a relativistic linear dispersion ℏω =

±ℏck − µ. However, we are ultimately interested in the effective description of the

electronic response in the cuprates, where near the Fermi energy the dispersion can

also be linearized, but with a velocity vF much smaller than the speed of light. Hence,

we interpret the speed c in the holographic model as the (bare) Fermi velocity of the

electron system near the Fermi surface. We come back to this point later on in Sec.5.5.

The temperature of the boundary field theory can be computed from the black-hole

horizon in the bulk spacetime

kBT =
cℏ
L

3
√
r0(r0 +Q)

4πL
, (5.7)

and we can see that, contrary to the Reissner-Nordström solution, the Gubser-Rocha

model has vanishing entropy, S ∝ Abh ∝ √
r0, in the zero-temperature limit, where

r0 = 0.

For better clarity as well as for numerical computations, we want to work with di-

mensionless quantities, by expressing everything in terms of physical constants and

the dimensionful scale L of the theory, that is by measuring distances in units of L

and energies in terms of ℏc/L. We, therefore, define the dimensionless coordinates
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(r̃, t̃, x̃) ≡ (r, ct,x)/L, and we adsorb the gauge coupling into the field Ãµ ≡ Aµ/gF .

The action in terms of these dimensionless coordinates and fields then becomes

S̃EMD =
c3L2

16πℏG

∫
dr̃ dt̃d2x̃

√
−g

[
R− (∂µϕ)

2

2
+ 6 cosh

(
ϕ√
3

)
− eϕ/

√
3

4
F̃ 2
µν

]
. (5.8)

We further define a dimensionless electric charge q̃ ≡ qLgF /ℏ so that limr→∞ Ã0 =

Lµ/q̃ℏc ≡ µ̃/q̃, and temperature T̃ ≡ LkBT/ℏc. From now on, we will use dimen-

sionless quantities only, unless explicitly stated otherwise, so we will drop the tilde for

notational convenience.

The solutions in Eq. (5.5) can then be expressed in terms of the boundary field theory

(dimensionless) chemical potential and temperature, to take the form:

A0(r) =
µ

q

1−
1 + q2 (4πT )2

3µ2

1 +
√
3q rµ

√
1 + q2 (4πT )2

3µ2


ϕ(r) =

√
3

2
log

1 +
1

√
3q rµ

√
1 + q2 (4πT )2

3µ2


α(r) = log (r) +

3

4
log

1 +
1

√
3q rµ

√
1 + q2 (4πT )2

3µ2


f(r) =1−

 1 + q2 (4πT )2

3µ2

1 +
√
3q rµ

√
1 + q2 (4πT )2

3µ2

3

,

(5.9)

making it explicit that the solution depends only on the energy scale µ/q and on

the dimensionless ratio qT/µ, as expected from the scaling symmetry of a deformed

conformal field theory (CFT).

5.2.2 Holographic fermions

In order to use the tools of holography to compute the spectral function of a fermionic

boundary operator O, we need to add a Dirac action to the higher-dimensional gravi-

tational background action SEMD [91, 67, 68, 133], that, reverting back to dimensionful
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units for a moment, takes the form:

S = SEMD − igf

∫
drd(ct)d2x

√
−gψ̄

[
eµaΓ

a

(
ℏc
[
∂µ +

1

4
ωµbcΓ

bc

]
− iqcAµ

)
−mc2

]
ψ ,

(5.10)

with ψ̄ ≡ ψ†Γ0, Γbc ≡ 2[Γb, Gammac], the vielbein eµa is defined by eµae
ν
b gµν = ηµν and

the spin connection is ωµbc, which ensures that local Lorentz symmetries are preserved

and is defined as

ωµcb = ηcaω
a
µ b = ηca(e

a
λe
ν
bΓ

λ
µν − eνb∂µe

a
ν) , (5.11)

where Γλµν ≡ 1/2gλσ(∂µgσν + ∂νgσµ − ∂σgµν) are the Christoffel symbols. Finally,

gf is a coupling constant with the dimension of an inverse velocity. Introducing the

dimensionless variables of the previous section, we see that there are only two dimen-

sionless parameters characterizing the fermions, namely q̃ and the dimensionless mass

m̃ = mcL/ℏ, as the action takes the form

S̃ = S̃EMD − ig̃f

∫
dr̃dt̃d2x̃

√
−gψ̄

[
eµaΓ

a

([
∂µ +

1

4
ωµbcΓ

bc

]
− iq̃Ãµ

)
− m̃

]
ψ ,

(5.12)

where again, we are going to drop the tilde from now on, as we always use rescaled

quantities unless explicitly mentioned otherwise.

In particular, since we are interested in a 2D boundary theory, we specified above

already the case d = 2. In agreement with this, we now choose a representation of the

Γ matrices of the form

Γr =

(
1 0

0 −1

)
, and Γµ =

(
0 γµ

γµ 0

)
. (5.13)

We can then decompose ψ in terms of the chirality eigenvectors of Γr, namely ψ =

ψR + ψL with ΓrψR = ψR and ΓrψL = −ψL. Upon variation of the Dirac action in

Eq. (5.12), we straightforwardly obtain the Dirac equation in a curved spacetime for

the field ψ as [
eµaΓ

a

([
∂µ +

1

4
ωµbcΓ

bc

]
− iqAµ

)
−m

]
ψ = 0 , (5.14)
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and similarly, we can obtain the equation of motion for ψ̄. The boundary term arising

from the variation of the action is given by

δS∂ =− igf

∫
∂

dtd2x
√
−hψ̄Γrδψ = (5.15)

=− igf

∫
∂

dtd2x
√
−h(ψ̄LδψR − ψ̄RδψL) , (5.16)

since terms of the form ψ̄CδψC = ψ†
CΓ

0δψC = 0, with C = R,L. Here h is the

determinant of the induced metric on the boundary hµν = gµν − nµnν , nµ being the

normal vector orthogonal to the boundary.

If we now introduce a boundary term of the form

S∂ = −igf
∫

dtd2x
√
−hψ̄RψL , (5.17)

the on-shell action is stationary upon imposing the boundary condition δψR = 0. We

then interpret the boundary value of the field ψR as the source of a boundary fermionic

operator, with ψL determining its one-point function. Notice that the bulk spinor ψ

has four components, half of which are related to the source, and the other half to

the boundary fermionic operator for our two-dimensional theory. In order to make

this split explicit, we define ψ± such that ψR =

(
ψ+

0

)
and ψL =

(
0

ψ−

)
, where

ψ± are two-components Dirac spinors. These are not independent, but related by the

Dirac equation by

ψ−(r, ω,k) = −iξ(r, ω,k)ψ+(r, ω,k) , (5.18)

where we adopted momentum-space representation for later convenience. Inserting

Eq. (5.18) into the Fourier transform of the boundary action we obtain

S∂ = −igf lim
Λ→∞

∫
r=Λ

dωd2k

(2π)3

√
−hψ†

+(r, ω,k)γ
0(−iξ(r, ω,k))ψ+(r, ω,k) , (5.19)

where Λ is an ultra-violet (UV) cutoff scale.

Near the boundary (as r → ∞) the mass term becomes the dominant one in the Dirac
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equation and ψ behaves as

ψ =

(
ψ
(0)
+

0

)
r−3/2+m(1 + . . . ) +

(
0

ψ
(0)
−

)
r−3/2−m(1 + . . . ) , (5.20)

where the “. . . ” stand for lower-order terms in the large-r limit and we restricted

ourselves to m ∈ (−1/2, 1/2). We can then interpret ψ
(0)
+ = limr→∞ r3/2−mψ+ as the

source of the two-dimensional boundary Dirac operator Ō−, with conformal dimension

∆ = 3/2 +m, whose one-point function is
〈
Ō−
〉
= ψ̄

(0)
− . We then define the Green’s

function from the effective boundary action that can be written as

S∂ =− i

∫
dωd2k

(2π)3
ψ
(0)†
+ (ω,k)γ0

(
−igf lim

Λ→∞
Λ2mξ(r = Λ, ω,k)

)
ψ
(0)
+ (ω,k)

=− i

∫
dωd2k

(2π)3
ψ
(0)†
+ (ω,k)γ0

(
−iGH(ω,k)γ0

)
ψ
(0)
+ (ω,k) ,

(5.21)

where we used ⟨O−⟩ = −iGHγ0ψ(0)
+ [91], so that the holographic Green’s function is

GH =
〈
O−O†

−

〉
≡
(
−gf lim

Λ→∞
Λ2mξ(r = Λ)γ0

)
. (5.22)

Notice that in the mass range −1/2 < m < 1/2, both terms in the expansion in

Eq. (5.20) are normalizable and there are, therefore, two possible quantizations. The

one implicitly used above is known as standard quantization, where ψ
(0)
+ is the fixed

source. However, in what is known as alternative quantization we exchange the role

of coefficients, i.e., ψ
(0)
+ is now considered a dynamical field we can integrate over

and we then have that ξ is proportional to the inverse of the Green’s function, i.e.,

Galt
H ≡ −G−1

H =
〈
O+O†

+

〉
, where the last equality underlies that this alternative

Green’s function is the two-point function associated to a fermionic operator O+ with

conformal dimension ∆ = 3/2−m 1. As we will clarify later, it is this last interpretation

of the boundary action that is used in semi-holography.

