
Mining the Usage of Reactive Programming APIs: A Study on
GitHub and Stack Overflow

Carlos Zimmerle, Kiev Gama
Centro de Informática

Federal University of Pernambuco

Recife, Brazil

{cezl,kiev}@cin.ufpe.br

Fernando Castor∗

Department of Information and

Computing Sciences

Utrecht University

Utrecht, The Netherlands

castor@cin.ufpe.br

José Murilo Mota Filho
Centro de Informática

Federal University of Pernambuco

Recife, Brazil

jmsmf@cin.ufpe.br

ABSTRACT

Conventionally, callbacks and inversion of control have been the

main tools to structure event-driven applications. Sadly, those pat-

terns constitute a well-known source of design problems. The Re-

active Programming (RP) paradigm has arisen as an approach to

mitigate these problems. Yet, little evidence has been provided re-

garding the advantages of RP, and concerns have also arisen about

the API usability of RP libraries given their disparate number of

operators. In this work, we conduct a study on GitHub (GH) and

Stack Overflow (SO) and explore three Reactive Extensions (Rx)

libraries (RxJava, RxJS, and RxSwift) with the most GH projects to

understand how much the vast Rx operators are being used. Also,

we examine Rx SO posts to complement the results from the GH

exploration by understanding the problems faced by RP developers

and how they relate with the operators’ frequencies found in open

source projects. Results reveal that, in spite of its API size, the great

majority of the Rx operators are actually being used (95.2%), with

only a few, mostly related to RxJava, not being utilized. Also, we

unveil 23 topics from SO with more posts concerning the Stream

Abstraction (36.4%). Posts related to Dependency Management,

Introductory Questions, and iOS Development figure as relevant

topics to the community. The findings herein present can not only

stimulate advancements in the field by understanding the usage of

RP API and the main problems faced by developers, but also help

newcomers in identifying the most important operators and the

areas that are the most likely to be relevant for a RP application.

CCS CONCEPTS

• General and reference→ Empirical studies; • Software and

its engineering→ Data flow languages.

KEYWORDS

Reactive Programming, API Usability, Mining Software Repositories

∗Also with, Centro de Informática, Federal University of Pernambuco.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

MSR ’22, May 23–24, 2022, Pittsburgh, PA, USA

© 2022 Association for Computing Machinery.
ACM ISBN 978-1-4503-9303-4/22/05. . . $15.00
https://doi.org/10.1145/3524842.3527966

ACM Reference Format:

Carlos Zimmerle, Kiev Gama, Fernando Castor, and José Murilo Mota Filho.

2022. Mining the Usage of Reactive Programming APIs: A Study on GitHub

and Stack Overflow. In 19th International Conference on Mining Software

Repositories (MSR ’22), May 23–24, 2022, Pittsburgh, PA, USA. ACM, New

York, NY, USA, 12 pages. https://doi.org/10.1145/3524842.3527966

1 INTRODUCTION

Traditionally, event-driven applications, also called interactive or

reactive applications (e.g., graphical user interface apps), have re-

lied on callbacks and inversion of control as means to structure

their logic [6, 12]. As those applications evolve, the code ends up

becoming an asynchronous spaghetti with deeply-nested depen-

dent callbacks, a problem often called callback hell or pyramid of

doom [18]. As a result, event-based programs are known to be diffi-

cult to design, implement, and maintain [29]. The Reactive Program-

ming (RP) paradigm was conceived to facilitate the construction

of interactive applications through the use of dedicated abstrac-

tions [6, 19, 29]. Given the advantages of RP, many libraries and

extensions have been incorporated in varying languages [6], includ-

ing a specification for the JVM platform called Reactive Streams1

that many libraries currently comply to (e.g., Akka Streams2, Reac-

tor3, and RxJava). In spite of their clear benefits, data flow solutions

like RP have been supported by little research evidence [27], and

the necessity of carrying new research approaches like forum and

repositories mining to better understand how RP is being used was

previously pointed out [27] but never explored.

Reactive Extensions4, also known as ReactiveX or Rx, is a popular

family of libraries available for several programming languages. It

was created for dealing with synchronous and asynchronous data as

reactive streams. Surprisingly, Mogk et al. [21] report the presence

of >450 variations of the Rx core operators5 which contrasts with

other libraries like Fran and REscala with ≈20 and ≈40 operators,

respectively. This matches a familiar matter revolving around the

widespread usage of combinators in functional programming which

may impact the learnability and comprehension to newcomers [31].

In the same vein, Salvaneschi et al. [27] raised the issue that data

flow languages may provide overspecialized operators. Some re-

searchers [21, 31] believe that the focus should shift to designing

small collection of core concepts, abstractions and operators, and

ways to compose them rather than developing specializations. In

1https://www.reactive-streams.org/
2https://akka.io/
3https://projectreactor.io/
4https://reactivex.io/
5A complete list of the core operators is available at https://reactivex.io/documentation/
operators.html.

203

The 2022 Mining Software Repositories Conference

MSR ’22, May 23–24, 2022, Pittsburgh, PA, USA Carlos Zimmerle, Kiev Gama, Fernando Castor, and José Murilo Mota Filho

this manner, RP can become more accessible to both newcomers

and non-experts while still enabling the construction of complex

programs [21, 31].

In light of the need for more studies aligned with the possibility

of overspecialized operators in data flow solutions like RP, the

present work attempts to investigate the usage of RP APIs. More

specifically, we leverage the Rx API given its popularity, size, and

polyglot nature with libraries for many languages. We believe that

it is important not only to uncover if the operators are being used

but also which kinds of problems RP users are facing and if there

is any relation with the usage frequency of operators regarding

those problems. We conducted a study on GitHub (GH) and Stack

Overflow (SO) hoping to answer the following research questions:

• RQ1. How much are the Rx operators being used in open

source projects?

• RQ2.What problems are reactive programming developers

facing?

• RQ3. How do the operators present in the most relevant

Stack Overflow questions and the usage frequency of Rx

operators in open source projects relate?

To answer those questions, we explore the three Rx libraries

with the most GH repositories: RxJava, RxJS, and RxSwift. Together,

those libraries represent languages whose usage vary extensively,

including UI, mobile, and web development.

The remaining of this paper is arranged as follows. Section 2

provides a brief background on RP. Section 3 delineates the method-

ology employed during the GH and SO mining, exposing the steps

and decisions taken. Section 4 presents the results obtained through

the methodology execution. Section 5 discusses the possible im-

plications, followed by threats to validity (Section 6) and steps

considered to mitigate them. Finally, Section 7 addresses the final

remarks.

2 REACTIVE PROGRAMMING
BACKGROUND

RP is a paradigm with origins on Functional Reactive Programming,

primarily used to modelling animations [21], that was introduced

to counter the problems (e.g., inversion of control, manual propaga-

tion of changes, and side effects) of imperative logic in interactive

applications which contribute to difficult, buggy programs [6, 29].

It is formulated around dedicated abstractions [6, 27], behaviors

(signals) and events (event streams), and those are in turn designed

after three concepts [19]: (i) time-changing values, (ii) dependency

tracking, and (iii) automatic propagation of updates.

