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ABSTRACT. Volume–area scaling provides a practical alternative to ice-flow modelling to account for
glacier size changes when modelling the future evolution of glaciers; however, uncertainties remain as
to the validity of this approach under non-steady conditions. We address these uncertainties by deriving
scaling exponents in the volume–area relationship from one-dimensional ice-flow modelling. We
generate a set of 37 synthetic steady-state glaciers of different sizes, and then model their volume
evolution due to climate warming and cooling as prescribed by negative and positive mass-balance
perturbations, respectively, on a century timescale. The scaling exponent derived for the steady-state
glaciers (� ¼ 1.56) differs from the exponents derived for the glaciers in transient (non-steady) state by
up to 86%. Nevertheless, volume projections employing volume–area scaling are relatively insensitive
to these differences in scaling exponents. Volume–area scaling agrees well with the results from ice-flow
modelling. In addition, the scaling method is able to simulate the approach of a glacier to a new steady
state, if mass-balance elevation feedback is approximated by removing or adding elevation bands at the
lowest part of the glacier as the glacier retreats or advances. If area changes are approximated in the
mass-balance computations in this way, our results indicate that volume–area scaling is a powerful tool
for glacier volume projections on multi-century timescales.

INTRODUCTION

Melting glaciers, after ocean thermal expansion, are con-
sidered to be the second major contributor to the observed
sea-level rise in the 20th century (Church and others, 2001;
Dyurgerov and Meier, 2005). In future climate projections,
the glacier contribution is expected to accelerate due to the
fast response of glaciers to global warming, and much recent
and ongoing research is focused on modelling and quanti-
fying this future contribution (e.g. Gregory and Oerlemans,
1998; Van de Wal and Wild, 2001; Raper and Braithwaite,
2006). However, modelling future glacier contributions
carries a variety of uncertainties. This is due to the scarcity
of glacier inventory and hypsometry data and a large
spectrum of uncertainties in modelling and downscaling
future climate change, in modelling mass balance and
finally in assessing the glacier volume changes. The uncer-
tainties in modelling volume changes are addressed in this
paper focusing on the volume–area scaling approach
proposed by Bahr and others (1997).

Numerical ice-flow models best account for the physical
processes involved, but they require detailed input data on
glacier surface and bed geometry and therefore can only be
applied on a small number of glaciers. Hence, owing to
simplicity, the volume–area scaling approach has been
widely used for considering area changes in volume
predictions (e.g. Church and others, 2001; Van de Wal and
Wild, 2001; Radić and Hock, 2006) or for estimating
volumes of existing glaciers (e.g. Meier and Bahr, 1996;
Raper and Braithwaite, 2005). Volume and area for any
glacier in a steady state are related via a power law, but under
non-steady-state conditions the power-law relationship may

change as the mass-balance profiles change (Bahr and
others, 1997), posing a problem for the employment of
volume–area scaling in modelling the response of glaciers to
future climate warming. Based on experiments with a
numerical ice-flow model, Van de Wal and Wild (2001)
assumed such differences to affect volume predictions of a
retreating glacier by not more than 20%. Pfeffer and others
(1998) tested the power-law relation through the three-
dimensional ice-flow modelling of synthetic glaciers in
steady states, focusing on the estimation of glacier response
times. Their results agreed well with the theory of Bahr and
others (1997), but non-steady-state conditions were not
investigated.

In this study, we apply a one-dimensional (1-D) ice-flow
model to numerically generated synthetic glaciers in order
to investigate the volume–area power-law relationships for
both steady-state and non-steady-state conditions. The main
objectives are: (1) to determine and compare the relation-
ships for steady-state and non-steady-state conditions in
order to test the validity of the power-law relationship for
non-steady-state conditions, and (2) to compare volume
projections derived from volume–area scaling with those
derived from the ice-flow modelling.