Given that we are ultimately interested in studying the response function, it is typ-

ical to derive an equation for the components of the matrix ξ directly. For defi-

niteness, we choose a basis for the γ matrices as in Ref. [91]: γ0 = iσ2, γ
1 =

σ1, γ
2 = σ3, with σ the Pauli matrices. Introducing the rescaled fields ψ± =

1As you can see, the dimension of the operator in standard and alternative quantization is related
by m → −m, if we indeed always define the source as the leading order term in the expansion in Eq.
(5.20), then changing the sign of m exchanges the roles of the coefficients as the source and operator
response, effectively going from standard to alternative quantization.
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(−ggrr)−1/4e−iωt+ik·x

(
−iy±
z±

)
and using the rotational symmetry to set without

loss of generality the momentum along the x-axis, i.e., k = (k, 0, 0), the bulk Dirac

equation derived from the gravitational action in Eq. (5.10) reads

(∂r ∓m
√
grr) y± =±

√
grr
gxx

(
k −

√
grr
−gtt

(ω + qAt)

)
z∓ , (5.23)

(∂r ±m
√
grr) z∓ =±

√
grr
gxx

(
k +

√
grr
−gtt

(ω + qAt)

)
y± . (5.24)

Finally, defining the field ratios ξ+ = y−/z+, ξ− = z−/y+, we can now show that the

Green’s function is

GH = gf lim
Λ→∞

Λ2m

(
ξ+(r = Λ, ω, k) 0

0 ξ−(r = Λ, ω, k)

)
, (5.25)

where ξ± are solutions to

∂rξ± = −2m
√
grrξ± ∓

√
grr
gxx

[(
k ∓

√
grr
−gtt

(ω + qAt)

)
−
(
k ±

√
grr
−gtt

(ω + qAt)

)
ξ2±

]
,

(5.26)

with the infalling boundary conditions at the black-hole horizon for the fermionic field

ψ corresponding to ξ±(r = r0) = i at any non-zero frequency 2. Furthermore, it

follows from Eq. (5.26), that the solutions for ξ± satisfy ξ
(m)
± (ω, k) = −1/ξ

(−m)
∓ (ω, k).

Hence, the Green’s function for −m, when m ∈ (−1/2, 1/2), is simply equivalent

to the Green’s function in alternative quantization. We can also see that ξ+(ω, k) =

ξ−(ω,−k), allowing us to focus only on one component of the Green’s function matrix.

The spectral function for the holographic fermion highlights the presence of a Fermi

surface at a non-zero k ≡ kF , as shown in Fig. 5.2 by a sharp peak at ω = 0,

corresponding to the Fermi energy. Depending on the m and q parameters in the

Dirac equation, there can be zero, one or multiple Fermi surfaces [91, 49]. However for

the values of the mass and the charge that we use in the rest of the paper we always

deal with a single well-defined Fermi surface, as in the example shown in Fig. 5.3.

The physics of the Green’s function near the Fermi surface is well captured by a

2In the background used in this paper, the boundary conditions at zero frequency become ξ =
±
√

gxx(r0)m/k −
√

gxx(r0)m2/k2 + 1
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Chapter 5. k-dependent scaling exponents: a theoretical view

Figure 5.2: Peak in the fermionic spectral function at the Fermi energy, normalized to
peak height, and a zoomed-in version (top right), showing the presence of a Fermi surface.
Here we used m = −0.49 and q = 0.27.

Figure 5.3: Spectral function for a fermionic operator computed from holography. It is
symmetric in momentum and it shows a linear dispersion expected for a massless fermion,
with the cone shifted down by the chemical potential. Here we used m = −0.49 and q = 0.27.
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5.3. Introduction to fermions in Einstein-Maxwell-Dilaton theories

familiar form for the two-point function of a fermionic particle

GH ≃ Z

−ω + vH(k − kF )− iΣ′′(ω, k)
, (5.27)

with Σ′′(ω, k) > 0 governing the decay rate of the excitations and hence determining

the shape of the peaks observed in ARPES experiment. For this reason, it is the

main focus of this paper and we analyze it in detail in the next section. In many

holographic theories, as in the Gubser-Rocha model used here, kF , vH , and Z can

only be determined numerically, for general m and q, from the full solution of Eq.

(5.26). In particular, we keep the value of m = −0.49 fixed throughout the paper,

the reason for the choice of this particular value is mentioned in section 5.5.4, and the

values for the above quantities as a function of q is shown in Fig. 5.4. We show this

dependence here explicitly as it will essentially turn out to be the doping dependence

of the ARPES experiments later on.

Figure 5.4: Numerical results for the dependence on the charge q of the quantities deter-
mining the Green’s function near the Fermi surface. We fixed the mass m = −0.49 and we
used a value kBT/µ = 4.5× 10−3
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Chapter 5. k-dependent scaling exponents: a theoretical view

5.3 Near-horizon geometry and IR emergent semi-

local quantum liquid

Here we show that the near-horizon geometry implies a low-energy scaling of the zero-

temperature Green’s function of the form ω(−ω2)νk−1/2, where the leading momentum

dependence only enters through the k−dependent exponent. In particular, we stress

the difference between the results for the Reissner-Nordström theory, where the expo-

nent νk for the fermionic spectral function depends also on the charge q and mass m

of the fermionic field, and the solvable EMD background solution proposed by Gubser

and Rocha [50] where the exponent depends on momentum only.

5.3.1 Near-horizon Dirac equation

The holographic duality has found a place in the toolbox of condensed-matter physi-

cists as it allows for a qualitative description of the emergent infrared (IR) physics

in strongly interacting systems governed by a universal quantum critical phase. The

extra “radial” spacetime dimension in the dual gravitational theory geometrizes the

energy scale of the theory, and the near-horizon geometry controls all the low-energy

dissipative processes. As such, in application to condensed-matter problems, hologra-

phy can be thought of as an effective field theory that describes the low-energy physics

up to ultraviolet (UV) coefficients that depend on the particular UV completion, i.e.,

on the asymptotic (large-r in our conventions) form of the dual spacetime. That is

to say Im[GH(ω, k;T )] ∝ Im[Gk(ω;T )], with Gk the IR Green’s function in the regime

where T, ω ≪ µ. In particular then, this allows us to study the T and ω dependence

of the low-energy dissipative physics of our strongly interacting fermion system by

solving the Dirac equation in the geometry of the deep interior of the spacetime. This

is exactly the focus of this section. In the case at hand, we show that in the emergent

geometry - that is conformal to AdS2 × R2 at T = 0, with the AdS2 replaced by a

Schwarzschild black-hole geometry at non-zero T - the Dirac equation can be solved

analytically [49]. This gives rise to a self-energy scaling Σ(ω, k) = Ckω(−ω2)νk−1/2,

with Ck ∈ R and the momentum-dependent scaling exponent νk ∝ q|k|/µ. In a nar-

row momentum range near kF the scaling exponent can then be considered constant

νk ≃ νkF and we immediately see that we recover the physics of the power-law-liquid

self-energy proposed to describe the results of ARPES measurements on cuprates [113].

In later sections, we however argue that away from the Fermi surface, the experimen-

tally observed peaks span a momentum range large enough to be able to observe an
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5.3. Near-horizon geometry and IR emergent semi-local quantum liquid

effect of the momentum dependence in the scaling exponent. In particular, we see

that the momentum dependence implies that the peaks in the MDCs, described by

a symmetric Lorentzian in the power-law liquid, become asymmetric as more spec-

tral weight is shifted towards |k| < |kF |, as also noticeable by looking closely at the

tails of the distribution in Fig. 5.2. Given the importance of the deep interior of the

spacetime, below we compute exactly what this form is.

In the following we are going to focus on the ξ− component of the Green’s function,

hence the relevant equations from Eq. (5.14) are

∂r

(
y+

z−

)
=

 m
√
grr

√
grr
gxx

k −
√

grr
−gtt (ω + qAt)√

grr
gxx

k +
√

grr
−gtt (ω + qAt) −m√

grr

( y+

z−

)
.

(5.28)

Expanding the EMD metric from Eq. (5.9), in the low-energy, low-temperature limit,

to leading order in r/µ we find

√
grr ≃

1

33/8 µ
q1/4

(
r
µ

)3/4√
1− q (4πT/µ)2

3
√
3

µ
r

,

√
grr
gxx

≃ 1

µ2

q
r
µ

√
1− q (4πT/µ)2

3
√
3

µ
r

,

√
grr
−gtt

≃ 1

33/4 µ
2

√
q

(
r
µ

)3/2
(1− q (4πT/µ)2

3
√
3

µ
r )

,

A0 ≃
√
3µ
r

µ
.

