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Spontaneous hair-bundle oscillations have been proposed to underlie the ear’s active process,
which amplifies acoustic signals, sharpens frequency selectivity, and broadens the dynamic range.
Although this activity is critical for proper hearing, we know very little about its energetics and
its nonequilibrium properties. Systems obey fluctuation-response relations, whose violation signals
nonequilibrium conditions. Here we demonstrate the violation of the fluctuation-response relation
of a linear model for hair bundle oscillations. Combining analytical results with experimental data,
we estimate that an energy of at least 146 kBT is dissipated per oscillatory cycle, implying a power
output of about 5 aW. Our model indicates that this dissipation attains a minimum at a certain
characteristic frequency. For high frequencies, we derive a linear scaling behavior of this dissipated
energy with the characteristic frequency.

I. INTRODUCTION

One of the most fundamental properties of all
living systems is their ability to use active pro-
cesses to generate organization and biological func-
tion away from an equilibrium state [1]. In recent
decades, tremendous advances have been made in a
field called stochastic thermodynamics to describe
the physics of active, fluctuating processes on a mi-
croscale [2–5]. However, applying these methods to
biological systems and relating them to a biological
function remains challenging.

Equilibrium systems show two important prop-
erties: they obey a time-reversal symmetry, and a
fluctuation is indistinguishable from the response to
a small perturbation [3, 6]. The latter property is
manifested in the fluctuation-response relation that
can be violated in nonequilibrium systems. Based on
these two properties, different methods have been
proposed to characterize and quantify active pro-
cesses in biological systems [7–16].

Spontaneous oscillations of hair bundles are ideal
for investigating the connection between active pro-
cesses and biological function because their move-
ment can be considered to be one-dimensional
and their biological function is well-studied [17–
19]. These hair bundles protrude from the api-
cal surfaces of hair cells in the inner ear and are
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the mechanosensitive elements transducing acous-
tic energy into electrical signals. Under appropri-
ate ionic conditions, they display rich, non-linear
spontaneous oscillations [17]. Because these oscilla-
tions violate the fluctuation-response relation, they
must stem from an active process [20]. This viola-
tion of the fluctuation-response relation of oscillating
bundles was restored by extending the fluctuation-
response relation to nonequilibrium systems [21, 22].
Although these studies answered the question of
whether these spontaneous movements were active
or passive, they did not investigate the nonequilib-
rium energetics of the driving. Investigators have
subsequently used a combination of modeling and
single-cell data analysis to estimate the energy that
is dissipated during an oscillatory cycle [23, 24].
These studies relied on the observed displacement
of the bundle without perturbing it. As a comple-
mentary approach, the investigation of the response
of a hair bundle to a perturbation potentially offers
new insights into its nonequilibrium operation and
provides additional information about its fascinating
dynamics.

Here we analytically solve a linear model of hair
bundle oscillations that adequately describes the
fluctuations and responses, as observed experimen-
tally. In such experiments, the position of the bundle
is recorded and perturbed at the same time. Other
degrees of freedom, for example, the cell’s ionic cur-
rents, are very difficult to access experimentally [25].
With our model, we investigate a typical experimen-
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tal case, in which we can probe only the fluctuation-
response relation of the bundle’s position. We de-
rive an analytical expression for the violation of the
fluctuation-response from which we determine the
dissipated energy by using the Harada-Sasa equality
[7]. Because this estimate for the dissipated energy
is derived only from one degree of freedom of the sys-
tem, it should be considered as a lower bound. After
obtaining numerical values for our model’s parame-
ters from a fit to previously published experimental
data, we estimate the energy that is dissipated per
cycle. The energy dissipated per cycle displays a
minimum as a function of characteristic frequency.
For high frequencies, we derive a linear scaling law
of how the dissipated energy per cycle increases with
the characteristic frequency of oscillation.