Using synthetic glaciers has the advantage that it easily
allows modelling of a large number of glaciers under
defined and controlled conditions, but it must be borne in
mind that conclusions on the validity of the volume-scaling
approach in comparison with the ice-flow modelling are
restricted to the 1-D flowline representation of glaciers as
defined in our experiments. In a next step we will elaborate
on this paper by considering real glaciers constrained by
observational data.
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THEORY OF VOLUME–AREA SCALING
Several authors (e.g. Macheret and others, 1988; Chen and
Ohmura, 1990) have suggested that the volume V of valley
glaciers is proportional to the surface area A raised to a
power of about 1.36. Bahr and others (1997) have shown the
physical basis for the power-law relationship by applying
exponential relationships between various glacier character-
istics such as length x, width w, slope �, shape factor F and
mass-balance profile b(x). These relationships are reason-
able approximations to the behaviour of the ice flow and
they include the flow-law exponent n, the width-scaling
exponent q in [w] � [x]q, the side-drag scaling exponent f in
[F] � [x]–f, the slope scaling exponent r in [sin�] � [x]–r

and parameters determining the mass-balance profile. The
brackets indicate characteristic values which can be as-
sumed as the glacier’s mean width, maximum length, total
area, etc. In geometric scaling analysis (Bahr and others,
1997), the exact choice of characteristic values is not critical
because each type of characteristic values is scaled by
constants of proportionality. Mass-balance profiles of valley
glaciers can generally be expressed by:

bðxÞ � c1xm þ c0, ð1Þ
where c1 and c0 are positive constants and m � 2 (e.g.
Dyurgerov, 1995; Bahr and others, 1997). This quadratic
balance profile is the dominant term in a polynomial
expansion of the actual mass balance. Dimensional analysis
of glacier characteristics results in the following relation
between [V] and [A]:

V½ � / A½ ��, � ¼ 1þm þ nðf þ rÞ
ðn þ 2Þðq þ 1Þ þ 1, ð2Þ

where for valley glaciers q ¼ 0.6, m ¼ 2 and f ¼ 0 are
suggested by empirical data, and r is either 0 for steep
surface slopes or r ¼ (1 –m+n – nf ) /2(n+1) for shallow
slopes. Inserting these values into Equation (2), the exponent
in volume–area relationship equals � ¼ 1.375 which is in
close agreement with the exponent � ¼ 1.36 which has
been empirically derived from many Eurasian and Alpine
glaciers (Chen and Ohmura, 1990; Meier and Bahr, 1996).

METHODS
Firstly, using a flowline model forced by different mass-
balance profiles, we produce 37 synthetic steady-state
glaciers ranging in size from 4 to 58 km2. Modelled volumes
and areas are used to determine the scaling exponent � in the
volume–area relationship from regression analysis. Secondly,
non-steady-state conditions are modelled by imposing
positive and negative mass-balance perturbations on a subset
of these synthetic glaciers producing in total 24 volume
evolutions for 100 years. For each volume evolution, we
derive the scaling exponent � based on the annual transient
values of volume and area. Thirdly, we use the volume–area
scaling approach to model glacier volume evolutions and
compare results to those obtained by the flowline model.
Finally, we apply several sensitivity experiments to evaluate
the scaling approach when geometry changes are excluded
or included in area-averaged net mass-balance computations
and when the glacier is in non-steady-state condition prior to
the mass-balance perturbations. We also investigate the
sensitivity of results to the choice of the scaling exponent and
the sensitivity of results in scenarios where the climate
stabilizes after a period of perturbation.

The flowline model
We use the 1-D ice-flow model (central flowline along x) by
Oerlemans (1997). We consider this model as a good
reference for evaluating the scaling approach since the
model has proved to perform well in reconstructions of real
glacier fluctuations (e.g. Greuell, 1989; Oerlemans, 1997;
Schlosser 1997). The model equations are generated from
the vertically integrated continuity equation, assuming
incompressibility of ice, and Euler’s equations combined
with Glen’s flow. From these equations the prognostic
equation for thickness H is derived as:

@H
@t

¼ � 1
w

@

@x
D
@h
@x

� �
þ b, ð3Þ

where b is mass-balance rate, w the width of the glacier, h
the surface elevation and D the diffusivity which is equal to:

D ¼ wð�gÞ3H3 @h
@x

� �2

fdH2 þ fs
� �

, ð4Þ

where � is ice density and g is acceleration of gravity. Values
for deformation parameter fd ¼ 1.9� 10–24 Pa–3 s–1 and
sliding parameter fs ¼ 5.7�10–20 Pa–3m2 s–1 are taken from
Budd and others (1979). This assumes that the vertical mean
ice velocity is entirely determined by the local ‘driving
stress’ � and it has two components: one associated with
internal deformation fdH� and the other with basal sliding
fs� /H. The ‘driving stress’ � is proportional to the ice
thickness H and surface slope @h/@x. For further details
about the model, the reader is referred to Oerlemans (1997).
Equation (1) is solved on a 100m resolution along the
flowline while time integration is done with a forward
explicit scheme which is stable if the time-step is sufficiently
small (e.g. 0.005 years).

