
How Effective Is Automated Trace Link
Recovery in Model-Driven Development?

Randell Rasiman , Fabiano Dalpiaz(B) , and Sergio España

Utrecht University, Utrecht, The Netherlands
{f.dalpiaz,s.espana}@uu.nl

Abstract. [Context and Motivation] Requirements Traceability (RT) aims to
follow and describe the lifecycle of a requirement. RT is employed either because
it is mandated, or because the product team perceives benefits. [Problem] RT
practices such as the establishment and maintenance of trace links are generally
carried out manually, thereby being prone to mistakes, vulnerable to changes,
time-consuming, and difficult to maintain. Automated tracing tools have been
proposed; yet, their adoption is low, often because of the limited evidence of their
effectiveness. We focus on vertical traceability that links artifacts having differ-
ent levels of abstraction. [Results] We design an automated tool for recovering
traces between JIRA issues (user stories and bugs) and revisions in a model-
driven development (MDD) context. Based on existing literature that uses process
and text-based data, we created 123 features to train a machine learning classi-
fier. This classifier was validated via three MDD industry datasets. For a trace
recommendation scenario, we obtained an average F2-score of 69% with the best
tested configuration. For an automated trace maintenance scenario, we obtained
an F0.5-score of 76%. [Contribution] Our findings provide insights on the effec-
tiveness of state-of-the-art trace link recovery techniques in an MDD context by
using real-world data from a large company in the field of low-code development.

Keywords: Requirement traceability · Trace link recovery · Model-driven
development · Low-code development · Machine learning

1 Introduction

Requirements Trace Link Recovery (RTR) is the process of establishing trace links
between a requirement and another trace artefact [13]. Many techniques for (require-
ments) trace link recovery propose semi-automatic processes that rely on information
retrieval (IR) [2]. The premise of IR-based approaches is that when two artefacts have
high a degree of textual similarity, they should most likely be traced [18]. Commonly
used IR algorithms include Vector Space Models, Latent Semantic Indexing, Jenson-
Shannon Models, and Latent Dirichlet Allocation [2,5].

More recently, developments from Machine Learning (ML) have been employed in
automatic Trace Link Recovery (TLR) [2]. ML approaches treat TLR as a classifica-
tion problem: the Cartesian product of the two trace artefact sets defines the space of
candidate trace links [11,16], a subset of which are valid links (manually defined by

c© Springer Nature Switzerland AG 2022
V. Gervasi and A. Vogelsang (Eds.): REFSQ 2022, LNCS 13216, pp. 35–51, 2022.
https://doi.org/10.1007/978-3-030-98464-9_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-98464-9_4&domain=pdf
http://orcid.org/0000-0003-3869-280X
http://orcid.org/0000-0003-4480-3887
http://orcid.org/0000-0001-7343-4270
https://doi.org/10.1007/978-3-030-98464-9_4


36 R. Rasiman et al.

the domain experts). A ML classifier is tasked to build a model for predicting whether
unseen trace links are valid or invalid. This is achieved by representing the trace links as
a vector, derived from features. Most ML TLR approaches use similarity scores of IR-
based methods as features [11,16,23] and outperform IR-based TLR approaches [16].

However, in most of the studies, the classifiers are trained either using open-source
datasets from universities, or proprietary data regarding safety-critical systems, and this
entails an external validity concern [5]. Although using the same datasets is useful for
benchmarking and for comparing methods, it poses the risk that the new traceability
tools are being over-optimised for these specific datasets. To advance the current state-
of-the-art traceability tools, the research community has called for gaining feedback
from additional industrial datasets in a broad range of application domains [2,5].

In this paper, we aim to acquire new insights on automated RTR in a model-driven
development (MDD) context, a domain which has shown potential for RT integra-
tion [27]. Following the Design Science research methodology [26], we conduct a case
study at Mendix, a large-scale MDD-platform producer, and we develop a software tool
for automated RTR that focuses on vertical traceability [21], which allows for the auto-
mated recovery of trace links between artifacts at different abstraction levels. The main
contributions of this research are:

1. We provide new insights on the application of RTR in MDD, narrowing the gap
between academic research and industrial demands, and moving steps toward the
vision of ubiquitous requirements traceability [14].

2. To the best of our knowledge, this is the first study that experiments with the use of
Gradient Boosted Trees for RTR.

3. We evaluate the relative importance of four families of features for establishing trace
links between requirements (represented as JIRA issues) and model changes (com-
mit files generated by the Mendix Studio low-code development platform).

We follow the recommendations of context-driven research [6]: specifying working
assumptions based on a real-world context in order to attain practicality and scalability.
We do so by collaborating with Mendix, which allowed us to use their data and to obtain
rich insights on their development processes and the possible role of traceability.

This paper is structured as follows: Sect. 2 presents the background on requirements
traceability. Section 3 describes how MDD and requirements are supported with the
Mendix Studio platform within the Mendix company. Section 4 presents the construc-
tion of our automated RTR classifier. Section 5 shows the results, while Sect. 6 discusses
the threats to validity. Finally, Sect. 7 concludes and outlines future work.

2 Related Work on Automated RTR

RT practices are mandated by well-known standards such as CMM, ISO 9000, and IEEE
830-1998 [4,9]. Thus, organisations who aim to comply with such standards embrace
RT practices. These are expected to deliver benefits for project management and vis-
ibility, project maintenance, and verification & validation. Despite the clear benefits,
the practice itself is not evident. RT activities are found to be “time-consuming, tedious



How Effective Is Automated Trace Link Recovery in MDD? 37

and fallible” [25]. Even when conducted, manual tracing is favoured, leading to traces
which are error-prone, vulnerable to changes, and hard to maintain.

