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ABSTRACT
Every year, millions of students learn how to write programs. Learn-
ing activities for beginners almost always include programming
tasks that require a student to write a program to solve a particular
problem. When learning how to solve such a task, many students
need feedback on their previous actions, and hints on how to pro-
ceed. In the case of programming, the feedback should take the
steps a student has taken towards implementing a solution into
account, and the hints should help a student to complete or improve
a possibly partial solution. Only a limited number of learning envi-
ronments for programming give feedback and hints on intermediate
steps students take towards a solution, and little is known about
the quality of the feedback provided. To determine the quality of
feedback of such tools and to help further developing them, we
create and curate data sets that show what kinds of steps students
take when solving programming exercises for beginners, and what
kind of feedback and hints should be provided. This working group
aims to 1) select or create several data sets with steps students take
to solve programming tasks, 2) introduce a method to annotate

∗co-leader
†The views expressed are those of the author and do not reflect the official policy or
position of the US Air Force, Department of Defense or the US Government.

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
ITiCSE 2022, July 8–13, 2022, Dublin, Ireland
© 2022 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-9200-6/22/07.
https://doi.org/10.1145/3502717.3532168

students’ steps in these data sets, 3) attach feedback and hints to
these steps, 4) set up a method to utilize these data sets in various
learning environments for programming, and 5) analyse the quality
of hints and feedback in these learning environments.
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1 OVERVIEW
There are many learning environments that support beginners
learning how to program, including intelligent tutoring systems
(ITSs) [4], online environments1, and serious games [6]. A number
of these learning environments give feedback on potentially par-
tial student solutions, and hints on how to proceed with a partial
solution [5, 7, 8, 10, 13].

What can we say about the quality of learning environments that
support learning programming step by step? How can a learning
1e.g. codecademy, Datacamp, Khan academy, code.org.
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Figure 1: Example of annotating student steps.

environment best support a student solving a beginner’s program-
ming problem? Onewaywould of course be to perform experiments
with different environments, and to compare the learning outcomes.
Setting up such experiments is not easy [1], and if we find a dif-
ference we would still like to know the cause(s) for that difference.
Why does practicing in one environment result in better learning
outcomes than in another?

Formative feedback and hints are essential aspects of learn-
ing [14]. ITSs that provide feedback and hints on steps of students
show positive results [7, 8, 15]. One reason that might explain why
some learning environments better support students is the quality
of their feedback and hints. One way to compare the quality of
feedback and hints is to create a data set consisting of student steps
towards a solution, let experts annotate the data set with feedback
and hints, thus creating a golden data set. We can then compare
the feedback and hints of a learning environment with this golden
data set [11].

Creating such a data set raises at least two questions. First, what
do we consider to be a student step? What is the granularity of
a step? Most teachers would consider neither a single keystroke
nor a complete solution to be a single step: one is too small and
the other too large. Second, how do we give feedback and hints on
a step? To give a hint we need to know where a student should
go, so we require that the steps in a data set are taken to solve
a particular task. When we compare the behavior of a particular
learning environment against a golden data set we need to answer
additional questions, such as: can we mimic solving the exercise
addressed in the golden data set in the learning environment, what
if the learning environment uses a slightly different syntax than
the golden data set, and how do we deal with potential differences
of step granularities between the golden data set and the learning
environment?

Motivating example. Figure 1 shows an example of steps taken by a
student to solve a programming problem in Python. This example is
taken from a data set that captures a snapshot of a student’s current
source code whenever a student changes the code and then does
not apply further changes for at least two seconds [9].

Five program states are shown, and each step is annotated: an
expansion (e.g. specifying a return value), a formatting step that does
not change the semantics of the code (e.g. adding spacing for read-
ability), and a semantic change by correcting an error (e.g. changing
the minus operator to a plus operator). Additionally, the blue boxes
contain expert hints and feedback on certain steps. Note that this
is just an example of how such steps could be annotated; we will
design the coding methodology in the working group.

Goals. This working group has five goals: 1) determine the desired
characteristics of the data sets we want to use in our research, and
collect existing data sets, or set up experiments in which such data
sets can be obtained. A number of such data sets are already avail-
able [2, 3, 9, 10]. We will use, and if necessary extend, the ProgSnap2
format [12] to describe our data sets; 2) design a coding for charac-
terising a student step, and annotate the steps in the data sets using
this coding; 3) design a coding for annotating the steps in the data
sets with feedback and hints; 4) set up a method to utilize the data
sets in various learning environments, and 5) use the annotated
data sets to evaluate learning environments for programming by
comparing their feedback and hints with the expert-authored ones.
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