Set of synthetic steady-state glaciers
We apply the flowline model to generate a set of synthetic
glaciers defined as slabs of ice with uniform widths lying on
a bed with uniform slope (tan� ¼ 0:1). The model is run for
37 choices of mass-balance profile b(x) defined by different
values of c1 and c0 (Equation (1)), in order to obtain a set of
glaciers in steady states with different climate conditions and
glacier sizes. We define the mass-balance profile as a
function of elevation b(h) which is then transformed into a
function of horizontal position b(x) by fitting a parabolic
function. By doing this we estimate the value for parameter
cm with scaling exponent m ¼ 2. An example is shown in
Figure 1 where the mass-balance profile b(h) is approxi-
mated by the profile b(x). We consider the glacier in steady
state if modelled glacier volume and area remain unchanged
over a period of 100 years. In order to get the scaling
exponent � to agree with the theory of power-law relation
for valley glaciers, we have chosen the following set of
exponents: q ¼ 0.6, f ¼ 0, m ¼ 2 and n ¼ 3. In the theory
the choice of f ¼ 0 corresponds to the glaciers with little
side drag, i.e. the glaciers with half-width much larger than
glacier thickness (Nye, 1965). Although this may not be a
good approximation for valley glaciers, the empirical data
from valley glaciers showed that f is expected to be close to
zero (Bahr and others, 1997). Therefore, to achieve f � 0,
we produced synthetic glaciers with large widths relative to
their thickness. To obtain q ¼ 0.6 we run the flowline model
with a priori determined uniform width and produced a
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glacier in a steady state. Then the steady-state glacier’s
length x is used to determine the glacier’s width w as:

w ¼ cxq, ð5Þ
where c ¼ 10m1 –q is our choice for constant of proportion-
ality. The flowline model is then rerun using the derived
width to produce the synthetic steady-state glacier. We leave
the value for scaling exponent r undefined a priori, as it is
dependent on other scaling exponents and on the steady-
state glacier geometry derived from the flowline model.

Model-derived volume–area relationships
From the 37 synthetic glaciers we obtain a set of values for V
and A from which we determine the power-law relationship
for steady-state conditions. To investigate volume–area
scaling under non-steady-state conditions (transient condi-
tions) we introduce a perturbation db in the mass-balance
profile on a subset of the 37 synthetic steady-state glaciers:

bðx, tÞ � �c1xm þ c0 þ dbðtÞ: ð6Þ
The magnitude of mass-balance perturbation db(t) increases
with a constant rate:

dbðtÞ ¼ dbð0Þt , ð7Þ
where t ¼ 1, . . .100. A period of 100 years is chosen because
future climate-change studies are often focused on a century
scale. We chose three different initial magnitudes for db(0),
corresponding to climate cooling and warming: �0.005,
�0.01 and �0.015 ma–1. In total we create 24 volume
evolutions of glaciers with different initial sizes (12 respond-
ing to climate warming and 12 responding to cooling). We
determine a power-law relationship for each of these 24 tran-
sient volume and area evolutions by linearly regressing on
logarithmic axes the modelled annual values of volume and
area once the steady-state area has changed.

Volume projections using volume–area scaling
Finally, we investigate how well volume evolutions can be
estimated from the volume–area scaling approach by
comparing results to those obtained from the flowline
model. For each of the 24 volume evolutions produced by
the flowline model, we compute corresponding volume
evolutions based on the scaling approach. While the
flowline model calculates the thickness change for each
time-step which determines the volume change, in the
scaling approach the volume changes are represented by

dV ðtÞ ¼ �bðtÞAðtÞ, ð8Þ

where �bðtÞ is annual area-averaged net mass balance. After
the volume change has been calculated at t ¼ 0, the
glacier’s area at the next time-step t ¼ 1 is calculated by
inverting Equation (2). The new area at t ¼ 1 is used to
calculate the mass balance (Equation (9)) and the volume
change at t ¼ 1 by again using Equation (8), and the
calculation is repeated until t ¼ 100. Annual area-averaged
net mass balance �bðtÞ is calculated from the mass-balance
profile as:

�bðtÞ ¼
Pn

i¼1 biðtÞaiðtÞ
AðtÞ , ð9Þ

where bi and ai are discrete values of mass balance b(x,t )
and surface area a(x,t ) for each spatial band (i ¼ 1. . .n) over
the glacier length, while A is total surface area. We use two
definitions for annual area-averaged net mass balance,
following Elsberg and others (2001) and Harrison and others
(2005): If �bðtÞ is calculated keeping surface area constant in
time (equal to initial area A (t ¼ 0)) the result is a ‘reference
surface’ mass balance. If area in Equation (9) is updated for
each year by volume–area scaling, we derive ‘conventional’
mass balance. Here we assume that change in total area
occurs on the tongue of the glacier, so the lowest area bands
are excluded if total area shrinks, or new area bands are
included if total area grows. Area bands are 100m long to be
equal in size to the grid spacing in the flowline model.

For comparison, we apply three different methods to
calculate volume evolution from Equations (8) and (9) dif-
fering from each other solely in whether or not area changes
are included in Equations (8) and (9):

1. The glacier area A is assumed constant in both Equa-
tions (8) and (9). Hence volume–area scaling is not
applied. �bðtÞ is calculated as a ‘reference surface’ mass
balance using constant area A and a constant number of
spatial bands in Equation (9).

2. The area A is assumed constant in Equation (9) but
variable in Equation (8), as done, for example, by Radić
and Hock (2006). The glacier area is adjusted according
to volume–area scaling, i.e. a new area is computed
using Equation (2) from the volume change obtained by
Equation (8), but �bðtÞ is computed as a ‘reference
surface’ mass balance using constant area (Equation (9)).

3. Area changes are considered in both Equations (8)
and (9). �bðtÞ is calculated as a ‘conventional’ mass bal-
ance, meaning that A(t) and the number of spatial bands

Fig. 1.Mass-balance profile b(h) ¼ –1.45� 10–6h2 + 0.0085h – 9.5,
where h is elevation (ma.s.l.), and its approximation with the
profile b(x) ¼ –3.564� 10–8x2 + 1.614, where x is length along the
flowline (m). The profile generated the synthetic glacier with area
A ¼ 31.64 km2 and V ¼ 4.08 km3.

Fig. 2. Log–log plot of volume V vs area A for 37 synthetic glaciers
in steady state with a regression log V ¼ 1.56 log A – 2.11
(r 2 ¼ 0.999).
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changes in Equation (9). Volume–area scaling is applied.
This method partially accounts for the feedback between
geometry changes and mass balance (e.g. area-averaged
mass balance of a valley glacier becomes less negative as
the glacier, in its approach to a new steady state, retreats
from low-lying high-ablation altitudes to higher and
colder altitudes).

We compare the results of each method with the volume
evolution derived from the flowline model. To test how
sensitive the volume projections are to the choice of scaling
exponent in the scaling methods, we use the exponent � in
volume–area relation derived from the 37 steady-state
glaciers, the values obtained from the volume evolutions
of the non-steady-state glaciers, and � ¼ 1.375 according to
the theory of Bahr and others (1997).

RESULTS AND DISCUSSION

Volume–area relationship in steady state
Figure 2 illustrates the relationship between volume and
area plotted on logarithmic axes for all 37 synthetic glaciers
in steady states. Glacier areas and volumes span in the range
[4.37, 57.88] km2 and [0.17, 10.29] km3, respectively. The
strong correlation shows that the flowline model produces
glacier volumes and areas that follow a power-law relation-
ship. The slope of the regression line corresponds to scaling
exponent � and it equals 1.56 with r 2 of 0.999. Hence, it
differs from � ¼ 1.375 derived by Bahr and others (1997)
by 14%. However, although theoretically derived, the value
by Bahr and others (1997) is largely dependent on empirical
data to which their results were adjusted. Since we analyze
synthetic glaciers the deviation from empirical results was
expected because our synthetic glaciers have largely
simplified geometry (e.g. uniform widths) and are created
with the flowline model which presents a simplified
approximation for glacier dynamics. Below, we aim to
answer how significant this deviation is when deriving
volume evolutions.