II. VIOLATION OF THE
FLUCTUATION-RESPONSE RELATION OF

A SPATIAL COORDINATE

Harada and Sasa introduced an equality that re-
lates the average energy dissipation 〈J〉 to the vio-
lation of the fluctuation-response relation of the ve-
locity in a nonequilibrium system [7]. Considering a
system without drift, the mean energy dissipation is
given by

〈J〉 = γ

∫ +∞

−∞

dω

2π
C̃vv(ω)− 2kBTR̃

′
v(ω), (1)

in which C̃vv(ω) is the Fourier-transformed veloc-

ity autocorrelation function, R̃′v(ω) is the real part
of the Fourier-transformed response function, and
γ is a friction coefficient. This equation implies
Ã(ω) =

∫∞
−∞ dt a(t) exp(iωt) as the Fourier trans-

formation that we will use in our study.
In contrast to the position, the velocity is not an

observable that can be directly measured in experi-
ments. Determining the velocity from a fluctuating
position could lead to artifacts. To directly apply
the Harada-Sasa equality to measurements of the
position, we express the velocity correlations and
response in terms of the position x correlation and
response, as

C̃vv(ω) = ω2C̃xx(ω), (2)

and

R̃′v = ωR̃′′x, (3)

see section VII A and section VII B. Here the two
primes indicate the imaginary part of the complex

response function. With these transformations, we
obtain the energy dissipation in terms of the corre-
lation C̃xx and response R̃′′x functions with respect
to the position,

〈J〉 = γ

∫ +∞

−∞

dω

2π
ω2C̃xx(ω)− 2kBTωR̃

′′
x(ω) (4)

=

∫ +∞

−∞
dωh̃(ω), (5)

in which we introduced the violation function

h̃(ω) =
γ

2π

(
ω2C̃xx(ω)− 2kBTωR̃

′′
x(ω)

)
. (6)

III. VIOLATION OF THE
FLUCTUATION-RESPONSE RELATION
FROM A LINEAR MODEL FOR HAIR

BUNDLE OSCILLATIONS

Linear models of oscillating hair bundles are suf-
ficient to describe experimentally-observed correla-
tion and response functions [20, 21]. Therefore, we
will limit our analysis to a linear model. We describe
the position x of a hair bundle by

γẋ = −kx+ F + ηx, (7)

in which γ is an effective drag coefficient, k a stiff-
ness, and F an active driving force that is generated
in the bundle. The bundle is exposed to fluctuations
of the thermal environment described by the noise
term ηX . Inside the bundle, a molecular machin-
ery generates the active force F that evolves in time
according to

λḞ = −k̄x− F + ηF , (8)

with the relaxation time λ, coupling constant k̄,
and noise ηF that originates from nonquilibrium
fluctuations of molecular motors [26–28]. For both
noise terms, we assume Gaussian noise that is delta
correlated: 〈ηx(t)ηx(0)〉 = Dxδ(t), 〈ηF (t)ηF (0)〉 =
DF δ(t), with amplitude Dx and DF , respectively.
Furthermore, the two noise terms are uncorrelated
with each other, 〈ηxηF 〉 = 0.

When we solve these equations in Fourier space
for x̃(ω), the autocorrelation is readily derived as

C̃xx(ω) = (9)

DF +Dx(1 + λ2ω2)

2kk̄ + γ2ω2 + (k̄ − γλω2)2 + k2(1 + λ2ω2)
,
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see section VII C 1. As shown in section VII C 2, we
determine the linear response function of the posi-
tion with the real part,

R̃′x(ω) =
k + k̄ + kλ2ω2

2kk̄ + γ2ω2 + (k̄ − γλω2)2 + k2(1 + λ2ω2)
,

(10)
and the imaginary part,

R̃′′x(ω) =
ω(γ − k̄λ+ γλ2ω2)

2kk̄ + γ2ω2 + (k̄ − γλω2)2 + k2(1 + λ2ω2)
.