RP has received much more attention of the programming lan-

guage community and practitioners than from the software engi-

neering community [29]. Aspects such as the higher composability

of RP [28], and RP’s improved comprehension when compared to

the Observer pattern [31] have been explored. Recent efforts have

focused on enabling RP in a distributed setting [12, 19, 20].

Reactive Extensions. Initially developed by Microsoft and made

more well-known thanks to Netflix’s successful use case [31], Rx

stands as one of the most popular reactive libraries with implemen-

tations available for a variety of programming languages. Currently,

Rx supports the event stream abstraction, called Observable, which

represents a stream of value updates [6] and allows the composition

of programs in a data flow style [27]. The computations are then

constructed as a pipeline or series of stages, each one mostly con-

sisting of some well-known functional operators (e.g., map, filter,

etc) and callback-based or stream-like operators (e.g., counts and

windowing) [9]. The side effects are usually pushed downstream to

the stream consumer component, the observer object, which also

controls the start of the stream execution as soon as a consumer is

attached or connected (lazy evaluation nature).

3 METHODOLOGY

In this section we explain how we mined GitHub repositories (Sec-

tion 3.1) and Stack Overflow questions and answers (Section 3.2) to

address the three research questions. In general, the methodology

applied to GH can be summarized as:

(1) Search for Rx repositories applying the defined star filter

and store the information.

(2) Retrieve the repositories based on the stored information.

(3) Search for Rx operators within the download repositories

(RQ1).

Conversely, the overall SO methodology follows the following

stages:

(1) Download Stack Exchange Data Explorer’s data using Rx

libraries’ tags.

(2) Remove duplicates and consolidate the result files.

(3) Preprocess posts.

(4) Run LDA followed by topics’ inference (RQ2).

(5) Determine topics’ relevance (popularity and difficulty) and

search for operators among the posts (RQ3).

Both Sections 3.1 and 3.2 access lists of operators of the different

Rx libraries under analysis, and those lists were created by scraping

official repositories of the distributions. The operators of RxJava

and RxJS were extracted from their repositories on GitHub6,7, while

the ones from RxSwift were taken from the ReactiveX website8. By

the time of the last scraping (September 27, 2021), the libraries were

in the versions: 3.1.1 (RxJava), 7.3.0 (RxJS), and 5.1.1 (RxSwift). The

scripts used for scraping are publicly available9, as well as those

for GH10 and SO11. The scripts have also been archived through

the Software Heritage12 service.

3.1 GitHub Mining

We used the GitHub API, which accounts for almost 40% of the

solutions used in the mining field [11] and allows to acquire reposi-

tory data and metadata as well as commit messages, pull request

information, etc. Researchers should take into account that many

GH repositories are merely used to other concerns beside soft-

ware development like storing personal data and (possibly inactive)

repositories [17]. Social features like stars were used as a selection

6https://github.com/ReactiveX/RxJava/wiki/Operator-Matrix
7https://github.com/ReactiveX/rxjs/blob/master/docs_app/content/guide/operators.
md
8https://reactivex.io/documentation/operators.html
9https://github.com/carloszimm/rx-scraping-msr22
10https://github.com/carloszimm/gh-mining-msr22
11https://github.com/carloszimm/so-mining-msr22
12They can be accessed through the URL https://archive.softwareheritage.org/browse/
origin/ followed by their original URL.

204

Mining the Usage of Reactive Programming APIs: A Study on GitHub and Stack Overflow MSR ’22, May 23–24, 2022, Pittsburgh, PA, USA

Table 1: Information on the repositories using the five most

used Rx libraries and the mined ones along with their star

information, sorted by their total.

Library Repositories Mined Repositories

Total Stars Total Stars

= 0 ≥ 10 Min Max Median

RxJava 16,394 10,885 1,450 1,430 10 10,404 43

RxJS 16,380 12,740 818 797 10 16,835 30

RxSwift 5,505 3,833 402 401 10 13,644 37

RxKotlin 626 369 78 - - - -

RxDart 493 274 73 - - - -

Last update: January 7, 2022.

filter previously [34, 35] as an indicative of a repository’s popu-

larity and a favoring factor among developers. Thus, we used it

to exclude potentially unimportant repositories. Following other

approaches [16, 34], we set the exclusion threshold to consider

repositories that have 10 or more stars. Table 1, column Reposito-

ries, outlines the total of repositories using the five most used Rx

libraries along with the total of projects with zero stars and those

with 10 or more stars. One can verify that repositories with 0 stars,

and presumably low popularity, account for a big share of each

library’s total, supporting our choice of using stars as a filter.

The selection of the projects to be mined took into consideration

the most used libraries. As depicted in Table 1, column Repositories,

RxJava has the highest share of projects followed by RxJS and

RxSwift. Considering the defined star filter (≥ 10) and aiming to

obtain a significant sample size (>100), we decided to select the first

three libraries (RxJava, RxJS and RxSwift). RxKotlin and RxDart

were initially being considered to be included in the study but

they would produce a small sample (<100 projects). Furthermore,

RxKotlin takes most of its operators from RxJava, with only a small

portion reserved for extension functions as delineated in its GitHub

page13. Consequently, those libraries would not truly contribute to

the study’s objectives.

The actual sample size used corresponded to the de facto popu-

lation of repositories with ≥ 10 stars for each investigated library.

We selected the entire population willing not to incur in sampling

errors and not to be unfair when defining a specific sample size for

the three libraries when the population of dependent repositories

has different dimensions.

The first step in our workflow was to look for Rx repositories,

by using the name of the Rx libraries, along with the defined star

filter. This search was then conducted by leveraging the ‘search

repositories’ feature from the GitHub API. Afterwards, with that

information saved in JSON files, we executed a script to down-

load the repositories as tarball files. Given that it would not be

feasible to store all the tarball files with our scripts for future repli-

cations, we stored the information about the downloaded files in a

JSON file containing sufficient information to acquire them (e.g.,

a URL to download the file having the SHA1 hash of last commit

already set) as well as details about the repository that file belongs

13https://github.com/ReactiveX/RxKotlin

to. This script took into consideration the exclusion of reposito-

ries that belong to official ReactiveX users14 such as ‘ReactiveX’

or ‘Reactive-Extensions’. The information about the repositories

retrieved and processed is displayed in Table 115, column Mined

Repositories. Having the downloaded repositories, a final script

was executed to search for the Rx operators among the project files.

The search was conducted by using a regular expression (regex),

looking for operator invocations, either method (for method chain-

ing pattern found in RxJava and RxSwift, for instance) or function

(for function used with RxJS pipe method) calls. Before the actual

counting for operators, a series of filters were used. First, a file

extension filter to consider only files linked to each Rx libraries’

language. Second, we checked whether the file had any mention

to the Rx distribution considered at that moment, which would

correspond to some kind of import to the library in the file. This

filter was designed to minimize problems with a few functional

operators often found in other constructs/libraries; however, the

probability of false positives should be very low. Rx can wrap any

type of value, even offers many generic creational methods for that

purpose, and compose the logic as streams of those values. In this

way, it reduces the need to invoking methods from other libraries

(e.g., Java java.util.stream). In fact, we checked Java files, the lan-

guage with more mined projects (Table 1), importing RxJava along

with other Collection-like libraries (Java Streams16, Eclipse Collec-

tions17, Apache’s CollectionUtils18, and Guava’s Collections219).