Volume–area relationship in non-steady state
The ice-flow model produced volumes and areas as a
discrete set of values with a time-step of 1 year. While
volume changes occur almost immediately after introducing
the perturbation db, due to discretization, modelled length

and surface area remain constant for an initial period of
�30–50 years, depending on the magnitude of perturbation.
As an example, Figure 3 shows the area evolution in
response to the mass-balance perturbation of b(0) ¼
–0.015ma–1. We decided to treat the first 50 year period
as a ‘discretization spin-up’ period and consider the set of V
and A in the remaining period as a representative set to
derive scaling exponents under non-steady-state conditions.
Figure 4 illustrates all 24 sets of V and A on logarithmic axes.
Scaling exponents are derived for each of the 24 volume
evolutions and they span in the range [1.80, 2.90] for �, with
a corresponding range of [–3.88, –12.01] for k in
logV ¼ � logA+ k. Larger values for � tended to occur for
negative mass-balance perturbations (warming scenario)
compared to positive perturbations (cooling scenario), and
� tended to decrease with increasing initial glacier size.
Scaling exponents for our set of test glaciers differ by 21%
(� ¼ 1.80) to 86% (� ¼ 2.90) from the scaling exponent
derived for the synthetic glaciers in steady states (� ¼ 1.56).
One possible reason for this difference is that the glacier’s
width in the transient state is not scaled with the glacier’s
length according to Equation (5), meaning that the scaling
parameter q in the width–length relationship may change in
time since the glacier’s length changes while the width is
kept constant. Thus, changes in any of the exponential
relationships between glacier characteristics, such as be-
tween width and length, modify the scaling exponent in the
volume–area relationship. The significance of this difference
in scaling exponent � is analyzed in the next section.

Volume evolutions: sensitivity experiments
Figure 5 illustrates the results for the total volume change
over 100 years projected by the ice-flow model compared to
those projected by the scaling approach. Here, we illustrate
only 2 of the 24 evolutions since results in terms of
sensitivity to the choice of method are similar for all
evolutions. We choose the largest glacier in the set
(A(0) ¼ 38.92 km2, V(0) ¼ 5.77 km3) responding to the
largest perturbation of db(0) ¼ �0.015ma–1. The evolutions
are normalized to the initial volumes. In Figure 5a we
compare three different variants of the scaling approach as
described above ((a) the ‘reference surface’ mass balance
with no volume–area scaling, (b) the ‘reference surface’
mass balance with scaling and (c) the ‘conventional’ mass
balance with scaling). The scaling exponent � ¼ 1.56 as

Fig. 3. Surface area evolution derived from the flowline model as a
response to the perturbation of db(0) ¼ –0.015ma–1.

Fig. 4. Log–log plot of volume vs area for 24 volume (area)
evolutions as a response to different mass-balance perturbations.
Each evolution contains 50 values of V and A. For each evolution
we derived a regression logV ¼ � logA+ k in order to determine
the scaling exponent �.
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previously derived from the 37 synthetic steady-state
glaciers is applied. To optimize initial conditions for each
volume evolution the constant of proportionality in the
volume–area scaling relationship is derived from the gla-
ciers’ initial volume and area instead of using the constants k
derived from regression analysis of each evolution (Fig. 4).

Results based on methods (a) and (b) closely follow the
evolution curves from the flowline model in the first
�50 years for both the warming and the cooling scenario,
while those from method (c) notably deviate somewhat
earlier (Fig. 5a). However, by the end of the 100 year period
the volume change obtained from method (c) is smallest.
Note that the volume response is not symmetrical for
positive and negative mass-balance perturbation of equal
magnitude for methods (b) and (c) which include scaling.
This is due to the exponential character of the volume–area
relationship (Equation (2)). Results from the whole set of
24 evolutions showed that by increasing the magnitude of
the mass-balance perturbation, the sensitivity to the choice
of the scaling method increases, i.e. the difference between
the projections derived by the flowline model and the
scaling methods increases. Also, smaller glaciers in the set
(A<20 km2) are more sensitive to the choice of scaling
method. However, these differences in total volume change
over 100 years for the whole set of 24 evolutions are within
the range of 12% of initial volume when method (c) is
applied and 16% and 23% when methods (a) and (b) are
applied, respectively. Thus the smallest differences are
produced by method (c). This was the expected result since
scaling method (c) is the most sophisticated of the three,
taking into account area changes and considering these in
the mass-balance computations.