(5.29)

In order to compute the IR Green’s function Gk(ω, k;T ) we now need to solve Eq.

(5.28) in such a geometry. The computation for fermions in a 3D boundary theory in

the (4 + 1)-dimensional generalization of the background used here was first done by

Gubser et al. [49]. Here, however, we are interested in describing a single-layer cuprate

strange metal and hence we consider a boundary theory in two spatial dimensions dual

to a (3 + 1)-dimensional bulk spacetime. In the following, we go through the details

of the computation for fermions in two dimensions to show that it can be recast in

the same form as the one for the three-dimensional theory solved by Gubser et al.,

to obtain the same temperature and frequency dependence, with the only difference
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being in the prefactor. The Dirac equation then becomes

r

√
1− q

(4πT/µ)2

3
√
3

µ

r
∂r

(
y+

z−

)
=

m
33/8

q1/4
(
r
µ

)1/4
q kµ −√

q ω/µ

33/4
√
r/µ

1√
1−q (4πT/µ)2

3
√

3

µ
r

+ q3/2

31/4

√
r
µ

q kµ +
√
q ω/µ

33/4
√
r/µ

1√
1−q (4πT/µ)2

3
√

3

µ
r

+ q3/2

31/4

√
r
µ − m

33/8
q1/4

(
r
µ

)1/4


(
y+

z−

)
.

(5.30)

We can immediately see an important distinction compared to the Reissner-Nordström

background (see for example Ref. [68]). In the Reissner-Nordström near-horizon

regime, the momentum term scales with the same power of r/µ as the terms involving

the mass and charge of the fermion. On the contrary, here the mass and gauge terms

are subleading in the small r/µ expansion and the IR solution then does not depend

explicitly on these two quantities. In this limit, we are then left to solve the differential

equation

r∂r

(
y+

z−

)
=

(
0 F(−ω, k, r)

F(ω, k, r) 0

)(
y+

z−

)
, (5.31)

where we defined

F2D(ω, k, r) ≡ q
k

µ
+
√
q

ω

33/4
√
rµ

1√
1− q

3
√
3

(4πT )2

µr

. (5.32)

Similarly, for a three-dimensional boundary theory we have [49]

F3D(ω, k, r) ≡ q
k

µ
+
ω

2r

1√
1− (πT )2

r2

. (5.33)

By the variable redefinitions shown in table 5.1, the Dirac equation takes the same

form in both boundary dimensions, namely
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5.3. Near-horizon geometry and IR emergent semi-local quantum liquid

2D boundary theory 3D boundary theory

ζ = 2
√
q ω
33/4

√
rµ

ζ = ω
2r

νk = 2q kµ νk = q kµ
δ0 = 2πT

ω δ0 = 2πT
ω

Table 5.1: Change of variables for the low-energy solution in a 2D and 3D boundary theory.

−ζ
√
1− ζ2δ20 ∂ζ

(
y+

z−

)
=

(
0 −ζ/

√
1− ζ2δ20 + νk

ζ
√
1− ζ2δ20 + νk 0

)(
y+

z−

)
.

(5.34)

We start by carrying out the computation at zero temperature, i.e., we first set δ0 = 0.

The boundary of the conformal-to-AdS2 spacetime is at ζ → 0, and we can already

see that the asymptotic behavior of the solution takes the form of C1ζ
−|νk| +C2ζ

|νk|.

In order to put the equation in a more familiar form, it is convenient to perform a

change of variables [49] as(
u+

u−

)
=

1√
2

(
1 i

1 −i

)(
y+

z−

)
(5.35)

so that we get

∂2ζu+ +
∂ζu+
ζ

+ u+

(
i

ζ
− ν2k
ζ2

+ 1

)
= 0 , (5.36)

u− = − ζ

iνk
(∂ζu+ + iu+) , (5.37)

where we recognize in Eq. (5.36) the Whittaker equation with two possible solutions

of the form

u+(ζ) =C
iνk√
ζ
W±1/2,νk(±2iζ) . (5.38)

Near the horizon ζ → ∞, the solution behaves as u+ ∝ e∓iζ , and by imposing the
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infalling-wave condition at the horizon (corresponding to eiζ) the solution becomes

u+(ζ) =C
iνk√
ζ
W−1/2,νk(−2iζ) , (5.39)

u−(ζ) =C
1√
ζ
W1/2,νk(−2iζ) , (5.40)

that in terms of the original variables is

y+(ζ) =
C

2
√
ζ

(
iνkW−1/2,νk(−2iζ) +W1/2,νk(−2iζ)

)
,

z−(ζ) =
C

2
√
ζ

(
νkW−1/2,νk(−2iζ) + iW1/2,νk(−2iζ)

)
.

(5.41)

The IR Green’s function can then be extracted by expanding this exact IR solution

for ζ → 0(
y+

z−

)
=
C

2

[(
−1

1

)(
(−2i)1+νkΓ[−2νk]

−Γ[−νk]
+O(ζ)

)
ζνk+(

1

1

)(
(2i)νkΓ[1/2 + νk]√

π
− (2i)νkΓ[−1/2 + νk]

2
√
π

ζ

)
ζ−νk

]
,

(5.42)

where we used the notation Γ[x] for the gamma function, and we get

Gk = i
(−i)2νk4−νkΓ[1/2− νk]

Γ[1/2 + νk]
ζ2νkr|2qk/µ| . (5.43)

Explicitly we thus obtain

q2|qk|/µG2D
k /µ2|qk|/µ =i(−i)4|qk|/µΓ[1/2− 2|qk|/µ]

Γ[1/2 + 2|qk|/µ]

(
qω

33/4µ

)4
|qk|
µ

=ω(−ω2)2
|qk|
µ −1/2Γ[1/2− 2|qk|/µ]

Γ[1/2 + 2|qk|/µ]

(
q2

33/2µ2

)2
|qk|
µ

,

(5.44)

q2|qk|/µG3D
k /µ2|qk|/µ =i(−i)2|qk|/µΓ[1/2− |qk|/µ]

Γ[1/2 + |qk|/µ]

(
qω

4µ

)2
|qk|
µ

=ω(−ω2)
2|qk|

µ −1/2Γ[1/2− |qk|/µ]
Γ[1/2 + |qk|/µ]

(
q2

16µ2

) |qk|
µ

,

(5.45)

where in the second line of Eqs. (5.44) and (5.45), ω has to be thought as usual as

the limit ω + i0. At non-zero temperature, but with T/µ≪ 1, generalizing the result
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obtained by Gubser [49] according to the definitions in table 5.1, we find ultimately

qνkG2D
k /µνk = i

(
q
2πT

33/4µ

)2νk Γ[1/2− νk]

Γ[1/2 + νk]

Γ[1/2 + νk − i ω
2πT ]

Γ[1/2− νk − i ω
2πT ]

. (5.46)

Upon expanding the gamma functions for ω/2πT → ∞ we recover the zero-temperature

solution in Eq. (5.44).

First, a few observations about the result just obtained. As mentioned earlier, the

first peculiarity of this background compared to the Reissner-Nordström one and other

dilaton models (see e.g. Ref. [17] for a review on dilaton models) is that νk ∝ |k/µ|
with no contribution from the mass and charge of the fermion, in particular, this

implies that the scaling exponent is always real and there is no pathological log-

oscillatoric behavior due to a complex exponent, underling an instability at small

momenta and large values of the ratio q2/m2 [32, 91]. Moreover, for these other

backgrounds in the opposite limit of small q2/m2 the scaling exponent assumes the

general form νk ∝
√
(k/µ)2 + 1/ξ2, with ξ = ξ(m2, q2) setting a correlation length

with the Green’s function decaying (at least) exponentially as G ∝ e−x/ξ at large

x≫ ξ [68]. This is not the case here as shown in Eq. (5.44).

The imaginary part of the analytical result in Eqs. (5.44) and (5.46) is finite for every

value of νk. However, this is not the case for the real part that contains a pole for

every value of momenta such that νk = 1/2 + n, n ∈ N. These divergences, though,

are not present in the full Green’s function, as it can be seen in Fig. 5.3, where, in

the full solution obtained numerically, we observe a linear dispersion for every value

of k/µ in the range of interest, according to Eq. (5.27). This is because, when the IR

solution is matched with the outer solution to compute the full Green’s function, these

simple poles are in fact canceled by divergences in the matching coefficients [32]. Here

we discuss the pole arising when νk = 1/2 as it is the only one that concerns us in the

range of momenta considered, where it is interesting to notice that in the limit ϵ→ 0,

with ϵ = νk − 1/2 there is a simple pole in the real part proportional to − 1
ϵω

2ϵ+1.