Results showed only 156 files out of 14,377, i.e., 1.09%. A random

sample of 16 of those files (≈10%) yielded 62% of actual Rx operators,

that is the great majority. Finally, we removed strings and comments

of every file to avoid false positives from those constructs.

3.2 Stack Overflow Mining

Themining activities on SOwere divided into two stages: topic mod-

eling (Sections 3.2.1) and the definition of topics’ relevance (3.2.2).

Both stages use data collected via the Stack Exchange Data Ex-

plorer20(SEDE), one of the many tools to acquire SO data already

used in existing work [24, 32]. To have as much data as possi-

ble, we leveraged both questions and accepted answers, following

Ahmed and Bagherzadeh [3] and Bajaj et al. [7]. We pulled ques-

tions, and their respective accepted answers, with the following

tags: ‘rx-java’, ‘rx-java2’, ‘rx-java3’, ‘rxjs’, ‘rxjs5’, ‘rxjs6’, ‘rxjs7’, and

‘rx-swift’; those are the tags directly related to the Rx libraries con-

sidered in this work: RxJava, RxJS, and RxSwift. Each query was

executed separately for every tag and, afterwards, the results were

combined, with the duplicated entries removed. A total of 47,404

records were fetched, with entries ranging from February 2011 to

December 2021.

14The list of official Rx GitHub users can be obtained by inspecting the URLs in
https://reactivex.io/languages.html.
15We were not able to retrieve the following project due to file corruption: https:
//github.com/zwacky/game-music-player
16https://docs.oracle.com/javase/8/docs/api/java/util/stream/Stream.html
17https://github.com/eclipse/eclipse-collections
18https://commons.apache.org/proper/commons-collections/apidocs/org/apache/
commons/collections4/CollectionUtils.html
19https://guava.dev/releases/23.0/api/docs/com/google/common/collect/Collections2.
html
20https://data.stackexchange.com/

205

MSR ’22, May 23–24, 2022, Pittsburgh, PA, USA Carlos Zimmerle, Kiev Gama, Fernando Castor, and José Murilo Mota Filho

3.2.1 Topic Modeling. Topic modeling is a Natural Language Pro-

cessing method based on the words’ statistics that can be used to

summarize documents through a set of topics [7]. Latent Dirichlet

Allocation (LDA), on the other hand, is one of the most commonly-

used topic-modeling techniques [10, 33]. It has been employed in

many previous studies targeting SO data [1, 3, 24]. It allows a more

manageable overview of a large corpora of documents as it may be

impractical to do a manual inspection [24].

Posts Extraction. Data acquired through the SEDE comes in CSV

format. It contains information about posts, such as titles, bodies,

and types. For the purpose of this work, we initially decided to

work with the posts’ bodies. Working with the bodies gives us the

opportunity to extract code snippets and help with other phases of

the research (Section 3.2.2). Nonetheless, we observed that some

posts, either questions or accepted answers, after going through

data preprocessing, were becoming too small to offer any intuition

about the context of the post for future analysis; examples include

the question #6581345421 and the accepted answer #4190857822.

Therefore, based on Han et al. [13] and Han et al. [14], we mixed

both title and body of the posts. For accepted answers, the titles

of their respective questions were used to compose the effective

post’s text.

Data Preprocessing. A number of filters are commonly applied

to documents before feeding them into the LDA for processing. We

removed the following elements, based on [3, 13, 24, 33]: (1) code

snippets, i.e. content inside <code>, <pre>, and <blockquotes>, (2)

HTML tags, (3) Line breaks and sequence of whitespaces, (4) URLs,

(5) one-letter words, (6) stop words, like an and I, (7) numbers, (8)

punctuation marks, (9) non-alphabetical characters. Furthermore,

we applied stemming (Snowball stemmer)[5, 10] to the remaining

words (i.e., mapping the words to their root form) and removed

common and uncommon words (i.e., words occurring in less than

five posts or in more than 90% of those, respectively) [10]. After a

few executions, we also decided to drop common SO words such

as ‘answer’, ‘question’, ‘help’, and ‘solut’.

LDA Execution. For the LDA execution, we leveraged the NLP23

library, which offers many machine learning and natural language

processing algorithms. One of the key points in LDA usage is to

find the appropriate number of topics [1]. As noted by Han et

al. [13], the exact quantity can impact the granularity of the result,

yielding a too specific outcome, in case of a high number, or a too

generic one, otherwise [1]. A common approach when deciding

the number of topics is to vary this number [1, 24] and determine

the most coherent result either by manual inspection [3, 24] or

by some metric [1] like coherence. Following Rebouças et al. [24],

we varied the number of topics between 10 and 35 and manually

inspected the results. To help in the process, we also relied on

the perplexity metric [33], which can be used to get some intuition

about a possible goodmodel fit. This metric tends become smaller as

the number of topics grows [2], i.e., smaller values usually indicate

better models. However, the correspondence of good model fit

and human assessment do not always correlate [33]. Thus, we

looked for outcomes yielding small improvements in perplexity

with a different number of topics, but ultimately used the manual

21https://stackoverflow.com/q/65813454
22https://stackoverflow.com/a/41908578
23https://github.com/james-bowman/nlp

inspection to assess the results. Finally, we experimented with two

combinations of values for hyperparameters: 𝛼 = 50/𝑘 , 𝛽 = 0.01 [3,

26]—𝑘 denotes the number of topics—and 𝛼 = 𝛽 = 0.01 [10, 25].

The first combination is a common one used in other studies but,

conventional standards for parameters are not fit for GH and SO

texts [33]. After a series of try-outs, the computed result with 23

topics, 1,000 iterations and 𝛼 = 𝛽 = 0.01 showed the most coherent

outcome.

Topic Inference. Topics produced by LDA correspond to a set of

words and their proportion, with the name or label left to be inferred

by who is applying the algorithm. To aid in this task, we resorted

to the open card sorting technique [1, 3, 26], which consists of

analyzing the topwords of a given topic and inspecting posts chosen

randomly that have the topic as their dominant one [3]. The first

two authors were in charge of applying the technique by examining

top 20 words and 15 random posts. Each examiner labeled the topics

individually and jointly discussed results supported by a mediator

(third author) to reach agreement when needed.

3.2.2 Defining Topic Relevance. In this study, we consider a topic

as relevant based on its popularity and difficulty. To measure it,

different metrics can be used. Popularity, for instance, can be cal-

culated by taking the average value of three SO measures [1, 3]:

(1) View, (2) Favorites, and (3) Score. Thus, a topic with high av-

erage view, favorites, and score is considered popular. Difficulty,

conversely, has two metrics commonly employed [1, 3, 26]: (1) the

percentage of questions with no accepted answer and (2) the me-

dian time it takes for an answer to be considered accepted; the time

is calculated based on the creation dates found in the accepted an-

swer and its respective question post [26]. As noted by Ahmed and

Bagherzadeh [3], topics showing a high rate of questions without

answers and taking more time to get accepted answers are intu-

itively harder. Hence, the aforementioned metrics are also exploited

in the study.