Information Retrieval. For this reason, a considerable amount of RT research focuses
on automating the task. Many of the proposed IR-based methods employ Vector Space
Models (VSM), which use the cosine distance to measure the semantic similarity
between documents. An alternative is the Jenson-Shannon Models (JSM), which con-
sider documents as a probabilistic distribution [1,8], and the Jenson-Shannon Diver-
gence as a measure of the semantic difference. There are two fundamental problems in
IR-methods. Synonymy refers to using different terms for the same concept (e.g., ‘draw-
ing’ and ‘illustration’), and this decreases the recall. Polysemy refers to using terms that
have multiple meanings (e.g. ‘fall’), and this decreases precision [10]. Latent Semantic
Indexing (LSI) aims to solve this problem by replacing the latent semantics (what terms
actually mean) to an implicit higher-order structure, called latent semantics. This latent
structure can then be used as feature set, which better reflects major associative data
patterns and ignores less important influences. An example of this approach is the work
by Port et al. [19]. Although other approaches have further improved performance, the
performance gain has flattened, and more recent works make use of machine learning.

Machine Learning. Most state-of-the-art techniques for RTR employ ML nowadays,
taking the field to new levels. ML approaches treat the TLR process as a classifica-
tion problem: the Cartesian product of the two trace artefact sets is calculated, and
the resulting elements represent candidate trace links [11,16]. A ML classifier learns
from sample data, which is manually traced, and the classifier is then used to predict
whether unseen couples of artefacts should be traced to one another. Most ML TLR
approaches use the similarity scores from IR-based methods as features [11,16,23],
although other features have been proposed. Besides feature representation, researchers
have also analysed which ML classification algorithms would perform best. Falessi et
al. [12] have compared multiple algorithms: decision trees, random forest, naı̈ve Bayes,
logistic regression, and bagging, with random forests yielding the best results.

Deep Learning. Recent advances in neural networks can also be employed in automated
TLR [15]. Although this an interesting direction with the potential of achieving excel-
lent results, neural networks are only suitable when large datasets are available. This is
not the case in many industrial situations, like the one described in this paper.

3 Case Study at Mendix

We conducted a case study at Mendix, the producer of the Mendix Studio Low-Code
Platform (MLCP). The MLCP employs MDD principles and allows creating software
by defining graphical models for the domain, business logic, and user interface [24]. We
study MLCP developers employed by Mendix, who are building applications with the
MLCP for Mendix itself. These developers follow the SCRUM development process.
Product Owners are responsible for managing and refining requirements, which are doc-
umented as JIRA issues and are added to the product backlog. The issues for the Sprint
Backlog are chosen by the MLCP development team. Each selected item is assigned to
one MCLP developer during a sprint, who is responsible for implementation.



38 R. Rasiman et al.

The implementation is broken down into several activities. First, the MCLP devel-
oper examines the JIRA issue to become familiar with it. Second, the MCLP devel-
oper opens the latest MLCP model, navigates to the relevant modules, and makes the
required changes. These changes are stored in a revision and are committed to the repos-
itory once they to fulfil the JIRA issue’s acceptance criteria. Each revision is supple-
mented with a log message, in which the MCLP developer outlines the changes he or
she made, as well as the JIRA issue ID for traceability purposes.

3.1 Studied Artefacts

We focus on tracing JIRA issues to committed revisions, because manual trace informa-
tion was available from some development teams who followed traceability practices.
Figure 1 shows the relationships among the trace artefacts.

Fig. 1. Model showing the relationships between JIRA issues and revisions

JIRA Issues. Several teams at Mendix use the widespread project management tool
Atlassian JIRA. In JIRA, project members define work items called issues, which
Mendix uses to document requirements. The following attributes are shared by all JIRA
issues: I1) a unique issue key serving as identifier, I2) a summary, used by Mendix to
document a user story written in the Connextra template, I3) a description, which fur-
ther explains the requirements alongside the acceptance criteria, I4) an assignee: the
person who is responsible for implementing the issue. Finally, each issue has three
date/time indicating when the issue was I5) created, I6) last updated, and I7) resolved.

Revisions. The MLCP, like any modern development environment, employs version
control. An adapted version of Apache Subversion is integrated into the MLCP, which
the developer can access through a GUI. Each revision contains: R1) revision-number,
a unique integer, R2) author, the email of the person who committed the revision, R3)
log, an optional field to write text, and R4) date, the date/time when the revision was
committed. Finally, each revision contains the changes made to the units, which are
stored as an element of an array that contains R5) unitID, R6) the status (either added,
deleted, or modified), R7) unitName: the name of that unit, R8) unitType: the category
of the unit (e.g., microflow or form), R9) module, the module where the unit is located.

3.2 Studied Datasets

We acquired data from three internal MLCP projects, produced by two development
teams. We refer to them as i) Service, ii) Data, and iii) Store. For each project, we used
a data export of one JIRA project and one MLCP repository. We analysed the availabil-
ity of manual traces (see Table 1). We distinguished between revisions that trace to a



How Effective Is Automated Trace Link Recovery in MDD? 39

single issue, to two or more issues, and to no issues. A large percentage of revisions is
untraced. This could be because the revision is too generic (e.g., creation of a branch), or
because the developer forgot about tracing. Also, the revisions were not always traced
to issue keys of the JIRA projects we acquired. This happens because multiple teams,
each with their own JIRA project, may operate on the same repository.

Table 1. Summary of the acquired project data

Dataset Service Data Store

Total JIRA issues 173 58 634

Total revisions 2,930 818 713

Revisions traced to 1 issue 1,462 (49.90%) 556 (67.97%) 202 (28.33%)

Revisions traced to 2+ issues 33 (1.13%) 26 (3.18%) 3 (0.42%)

Revisions traced to no issues 1,435 (48.98%) 236 (28.85%) 508 (71.25%)

3.3 Objective and Evaluation Scenarios

Our objective is to automate the MLCP developers’ tracing process, which is currently
manual. We adapt the two scenarios put forward by Rath et al. [23]: Trace Recommen-
dation and Trace Maintenance. Our automated artefact is evaluated for both scenarios
using a common traceability metric, the F-measure, which quantifies the harmonic mean
between precision and recall. However, in line with Berry’s recommendations [3], we
employ adjusted versions of the F-measure, as described below.