From the matching procedure, a divergence in the matching coefficient proportional

to ω/ϵ gives rise to the logarithmic term −ω log(ω2) ≃ ω 1−ω2ϵ

ϵ , that we indeed expect

for the marginal-Fermi-liquid case νk = 1/2 [32]. The logarithm can also be seen by

noticing that for νk = 1/2 the otherwise subleading term of the response in Eq. (5.42)

has the same power as the leading term in the source. In order to fix this divergence
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in our expression in Eqs. (5.44) and (5.46), we could remove the simple pole in Gk as

Gk(ω;T )/µνk = i

(
−iqω
33/4µ

)2νk Γ[1/2− νk]

Γ[1/2 + νk]
+

√
q|ω/µ|

33/4(νk − 1/2)
, (5.47)

that does not affect the imaginary part. We stress, however, that we are primarily

interested in the universal physics encoded in the imaginary part of the infrared Green’s

function and we won’t, therefore, indulge more in the subtleties regarding the real part

and we will simply assume it to renormalize the bare Fermi velocity. This is the case

in the range of νk > 1/2 we are interested in, as can be verified from the full solution.

5.3.2 Matching procedure and comparison with the ansatz

As we are ultimately interested in knowing the full Green’s function, we briefly remind

the reader here of the relationship between the infrared Green’s function and the

full one for the boundary fermionic operator O and we then proceed to analyze it

numerically. The basic idea is that we divide the spacetime into two regions, the inner

region for small r/µ where we solved the Dirac equation above, and an outer region

where r ≫ ω, T and we can solve the equations in a series expansion in these two

quantities. For ω, T ≪ µ, this two regions overlap when ω, T ≪ r and r ≪ µ. In

this overlap region we can then match the two solutions. The details of this matching

procedure between the solutions to the Dirac equation in the inner and outer region of

the spacetime are nicely outlined in, for example, Refs. [32, 68]. We ultimately have

that the full holographic Green’s function can be written as

GH(ω, k;T )µ−2m =
b+(ω, k, T ) + b−(ω, k, T )Gk(ω;T )µ−2νk

a+(ω, k, T ) + a−(ω, k, T )Gk(ω;T )µ−2νk
, (5.48)

where the coefficients b±, a± depend on the full spacetime and in most cases, as it is

in this paper, they can only be computed numerically. They are all real and have an

analytic expansion in terms of ω and T

a±(ω, k, T ) = a
(0,0)
± (k) + ωa

(1,0)
± (k) + Ta

(0,1)
± (k) + · · · , (5.49)

for ω, T ≪ µ and similarly for b±. The expansion coefficients depend on momentum

and can be Taylor expanded as well. Notice that, from the structure of Eq. (5.48), an

analogous relation holds for the Green’s function in alternative quantization. In par-

ticular, we therefore expect that for small energies and temperatures we can accurately
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describe the imaginary part of the Green’s function with a form

Im[GH(ω, k;T )−1µ2m] ≃ −C(ω, k, T )Im
[
Gk(ω;T )µ−2νk

]
, (5.50)

with Gk(ω;T ) given in Eq. (5.46) and C admitting an analytical expansion in its

variables where, as we are interested in describing low-energy excitations near the

Fermi surface, we have k/µ ≫ ω/µ, T/µ and, if qk/µ is sufficiently small, we expect

it to be well described by C = C(0) + kC(k) + TC(T ) + ωC(ω) + · · · , with the dominant

correction coming from the k dependence and only small energy and temperature-

dependent corrections. We verified this numerically for different dopings, i.e., different

values of the holographic fermion charge q as we soon explain, and show this in Fig.

5.5. We see that the imaginary part of the full solution is very accurately described by

the IR results at all values of temperatures considered, with the coefficient C(ω, k, T )
linear in k as shown, for example, in Fig. 5.6 for α = 0.65 and qT/µ = 0.005. The real

Figure 5.5: Imaginary part of the numerical self-energy (circles) for different values of fixed
momentum and temperatures in the range of interest, together with a fit to the analytical
low-energy result (lines). We can clearly see that the low-energy behavior of the imaginary
part of the self-energy is indeed described by the AdS2 × R2 solution.
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(a) Momentum dependence of the coefficient
C with a linear fit (red line)

(b) Temperature dependence of the coefficient
C with a quadratic fit (red line)

Figure 5.6: Example of the momentum dependence of the coefficient C resulting from a
fit of the numerical solution at fixed temperature T/µ = 0.005, with a function of the form
of Eq. (5.50) with an energy-independent coefficient C(ω, k, T ) ≃ C(0, k, T ). It shows that
the latter coefficient is linear in k/µ as expected from the argument in the main text, while
temperature corrections are quadratic and thus negligible at sufficiently low temperatures
where C(ω, k, T ) ≃ C(0, k, 0).

part of the Green’s function on the other hand cannot be understood in terms of the

emergent geometry only, as it depends on the full solution and it has to be analyzed

numerically.

We can further see from Eq. (5.48) that the Green’s function for O shows a Fermi

surface whenever there exists a value of momentum k ≡ kF such that a
(0,0)
+ (k = kF ) =

0. Expanding the Green’s function near this point we see that it can be written as

GH(ω, k;T )/µ2m ≃
b
(0,0)
+ (kF )

∂ka
(0,0)
+ (kF )(k − kF ) + ωa

(1,0)
+ (kF ) + a

(0,0)
− (kF )GkF (ω;T )µ−2νkF

,

(5.51)

justifying the form used in Eq. (5.27) in the previous section. We now understand

that kF /µ, as well as Z and vH , require the full solutions and depend therefore on

the UV completion of the theory, while Σ′′ is, up to a prefactor, fully determined

by the imaginary part of Gk. In particular then, near the Fermi surface, we recover

the PLL self-energy Σ′′ ∝ (ω2)α, proposed as a model of the cuprates strange metal,

by fine-tuning the charge of the bulk fermion such that νkF = 2qkF /µ ≡ α, with

α = 1/2 at optimal doping and increasing approximately linearly with doping towards

the Fermi-liquid value of 1 [119].

The full solution start to deviate from the IR analytical behavior for small values of
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ℏck/µ, reintroducing for a moment dimensionful units. However, we are only inter-

ested in describing the MDC peaks near the Fermi momentum with qℏckF /µ ≡ α/2 ∈
[0.25, 0.5). As noted in Sec. 5.2, we consider c as a velocity of the same order of the

Fermi velocity. We can verify that this interpretation is consistent with the infrared

regime ℏω, kBT ≪ µ corresponding to an energy and temperature range of experimen-

tal interest. Since we have qℏω/µ = αℏω/2ℏckF , choosing for estimation purposes a

velocity ℏc = 4eVÅ and kF = 0.5Å
−1

, we have that, choosing for example the largest

values shown in Fig. 5.5, qℏω/µ = 0.05 corresponds to an energy ℏω ∈ (0.2eV, 0.4eV]

depending on the value of α ∈ [0.25, 0.5). This is also where the range of validity of the

linear approximation in the dispersion observed in the ARPES measurements starts to

break down and where we hence do not expect the low-energy holographic description

to be valid anymore. Accordingly, the highest temperature shown is qkBT/µ = 0.005

which corresponds to the high temperatures T ∈ (232K, 465K].

5.4 Semi-holography and effective low-energy response

As we have shown, holography provides us with a way to compute the low-energy re-

sponse function of strongly interacting systems at non-zero temperature and chemical

potential and for any dimensionality, a task not easily achievable with such a generality

within other frameworks. However, when comparing with experimental measurements,

we have to keep in mind that the holographic model considered does not fully corre-

spond to the theory of an electron system at all energies, but it has to be regarded as

yielding an effective theory capturing the low-energy behavior of a fermionic massless

composite operator, whose UV behavior might be far from what is expected from a

metal in the laboratory, as is also clear from the fact that the holographic Green’s

function presented above does not satisfy the electronic sum rule and obeys

1

π

∫ +∞

−∞
dω Im[GH(ω, k)] ̸= 1 , ∀k . (5.52)

Here we would like to write down a low-energy effective action to decouple the dissipa-

tive physics related to the interior of the spacetime from the ultraviolet conformal field

theory of the asymptotically AdS spacetime. An interpretation of the holographic re-

sults known as semi-holography [33, 52] considers the effective action as arising from a

fermionic field χ, living on the boundary of the spacetime whose decay is controlled by

the interaction with the strongly coupled sector described by the holographic fermionic
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operator O, so that the effective action takes the form

Seff =

∫
dωddk

(2π)d+1
(χ†(−ℏω + ϵ(k)− µ)χ+ gkχ

†O + gkO†χ) + Sstrong(O) , (5.53)

with gk a momentum-dependent (assumed real) coupling constant, and Sstrong the

action from the near-horizon holographic sector, so that the Green’s function for the

fermion field becomes

Gχχ(ω, k) =
ℏ

−ℏω + ϵ(k)− µ− g2kGk(ω)
≡ 1

G0(ω, k)−1 +Σ(ω, k)
, (5.54)

with −g2kGk(ω)/ℏ assuming the role of the electron self-energy. With the hope to

extend (semi-)holography beyond just a tool for obtaining low-energy effective theories,

in Ref. [52] it was further shown that by writing down an action coupling the fermion

with the full holographic theory, and not only the IR emergent sector, we find

Gχχ(ω, k) =
ℏ

−ℏω + ϵ(k)− µ+ g2kG
−1
H (ω, k)