Additionally, aiming to find operators’ occurrences among the

SO posts, we conducted a search throughout the questions and

accepted answers used in Section 3.2.1. This search is carried out

to delineate a correlation between the most relevant topics and

the usage frequency of Rx operators (considered in Section3.1),

the objective of RQ3. To access the code snippets, we extracted

the contents inside the tags <code> of SO posts. As opposed to

Section 3.2.1, we did not regard the <blockquote> and <pre> tags

since <blockquote> is often used to include stack traces instead [25]

and <pre> is usually applied to add formatting to <code>. Also, like

Section 3.1, we removed comments and strings. The search in turn

relied on a regex that either looked for the operator name or the

operator invocation. The examination of only the operator name

is necessary since, many times, text inside the <code> tag is used

only to highlight a construct without actually showing its usage

(e.g., post #4081127324).

4 RESULTS

This section is organized according to research questions (RQ1-

RQ3).

24https://stackoverflow.com/questions/40811273

206

Mining the Usage of Reactive Programming APIs: A Study on GitHub and Stack Overflow MSR ’22, May 23–24, 2022, Pittsburgh, PA, USA

4.1 RQ1: How much are the Rx operators being
used in open source projects?

To elaborate the results, we relied on the usage frequency of the

operators from RxJava, RxJS, and RxSwift as detailed in Section 3.1.

Figure 1 presents the percentage of operators’ utilization according

to their library. We can observe that the majority of operators are

actually in current use. The greatest exception among the three

libraries was RxJava presenting 94.1% (223 operators) of usage

but 5.9% (14) of its 237 operators not actually being used in the

GitHub projects of our sample. RxJS and RxSwift, on the other

hand, presented 100% and 98.5% of employment of their 113 and

66 operators, respectively. Nonetheless, in general, the libraries

showed a good measure of utilization. This fact is even more clear

when combining the operators (merging those alike) and their

frequencies from all three libraries and computing the percentage of

utilization: 95.2% of general utilization. Thus, although Rx provides

a great number of operators scattered through its different libraries,

those operations showed a very considerable rate of utilization.

From the 14 non-used operators of RxJava, we could notice that half

were operators related to Java’s concurrency API CompletionStage25

whose support was added in RxJava 3 (released on February, 2020).

This may indicate that either the developers did not have time to

use the feature yet or did not find a useful situation to apply it.

Figure 2, 3, and 4 depict the most and least frequently used op-

erators in RxJava, RxJS, and RxSwift, respectively. For simplicity,

we included only the 15 most and least utilized ones and removed

those not in use. The complete list according to their frequency

is available online. By inspecting the charts with the most used

operators, one can perceive the occurrence of subscribe as one of

the most utilized operators in the three libraries. This correlates to

its importance in controlling the stream lifecycle. The stream be-

comes indeed active only when subscribed, given its lazy evaluation

principle. Curiously, map is the most intensively used operator in

RxSwift. Still, map is certainly an important transforming operator,

and that can be evidenced by its presence in the list of most fre-

quently used operators of the three libraries. Along with map, one

can perceive the presence of other common functional operators

like any, filter, and reduce. Concerning the creation operators, we

can note that just or its equivalent of is one of the most present.

It allows the creation of a one-element stream and can be useful

for the construction of business logic that expects the emission of

a single element in their composition. Apart from RxJava, there

were few operators related to error handling/testing. In summary,

the most frequently used operator comprises all categories26 of

operators such as creation (of, from), transforming (map, flatMap),

filtering (take, takeUntil), combining (merge, zip), among others.

A pattern that we could noticed is that the majority of the most

used operations are largely composed of Rx core operators (e.g.,

concat, filter, map, etc.). The least frequently used, on the contrary,

are mostly formed by library-specific variants (e.g., concatMapS-

ingle, concatMapMaybe, mapWithIndex, etc.) which comprises all

types of operators. An exception in the set of least utilized ones is

the presence of core operators buffer and, specially, window (and

25https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/CompletionStage.
html
26Categories based on https://reactivex.io/documentation/operators.html.

Figure 1: Percentage of operators’ utilization per Rx library.

Table 2: Average usage of the 15 most frequently used oper-

ators per analyzed repository.

RxJava RxJS RxSwift

subscribe (13.0) subscribe (16.7) map (62.0)

create (8.6) map (14.7) subscribe (36.6)

just (6.5) of (5.3) create (19.9)

test (5.5) filter (5.0) just (19.2)

never (3.3) concat (3.6) combineLatest (10.4)

map (2.8) from (2.7) empty (10.2)

subscribeOn (2.6) take (2.2) zip (8.8)

observeOn (2.5) tap (2.2) flatMap (8.5)

error (2.4) find (2.1) filter (6.9)

any (2.3) switchMap (1.6) observeOn (6.7)

compose (1.9) merge (1.5) merge (6.0)

empty (1.8) reduce (1.4) distinctUntilChanged (4.3)

flatMap (1.7) mergeMap (1.2) startWith (4.0)

range (1.6) takeUntil (0.9) takeUntil (3.2)

isEmpty (1.6) fromEvent (0.9) from (3.1)

Note. Average usage shown in parentheses.

some of its variants such as windowTime, windowToggle, and win-

dowWhen). These correspond to an important class of operators

since some computations require the accumulation of stream ele-

ments before execution. Table 2 presents a different perspective for

the most used operators in the three libraries. It shows the average

usage per analyzed repository. Those statistics indicate that even

thought the operators have shown relative high frequencies, they

are probably being used more in some projects than others (i.e., in

an irregular way). A final worth observation is the scale of the least

used RxJava operators. Its 15 least used operators did not exceed

the limit of 10 usages, which is likely linked to its extensive API.

However, when collecting operators with ≤50 uses throughout the

analyzed projects, we could notice that RxJS presented the greatest

percentage, corresponding to ≈32% of its operators against ≈22%

from RxJava and only ≈7.5% from RxSwift.

The great majority of Rx operators are being utilized in the libraries

RxJava (94.1%), RxJS (100%), and RxSwift (98.5%). This percent-

age comes to 95.2% when merging the operators and their usage

frequency from all three libraries. Finding 1

207

MSR ’22, May 23–24, 2022, Pittsburgh, PA, USA Carlos Zimmerle, Kiev Gama, Fernando Castor, and José Murilo Mota Filho

(a) 15 most used (b) 15 least used

Figure 2: The most and least frequently used operators of RxJava.

(a) 15 most used (b) 15 least used

Figure 3: The most and least frequently used operators of RxJS.

(a) 15 most used (b) 15 least used

Figure 4: The most and least frequently used operators of RxSwift.

Only RxJava presented more than one operator not being utilized

(≈6%). Finding 2

subscribe appears as the most frequently used operation in two

Rx libraries: RxJava and RxJS. Yet, it is the second most used in

RxSwift, only behind the map operator. Finding 3

Functional operators, like any, filter, and map, figure among the

most used operators in all libraries. Finding 4

The most used operators mainly comprise core operators, while the

least used ones are essentially composed of core variants. Finding

5

208

Mining the Usage of Reactive Programming APIs: A Study on GitHub and Stack Overflow MSR ’22, May 23–24, 2022, Pittsburgh, PA, USA

All 15 least used operators of RxJava showed less than or equal

to 10 usages. However, RxJS presented the greatest percentage of

operators with ≤50 usages (≈32%). Finding 6

4.2 RQ2: What problems are reactive
programming developers facing?

As denoted in Section 3.2, we used the LDA topic modeling tech-

nique to uncover the problems, in a topic format, that reactive

programming developers are facing. Table 3 presents the 23 gen-

erated topics with the inferred labels and sorted by their number

of posts. From the result, we can observe that the generated topics

truly correspond to important matters that reactive programmers

face daily. For example, the first two topics with the most posts

are related to stream abstraction. We can also note presence of

Concurrency, an important intrinsic concept in reactive program-

ming given that its pipeline model allows the exploration of an

asynchronous and non-blocking execution and the efficient use of

threads [9], either directly (as by schedulers in RxJava) or indirectly.