(11)
The frequency that maximizes the susceptibility
|χ|2 = R̃′2x + R̃′′2x defines the characteristic frequency

ω0 =
1

λ

√
A

γ
− 1, (12)

with A2 = k̄λ(2γ + λ(2k + k̄)).
Using eq. (11) and eq. (9), we obtain from eq. (6)

the violation function

h̃(ω) = (13)

γω2(2kBT k̄λ+DF +(λ2ω2+1)(Dx−2γkBT ))

2π(2kk̄+γ2ω2+(k̄−γλω2)2+k2(1+λ2ω2))
.

The energy dissipation as defined in eq. (4) is re-

lated to the integral
∫
h̃(ω)dω and converges to a

finite value, only if h̃(ω) vanishes for large ω. Such
convergence can be imposed by requiring the equilib-
rium fluctuation-dissipation relation for the position
x,

Dx = 2γkBT. (14)

Under this condition, the violation function simpli-
fies to

h̃(ω) = (15)

γω2(2kBT k̄λ+DF )

2π(2kk̄+γ2ω2+(k̄−γλω2)2+k2(1+λ2ω2))
.

Because h̃ is a symmetric function, we evaluate the
integral over 2h̃ for positive values and obtain the
energy dissipation

〈J〉 =

∫ +∞

0

dω2h̃(ω) = (16)

2k̄kBTλ+DF

2
√

2λS

(√
B + S −

√
B − S

)
,

in which S = (γ + kλ)
√
B − 2γλ(k + k̄) and B =

γ2 + k2λ2− 2γk̄λ. For 4γk̄λ ≥ (γ− kλ)2, we further
simplify the result to

〈J〉 =
2k̄kBTλ+DF

2λb

(√
−B +

√
b2 +B2

)
, (17)

in which b = (γ + kλ)
√

4γk̄λ− (γ − kλ)2.

IV. ESTIMATING THE DISSIPATED
ENERGY FROM EXPERIMENTAL DATA

To obtain numerical values for the parameter of
our linear model, we fit the autocorrelation func-
tion as well as the response function to experimen-
tal data, see fig. 1(a) and fig. 1(b). The data were
previously published in [20]. We fit both functions
simultaneously and therefore scaled the values for
each function by their respective maxima to ensure
an equal weighting. From this fitting procedure,
we obtained numerical values for our model param-
eters, given in table I. In general, the resulting
fits display a good agreement with the experimen-
tal data with some deviation of the correlation func-
tion for low frequencies and of the response function
for high frequencies, see fig. 1(a) and fig. 1(b). The
numerical values for the parameters are similar to
those obtained previously for similar model equa-
tions, but with slightly different assumptions and
interpretations [20]. Although in the previous model
the strength of the two noise terms was assumed to
be equal, we needed to treat them independently to
ensure that the integral over the violation function
converged. In our case, the noise strength Dx of
the fluctuations of the position obeys a fluctuation-
dissipation relation, see eq. (14), and the source of
active driving is effectively described by the noise
strength DF of the active force. Therefore, our nu-
merical value for the noise strength DF is about 40
times larger than in the previous study. As a fur-
ther consequence, our effective coupling stiffness k is
about five times smaller. We note that our effective
model that non-reciprocally couples an active noise
term to the position coordinate captures the statis-
tics of the noise and the response very well. However,
the parameters for our model should not be associ-
ated with the physical parameters that actually de-
scribe the mechanical properties of the bundle, such
as the stiffness or the friction [29, 30].