≈
ω≪µ

ℏ
−ℏω + ϵ̃(k)− µ− g̃2kGk(ω, k)

,

(5.55)

and we obtain a spectral function that satisfies the electronic sum rule for masses in

the range (−1/2, 1/2). In fact, in this mass range, the contribution from the holo-

graphic Green’s function is subleading at high energies where Eq. (5.55) reduces to

that of a free fermion so that the electronic sum rule for Gχχ is satisfied, pointing

to the possibility that this construction could be used to obtain in a consistent way

the spectral function for a single electron in a strongly interacting theory at all en-

ergies. Notice, however, that in this way the non-universal ultraviolet physics of the

holographic theory enters into the spectral function, modifying the dispersion relation

and, as we will shortly show, imposing an upper limit on the lifetime of the excitations

near the Fermi surface. Combining Eqs. (5.27) and (5.55) we can see in fact that the

Green’s function takes the low-energy form

Gχχ(ω, k) ≃
ℏ

−ℏω(1 + g2k/Z) + (ℏvB + g2kℏvH/Z)(k − kF )− ig2kCIm[Gk(ω)]

Im[Gχχ(ω, k)] ≃
Z̃

vF

Γ(ω, k)/2

(k − k∗(ω))2 + Γ(ω, k)2/4
,

(5.56)
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where Z̃ = Z/(Z + g2k), k∗(ω) = kF + ω/vF , vF (k) = vB
1+g2kvB/ZvH

1+g2k/Z
, vB is the

bare Fermi velocity, and Γ(ω, k) =
g2k

vF (1+g2k/Z)
CIm[Gk(ω)]. We thus see that the

lifetime of the electronic excitations as a function of the adjustable parameter g2k
is bounded from above, with a maximum as we approach the holographic result for

limgk→∞Gχχ(ω, k) ∝ GH(ω, k). In this limit, given the small value of Z as shown in

Fig. 5.4, the holographic prediction gives very sharp peaks near the Fermi surface,

and cannot then offer a quantitative description of the much broader peaks measured

in ARPES experiments. This is an indication that the holographic theory considered

here does not provide a proper description of the electronic excitations at all energies

and the UV completion of the theory, influencing the low-energy behavior through the

values of Z, kF , and vF has to be modified if we want to write down a full theory of the

cuprate strange metal valid across the entire energy range observed. This is outside

the scope of our present work and we consider in what follows the semi-holographic

construction as in Eq. (5.54) as we are in first instance primarily interested in under-

standing if there is evidence in the laboratory cuprates of the peculiar physics arising

from the universal infrared behavior described by the gauge-gravity duality. Only

after this question is answered affirmatively can we undertake the more challenging

problem of a complete description of the theory.

We, therefore, start with the simplest approach of modeling the Green’s function near

the Fermi surface by

Gχχ(ω, k) =
ℏ

−ℏω + ℏvF (k − kF )− ig2kIm[Gk(ω)]
, (5.57)

where we now consider the renormalized Fermi velocity vF to be a k-independent ad-

justable parameter, incorporating the real contribution of the self-energy that renor-

malizes the bare velocity vB , and the freedom in g2k > 0 is set to match the measured

peak width near the Fermi surface. In this way, the holographic input is all in the

imaginary part of the electron self-energy ℏΣ′′(ω, k) ≡ g2kIm[Gk(ω)].

5.5 Comparing holography to ARPES data

The purpose of this paper is to show that the simple “semi-holographic” model de-

scribed above is able to describe the energy and momentum dependence of the cuprate

spectral function measured in ARPES experiments, and, in particular, we argue that

it is a step forward compared to the momentum-independent self-energy of the power-
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law liquid as it provides a better comparison with the data at higher energies. As

such, we explain here how to compare the holographic prediction to the experimental

data from Ref. [119]. We start by looking at the zero-temperature solution and leave

the discussion about temperature corrections, only relevant as kBT ≃ ω, to a later

section.

The analysis of the electronic MDCs is based on a fit of the form of Eq. (5.1)

A(ω, k) =
W (ω)

π

Γ(ω, k)/2

(k − k∗(ω))2 + (Γ(ω, k)/2)2
, (5.58)

where Γ(ω, k) = 2Σ′′(ω, k)/vF + G0(ω)/vF , with G0(ω) a momentum-independent

contribution usually attributed to the electron-phonon interaction and disorder. The

ARPES measurements on the cuprate strange metal have generally been analyzed in a

framework in which the self-energy is dominated by the frequency dependence. It has

then been assumed that it could be modeled with a momentum-independent ansatz,

the power-law liquid:

ℏΣ′′
PLL = ℏΣ′′

PLL(ω, T ) =
((ℏω)2 + (βkBT )

2)α

(ℏωN )2α−1
, (5.59)

with ℏωN = 0.5eV a fixed energy scale, β a constant with an experimentally deter-

mined value around π [113], and α a doping-dependent exponent with α = 1/2 at

optimal doping and 1/2 < α < 1 as we move into the overdoped region of the phase

diagram. As a first-order test of the semi-holographic prediction, according to Eq.

(5.57), we simply replace the PLL’s imaginary part of the self-energy with the semi-

holographic result ℏΣ′′(ω, k) ≡ g2kIm[Gk(ω)]. Notice that by neglecting the real part of

the self-energy this approach is independent of the UV completion of our holographic

theory. One could argue that, given a non-linear momentum dependence, the real part

of the self-energy should introduce some non-linearity in the dispersion relation as well

as momentum dependence in W =W (ω, k) in Eq. (5.58). From the experimental fact

that the peak position near the Fermi surface is well described by a linear disper-

sion with a phonon kink, we consider it a reasonable first step to only assume that

the real part of the self-energy simply renormalizes the Fermi velocity. As previously

mentioned, it is nonetheless a very interesting problem to consider the effect of a full

holographic self-energy on the dispersion and normalization, but that is left for future

work.
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5.5.1 Particle-hole symmetry

Near the Fermi energy the MDC peaks are sharp and the holographic prediction for the

imaginary part of the self-energy is well approximated by the momentum-independent

form of the PLL, i.e., Σ′′ ∝ (ω2)νkF with the identification α ≡ νkF = 2q|kF |/µ. In

particular, we see that the value of the charge q in the bulk Dirac equation can be used

to describe the doping dependence of the power-law exponent, with α approximately

linear in q since the value of kF /µ varies very little as a function of q (see Fig. 5.4). As

we move away from the Fermi level, however, the observed peaks become broad enough

(the FWHM is of the same order of magnitude as the Fermi momentum) that we expect

to be able to notice deviations from the symmetric Lorentzian shape due to the effect

of the k-dependent exponent as Σ′′(ω, k, T = 0) ∝ (ω2)α(1+(k−kF )/kF ). It is easy to see

that this implies more spectral weight in the tail of the peak for |k| < |k∗| as shown in

an example in Fig. 5.2. This is in contrast with experimental findings along the nodal

line, where the peaks appear as if they are “tilted” in the other direction, with more

spectral weight for |k| > |k∗|. We believe that this is due to the holographic fermion in

the bulk being dual to a fermionic operator for the hole, O(ω, k) ≡ Oh(ω, k), hence the

semi-holographic effective theory, Eq. (5.53), describes the response of a hole system,

χ(ω, k) ≡ χh(ω, k). On the other hand, ARPES measures the response of the electrons

in cuprates, associated with χe(ω, k). The semi-holographic spectral function, in the

right panel of Fig. 5.7 is then describing the hole response in the nodal direction. The

left-hand panel in Fig. 5.7 represents photoemission data and thus necessarily is in

an “electron picture”. Since the theory is cast in the hole picture, the red line shown

in the right-hand panel shows the unoccupied hole states, which corresponds to the

red line in the occupied electron states in the left panel. We thus need to identify

the zero of the momentum axis with the (π, π) point, and the rotationally invariant

Fermi surface at ω = 0 of the semi-holographic spectral function then corresponds to

the “round” Fermi surface around the (π, π) point of Fig. 5.8. Assuming, however,

an emergent particle-hole symmetry near the Fermi surface, we actually identify the

position of the (0, 0) point along the nodal direction at 2kF .