One can also visualize elements revolving UI, a field from where

most of the reactive programming research came from by the de-

veloping of the Fran language [6]. We grouped those topics under

nine categories and briefly discuss the three with the largest share

of posts.

Stream Abstraction (6 topics, 36.4% posts). This category en-

compasses six topics related to the stream abstraction (i.e., the

main resource to structure the reactive logic): Stream Manipulation,

Stream Creation and Composition, Stream Lifecycle, Timing,Multicas-

ting, and Control Flow. Together, their posts account for 36.4% of the

total of analyzed posts with the first two topics showing the biggest

share as shown in Table 3. Under the topic Stream Manipulation, for

instance, there were many question related to Observable (main

stream type in Rx) handling like converting it, accessing and pass-

ing values to it, returning it, among others. For example,Q48601357

asks “...convert Observable<string[]> into Observable<string>” while

Q56610867 deals with “A more succinct way to conditionally chain

multiple observables.” Having this topic as the one with the higher

number of posts is probably due to the shift that developers should

face while structuring their code as compositions of streams. The

second topic with the most posts, Stream Creation and Composi-

tion, is very related to the first one and surprisingly showed many

operators in their LDA top words, such as ‘combin’, ‘merg’, and

‘combinelatest’. Q38067532 is a typical example of questions found

in this topic where the author asks about “Combining two differ-

ent observables.” The remaining topics cover other matter intrinsic

to streams, like the use of time handling/control flow operations,

subscribing and unsubscribing (i.e., lifecycle), the different types of

stream “temperature” (hot or cold27), or the proper usage of Subject,

an alternative to Observable that is hot in nature (multicasting).

Application Development (5 topics, 21.2% posts). This cate-

gory combines problems related to application development in

general, totaling five topics. The addition of those topics’ posts

yields a share of 21.2% of all study’s posts. From the posts in this

category, we have 42.2% about Web development (considering Web

27Cold streams are those that produce data based on each subscription. Hot ones, on
the other hand, do not depend on subscription to emit values and their values are
normally produced from an outside source.

Table 3: Topics ordered by their number of posts.

Topic # Posts % Posts Category

Stream Manipulation 6384 13.5 Stream Abstraction

Stream Creation and

Composition

4872 10.3 Stream Abstraction

Array Manipulation 3146 6.6 Programming

Web Development 3049 6.4 Application Develop-

ment

Data Access 2680 5.7 Persistence

Android Development 2551 5.4 Application Develop-

ment

Concurrency 2251 4.7 Concurrency

HTTP Handling 2243 4.7 Networking

Stream Lifecycle 2141 4.5 Stream Abstraction

Error Handling 1825 3.8 Reliability

Timing 1813 3.8 Stream Abstraction

UI for Web-based Sys-

tems

1791 3.8 User Interface

Dependency Manage-

ment

1710 3.6 Application Develop-

ment

Typing and Correctness 1578 3.3 Programming

iOS Development 1536 3.2 Application Develop-

ment

Multicasting 1305 2.8 Stream Abstraction

REST API Calls 1231 2.6 Networking

Testing and Debugging 1219 2.6 Reliability

State Management and

JavaScript

1183 2.5 Application Develop-

ment

Input Validation 1087 2.3 User Interface

Control Flow 735 1.6 Stream Abstraction

General Programming 588 1.2 Programming

Introductory Questions 486 1.0 Basics

Total of Posts = 47,404.

Development and State Management and JavaScript together) and

40.8% about mobile development (Android Development and iOS

Development). Most of the web development topics revolves around

the Angular framework which is expected given that Angular both

use RxJS internally and also makes it available to be utilized as part

of its library28. Others, conversely, deal with state management,

an important matter in nowadays JavaScript frameworks. In this

regard, we have many mentions to the Redux-Observable (a Redux

middleware) and, specially, NgRx (state management for Angular

based on RxJS). In the mobile development, more posts linked to

Android than iOS appeared, even though we did not include any

SO tags related to RxKotlin or RxAndroid (RxJava bidings for An-

droid). In the iOS posts, we could observe a prevalence of questions

related to patterns embracing view models like MVVM (Model-

View-ViewModel). The Android ones, on the contrary, included

many questions about using RxJava with some framework or li-

brary like Retrofit (an HTTP client). The remaining posts within

this category, curiously, related to dependency management prob-

lems like inQ45516375 where the author complains about “Problems

28https://blog.angular-university.io/functional-reactive-programming-for-angular-
2-developers-rxjs-and-observables/

209

MSR ’22, May 23–24, 2022, Pittsburgh, PA, USA Carlos Zimmerle, Kiev Gama, Fernando Castor, and José Murilo Mota Filho

with .maps and import 'rxjs/add/operator/map'” or Q46692177 with

the issue “RXJS Observable missing definitions.”

Programming (3 topics, 11.2% posts). Three topics are classified

under this category: Array Manipulation, Typing and Correctness,

and General Programming. The three topics represent 11.2% of the

investigated posts, with Array Manipulation comprising most of the

posts (59%), as expected. Dealing with streammanipulation often re-

quires the conversion to or from an array (e.g., the toArray operator

from RxJS) or even the accumulation of elements in arrays (the case

of buffer operator) given that streams can be seen as a sequence of

events. In Q58657165, for example, the user complains “Can not get

array of Observables.” Other questions in the Array Manipulation

revolved around manipulating collections of Observables (streams)

or the use of common collection-like functions (e.g., ‘filter’). The

posts under Typing and Correctness entered this category since they

mostly show problems of type systems like “Property 'forEach' does

not exist on type 'Object'” (Q46352289) or “Type 'Observable< | T>'

is not assignable to type 'Observable<T>'” (Q45273084). The rest of

the posts under this category were classified as General Program-

ming, given that they discuss primarily about handling of common

programming constructs like objects, variables, null values, etc.

Reactive developers ask about a multitude of topics, like StreamMa-

nipulation, Web Development, Concurrency Networking, etc., but

with higher interest in problems regarding the stream abstraction.

Finding 7

The topics with more posts concern the stream abstraction, having

Stream Manipulation (13.5%) and Stream Creation and Composi-

tion (10.3%) occupying the first and second places. Finding 8

Developers have asked less about basic matters as can be verified

by the topics with fewer posts: General Programming (1.2%) and

Introductory Questions (1%). Finding 9

4.3 RQ3: How do the operators present in the
most relevant Stack Overflow questions
and the usage frequency of Rx operators in
open source projects relate?

We considered a topic as relevant based on its popularity and dif-

ficulty. Table 4 shows the popularity of the topics according to

the average views, favorites, and scores of their questions. Table 5

exhibits the difficulty of the topics according to their percentage of

questions without an accepted answer and median time taken to

receive an accepted answer. Tables 4 and 5 are respectively sorted

by the average views and the percentage of questions without an

accepted answer.