Trace Recommendation. MLCP developers use a GUI to commit changes to the remote
repository. When doing this, the developer outlines the changes made and writes an
issue key out of those in JIRA. Integrating a trace recommendation system can improve
this scenario (see Fig. 2): the issues that the developer may choose among can be filtered
based on the likelihood for that issue to be linked to the current revision. Only those
issues above a certain threshold are shown.

The only manual task left for the developer is to vet the trace links. It is cognitively
affordable and relatively fast since developers generally know which specific JIRA issue
they have implemented. This scenario requires a high level of recall, for valid traces
must be present in the list for a developer to vet it. Precision is less important because
developers can ignore invalid traces. Therefore, in this scenario, we evaluate the system
using the F2-measure, an F-measure variant favouring recall above precision.

Trace Maintenance. Not all the revisions are traced to a JIRA issue. As visible in the
last row of Table 1, between 28% and 71% of the revisions were not traced to issues.
Thus, maintenance is needed to recover traces for the untraced revisions, which leads to
the goal of the second scenario: an automated trace maintenance system. Such a system
would periodically recover traces that were forgotten by the developer, ultimately lead-
ing to a higher level of RT. No human intervention is foreseen to correct invalid traces,
so precision needs to be favoured above recall. Thus, we evaluate the system using the
F0.5-measure.



40 R. Rasiman et al.

Fig. 2. Mock-up of a trace recommendation system

4 Requirement Trace Link Classifier

To accommodate both scenarios, we present an ML classifier to classify the validity of
traces, based on the TRAIL framework [16]. Our classifier, which we call LCDTrace,
is publicly available as open source1, and a permanent copy of the version used in this
paper is part of our online appendix [22].

After describing the dataset the data available at Mendix for training, and how we
pre-processed it, we describe the feature engineering process, data rebalancing, and the
employed classification algorithms.

4.1 Data Description and Trace Construction

To train the ML classifier, we used the data from the Service, Data and Store datasets.

Revisions. The data was provided in text-format. We used Regular Expressions to trans-
form the data and to extract the issue key(s) from the log message and store it in a
distinct issue key column. After extraction, the issue key was removed from the log
message, and the log message was pre-processed using common pre-processing steps:
1) all words were lowercased, 2) all the interpunction was removed, 3) all numeric char-
acters were removed, 4) all sentences were tokenised with NLTK, 5) the corpus from
NLTK was used to eliminate all stop words, and 6) all remaining terms were stemmed
using the Porter Stemming Algorithm [20]. These activities resulted in a pre-processed
dataset that consists of (labels were defined in Sect. 3.1): R1 (Revision Number), R2
(Author), R3 (Log), R4 (Date), R7 (Unit Names), R8 (merge of log and unit names),
and associated JIRA key (a reference to I1).

JIRA Issues. The JIRA datasets were provided as delimited text files. Pre-processing
was carried out in the same manner as for the revisions. This led to a dataset that consists
of I1 (Issue key), I2 (Summary), I3 (Description), I4 (Assignee), I5 (Created date),

1 https://github.com/RELabUU/LCDTrace.

https://github.com/RELabUU/LCDTrace


How Effective Is Automated Trace Link Recovery in MDD? 41

I6 (Last updated date), I7 (Resolved date), plus one additional feature: I9 (JIRA All-
Natural Text): the union of I2 and I3.

Trace Link Construction. Because a classifier can only be trained using labelled data,
we discarded data that were not traced to issues. For the remaining data, we calculated
the Cartesian product between the JIRA project dataset and the repository dataset. Each
element is a candidate trace link whose validity was determined by comparing the issue
key to the revision’s related issue key. If the issue key was present, the trace link was
classified as valid; else, the trace link was classified as invalid. Also, we applied causal-
ity filtering to the trace links [23]: when a trace link had revision antecedent to the
creation of an issue, it was deemed invalid due to causality. The result is in Table 2.

Table 2. Valid and invalid traces before and after applying causal filtering to the project data

Dataset Causality filtering Total traces Invalid traces Valid traces

Service Before 258,635 258,215 (99.84%) 420 (0.16%)

After 89,233 88,813 (99.53%) 420 (0.47%)

Data Before 33,756 33,305 (98.66%) 451 (1.34%)

After 27,815 27,364 (98.38%) 451 (1.62%)

Store Before 129,970 129,884 (99.93%) 86 (0.07%)

After 33,627 33,541 (99.74%) 86 (0.26%)

4.2 Feature Engineering

The previously produced candidate trace links were then used for training the classifier.
For this, we had to represent the candidate trace links as a set of features. Based on
literature in the field, we engineered a total of 123 features grouped into four categories:
process-related, document statistics, information retrieval and query quality.

Process-Related. These four features build on Rath et al. [23]. F1, the first feature,
captures stakeholder information by indicating if the assignee of a JIRA issue is the
same person as the author of a revision. The remaining three features capture temporal
information. F2 is the difference between the date of revision (R4) and the date the issue
was created (I5), F3 is the difference between R4 and the date the issue was last updated
(I6), and F4 is the difference between R4 and the date the JIRA issue was resolved (I7).