Performing a particle-hole conjugation on the fermionic composite operatorOh(ω, k) →
O†
e(−ω, 2kF − k), transforms the self-energy as

ℏΣh(ω, k) = −g2kGk(ω) → +g22kF−kG∗
2kF−k(−ω) = ℏΣe(ω, k)

∝ −g22kF−k(−ω)(−ω2)α(1−(k−kF )/kF )−1/2 ,
(5.60)
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Figure 5.7: With (semi-)holography we obtain the spectral function for the holes (right
panel). In an emergent particle-hole symmetry near the Fermi surface, we relate the ARPES
MDC along the nodal line for the electrons in a cuprate at E < EF , with momentum origin at
the (0,0) point with the holographic distribution at the corresponding ℏω/µ = (EF−E)/µ > 0
(dashed red line). The origin of the momentum axis is at 2ℏckF /µ

where we used the fact that g2k is real and we dropped the absolute value in the expo-

nent as we always consider 0 ≤ k < 2kF . In other words, the electronic spectral func-

tion at E < EF , as measured in ARPES MDCs, is described in our semi-holographic

framework by the peaks for positive frequencies, as depicted in Fig. 5.7, with the

momentum k measured along the nodal direction from the (0, 0) point. From now on,

we simply use the notation ℏΣ(ω, k) = −g2kGk(ω) to refer to the self-energy for the

electron as in Eq. (5.60), with the scaling exponent α(k) ≡ α(1− (k − kF )/kF ).

5.5.2 Fit-function and phonon

In data collected from ARPES measurements, there is a kink in the dispersion relation,

as shown in Fig. 5.9, at about E −EF ≃ 0.07eV. This kink is associated with a jump

in the lifetime of the excitations and it is generally attributed to the electron-phonon

interaction. This gives an additional contribution to the imaginary part of the self-

energy that is accounted for in the experimental fitting procedure by the addition of a

momentum-independent parameter G0(ω). As explained in more details in Ref. [119],

the analysis of the experimental data is done by fitting each momentum-dependent
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Figure 5.8: Structure of the Fermi surface. The origin of the momentum axis is set at
the (0, 0) point, with measurements performed along the nodal line. The holographic model
describes the response of the hole system from the (π, π) point, within an emergent particle-
hole symmetry where the (π, π) point is assumed at 2kF along the nodal direction.

curve, i.e., a slice at constant energy as for example in Fig. 5.10), with the ansatz

A(ω, k) =
W (ω)

π

Γ(ω,k)/2︷ ︸︸ ︷
λfkωN

2

[(
ω

ωN

)2
]α(k)

+
G0(ω)

2

(k − k∗(ω))2 +

λfkωN2

[(
ω

ωN

)2
]α(k)

︸ ︷︷ ︸
Σ′′(ω,k)/vF

+G0(ω)
2


2 , (5.61)

where λ is a doping-independent constant that is determined by a 2-dimensional fit for

momenta and energies near the Fermi level, and is then fixed and does not enter as a

fit parameter in the MDC fits. It is also kept fixed independently of the model used for

the self-energy. In addition, ℏωN = 0.5eV is an energy scale related to the microscopic

details of the CuO2 layer [113]. Finally, W (ω), k∗(ω) and G0(ω) are fit functions.

W (ω) is the overall normalization, that we won’t discuss here, k∗(ω) the dispersion

that we expect to take the form k∗(ω) = kF−ω/vF plus a renormalization contribution

from the phonon as explained below, and G0(ω) accounts for the contribution to the

width of the peak in the constant-energy cut through the data that does not come from
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Figure 5.9: Plot of the dispersion relation from ARPES measurements along the nodal
direction at optimal doping and low-temperature (blue line), and comparison with a linear
disperion E − EF = ℏvF (k − kF ), with vF = 2.9eVÅ (red line). We can see a kink in the
linear dispersion around E − EF = −0.07 eV.

the electron self-energy, that we expect to be well described by a model of the electron-

phonon interaction. In order to check this latter ansatz, we compare the results for

G0(ω) with a simple approximation for a dispersionless phonon, with characteristic

frequency obeying ℏωph = 0.07eV, given by

Σph(ω)

vF
=
Gph

2π
log

(
ω − ωph − iΩ

ω + ωph + iΩ

)
, (5.62)

with, as we will shortly see, Ω > 0 even at T = 0, likely due to the smearing of the

Fermi surface due to strong interactions in the system. This has the effect of smoothing

out the step-function in the imaginary part of the phonon self-energy, as well as the

kink in the dispersion.

For the PLL, fk = 1 and α(k) = α, while for the semi-holographic model presented

above α(k) = α(1 − (k − kF )/kF ) from Eq. (5.60), and from the imaginary part in

Eq. (5.44) we have

fk = g2k

(
ωNα

33/42kF

)2α(k)
Γ[1/2− α(k)]

Γ[1/2 + α(k)]
cos(πα(k)) , (5.63)

where we used the fact that α ≡ 2qkF /µ in the first prefactor. Remember that, upon
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reintroducing dimensionful units, this prefactor reads αωN/2ℏckF . This then contains

an unknown velocity that, however, can be adsorbed into the coupling constant g2k.

Specifically, as we would like to keep the model as simple as possible, we consider

a coupling g2k = C0(1/β0)2(α(k)), with C0 a momentum-independent constant that is

uniquely determined by requiring that at the Fermi momentum we recover the form

of the PLL, that is fkF = 1. Then the self-energy in Eq. (5.61) takes the form

(temporarily reintroducing dimensionful quantities for clarity)

Σ′′(ω, k)

vF
=
λℏωN

2

(
αℏωN

33/42ℏcβ0kF

)−α k−kF
kF Γ[1/2 + α]

Γ[1/2− α]

Γ[1/2− α(k)]

Γ[1/2− α(k)]

cos(πα(k))

cos(πα)

(
ω2

ω2
N

)α(k)
,

α(k) =α

(
1− k − kF

kF

)
.

(5.64)

Here β0 is a fixed constant independent of doping and temperature, and it does thus

not introduce any extra fitting parameter compared to the PLL model. It takes a

value such that ℏcβ0 ≃ 0.21eVÅ, chosen by comparison with experimental data.

Below, in Fig. 5.10, we present the comparison of the fit to a “cleaned-up” version of

data from Ref. [119] at low-temperature and near optimal doping (T = 8K, α = 0.51),

where the width due to the instrumental resolution and fluctuations in the data have

been removed by a combination of deconvolution and smoothing respectively. We

show one branch of the dispersion, but the fit is working on both branches, so as to

correctly account for the overlap of the tail of each branch on the lineshape of the

other. Near the Fermi surface both models provide a good fit to the data, but as we

move away from EF the semi-holographic model (red line in the figures) does a much

better job in describing the data by capturing extremely well the peak asymmetry

in the entire energy range where the dispersion is approximately linear. We start to

see deviations from the holographic model at ℏω = E − EF < −0.25 eV. However,

from the right panel of Fig. 5.11, one can see that this energy is one at which the

approximation of a linear dispersion seems to break down. We stress again here

that, while we cannot claim with certainty the origin of this observed asymmetry,

many other possible simple explanations - that are not rooted in the momentum-

dependence of the electron self-energy - have been analyzed and ruled out in Ref.

[119]. To validate the fit procedure, we have to check that what we obtain for G0(ω)

can have a reasonable physical explanation and, in particular, whether it is consistent

with the contribution from the electron-phonon interaction as per Eq. (5.62). Notice
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Figure 5.10: Comparison of the (smoothed) experimental MDC (blue dots) for a sample
at optimal doping α = 0.51 at T = 8K, with a Lorentzian fit based on the PLL (green
line), and a fit based on the semi-holographic prediction for the self energy in Eq. (5.64)
(red line). Near the Fermi surface both models provide a good fit, but as we move away
from the Fermi surface the holographic model provides a better fit, being able to capture
the asymmetry in the peak. Deep below the Fermi surface, for E − EF ≲ −0.25, we start
to see deviations even for the semi-holographic model. This is, however, where we expect
the low-energy approximation to break down, as is also indicated by the dispersion becoming
non-linear in Fig. 5.11.

that in the way the fit is performed, the contribution of the phonon to Σ′′(ω, k) and

the dispersion relation are two independent parameters, but, within the validity of the

phonon-model approximation, we expect them to be related. We therefore perform a

fit of G0(ω) for both the power-law liquid and the semi-holographic model to determine
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Ω and Gph from Eq. (5.62), and check them against the dispersion k∗(ω):

k∗(ω)− kF
?
≈ ω

vF
+
Gph

2π
Re

[
log

(
ω − ωph − iΩ

ω + ωph + iΩ

)]
. (5.65)

The renormalized velocity vF is left as a parameter in the fit for the dispersion, but we

expect a value vF ≃ 3eVÅ [82]. In Fig. 5.11 we show the result of the fit of this model

(continuous line) to the extracted values of G0(ω) (dots) for the PLL (green) and the

semi-holographic (red) fit function. It is interesting to notice that the semi-holographic

fit function, in contrast with the PLL, seems to give a description for G0(ω) consistent

with an electron-phonon model, nicely reproducing the dispersion (including the kink

at ℏωph = 0.07eV) with ℏvF = 2.9eVÅ, up to energies where it ceases to be linear.