The observation of Table 4 reveals that Dependency Management

has the highest average number of views, while Introductory Ques-

tions shows the greatest average favorite and score. Hence, those

topics are among the most popular ones. In contrast, Data Access

exhibits low average view, favorite, and popularity, thus it is among

the least popular questions. The topics in Table 5, in turn, show De-

pendency Management (highest rate of questions without accepted

answer) and iOS Development (greatest median time) among the

most difficult topics to answer. Conversely, Array Manipulation and

Table 4: Topics’ Popularity.

Topic Average

Views Favorites Scores

Dependency Management 3453.6 0.7 3.8

Web Development 2707.6 0.6 2.2

Stream Manipulation 2641.4 0.8 3.5

Typing and Correctness 2527.6 0.3 2.3

Stream Lifecycle 2503.1 1.1 4.2

Introductory Questions 2442.5 2.2 6.5

Multicasting 2369.9 1.1 3.9

Error Handling 2250.2 0.6 2.6

Control Flow 1923.0 0.4 2.2

Array Manipulation 1803.7 0.3 1.4

Android Development 1793.0 0.8 2.7

General Programming 1722.4 0.4 2.2

UI for Web-based Systems 1659.8 0.4 1.7

iOS Development 1634.3 0.5 1.9

Input Validation 1489.7 0.3 1.4

HTTP Handling 1470.8 0.5 1.7

Timing 1454.7 0.4 2.1

Stream Creation and Composition 1421.9 0.5 2.3

REST API Calls 1341.5 0.4 1.3

Concurrency 1308.9 0.7 2.6

Testing and Debugging 1237.9 0.3 1.8

State Management and JavaScript 1137.8 0.4 1.6

Data Access 1102.5 0.3 1.3

Web Development are the easiest topics, with the least percentage

of questions with no accepted answer and median time in hours,

respectively.

Given that Dependency Management is classified as both popu-

lar and difficult, there are three most relevant topics: Dependency

Management, Introductory Questions, and iOS Development. Figure 5

shows the similarities between the operators gathered through the

posts of those topics and the ones collected in GH projects (Sec-

tion 3.1) according to the order of their frequencies. This comparison

was calculated based on the complement of Hamming Distance [15].

We can observe that very few operators share similarity when con-

sidered their position based on their frequencies. By looking at the

sample of the 15 most used operators in both the most relevant top-

ics and the GH projects and disregarding their order of appearance,

we can notice many more matches as shown in Figure 6. Those

matches can be observed in Table 6. We can also notice many of

the most frequent ones out of the 15 most used in Figure 2, 3, and

4 also appearing in Table 6. Unsurprisingly, subscribe shows high

frequencies as in the case of Introductory Questions, with 200 oc-

currences for RxJava posts. Well-known functional operators are

also present, with some exhibiting great frequencies like map with

811 (RxJS) and 833 (RxSwift) for Dependency Management and iOS

Development, respectively. Actually, this high frequency observed

for map in RxSwift corroborates the findings in Section 4.1, giving

more credibility, where map was also the most utilized operator in

RxSwift. Also, following Section 4.1 findings, most of the operators

are the ones considered as core; exceptions include, for example,

the creation operator fromEvent and the utility test method.

210

Mining the Usage of Reactive Programming APIs: A Study on GitHub and Stack Overflow MSR ’22, May 23–24, 2022, Pittsburgh, PA, USA

Table 5: Topics’ Difficulty

Topic w/o Acc. Answer(%) Median Time(hr)

Dependency Management 50.3 1.2

Testing and Debugging 49.0 3.3

Multicasting 48.1 2.7

iOS Development 47.8 5.5

Android Development 47.8 2.3

Concurrency 47.1 3.5

Data Access 46.5 1.9

UI for Web-based Systems 46.5 0.9

HTTP Handling 46.2 1.2

Error Handling 46.0 1.6

REST API Calls 44.2 1.0

Input Validation 43.9 1.2

Introductory Questions 43.3 4.8

Stream Lifecycle 43.3 1.5

Web Development 43.2 0.5

Control Flow 42.2 1.4

State Management and

JavaScript

41.9 2.2

Timing 41.0 2.2

Stream Creation and Com-

position

38.4 1.8

Stream Manipulation 37.7 0.8

Typing and Correctness 37.3 0.8

General Programming 37.0 1.2

Array Manipulation 35.7 0.8

Figure 5: Similarity between the operators from the most

relevant SO topics and the ones from open source projects

based on their frequency position.

Dependency Management and Introductory Questions are among

the most popular topics with the former having the greatest number

of views and the latter presenting the highest favorites and score,

on average. Problems regarding Data Access figure among the least

popular. Finding 10

Posts concerning Dependency Management are amongst the most

difficult questions. iOS Development also figure as one of the most

challenging topics, whereas Array Manipulation and Web Develop-

ment appear among the easiest ones. Finding 11

Figure 6: Similarity between the 15most frequently used op-

erators in the most relevant SO topics and the 15 ones from

open source projects regardless of their frequency position.

Figure 7: Similarity between the 15 least frequently used op-

erators in the most relevant SO topics and the 15 ones from

open source projects regardless of their frequency position.

Although the usage frequency of operators of the most relevant

SO topics and the GH projects do not share much similarity when

comparing the order of appearance according to their frequency,

the most frequently used operators of both sources showed a high

percentage of similarity when considering only their matches re-

gardless of their frequency position. Finding 12

The majority of the most frequently used operators in SO posts

which share similarities with the most frequently used operators in

GH repositories is also mostly composed of core operators. Finding

13

The least frequently used operators in SO showed small percentage

of similarity when compared to the least utilized ones in GH projects.

Finding 14

5 IMPLICATIONS

Developers. The findings delineated in Section 4.1 and 4.3 can

serve as a start point for those novice developers that are trying

RP. As noted, the great majority of the most used operators both

in open source projects and SO forum are mostly comprised of

common core operators. So, concentrating their efforts in those

operators could facilitate their learning path, with support from

both platforms.

211

MSR ’22, May 23–24, 2022, Pittsburgh, PA, USA Carlos Zimmerle, Kiev Gama, Fernando Castor, and José Murilo Mota Filho

Table 6: Operatorsmost frequently used in themost relevant

SO topics matching the most frequently used operators in

GH projects.

Rx Operators

Library Dependency Introductory iOS

Management Questions Development

RxJava test (66) subscribe (200) subscribe (110)

subscribe (65) map (95) error (35)

create (37) create (72) create (32)

error (27) flatMap (63) observeOn (27)

map (23) just (39) subscribeOn (26)

flatMap (18) error(35) map (17)

any (16) subscribeOn (27) flatMap (13)

observeOn (13) test (26) test (10)

observeOn (21)

RxJS from (2311) subscribe (159) subscribe (71)

map (811) map (154) map (56)

subscribe (649) from (124) from (49)

of (644) of (82) of (36)

merge (263) switchMap (45) filter (13)

mergeMap (189) filter (44) tap (9)

find (185) merge (33)

filter (159) fromEvent (31)

switchMap (116) take (29)

take (107) mergeMap (23)

tap (91) concat (15)

fromEvent (86)
RxSwift from (15) map (24) map (833)

flatMap (10) subscribe (21) subscribe (733)

map (10) create (19) create (295)

subscribe(6) filter (16) filter (291)

combineLatest (3) flatMap (12) flatMap (290)

observeOn (2) just (4) just (167)

create (1) empty (3) from (139)

empty (1) from (3) combineLatest

(114)

filter (1) startWith (3) observeOn (95)

empty (77)

distinctUntil-

Changed (71)

Note. Operator’s frequency in the SO posts shown in parentheses.