The next sensitivity test quantifies the uncertainty in
volume projections due to different values of scaling
exponent � in volume–area scaling. For this purpose we
use the ‘conventional’ mass-balance scaling approach,
method (c), but with three different scaling exponents as
derived from our 37 steady-state synthetic glaciers, the
transient evolutions of the synthetic glaciers and the
theoretically derived value by Bahr and others (1997).
Results for the largest glacier in the set are shown in
Figure 5b. In the total set of 24 evolutions the 100 year
volume changes derived by the scaling method with three
different scaling exponents differ from each other less than
6%. The difference tends to decrease with decreasing mass-
balance perturbations or increasing initial glacier size. These
results suggest that applying scaling exponents that differ up
to 86% yields differences not larger than 6% in derived
volume changes on a century timescale. This difference may
be considered negligible in comparison to the range of
differences due to the choice of the scaling methods and the
range of uncertainties due to the approximations in the
flowline model and volume–area scaling approach. Addi-
tionally, applying the scaling exponent � derived from each
transient evolution of the synthetic glacier produced the
volume projections that followed most closely those from
the flowline model. This is to be expected since the scaling
exponent is calculated directly from the relationship
between transient volumes and areas produced by the
flowline model.

So far we have evaluated the scaling approach for
synthetic glaciers that are initially in steady states. In the
next sensitivity experiment we compute the volume evo-
lutions for glaciers that are initially in non-steady state, i.e.

Fig. 5. Normalized volume evolutions of the largest test glacier responding to the mass-balance perturbation of db(0) ¼ +0.015ma–1

(‘cooling scenario’) and db(0) ¼ –0.015ma–1 (‘warming scenario’). In (a) and (c) the three methods correspond to three different ways of
calculating area-averaged net mass-balance and volume changes: the ‘reference surface’ mass balance without volume–area scaling
(method a), the ‘reference surface’ mass balance with scaling (method b) and the ‘conventional’ mass balance with scaling (method c).
Scaling exponent � ¼ 1.56 is used in the volume–area relationship. In (b) volume evolutions are derived from scaling method (c) using three
different scaling exponents: � ¼ 1.56 derived from our 37 synthetic steady-state glaciers, � ¼ 2.27 (1.89) derived from the transient
response to warming (cooling) of this test glacier, and � ¼ 1.375 derived theoretically by Bahr and others (1997). In (c) the test glacier is in
non-steady state prior to the mass-balance perturbation.
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their mass balance has been negative or positive for several
decades prior to the mass-balance perturbation. The results
for the largest synthetic glacier in the set are shown in
Figure 5c. Initial mass balance for the glacier with warming
scenario is b(0) ¼ –0.54ma–1, and it is perturbed with
db(0) ¼ –0.015ma–1, while for the cooling scenario the
values are b(0) ¼ 0.55ma–1 and db(0) ¼ 0.015ma–1. All
scaling methods show a stronger response to the mass-
balance perturbation compared to the results for glaciers
initially in steady state (Fig. 5a). This is due to the larger
magnitude of the initial mass-balance perturbation. In
addition, deviations between the different projections are
much larger. For all 24 evolutions, the differences between
the 100 year volume changes obtained from the ice-flow
model and the volume changes from methods (a) and (b)
are up to 47% and 74%, respectively, while the volume
changes from method (c) differ up to 16% of initial volume.
Thus, method (c) produced the best approximation of
100 year volume evolutions derived from the flowline
model for the synthetic glaciers initially in non-steady
state. We also assumed different scaling exponents in
scaling method (c), as done above, and derived the
100 year volume changes which differed by <12%. As in
the experiment above, applying the scaling exponent �
derived from each transient evolution produced the closest
volume projection to that obtained from the flowline
model. We expect the volume projections derived from
the scaling approach to continue to diverge from those
derived by the flowline model if the mass-balance perturb-
ation according to Equation (7) is applied beyond the
period of 100 years. How much they diverge depends on
magnitude of mass-balance perturbation, initial size of the
synthetic glacier and the method for calculating area-
averaged mass balance.