Document Statistics. These features rely on the work of Mills et al. [16]: they gauge
document relevance and the information contained within the documents. Within this
category, seven metrics (hence, 7 features) are included:

– Total number of terms, calculated for the JIRA issue (F5) and the revision (F6).
– Total number of unique terms for the JIRA issue (F7) and the revision (F8).
– Overlap of terms between the JIRA issue and the revision. To calculate this metric,

the overlap of terms is divided by the set of terms that are compared to. This is done
in three ways, each leading to a feature: F9 divides the overlap of terms by the terms
in the JIRA issue, F10 divides is by the terms in the revision, and F11 divides it by
the union of the terms in the JIRA issue and in the revision.



42 R. Rasiman et al.

Information Retrieval. This feature set captures the semantic similarity between two
trace artefacts. We first apply VSM with TF-IDF weighting to transform the trace arte-
facts to a vector representation. Because we use TF-IDF weighting, the chosen corpus
used for weighting impacts the resulting vector. For instance, the term ‘want’ occurs
commonly in the JIRA summary, for Mendix developers put their user story in there.
However, it might be a rare term when considering all the terms in a JIRA issue. Since
we could not determine which corpus best represents the trace artefact, we opted to
explore multiple representations: we have constructed three issues vector representation
(I2: Summary, I3: Description, I9: Summary & Description) and three representations
for the revisions (R3: log message, R7: unit names, and R8: log & unit names). This
results in 9 distinct pairs for each trace link candidate, as shown in Table 3. The cosine
similarity of each pair was computed and utilised as a feature. Mills and Haiduc [17]
showed that the chosen trace direction (i.e., which artefact in the trace link is used as a
query) affect traceability performance. Thus, we calculated the cosine distance in either
direction, resulting in a total of 18 IR-features (F12–F29) in Table 3. We used Scikit-
learn for TF-IDF weighting and SciPy for calculating the cosine distance.

Table 3. TF-IDF combinations used for VSM

ID Revision artefact Issue artefact Features

1 Log message Summary F12–F13

2 Log message Description F14–F15

3 Log message JIRA all-natural text F16–F17

4 Unit names Summary F18–F19

5 Unit names Description F20–F21

6 Unit names JIRA all-natural text F22–F23

7 Revision all-natural text Summary F24–F25

8 Revision all-natural text Description F26–F27

9 Revision all-natural text JIRA all-natural text F28–F29

Query Quality. The quality of a query determines how well a query is expected to
retrieve relevant documents from a document collection. A high-quality query returns
the relevant document(s) towards the top of the results lists, whereas a low-quality query
returns them near the bottom of the list or not at all. It is important to differentiate
between high- and low-quality queries, when using IR-techniques for TLR. Do two
artefacts have a low cosine similarity because they are actually invalid, or is it because
the similarity was computed using a low-quality query?

Mills and Haiduc [17] devised metrics for measuring query quality (QQ). These QQ
metrics are organised into pre-retrieval and post-retrieval metrics. Pre-retrieval metrics
merely consider the properties of the query, whereas post-retrieval metrics also consider
the information captured by the list returned by the executed query. We focused on
implementing pre-retrieval QQ metrics in this study, evaluating three different aspects:

– Specificity refers the query’s ability to express the relevant documents and to distin-
guish them from irrelevant documents. Highly-specific queries contain terms which



How Effective Is Automated Trace Link Recovery in MDD? 43

are rare in the document collection, while lowly-specific queries contain common
terms. Highly specific queries are desired, for documents can be differentiated based
on the terms.

– Similarity refers to the degree to which the query is similar to the document col-
lection. Queries that are comparable to the collection suggest the existence of many
relevant documents, increasing the possibility that a relevant document is returned.

– Term relatedness refers to how often terms in the query co-occur in the document
collection. If query terms co-occur in the document collection as well, the query is
considered of high quality.

The computation of these metrics was executed for the six corpora mentioned in
the information retrieval paragraph (log message, unit names, revision all-natural text,
summary, description, and JIRA all-natural text), because the outcome of the metrics
depends on the corpus of which the query is a part. This resulted in a total of 102 QQ
features: F30–F131, listed in Table 4.

Table 4. Query quality features from the work by Mills and Haiduc [17]

Family Measure Metric Features

Query: Revision Query: JIRA

Specificity TF-IDF {Avg, Max, Std-Dev} F30–F38 F39–F47

TF-ICTF {Avg, Max, Std-Dev} F48–F56 F57–F65

Entropy {Avg, Med, Max, Std-Dev} F66–F77 F78–F89

Query Scope F90–F92 F93–F95

Kullback-Leiber divergence F96–F98 F99–F101

Similarity SCQ {Avg, Max, Sum} F102–F110 F111–F119

Relatedness PMI {Avg, Max} F120–F125 F126–F131

4.3 Data Rebalancing

In traceability settings, the training data is generally highly imbalanced because only a
few valid links exist [15,23], making classifier training problematic [23]. Table 2 shows
this occurs in our datasets too, with a percentage of valid links between 0.26% and
1.62%. The positive samples that the classifier would view are quite low, compared to
the negative ones. Thus, we applied four rebalancing strategies [16] to the training data:

1. None. There is no rebalancing method applied to the data.
2. Oversampling. The minority class is oversampled until it reaches the size of the

majority class, by applying SMOTE.
3. Undersampling. The majority class is randomly undersampled until it has the same

size as the minority class, by applying the random undersampling technique.
4. 5050. Oversampling via SMOTE is applied to the minority class with a sampling

strategy of 0.5. Then undersampling is applied to the majority class until the sizes
of both classes are equal.



44 R. Rasiman et al.

4.4 Classification Algorithms

We considered two state-of-the-art supervised ML algorithms for classifying trace links
as valid or invalid: Random Forests and Gradient Boosted Decision Trees. While the
former are shown to be the best RTR classifier in earlier research [16,23], Gradient
Boosted Decision Trees outperformed Random Forests in other domains [7,29]. To
implement the Random Forest algorithm, we used the framework of Scikit-learn. To
implement the Gradient Boosted Decision Trees we used two different frameworks:
XGBoost, and LightGBM. These frameworks differ in two major respects. The first
distinction is in the method of splitting. XGBoost splits the tree level-wise rather than
leaf-wise, whereas LightGBM splits the tree leaf-wise. The second difference is how
best split value is determined. XGBoost uses a histogram-based algorithm, which splits
a feature and its data points into discrete bins, which are used to find the best split value.
LightGBM uses a subset of the training data rather than the entire training dataset. Its
sampling technique uses gradients, resulting in significantly faster training times.