Maintainers. API call frequencies offer the opportunity for API

designers to comprehend the effects of API deprecation and direct

efforts [36]. Although, the Rx operators demonstrated a great usage

(Section 4.1), some actually showed low frequency. Among the Rx-

Java operators, for instance, there were 14 (5.9%) with no usage and,

of the 15 with lowest usage, all demonstrated ≤10 calls. Besides, 32%

and 22% correspond to the percentage of RxJS and RxJava opera-

tions with ≤50 calls, respectively. This contrasts to others operators

displaying much more than 1,000 calls amongst the most used ones

(Figure 2, 3, and 4). This give rise to a possible consideration of

API reduction and the suggestion provided by some researchers of

shifting focus from specialization to core concepts [21, 31].

As exposed in Section 4.3, Dependency Management topic was

both classified as popular and difficult. This prompts a possible

future evaluation to investigate why a topic that represents only

3.6% of the posts is receiving both classifications. Among the posts

we could perceive, as noted in Section 4.2, many problems related

to the building process, dependency handling, imports, etc. Having

Introductory Questions as one of the most popular topics is possi-

bly a sign that newcomers are showing interested in RP but may

be encountering problems in the process of understanding it. In

Q36535716, for instance, the user states “I read a ton of literature

about the Rx and, on the one hand, everything is clear, but on the

other hand nothing is clear.” In fact, Salvaneschi et al. [31] detailed

three points against RP through a qualitative analysis that may

be very linked to this SO topic: learning curve, higher level of ab-

straction (reliance on the runtime), and connection to functional

programming. Giving that RP slightly changes the way that most

programmers are used to design their programs, it is paramount to

provide good documentation and resources.

Researchers.The findings discovered in Section 4.1 show that even

though Rx owns an API that is largely extended by its libraries, i.e.,

by the addition of many variants, we can conclude that developers

are actually using a large portion (>90%) of those operators, and

from those, the majority of the most used ones is composed by core

operators (e.g., just,map, and filter). Hence, by visiting the question

suggested by Salvaneschi [27] “Do data flow languages provide a

‘simple enough’ solution for the common case without excessive

proliferation of overspecialised operators?”, on the one hand, we

can assume that the operators provided for reactive programmers

through the Rx library are offering a “simple enough” solution at

a certain extent given that only a few operations have shown no

usage and the most used ones are concentrated at the core operators

both in open source projects and SO forum. On the other hand,

regarding the overspecialization of operators, the core operators

actually present a considerable API surface (≈70-80 operators [21,

27]), and APIs like RxJava exhibited low frequencies (≤10) for its

least used operations and no frequency at all for 14 operators (5.9%).

Thus, further understanding from a user-centered point of view

might shed more light on this concern and help fully answer the

proposed question. In the same vein, the topic Introductory Questions

figured as a popular one that could, among various reasons (e.g.,

documentation [23], learning curve and relation with functional

programming [31], or diverse API design decisions), also be related

to this API surface. Therefore, we strongly believe that more API

usability studies are needed, with data collected from both novice

and experienced developers, specially when only few studies have

been executed in the area [27].

An important observation taken from Table 5 is the presence of

the Testing and Debugging with the second highest percentage of

question without an accepted answer. Moreover, from the mining

process, there seems to be few operators in this area. This prompt

us to question if this topic is showing relevance due to a lack of

dedicated facilities for testing and debugging or difficulty for using

the API, and, thus, preparing testable code. In theory, testing should

not be such an issue given that there is a separation of concerns of

the main entities in the streammodel (i.e., producers and consumers

of data and, in-between, a pipeline of pure functions) which could

facilitate the process.Mogk et al. [21], for instance, report no specific

obstacles with testing in REScala. Besides, Rx offers schedulers

and marble diagrams for testing purposes to give more control

212

Mining the Usage of Reactive Programming APIs: A Study on GitHub and Stack Overflow MSR ’22, May 23–24, 2022, Pittsburgh, PA, USA

over time and represent more easily stream events, respectively.

However, for effective testable code in the stream model, it may

require a certain discipline from developers (e.g., decouple stream

parts properly, keep pipeline functions free of side effects, etc.). For

debugging reactive programming, conversely, the unsuitability of

usual tools has already been recognized [8, 22, 30]. Salvaneschi and

Mezini [30] proposed a technique and tool (Reactive Debugging and

Reactive Inspector, respectively) to help visualizing the dataflow of

the application, with extensions to provide live programming [22].

Cycle.js29, a JavaScript functional and reactive framework, also

provides a similar tool for Internet browsers that can be used to

view the dataflow graph and, as a result, help the debugging and

metal model process. The lack of integration with usual debugging

tools of common IDEs and browsers was actually a downside for

adoption of some RxJS debugging tools as pointed by Alabor and

Stolze [4]. Consequently, we believe that the area of Testing and

Debugging constitutes a rich and prominent direction for future

exploration and investigation.

6 THREATS TO VALIDITY

Internal Validity. Internal validity may be described as aspects

that could influence our outcomes [1] or possible mistakes in exe-

cution and experiments [33]. To search for Rx operators, we looked

through every file identifying by specific file extensions (accord-

ing to the language of the analyzed Rx distribution) and relied

on the use of regular expression (regex). By using a regex, this

could indicate a threat concerning some Rx operators that may

have the same name as well-known functional operators like ‘filter’

and ‘map’. To reduce this threat, we checked if every inspected

file had any mention to the investigated libraries (e.g., rxjava or

rxjs) which would correspond to some import of library’s package

in that specific document. Besides, we examined RxJava files, the

library with most mined projects, to verify how much false posi-

tives were being introduced. Given that Rx can wrap any type of

values as streams, the number of false positives revealed to be very

low, only accounting for a tiny percentage of files (1.09%) in which

a 10% sample showed majoritively Rx operators (62%). However,

future replications should strive to use alternative methods that

diminish false positives like the semantic tool explored by Xu et

al. [35]. Finally, we also removed both comments and strings, so

code snippets inside those constructs would not be counted.

According to Abdellatif et al. [1], the choice of the optimal

amount of topics for the LDA algorithm could constitute a threat

since it is recognized as a difficult task and directly impacts the qual-

ity of the generated LDA topics. To mitigate that possible threat, we

followed Abdellatif et al. [1] and Rebouças et al. [24] by experiment-

ing with a range of topics; besides, we resorted to the Perplexity

metric to aid the manual definition of the optimal number of topics.

Still according to Abdellatif et al. [1], the inference of the resulting

LDA topics could represent a threat given its subjectiveness. We

countered this threat by having more than one author evaluating

the topics using the open card sort technique and trying to reach

some agreement afterwards, similar to the studies [1, 3].