parameter value from the fit

γ 8.72µN · s · m−1

λ 54.8 ms

k 21µN · m−1

k̄ 1.348 mN · m−1

DF 4.916 pN2 · s

TABLE I. Numerical values obtained from the fits shown
in fig. 1

Using the numerical values given in table I to-
gether with kBT = 4.1 · 10−21 N ·m in eq. (17), we
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FIG. 1. (a) The autocorrelation function of eq. (9) is fitted to experimental data previously published in [20]. The
resulting numerical values for the parameters are given in table I. (b) The real (red) and imaginary parts (blue) of
the response function given in eq. (10) and eq. (11) are fitted to experimental data from [20]. (c) From our model, we
predict how the energy dissipation per cycle from eq. (17) behaves for different characteristic frequencies f0 = ω0/2π,
with ω0 from eq. (12). We alter the characteristic frequency by changing the coupling parameter k̄ and determine
the resulting parametric plot (red line). For an explicit dependency of these quantities, we derive an approximate
solution of the dissipated energy per cycle in eq. (23) as a function of f̄0 (blue dots). The energy dissipated per cycle
attains a minimum and scales linearly with large characteristic frequencies of oscillation.

obtain an estimate for the averaged dissipated en-
ergy

〈J〉 = 5.093 · 10−18 N ·m/s = 5.093 aW (18)

= 1242 kBT/s.

The characteristic frequency is determined from
eq. (12) as

f0 = ω0/2π = 8.5 Hz. (19)

With these values, we obtain the dissipated energy
per cycle as

〈E〉 = 〈J〉 /f0 = 146 kBT/cycle = 0.6 aJ/cycle.
(20)

Assuming that all of this activity is related to myosin
motors that hydrolysis ATP with a free energy re-
lease of roughly 10 kBT , we conclude that about 14
ATP molecules are hydrolyzed per oscillatory cycle
[26, 27].

V. ESTIMATED ENERGY DISSIPATION
FOR DIFFERENT CHARACTERISTIC

FREQUENCIES

Using our model description, we can investigate
how the estimated dissipated energy per cycle de-
pends on the characteristic frequency of the bundle.
By changing the coupling strength k̄ of the position
coordinate to the active force, we vary the character-
istic frequency ω0 of the bundle over a wide range.

Considering ω0 as a variable and taking the numer-
ical values given in table I for the other parameter
values, we determine the dissipated energy per cy-
cle as a function of the characteristic frequency in
a parametric plot, see fig. 1(c). We identify a min-
imum of the dissipated energy per cycle at a fre-
quency of about 20 Hz.

The numerical values for the free parameters in
table I suggest that k̄λ > 2kλ + 2γ and k̄λ/γ > 1.
Therefore, we consider the following approximation
for the characteristic frequency from eq. (12),

f̄0 =
1

2π

√
k̄

λγ
, (21)

and for the energy dissipation from eq. (17),

¯〈J〉 =
2k̄kBTλ+DF

2λ(γ + kλ)
. (22)

With these two equations, we express the energy dis-
sipated per cycle as a function of the characteristic
frequency,

¯〈E〉 =
¯〈J〉
f̄0

=
DF + 8γkBTλ

2π2f̄0
2

2λ(γ + kλ)f̄0
. (23)

This approximation is in very good agreement with
the full solution, see fig. 1(c). The minimum of this
approximated dissipation function is located at the
characteristic frequency

f̄0
min

=

√
DF

2π
√

2γkBTλ
, (24)
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and assumes the value

¯〈E〉min
=

2π
√

2γkBTDF

γ + kλ
. (25)

By reintroducing the noise strength Dx from the
fluctuation-dissipation relation, we can rewrite the
two equations as

f̄0
min

=
1

2πλ

√
DF

Dx
, (26)

and

¯〈E〉min
=

2π

γ + kλ

√
DxDF . (27)

The approximation given in eq. (23) implies a lin-
ear scaling behavior for large characteristic frequen-
cies. Our fit to the experimental data suggests that

¯〈E〉 ≈ 2f0 · kBT · s (28)

for large f0.