5 Results

We performed an evaluation on the different combinations of the rebalancing strategies
of Sect. 4.3 and of the classification algorithms of Sect. 4.4. This evaluation was con-
ducted for each dataset independently by dividing each dataset into a training (80%)
and testing (20%) sets using stratified sampling, so that the two sets have a comparable
proportion of positives and negatives. Due to insufficient memory, we use only 4 out of
the 12 relatedness-based QQ features listed in Table 4, leading to a total of 123 features.

To mitigate randomisation effects, we repeated the evaluation (training-testing set
splitting, classifier training on the 80%, testing on the 20%) for 25 times, then we aver-
aged the outputs, leading to the results we show in Sect. 5.1. In addition to the quanti-
tative results, we discuss the relative importance of the features in Sect. 5.2.

5.1 Quantitative Results

Table 5 shows the precision, the recall, and the F0.5- and F2-measure for the results,
which were obtained using non-normalised data. The table compares the three algo-
rithms (Random Forests, XGBoost, LightGBM) that are visualised as macro-columns;
the results for each project are presented in a different set of rows. Per project, the
results are shown by showing, one per line, the four rebalancing strategies (none, over-
sampling, undersampling, 5050). The results for the normalised data were found to be
slightly worse, and are therefore only included in the online appendix.

For the trace recommendation scenario, XGBoost (x = 56.25) has the highest
mean F2 across all rebalancing strategies. LightGBM follows (x = 55.16), and Ran-
dom Forests are the least effective (x = 42.24). This is interesting, for Random
Forests have consistently been found to be the best performing algorithm in prior RTR
research [16,23]. This finding indicates that, similar to other tasks [7,29], Gradient
Boosted Decision Trees can outperform Random Forests in RTR-tasks too. A similar
result holds for the trace maintenance scenario (F0.5), where XGBoost (x = 55.45) per-
forms best, and LightGBM achieves results that are as low as those of random forests.



How Effective Is Automated Trace Link Recovery in MDD? 45

Table 5. Mean precision, recall, and F0.5- (trace maintenance scenario) and F2-measure (trace
recommendation) across all 3 datasets. The green-coloured cells indicate the best results per each
dataset. For accuracy and readability, the table shows F-scores in percentage.

Proj. Rebal. Random Forests XGBoost LightGBM

Se
rv

ic
e

None 94.96 19.71 53.13 23.37 81.77 48.86 71.89 53.07 64.56 48.62 60.45 51.07

Over 5.90 95.52 7.26 23.61 6.98 96.33 8.56 27.01 6.59 97.62 8.10 25.92

Under 69.12 44.67 62.17 48.01 70.23 60.24 67.89 61.94 60.02 65.71 61.02 64.42

5050 59.59 54.33 58.41 55.27 59.62 69.86 61.37 67.47 53.49 72.10 56.34 67.31

D
at

a

None 90.34 29.78 63.91 34.35 84.87 62.65 79.21 66.09 82.50 61.75 77.24 64.98

Over 16.42 92.04 19.65 47.84 20.28 94.44 24.05 54.50 20.01 94.11 23.74 53.99

Under 75.52 48.33 67.78 52.03 77.08 69.27 75.34 70.68 70.67 69.96 70.47 70.05

5050 62.33 54.51 60.52 55.86 65.96 74.98 67.54 72.94 63.22 76.26 65.42 73.19

St
or

e

None 93.13 42.12 73.66 46.99 86.56 59.06 78.77 62.85 46.78 47.53 45.51 45.27

Over 4.31 90.35 5.32 17.96 2.51 90.35 3.12 11.23 2.98 92.47 3.70 13.17

Under 72.61 44.47 63.21 47.70 70.51 62.59 68.02 63.42 69.43 65.18 68.18 65.67

5050 65.31 52.00 61.58 53.84 58.84 65.88 59.63 63.73 55.34 71.06 57.68 66.89

M
ac

ro
-A

vg

None 92.81 30.54 63.57 34.90 84.40 56.86 76.62 60.67 64.61 52.63 61.07 53.77

Over 8.88 92.64 10.74 29.80 9.92 93.71 11.91 30.91 9.86 94.73 11.85 31.03

Under 72.42 45.82 64.39 49.25 72.61 64.03 70.42 65.35 66.71 66.95 66.56 66.71

5050 62.41 53.61 60.17 54.99 61.47 70.24 62.85 68.05 57.35 73.14 59.81 69.13

Mean 59.13 55.65 49.72 42.24 57.10 71.21 55.45 56.25 49.63 71.86 49.82 55.16

Also, our findings show that the rebalancing strategy has a greater effect than the
classification algorithm. With no rebalancing, we achieve the highest precision in 11/12
combinations (algorithm × dataset), with the only exception of LightGBM on the Store
dataset. So, for the trace maintenance scenario, no oversampling is the best option.

SMOTE oversampling reduces precision and increases recall: in extreme cases
where recall is considerably more important than precision (missing a valid trace is crit-
ical and the cost of vetting many invalid candidates is low), it may be a viable option.
However, for our two scenarios with F0.5 and F2, SMOTE is the worst alternative.

When we use undersampling for rebalancing, we get a better trade-off than when we
use oversampling: the recall increases with respect to no re-balancing, at the expense of
precision. However, the decrease in precision is less substantial than for oversampling.