Our final sensitivity test evaluates the scaling methods for
hypothetical scenarios where the climate stabilizes after the
initial period of perturbation. To that end, we derived
volume projections for a 300 year period applying a cooling
or warming scenario for the first 100 years while afterwards
the climate is kept stable. Thus, after an initial period of
100 years with mass-balance perturbation, as employed in
our previous experiments (Equation (7)), we continued the
evolution for an additional 200 years, keeping the mass-
balance perturbation equal to the perturbation at t ¼ 100.
The results are shown in Figure 6 for a cooling and warming
scenario applied on the largest glacier in the set. For both
scenarios the volume evolutions derived from the flowline
model reach new steady states. This is not the case for
scaling methods (a) and (b) which keep the surface area
constant in the calculations of area-averaged mass balance,
thus excluding the feedback between the mass balance and
glacier geometry changes. Only the method with ‘conven-
tional’ mass-balance calculation, method (c), is able to
simulate the approach of the glacier to a new steady state.
Although method (c) produces 100 year volume changes
which deviate up to 12% from the changes derived by the
flowline model, it is the only one of the three scaling
methods that is capable of simulating the response of area-
averaged mass balance to geometry/elevation changes as
simulated by the flowline model on a multi-century time-
scale. For our synthetic glacier with uniform width, this
feedback is simulated by subtracting (adding) area bands on
the tongue of the glacier as the glacier retreats (grows) due to
warming (cooling).

CONCLUSIONS
Scaling exponent � ¼ 1.56 in the volume–area relationship
obtained from 37 synthetic steady-state glaciers of different
sizes differed from � ¼ 1.375 derived theoretically by Bahr
and others (1997) and from the exponents (� ¼ [1.80, 2.90])
derived for each of 24 investigated glaciers under non-
steady-state conditions, i.e. responding to hypothetical mass-
balance perturbations. Exponents � were generally larger for
negative mass-balance perturbations (warming scenarios)
than for positive perturbations (cooling scenarios), and �
tended to decrease with increasing initial glacier size.
However, the range of differences in scaling exponent by
up to 86% is shown to make negligible differences, <6%, in
100 year volume changes derived from the scaling approach.

Volume projections on a century timescale differed
within the range of 12–23% of initial volume from the flow
model results, depending on the method by which the area-
averaged net mass balance is calculated, i.e. whether or not
volume–area scaling is applied and area changes obtained
from volume–area scaling are included (‘conventional’ mass
balance) or excluded (‘reference surface mass balance’) in
the mass-balance computations. The most sophisticated
method accounting for area changes and considering these
in the mass-balance computations resulted in the smallest
differences (up to 12%) in projected volume changes over

Fig. 6. Evolution of area-averaged mass balance b (a, c) and nor-
malized glacier volume V (b, d) derived from the flowline model
and from the scaling methods. Initial perturbation is db(0) ¼
0.015ma–1 (cooling scenario) and db(0) ¼ –0.015ma–1 (warming
scenario). Scaling methods (a) and (b) are based on ‘reference
surface’ mass balances, and scaling method (c) is based on
‘conventional’ mass balances as also in the flowline model.
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100 years. This method best agreed with the projections by
the ice-flow model when the glaciers are initially in non-
steady state or when the climate is assumed to stabilize after
a period of perturbation. In fact, the method is capable of
simulating the glacier approaching a new steady state by
simulating the feedback between area-averaged mass-
balance and glacier geometry/elevation changes resulting
from retreat or advance of the glacier. This feedback is
captured by excluding area from or adding area to the
lowest part of the glacier. In contrast, neglect of volume–
area scaling and neglect of area changes in the mass-
balance computations fails to simulate this feedback and the
approach to a new steady state.

Although based on a set of synthetic glaciers of highly
simplified geometry, our results are promising for use of
volume–area scaling in glacier volume projections provided
that the mass-balance–elevation feedback is captured by
considering area changes in the mass-balance computa-
tions. Our approach to add area to and remove area from
the lowest elevation bands of the glacier seems to be able to
capture these processes sufficiently well to obtain results
comparable to those from the ice-flow model. In a next step
we will test the approach on real glaciers with obser-
vational records.
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