VI. DISCUSSION

Spontaneous activity of hair bundles in the inner
ear displays a rich variety of non-linear oscillations.
Various linear and non-linear models have been in-
troduced to describe and analyze different aspects of
these oscillations [17, 28, 31–34]. The fluctuations
and responses of oscillating hair bundles have been
successfully described with linear models [20, 21].
Even a more complex non-linear model yielded nu-
merically determined responses and correlation func-
tions that were very similar [28]. This agreement
suggests that a linear model is sufficient for a first
analysis. In our linear model, the nonequilibrium
stems from a non-reciprocal coupling between the
position and an active force, whose fluctuations do
not obey a fluctuation-dissipation relation. Because
we determined the energy dissipation from only the
violation of the fluctuation-response relation of the
position, the energy that we estimated is a lower
bound of the entire system. We estimated that
an oscillating hair bundle generates at least 5 aW
or 146 kBT/cycle. This value is in good agreement
with a recent estimate of 100 kBT/cycle, based on
a model fitted to bi-stable oscillations of hair bun-
dles [24]. Furthermore, we derived a scaling behav-
ior, indicating that the energy dissipation per cy-
cle scaled by kBT · s is of the same order of mag-
nitude as the characteristic frequency. Therefore,

oscillations in the kilohertz range imply an energy
dissipation of at least thousands of kBT per cycle.
Manley and Gallo earlier estimated from otoacous-
tic emissions a power output of 141 aW per hair
cell oscillating in the kilohertz regime [35]. This
power output implies 34390 kBT/s, or tens of kBT
per cycle, a hundred-fold difference from our esti-
mate. Because the scaling behavior that we derived
in eq. (28) relies on several assumptions from a fit
to a low-frequency hair bundle oscillations, we must
consider our extrapolation as a crude estimate with
a large error. Nevertheless, it provides a concrete
prediction of a linear scaling behavior that could, in
principle, be validated experimentally by determin-
ing the fluctuation-response functions of hair cells
with different characteristic frequencies. In a bull-
frog’s sacculus, the frequencies of hair cells are dis-
tributed from a few hertz to 100 hertz, providing a
potential system for an experimental validation of
our prediction shown in fig. 1(c) [36].

We believe that a systematic study of the response
functions of oscillating hair bundles will lead to a
better understanding of how the active process con-
tributes to active oscillations. It will be interesting
to compare our simple description to a more refined,
non-linear hair bundle models and also to experi-
mental data. Studying response functions from hair
cells with different characteristic frequencies, differ-
ent oscillatory behavior, from the auditory system
from different species could provide a new approach
to gain insights into how our remarkable hearing is
related to a nonequilibrium active process.
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VII. APPENDIX

A. Transformation of the velocity
autocorrelation into a spatial autocorrelation

Let x(t) be the position, then the spatial autocor-
relation function is defined as

Cxx(τ) = 〈x(τ + t)x(t)〉 . (29)
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Because we assume a stationary process, the auto-
correlation function is independent of t and depends
only on the time lag τ . The velocity autocorrelation
function is defined as

Cvv(τ) = 〈ẋ(τ + t)ẋ(t)〉 , (30)

in which the dots indicate the first derivative with
respect to time. We rewrite

〈ẋ(τ + t)ẋ(t)〉 = (31)〈
d

dτ
x(τ + t)ẋ(t)

〉
=

d

dτ
〈x(τ + t)ẋ(t)〉 =

d

dτ

〈
x(τ + t)

d

dt
x(t)

〉
.

Because of stationarity, we shift the time axis to
t = t∗ − τ , which implies a transformation of the
corresponding time increments dt = −dτ , leading to

d

dτ

〈
x(τ + t)

d

dt
x(t)

〉
= − d2

dτ2
〈x(t∗)x(t∗ − τ)〉 .

(32)
The correlation function is symmetric in time,
Cxx(τ) = Cxx(−τ), and with t∗ = t we have

− d2

dτ2
〈x(t∗)x(t∗ − τ)〉 = − d2

dτ2
〈x(t+ τ)x(t)〉 .