The 5050 rebalancing strategy improves this balance by trading recall for precision.
As a result, the classifiers using this rebalancing strategy preserve high recall while
offering a more practical precision. The F2-measure quantifies this: 5050 rebalancing is
the best alternative for the trace recommendation scenario.

When taking both the rebalancing and classification algorithm into account, we
achieve highest F2-score by combining LightGBM with 5050 rebalancing (x = 69.13),
making it the best configuration for trace recommendation. The XGBoost/5050 combi-
nation is, however, very close, and slightly outperforms LightGBM/5050 for the Ser-
vice dataset. For the Trace Recommendation scenario, we get the best by combining
XGBoost with no data rebalancing, which achieves a mean F0.5-measure of 76.62.



46 R. Rasiman et al.

5.2 Features Importance

We report on the feature importance to contribute to the model’s explainability. We
consider the average gain of each feature category, as defined in Sect. 4.2, with QQ
broken down into its subcategories due to the many features. The cumulative (total),
max, and average gain is shown in Table 6, while Fig. 3 presents them visually.

Table 6. The total, max, and average gain (in percentage over the total gain given by all features)
per feature category for the trace recommendation and trace maintenance scenarios.

Trace recommendation Trace maintenance

Total Max Avg Total Max Avg

Process-related Service 30.79 26.14 7.70 11.43 4.66 2.86

Data 52.61 32.14 13.15 10.93 3.86 2.73

Store 7.61 4.48 1.19 5.14 1.705 1.29

Information retrieval Service 52.82 49.33 2.94 17.83 3.04 0.99

Data 20.29 15.45 1.12 19.99 2.97 1.11

Store 46.81 42.71 2.60 14.20 2.46 0.79

Document statistics Service 3.20 1.76 0.46 7.60 2.17 1.09

Data 4.08 1.34 0.58 5.06 1.66 0.72

Store 3.67 1.75 0.52 15.66 8.04 2.23

Query quality (Specificity) Service 10.59 2.20 0.15 51.01 1.71 0.71

Data 18.89 4.89 0.26 51.51 5.08 0.72

Store 39.17 19.85 0.54 51.97 2.96 0.72

Query quality (Similarity) Service 2.35 0.45 0.13 9.93 1.59 0.55

Data 3.03 0.59 0.17 10.14 2.35 0.56

Store 2.54 0.59 0.14 11.65 1.94 0.65

Query quality (Term Relatedness) Service 0.25 0.14 0.06 2.20 0.74 0.55

Data 1.09 0.75 0.27 2.37 1.01 0.59

Store 0.20 0.16 0.05 1.38 0.70 0.34

In the Trace Recommendation scenario, we see that process-related feature cate-
gories are important in the Service and Data projects, with gains of 30.79 and 52.61,
respectively. Further investigation reveals that the top two process-related features for
Service and Data are F4: the difference between the date the issue was resolved and the
revision date (18.99 for Data, 26.14 for Service) and F1: whether the issue assignee is
the same person who committed the revision (32.14 for Data, 3.8 for Service).

Process-related features contribute much less for the Store dataset, in both scenar-
ios. One explanation is that Service and Data are produced by a different development
team than Store. Both teams may have a different level of discipline when it comes to
managing JIRA-problems (i.e., promptly updating the status of JIRA issues), resulting
in a different level of importance for this feature category.



How Effective Is Automated Trace Link Recovery in MDD? 47

The Information Retrieval feature category is shown to be important for the Trace
recommendation scenario, with total Gains of 52.82, 20.29, and 46.81. Similar to the
Process-related feature category, the majority of this increase comes from a single fea-
ture, which is the cosine similarity between all-text from a revision and a JIRA-issue
summary, utilising summary as a query (F25) for all three datasets. This means that
a TF-IDF representation of merely the JIRA issues via the summary is better for the
model than a combination of summary and description.

Fig. 3. Average gain per feature family for the trace recommendation scenario (left) and for the
trace maintenance scenario (right). The y-axis uses an exponential scale to improve readability.

Furthermore, we find that this feature category is less important in the trace mainte-
nance scenario, with each unique feature contributing more evenly.

Table 6 also reveals that the Document Statistics feature category have a low total
gain. Figure 3, however, shows that the average gain per feature in this category is rather
significant. Because of this finding, the cost-benefit ratio of implementing this feature
category is favourable due to its relative simplicity of implementation.

Finally, for the QQ feature family, only the Specificity sub-category is frequently
present in the model, with a total gain of 10.59, 18.89, and 19.89 in the Trace Recom-
mendation scenario and 51.01, 51.51, and 51.97 in the Trace Maintenance scenario for
Service, Data, and Store, respectively. It should be emphasised, however, that this sub-
category accounts for 58% (72 out of 123) of the total number of features. In the Trace
Recommendation scenario, we can observe that the maximum value of QQ (Specificity)
for Store is 19.85. Further analysis reveals that this feature is the medium entropy of the
JIRA descriptions as query, which was likewise the top performing for Data and the sec-
ond best for Service in its category. The original intent of the QQ metrics may explain
why Specificity has a greater information gain than the Similarity and Term Related-
ness QQ metrics. In IR, queries are deemed high-quality when the relevant information



48 R. Rasiman et al.

is obtained, independent of the document in which it is stored. Both the Similarity and
Term relatedness metrics assume that a document collection with many relevant doc-
uments is valuable because it raises the likelihood of retrieving a relevant document.
However, for TLR, where there is only one genuine artifact to be identified, this is
irrelevant. Because of this disparity, the Similarity and Term relatedness metrics are
less suited for the TLR task. Specificity can still help since it seeks to differentiate the
relevant document from the irrelevant documents, which is also visible in Table 6.

6 Threats to Validity

We present the threats to validity according to Wohlin’s taxonomy [28].