While we should be careful in considering this as further evidence of the validity of

the model as there could be other experimental factors influencing G0(ω) that we

might be overlooking, it is certainly satisfying to see the success of such a simple

semi-holographic model with a phonon in accurately depicting the results of ARPES

measurements on a single-layer cuprate. Even were the reader to be unconvinced that

there is holographic physics at play in the strongly-interacting strange metal, if nothing

else, the analysis presented here provides a simple and useful benchmark to compare to

other theoretical models at low-temperature. A further test that is left for future work

could be to check if the value found for Ω can be related to the density distribution

arising from the semi-holographic Green’s function N(k) ∝
∫ 0

−∞ dωIm[Tr[Gχχ]].

5.5.3 Doping dependence

We now repeat the analysis presented above for a pair of overdoped samples at the same

low-temperature T = 8K, and show the results in Figs. 5.14 and 5.15 for α = 0.61

and Figs. 5.12 and 5.13 for α = 0.82. Note that the only quantities that change with

doping in the fit function Eq. (5.61) are the scaling exponent α and kF = kF (α) -

both determined by a PLL fit near the Fermi surface - while all the other parameters

are kept fixed. We see again, also in both overdoped cases, that the semi-holographic

model provides a better description of the data at higher energies, as well as of the

phonon contribution and dispersion relation 3. The slight disagreement near the Fermi

surface between G0(ω) and the phonon model could simply arise from the fact that

near EF the approximation used for the phonon self-energy deviates the most from

the Fermi-Dirac distribution with a smeared out Fermi surface, as is shown later in

3for the phonon, we considered the Fermi velocity doping independent while we allowed the cou-
pling Gph and the factor Ω to change with doping.
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Figure 5.11: (Left) Fit of G0(ω) in Eq. (5.61) to the electron-phonon model in Eq.
(5.62) for a PLL fit function (green line), giving Gph ≃ 0.020 and Ω ≃ 0.034, and the semi-
holographic one (red line), that gives Gph ≃ 0.031 and Ω ≃ 0.030 (it can be seen that there
is a deviation at very small energy, probably related to some leftover disorder). (Right)
Comparison between the experimentally observed dispersion relation (blue dots) with the
dispersion as expected from the electron-phonon model given the parameters Gph and Ω
obtained from the fit. We see that the semi-holographic model provides a better fit to the
dispersions with ℏvF ≃ 2.9eVÅ, while the PLL fit does not properly capture the phonon kink
and gives ℏvF ≃ 2.7eVÅ.

Fig. 5.17 for the non-zero temperature example.

5.5.4 Temperature corrections

As we have seen above, the zero-temperature IR Green’s function provides a compelling

model to describe ARPES data at low temperatures and in the range of frequencies of

interest. Moving closer to room temperatures, we want to compare experimental data

with the non-zero-temperature semi-holographic prediction from Eq. (5.46). The PLL

instead generalizes to

Σ′′
PLL ∝ ((ℏω)2 + (βkBT )

2)α , (5.66)

that has been shown to well capture the temperature behavior with β believed to be

π, and found to lie between 3 and 4 depending on doping, see Ref. [119]. There,

ARPES data were also compared with a “semi-holographic inspired” generalization

- where the self-energy from the power-law liquid model was simply generalized by

making the exponent momentum-dependent ((ℏω)2+(βkBT )
2)α/(ℏωN )2α → ((ℏω)2+

(βkBT )
2)α(k)/(ℏωN )2α(k), with α(k) as in Eq. (5.64) and all the other parameters kept

as in the PLL. This provided an accurate description of the temperature dependence.

On the other hand, the semi-holographic model seems to present a rather different
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Figure 5.12: Comparison of the PLL fit (green line) and semi-holographic fit (red line)
to MDC data (blue dots) for an overdoped sample with α = 0.61 at T = 8K. Near the
Fermi surface both models provide a good fit to the data, while further away from it the
semi-holographic model accounts for the asymmetry in the peak.

Figure 5.13: (Left) Fit to G0(ω) with the electron-phonon model and comparision with
the dispersion relation (right), for the overdoped sample with α = 0.65. We see here as well
that the semi-holographic fit function provides a description consistent with the electron-
phonon model.
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Figure 5.14: Details of the PLL fit (green line) and semi-holographic fit (red line) to
MDC data blue dots for an overdoped sample with α = 0.82 at T = 8K, both near and deep
below the Fermi surface.

Figure 5.15: (Left) Fit to G0(ω) with the electron-phonon model and comparision with
the dispersion relation (right), for the overdoped sample with α = 0.81.

temperature behavior as per Eq. (5.46). It is first interesting to notice that, when

α(k) = 1, the latter equation simplifies to the Fermi-liquid form

G2D
k /µ = q

4i

3
√
3µ2

((ℏω)2 + (πkBT )
2) , (5.67)

consistent with the PLL temperature behavior. However, the factor in front of the

temperature term becomes smaller for α(k) < 1. In Fig. 5.16 we show the ratio

(Σ′′(ℏω = 0, kBT = ϵ, kF )/Σ
′′(ℏω = ϵ, kBT = 0, kF ))

1/2α, corresponding to β for the

PLL liquid, for the semi-holographic prediction from Eq. (5.46), where ϵ ≪ 1. We

also checked this relation numerically, where at small frequencies and especially for

lower values of νk there are corrections to the analytical formula coming from the m

and q terms in the bulk Dirac equation. We thus explored the mass parameter space
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Figure 5.16: Plot of the ratio (Σ′′(ω = 0, kBT = ϵ, kF )/Σ
′′(ω = ϵ, kBT = 0, kF ))

1/2α from
the analytical semi-holographic model (blue line), and from the full numerical solution (red
line), where there are corrections dependent on the mass m in the bulk Dirac equation. In
the PLL this ratio is the fit parameter β, with experimentally-determined values between 3
and 4.

between (−1/2, 1/2) to find the values of m that bring the ratio closest to the expected

value of π even at lower νk. We find that this happens as we approach the lower limit

of allowed mass m = −1/2, where, however, the temperature prefactor is still lower

than the expected value for all dopings, as seen from the red line in Fig. 5.16.

Given this premise, we then do not expect the semi-holographic model to properly

describe the temperature behavior, in fact, if we keep the coupling gk fixed to the value

found for the low-temperature case, we should find that the model underestimates the

width of the ARPES peak for ℏω ≲ kbT compared to the prediction from the PLL.

By repeating the fitting procedure explained above, we find that the semi-holographic

model still accurately describes the asymmetric peak shape in the MDCs, as shown in

Fig. 5.19. However, G0(ω) departs from the expected high-temperature generalization

of the electron-phonon self-energy. We generalize Eq. (5.62) to non-zero temperature

by requiring that in the limit Ω → 0 the imaginary part of the model gives a good

approximation of the Fermi-Dirac distribution, that is

Σph

vF
=
Gph

2π
log

(
ℏω − ℏωph − i(ℏΩ+ 4kBT/π)

ℏω − ℏωph + i(ℏΩ+ 4kBT/π)

)
, (5.68)

where the values for Gph and Ω are kept fixed to the ones at T = 0. In Fig. 5.17 we

show the comparison between the imaginary part of this approximation and a Fermi-

Dirac distribution. This generalization gives a good description of the dispersion at

higher temperatures as it can be seen in the right panel of Fig. 5.20, which compares

to the experimental data at T = 205K.
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Figure 5.17: Comparison between the Fermi-Dirac distribution (red solid line) and the
imaginary part of the approximation in Eq. (5.68) (black dashed line) with Ω = 0.

Figure 5.18: Plot of the real part of the approximation to the electron-phonon contribution
in Eq. (5.68), with Ω = 0. We can see a divergence at the phonon frequency ℏωph = 0.07eV
as we approach zero temperature.

As we can see in Fig. 5.19 the contribution to Σ′′(ω, k) that does not come from the

electron-electron contribution to the self-energy is indeed larger than what is predicted

by the simple addition of the electron-phonon interaction, as shown in Fig. 5.20. Here,

we also make the comparison with the “semi-holographic inspired” model mentioned

above and presented in Ref. [119] (blue line in Fig. 5.19 and blue dots in 5.20). This

difference between G0(ω) and the expected electron-phonon contribution might signal

a shortcoming of the semi-holographic model considered in this paper in describing the

non-zero temperature behavior of the cuprate strange metal, hinting at the necessity

of searching for other models in the large class of z = ∞ holographic theory with

a temperature behavior that more closely resembles the experimental behavior. On

the other hand, it might also be that a proper description at non-zero temperature

must take into account contributions to the self-energy other than the phonon that
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are activated at non-zero temperature, contributing to G0(ω), or corrections to the

coupling gk → gk(1 + c1T + . . . ), that we did not consider here. While we believe in

the importance of pointing out a possible shortcoming here, we leave a deeper analysis

and identification of viable resolutions to future studies.