(33)
Finally, we obtain the relation

Cvv(τ) = − d2

dτ2
Cxx(τ) (34)

between the two correlation functions. Note that
this relation can also be derived by using the Wiener-
Khinchin theorem. In Fourier space, we simplify the
expression to

C̃vv(ω) = ω2C̃xx(ω). (35)

B. Transformation of the velocity response
function into a spatial response function

The linear response function R(t) of the position
upon a perturbation χ(t) is defined as

x(t) =

∫
dt′Rx(t− t′)χ(t′). (36)

By differentiating with respect to time t, we obtain

ẋ(t) =

∫
dt′Ṙx(t− t′)χ(t′). (37)

This equation defines the velocity response function

Rv(t) ≡
d

dt
Rx(t). (38)

In Fourier space, this equation simplifies to

R̃v(ω) = −iωR̃x(ω). (39)

Accordingly, the real part of the velocity response
reads

Re(R̃v) = Re(−iωR̃x) = ωIm(R̃x), (40)

and we obtain the relation

Re(R̃v) = ωIm(R̃x). (41)

Using a prime for the real part and a double prime
for the imaginary part, we obtain

R̃′v = ωR̃′′x. (42)

C. Solutions of the linear model of hair bundle
oscillations

We transform the model equations eq. (7) and
eq. (8) to Fourier-space,

−iωγx̃ = −kx̃+ F̃ + η̃x (43)

and

−iωλF̃ = −k̄x̃− F̃ + η̃F . (44)

Now, we can solve for the Fourier-transformed posi-
tion

x̃ =
η̃F + η̃x − iλη̃xω

k + k̄ − i(γ + kλ)ω − γλω2
. (45)

1. Derivation of the autocorrelation function

The averaged autocorrelation function C̃xx(ω) =
〈x̃x̃∗〉 is given by the averaged product of x̃ from
eq. (45) with its complex-conjugate x̃∗,

C̃xx(ω) = (46)〈
(η̃F +η̃x)2+λ2η̃2xω

2

2kk̄+γ2ω2+(k̄−γλω2)2+k2(1+λ2ω2)

〉
.

With our assumptions of the noise strengths,
〈ηx(t)ηx(0)〉 = Dxδ(t), 〈ηF (t)ηF (0)〉 = DF δ(t), and
〈ηxηF 〉 = 0, we derive the autocorrelation function
of the position

C̃xx(ω) = (47)

DF +Dx(1 + λ2ω2)

2kk̄ + γ2ω2 + (k̄ − γλω2)2 + k2(1 + λ2ω2)
.
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2. Derivation of the response function

To obtain the response function, we perturb the
position coordinate with a δ-function in the time do-
main, resulting in the following equations in Fourier
space,

−iωγx̃δ = −kx̃δ + F̃ + η̃x + 1 (48)

and

−iωλF̃ = −k̄x̃δ − F̃ + η̃F . (49)

We solve for the averaged position

〈x̃δ〉 =

〈
η̃F + η̃x + 1− iλω(η̃x + 1)

k + k̄ − i(γ + kλ)ω − γλω2

〉
. (50)

After evaluating the averages, we derive the aver-
aged complex response

R̃x = 〈x̃δ〉 =
1− iλω

k + k̄ − i(γ + kλ)ω − γλω2
(51)

with real part

R̃′x(ω) = (52)

k + k̄ + kλ2ω2

2kk̄ + γ2ω2 + (k̄ − γλω2)2 + k2(1 + λ2ω2)
,

and the imaginary part

R̃′′x(ω) = (53)

ω(γ − k̄λ+ γλ2ω2)

2kk̄ + γ2ω2 + (k̄ − γλω2)2 + k2(1 + λ2ω2)
.
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[31] Dáibhid Ó Maoiléidigh, Ernesto M. Nicola, and
A. J. Hudspeth. The diverse effects of mechanical
loading on active hair bundles. Proceedings of the
National Academy of Sciences, 109(6):1943–1948,
February 2012.

[32] Jean-Yves Tinevez, Frank Jülicher, and Pascal Mar-
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