Conclusion Validity refers to the ability to draw the correct conclusion about relations
between treatment and outcome. In our case, our results have low statistical power since
we analysed only three datasets. To cope with these threats, we carefully word our
conclusions in such a way that the results are not oversold.

Internal Validity regards influences that may affect the independent variable with
respect to causality, without the researchers’ knowledge. The datasets are created by
teams who follow the development method outlined in Sect. 3. While we compared the
common attributes, we excluded those that were used only by certain datasets, e.g.,
JIRA comments. Furthermore, it is possible that certain trace links were incorrect and
some links were missing. However, we picked the original datasets without performing
any attempts to repair the datasets, which could have increased the bias.

Construct Validity concerns generalising the result of the experiment to the underly-
ing concept or theory. The main threat concerns the research design: we approximate
performance in the two scenarios via the F0.5 and F2 metrics. Although our method is
aligned with the state-of-the-art in traceability research, in-vivo studies should be con-
ducted for a more truthful assessment of the effectiveness, e.g., by deploying a system
based on our employed algorithms and measuring the performance in use.

External Validity regards the extent to which we can generalise the results of our experi-
ment to industrial practice. Our claims are limited to the low-code development domain,
and, in particular, to the case of our industrial collaborator: Mendix. Although we col-
lected projects from two separate teams, using more data would be beneficial. Finally,
to minimise overfitting and enhance generalisability, we followed the standard practice
of having a distinct training and test set.

Despite our best efforts to mitigate the threats, not everything can be accounted for.
All the results were obtained from a single organisation, which could lead to a potential
bias. Consequently, we had to be cautious in how we expressed our conclusions. Our
results show promising avenues, but we are not yet in a position to generalise.

7 Conclusion and Future Work

In this study, we have provided initial evidence regarding requirements trace classifi-
cation within an MDD-context. Upon analysing the MDD development process of our



How Effective Is Automated Trace Link Recovery in MDD? 49

research collaborator (Mendix), we identified two scenarios which could benefit from
a requirement trace link classifier: trace recommendation and trace maintenance. These
scenarios require different performance metrics: F2 for the former, F0.5 for the latter.

After examining the three datasets under four rebalancing strategies, we obtained
an average F2-score (for trace recommendation) across the datasets of 69% with the
LightGBM classifier with a mix of under- and oversampling (5050 strategy). For trace
maintenance, we obtained an average F0.5-score of 76% when employing XGBoost as
the ML classifier and with no rebalancing of the training data.

The results are positive when considering that the percentage of traces in our
datasets is low, ranging between 0.26% and 1.62% (see Table 1). This imbalance poses
serious challenges when training a classifier and it represents a key obstacle to its per-
formance.

We have also analysed which feature families from the literature, which we embed-
ded in our tool, lead to the highest information gain. We found that process-related fea-
tures seem to lead to the highest information gain, and that most query-quality features
have a very marginal information gain and can therefore be discarded.

More research is needed about the specific features to include in production envi-
ronments. Indeed, a high number of features may lead to overfitting. Also, we need to
compare our ML-based approach to its deep learning counterparts. Studying additional
dataset is one of our priorities, especially through the collaboration with Mendix. More-
over, analysing the performance of the tool in use is a priority: while we have based our
analysis and discussion in F-measures, only a user study can reveal the actual quality of
the recommended and recovered traces, that is, whether the developers who have to vet
and use the traces find them useful, and whether they actually approve of integrating our
approach into their development environment. Finally, studying horizontal traceability,
i.e., the existence of links between artifacts at the same abstraction level (e.g., between
requirements) is an interesting future direction.

This paper, which takes existing features for ML-based traceability and applies them
to the low-code or model-driven domain, calls for additional studies on the effectiveness
of the existing techniques in novel, emerging domains. We expect that such research will
incrementally contribute to the maturity of the field of requirements traceability.

Acknowledgment. The authors would like to thank Mendix, and especially to Toine Hurkmans,
for the provision of the datasets used in this paper and for giving us access to their development
practices through numerous interviews and meetings.

References

1. Abadi, A., Nisenson, M., Simionovici, Y.: A traceability technique for specifications. In:
Proceedings of ICPC, pp. 103–112 (2008)

2. Aung, T.W.W., Huo, H., Sui, Y.: A literature review of automatic traceability links recovery
for software change impact analysis. In: Proceedings of ICPC, pp. 14–24 (2020)

3. Berry, D.M.: Empirical evaluation of tools for hairy requirements engineering tasks. Empir.
Softw. Eng. 26(6), 1–77 (2021). https://doi.org/10.1007/s10664-021-09986-0

4. Blaauboer, F., Sikkel, K., Aydin, M.N.: Deciding to adopt requirements traceability in prac-
tice. In: Krogstie, J., Opdahl, A., Sindre, G. (eds.) CAiSE 2007. LNCS, vol. 4495, pp. 294–
308. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-72988-4 21

https://doi.org/10.1007/s10664-021-09986-0
https://doi.org/10.1007/978-3-540-72988-4_21


50 R. Rasiman et al.

5. Borg, M., Runeson, P., Ardö, A.: Recovering from a decade: a systematic mapping of infor-
mation retrieval approaches to software traceability. Empir. Softw. Eng. 19(6), 1565–1616
(2013). https://doi.org/10.1007/s10664-013-9255-y

6. Briand, L., Bianculli, D., Nejati, S., Pastore, F., Sabetzadeh, M.: The case for context-
driven software engineering research: generalizability is overrated. IEEE Softw. 34(5), 72–75
(2017)

7. Callens, A., Morichon, D., Abadie, S., Delpey, M., Liquet, B.: Using Random forest and
Gradient boosting trees to improve wave forecast at a specific location. Appl. Ocean Res.
104, 102339 (2020)