Figure 5.19: Comparison of the PLL fit (green line) and semi-holographic fit (red line)
to MDC data (blue dots) for an optimally-doped sample α = 0.51 at high temperature
T = 205K. Here, also added for comparison, is the “holographic inspired” model of Ref.
[119] (blue line). We see that the semi-holographic model still provides a better fit than the
PLL to the asymmetric peak far from the Fermi surface, however, this implies a G0(ω) that
cannot be simply described by the electron-phonon model as shown in Fig. 5.20 below.

5.6 Conclusions

The main aim of this paper is to provide a simple phenomenological model that can

describe the momentum distribution curves measured in high-resolution angle-resolved

photoemission spectroscopy experiments on the strange metal phase on optimally-

doped and overdoped single-layer cuprates. In particular, we propose a model coming

from a semi-holographic theory based on the Gubser-Rocha model of the strange-metal

phase, and test it on recent experimental data [119] while comparing it against the

previously proposed power-law-liquid description. We find that the semi-holographic

model plus an electron-phonon contribution very accurately describes the behavior of

the observed spectral functions in the form of the MDCs, and provides an improvement

over the power-law-liquid model in the low-temperature limit as:

• it gives a better fit to the MDC peaks over a much larger range of energy below

the Fermi surface. This is because it captures an asymmetry observed in the

experimental MDCs that shifts more spectral weight towards the tail of the

distribution for |k| > |k∗|, and it reduces to the PLL result near the Fermi
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Figure 5.20: (Left) Results for G0(ω) in Eq. (5.61) from the fit of the MDC data to a PLL
fit function (green dots), the “semi-holographic inspired model” of Ref. [119], (blue dots),
and the semi-holographic model (red dots) and comparison with the prediction from the high-
temperature generalization of the electron-phonon model (solid lines) as in Eq. (5.68), with
the parameter Gph and Ω as obtained from the fit at low-temperature. While we see that
in all three cases away from the Fermi surface there are contributions to G0(ω) that are not
explained by the simple model of electron-phonon interactions, the semi-holographic model
also shows deviations near the Fermi surface, as expected, due to the different prediction of the
temperature behavior of the electron self-energy. The deviations from the electron-phonon
model are also evident in the discrepancy between the expected and measured dispersion
(right).

energy where this asymmetry is too small to be observed. While there could be

some alternative, non-conventional explanation of this asymmetry, we argue in

favor of it coming from properties of the electron self-energy, as other possible

simple causes have been analyzed and ruled out in Ref. [119].

• it is compatible with a simple model of the electron-phonon interaction that well

describes - to a better degree than in the power-law liquid - both the observed

dispersion relation and the contributions to the self-energy other than that from

electron-electron interactions.

The most practically important implication of these results is that we can provide

a phenomenological description of low-temperature momentum distribution curves in

cuprates along the nodal direction with just a few fit parameters across a large range of

energies and dopings. This description can be used as a benchmark to compare various

theories on the self-energy in the strongly interacting cuprates. Up to a normalization
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we, in fact, have that

A(ω, k) ∝ Im

 1

k − (kF − ω
vF

)− iλfkωN

2

[(
ω
ωN

)2]α(1−(k−kF )/kF )

+
Gph

2π log
(
ω−ωph−iΩ
ω+ωph+iΩ

)
 ,

(5.69)

where fk is given in Eq. (5.63) and the only fit parameters are highlighted in red. Re-

member that these are constant parameters, in contrast with the fit functions k∗(ω)

and G0(ω) as in Eq. (5.61). We stress especially that - while our model is rooted in the

holographic duality and that we believe these results provide good arguments in favor

of the use of this technique in the description of the strange metal - the validity of the

model is independent of its holographic origin. We note that momentum-dependent

scaling exponents have also been predicted in a one-dimensional nonlinear-Luttinger

liquid model [74], hinting perhaps at the emergence of one-dimensional physics gov-

erning the electron response along the nodal direction in copper-oxide layers.

However, we have also shown the shortcomings of the semi-holographic model adopted

in this paper, in the fact that it underestimates the temperature contribution to the

self-energy. However, our model is based on the specific choice of the Gubser-Rocha

dual gravitational theory, which was simply dictated by the fact that it is perhaps the

most simple model among the ones proposed for the description of the strange metal

phase, and it allows for an analytical solution of the gravitational background. We find

it already remarkable that it gives such an accurate description at low temperature,

and a not-so-large discrepancy in the temperature dependence might simply point

to the need for a more refined dual gravitational theory among the large class of

conformal-to-AdS2 metals. The differences observed at elevated temperatures might

also be due to the need for a temperature-dependent coupling g2k(T ) in Eq. (5.63).

This could be the topic of further research, although this would go against our main

goal of providing a simple phenomenological model with as few adjustable parameters

as possible. Moreover, as we have shown in Fig. 5.20, at high temperatures it appears

that there are contributions to G0(ω) that cannot simply be explained within the

electron-phonon interaction, pointing to the fact that we are possibly ignoring some

other effects that might change the analysis of the results if included. This is also a

matter that requires further investigation in future studies.

Finally, we are careful not to claim that the momentum-dependence in the scaling
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exponent of the self-energy is the only possible explanation of the observed asymmetry,

as there could be other factors that might generate this shift in the spectral weight,

some of which, though, are carefully analyzed and ruled out in Ref. [119]. Moreover,

it is important to understand that, while the asymmetry could be accounted for by

simply adding an additional momentum dependence as an extra parameter in the

phenomenological PLL model of the electron self-energy, the model presented here

predicts the form of this momentum dependence, and it is far from trivial that MDC

experimental results across a large range of energies can be so well described by this

function, without adding any additional adjustable parameter to the PLL model.
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Samenvatting

In dit proefschrift gebruiken we de ijk/zwaartekracht (holografische) dualiteit om

de eigenschappen van bepaalde sterk interagerende kwantumsystemen te bestuderen.

Onze grootste interesse ligt in het modelleren en beschrijven van de eigenschappen

van de vreemde metaalfase van de koperoxiden, een klasse van materialen die een

gelaagde structuur van CuO2-vlakken delen en die worden gekenmerkt door sterke in-

teracties tussen de samenstellende elektronen. Deze sterke interacties vormen de kern

van de bijzondere eigenschappen van dergelijke verbindingen in vergelijking met de

meer algemeen bekende metalen die onder de noemer van het goed begrepen Fermi-

vloeistofkader vallen. De meest interessante van dergelijke eigenaardigheden is miss-

chien wel dat - binnen een bepaald dopingbereik - deze verbindingen supergeleiders

worden bij ”hoge” temperaturen, ruim boven de limiet die wordt verwacht van de

BCS-theorie. Het is echter aangetoond dat zelfs de normale fase enkele ongebruike-

lijke eigenschappen bezit, waardoor de naam ”vreemde metaalfase” wordt gebruikt.

Deze fase is de focus van ons onderzoek, omdat men gelooft dat het begrijpen ervan de

deuren zou openen naar het mysterie van supergeleiding bij hoge temperaturen. Meer

in detail, met het oog op de experimentele kant van de zaak, laten we in Hoofdstuk

2 zien hoe we de langeafstands Coulomb-interactie consistent kunnen introduceren in

het holografische raamwerk, om in staat te zijn plasmonische excitaties te beschri-

jven die experimenteel zijn waargenomen in meerderelaags koperoxiden. Vervolgens

gebruiken we dit om in Hoofdstuk 3 de eigenschappen van Coulomb-weerstand in

een sterk interagerend tweelaagssysteem te bestuderen om aan te tonen dat het domi-

nante gedrag bij lage temperaturen met een vierde macht schaalt met de temperatuur,

afwijkend van de T 2-schaal van een Fermi-vloeistof. Bovendien geven we een schat-

ting van de grootte van het effect bij kamertemperatuur en hogere temperaturen, in

de hoop een bruikbare voorspelling te geven die in toekomstige experimenten kan

worden getest. Vervolgens richten we ons in Hoofdstuk 4 op de fermionische spec-

159



Samenvatting

trale functie, waar we momentumverdelingsfuncties analyseren die zijn verkregen door

ARPES-metingen langs de knooprichting, om aan te tonen dat een asymmetrie die

wordt waargenomen in de pieken consistent is met de voorspelling – afkomstig van

een bepaalde Einstein- Maxwell-Dilaton (EMD) holografische theorie - van een mo-

mentumafhankelijke machtswetschaling van de elektron zelfenergie. Ten slotte gaan

we in Hoofdstuk 5 dieper in op de theorie achter de holografische zelfenergie van het

EMD-model, waarbij we de consistentie van de theorie met de experimentele gegevens

bij energieën beneden de Fermi-energie verder controleren door een model voor de

elektron-fononinteractie te introduceren, en uiteindelijk ook de beperkingen te laten

zien naarmate de temperatuur stijgt.
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