8. Capobianco, G., De Lucia, A., Oliveto, R., Panichella, A., Panichella, S.: On the role of the
nouns in IR-based traceability recovery. In: Proceedings of the ICPC, pp. 148–157, May
2009

9. Cleland-Huang, J., Berenbach, B., Clark, S., Settimi, R., Romanova, E.: Best practices for
automated traceability. Computer 40(6), 27–35 (2007)

10. Deerwester, S., Dumais, S.T., Furnas, G.W., Landauer, T.K., Harshman, R.: Indexing by
latent semantic analysis. J. Am. Soc. Inf. Sci. 41(6), 391–407 (1990)

11. Falessi, D., Di Penta, M., Canfora, G., Cantone, G.: Estimating the number of remaining
links in traceability recovery. Empir. Softw. Eng. 22(3), 996–1027 (2016). https://doi.org/10.
1007/s10664-016-9460-6

12. Falessi, D., Roll, J., Guo, J.L.C., Cleland-Huang, J.: Leveraging historical associations
between requirements and source code to identify impacted classes. IEEE Trans. Software
Eng. 46(4), 420–441 (2018)

13. Ghannem, A., Hamdi, M.S., Kessentini, M., Ammar, H.H.: Search-based requirements trace-
ability recovery: a multi-objective approach. In: Proceedings of the CEC, pp. 1183–1190
(2017)

14. Gotel, O., et al.: The grand challenge of traceability (v1.0). In: Cleland-Huang, J., Gotel, O.,
Zisman, A. (eds.) Software and Systems Traceability, pp. 343–409. Springer, London (2012).
https://doi.org/10.1007/978-1-4471-2239-5 16

15. Guo, J., Cheng, J., Cleland-Huang, J.: Semantically enhanced software traceability using
deep learning techniques. In: Proceedings of ICSE, pp. 3–14. IEEE (2017)

16. Mills, C., Escobar-Avila, J., Haiduc, S.: Automatic traceability maintenance via machine
learning classification. In: Proceedings of ICSME, pp. 369–380, July 2018

17. Mills, C., Haiduc, S.: The impact of retrieval direction on IR-based traceability link recovery.
In: Proceedings of ICSE NIER, pp. 51–54 (2017)

18. Oliveto, R., Gethers, M., Poshyvanyk, D., De Lucia, A.: On the equivalence of information
retrieval methods for automated traceability link recovery. In: Proceedings of ICPC, pp. 68–
71 (2010)

19. Port, D., Nikora, A., Hayes, J.H., Huang, L.: Text mining support for software requirements:
traceability assurance. In: Proceedings of HICSS, pp. 1–11. E (2011)

20. Porter, M.F.: An algorithm for suffix stripping. Program (1980)
21. Ramesh, B., Edwards, M.: Issues in the development of a requirements traceability model.

In: Proceedings of ISRE, pp. 256–259 (1993)
22. Rasiman, R., Dalpiaz, F., España, S.: Online appendix: how effective is automated trace

link recovery in model-driven development? January 2022. https://doi.org/10.23644/uu.
19087685.v1

23. Rath, M., Rendall, J., Guo, J.L.C., Cleland-Huang, J., Maeder, P.: Traceability in the wild:
automatically augmenting incomplete trace links. In: Proceedings of ICSE, vol. 834–845
(2018)

https://doi.org/10.1007/s10664-013-9255-y
https://doi.org/10.1007/s10664-016-9460-6
https://doi.org/10.1007/s10664-016-9460-6
https://doi.org/10.1007/978-1-4471-2239-5_16
https://doi.org/10.23644/uu.19087685.v1
https://doi.org/10.23644/uu.19087685.v1


How Effective Is Automated Trace Link Recovery in MDD? 51

24. Umuhoza, E., Brambilla, M.: Model driven development approaches for mobile applications:
a survey. In: Younas, M., Awan, I., Kryvinska, N., Strauss, C., Thanh, D. (eds.) MobiWIS
2016. LNCS, vol. 9847, pp. 93–107. Springer, Cham (2016). https://doi.org/10.1007/978-3-
319-44215-0 8

25. Wang, B., Peng, R., Li, Y., Lai, H., Wang, Z.: Requirements traceability technologies and
technology transfer decision support: a systematic review. J. Syst. Softw. 146, 59–79 (2018)

26. Wieringa, R.J.: Design Science Methodology for Information Systems and Software Engi-
neering. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-43839-8

27. Winkler, S., von Pilgrim, J.: A survey of traceability in requirements engineering and model-
driven development. Softw. Syst. Model. 9(4), 529–565 (2010)

28. Wohlin, C., Runeson, P., Höst, M., Ohlsson, M.C., Regnell, B., Wesslén, A.: Experimentation
in software engineering, vol. 9783642290 (2012)

29. Yoon, J.: Forecasting of real GDP growth using machine learning models: gradient boosting
and random forest approach. Comput. Econ. 57(1), 247–265 (2020). https://doi.org/10.1007/
s10614-020-10054-w

https://doi.org/10.1007/978-3-319-44215-0_8
https://doi.org/10.1007/978-3-319-44215-0_8
https://doi.org/10.1007/978-3-662-43839-8
https://doi.org/10.1007/s10614-020-10054-w
https://doi.org/10.1007/s10614-020-10054-w

	How Effective Is Automated Trace Link Recovery in Model-Driven Development?
	1 Introduction
	2 Related Work on Automated RTR
	3 Case Study at Mendix
	3.1 Studied Artefacts
	3.2 Studied Datasets
	3.3 Objective and Evaluation Scenarios

	4 Requirement Trace Link Classifier
	4.1 Data Description and Trace Construction
	4.2 Feature Engineering
	4.3 Data Rebalancing
	4.4 Classification Algorithms

	5 Results
	5.1 Quantitative Results
	5.2 Features Importance

	6 Threats to Validity
	7 Conclusion and Future Work
	References