29https://cycle.js.org/

External Validity. This validity refers to the generalization of our

discoveries [1, 10, 33]. The present work focused on two promi-

nent platforms, GitHub and Stack Overflow. Their widely usage in

the development setting gives us a certain confidence about our

findings, though other sources like alternative forums or hosting

code platforms could improve the final result. Thus, we believe

that further incorporation of other sources can complement our

findings as well as the inclusion of surveys and qualitative studies.

Nonetheless, we tried to include as much data as possible, working

with all data in GH and SO regarding the chosen Rx libraries.

Construct Validity. Construct validity is about the fitness of the

metrics used in the evaluation [10, 33]. Treude and Wagner [33]

report that the Perplexity metric and human assessment do not

oftentimes correlate. Thus, we merely used it as an aid to identify

the number of topics, andwemostly relied on themanual inspection

carried out by the first two authors, similar to Han et al. [13]. Future

works may incorporate other better metrics (e.g., coherence).

The metrics used to determine the popularity or difficulty of the

SO topics could represent a threat as pointed by Abdellatif et al. [1].

In this regard, we resorted to metrics used in previous studies [1,

3, 26] as a mean to counter the threat. Yet, the difficulty aspect,

despite being explored in other studies, could actually indicate other

circumstances such as lack of popularity or interest in the topic

from the community; thus, the clarification of the different possible

meanings for difficulty may be a relevant research endeavor.

7 CONCLUSION

In this paper, we evaluated to what extent the reactive operators

are being used. To accomplish it, we leveraged the ReactiveX API

by considering the three Rx libraries with the most GitHub projects:

RxJava, RxJS, and RxSwift. To complement our findings, we also

conducted a mining in the Stack Overflow to uncover which prob-

lems reactive programmers are most asking and how they relate to

the usage frequencies of Rx operators. Our findings showed that,

despite its size, the majority of the Rx library API is in use, with

only a few operators either not being used or with low usage fre-

quencies. Also, we inferred 23 topics that reactive programmers

have discussed and grouped them into nine categories. Results have

shown that the greatest focus of the SO posts have regarded the

stream abstraction, with Introductory Questions, iOS Development,

and Dependency Management among the most popular and difficult

areas. Furthermore, the operators most frequently used in open

source projects and SO forum share great similarities, giving credits

to our findings. In turn, the presented findings and implications

can not only help developers, but also maintainers and researchers.

Additionally, the topic Testing and Debugging demonstrated to be

an interesting area for further investigation. Potential avenues of

future work include different RP API usability researches to com-

plement the delineated implications of the present study and the

execution or comparison of similar studies with other RP, dataflow-

like libraries.

ACKNOWLEDGMENTS

This work is partially supported by INES (www.ines.org.br), CNPq

grant 465614/2014-0, FACEPE grants APQ-0399-1.03/17 andAPQ/0388-

1.03/14, CAPES grant 88887.136410/2017-00.

213

MSR ’22, May 23–24, 2022, Pittsburgh, PA, USA Carlos Zimmerle, Kiev Gama, Fernando Castor, and José Murilo Mota Filho

REFERENCES
[1] Ahmad Abdellatif, Diego Costa, Khaled Badran, Rabe Abdalkareem, and Emad

Shihab. 2020. Challenges in chatbot development: A study of stack overflow posts.
In Proceedings of the 17th International Conference on Mining Software Repositories.
174–185.

[2] Amritanshu Agrawal, Wei Fu, and Tim Menzies. 2018. What is wrong with
topic modeling? And how to fix it using search-based software engineering.
Information and Software Technology 98 (2018), 74–88.

[3] Syed Ahmed and Mehdi Bagherzadeh. 2018. What do concurrency develop-
ers ask about? a large-scale study using stack overflow. In Proceedings of the
12th ACM/IEEE International Symposium on Empirical Software Engineering and
Measurement. 1–10.

[4] Manuel Alabor and Markus Stolze. 2020. Debugging of RxJS-based applications.
In Proceedings of the 7th ACM SIGPLAN International Workshop on Reactive and
Event-Based Languages and Systems. 15–24.

[5] Miltiadis Allamanis and Charles Sutton. 2013. Why, when, and what: analyzing
stack overflow questions by topic, type, and code. In 2013 10thWorking Conference
on Mining Software Repositories (MSR). IEEE, 53–56.

[6] Engineer Bainomugisha, Andoni Lombide Carreton, Tom van Cutsem, Stijn
Mostinckx, and Wolfgang de Meuter. 2013. A survey on reactive programming.
ACM Computing Surveys (CSUR) 45, 4 (2013), 1–34.

[7] Kartik Bajaj, Karthik Pattabiraman, and Ali Mesbah. 2014. Mining questions
asked by web developers. In Proceedings of the 11th Working Conference on Mining
Software Repositories. 112–121.

[8] Herman Banken, Erik Meijer, and Georgios Gousios. 2018. Debugging data flows
in reactive programs. In 2018 IEEE/ACM 40th International Conference on Software
Engineering (ICSE). IEEE, 752–763.

[9] Jonas Bonér and Viktor Klang. 2017. Reactive programming versus reactive
systems. Dosegljivo: https://www. lightbend. com/reactiveprogramming-versus-
reactive-systems.[Dostopano: 23. 08. 2017] (2017).

[10] Joshua Charles Campbell, AbramHindle, and Eleni Stroulia. 2015. Latent Dirichlet
allocation: extracting topics from software engineering data. In The art and science
of analyzing software data. Elsevier, 139–159.

[11] Valerio Cosentino, Javier Luis Cánovas Izquierdo, and Jordi Cabot. 2016. Findings
from GitHub: methods, datasets and limitations. In 2016 IEEE/ACM 13th Working
Conference on Mining Software Repositories (MSR). IEEE, 137–141.

[12] Joscha Drechsler, Guido Salvaneschi, Ragnar Mogk, and Mira Mezini. 2014. Dis-
tributed REScala: An update algorithm for distributed reactive programming.
ACM SIGPLAN Notices 49, 10 (2014), 361–376.

[13] Junxiao Han, Emad Shihab, Zhiyuan Wan, Shuiguang Deng, and Xin Xia. 2020.
What do programmers discuss about deep learning frameworks. Empirical Soft-
ware Engineering 25, 4 (2020), 2694–2747.

[14] Zhuobing Han, Xiaohong Li, Zhenchang Xing, Hongtao Liu, and Zhiyong Feng.
2017. Learning to predict severity of software vulnerability using only vulnera-
bility description. In 2017 IEEE International conference on software maintenance
and evolution (ICSME). IEEE, 125–136.

[15] Hadi Hemmati and Lionel Briand. 2010. An industrial investigation of similarity
measures for model-based test case selection. In 2010 IEEE 21st International
Symposium on Software Reliability Engineering. IEEE, 141–150.

[16] Jordan Henkel, Christian Bird, Shuvendu K Lahiri, and Thomas Reps. 2020. Learn-
ing from, understanding, and supporting DevOps artifacts for Docker. In 2020
IEEE/ACM 42nd International Conference on Software Engineering (ICSE). IEEE,
38–49.

[17] Eirini Kalliamvakou, Georgios Gousios, Kelly Blincoe, Leif Singer, Daniel M
German, and Daniela Damian. 2016. An in-depth study of the promises and perils
of mining GitHub. Empirical Software Engineering 21, 5 (2016), 2035–2071.

[18] Kennedy Kambona, Elisa Gonzalez Boix, and Wolfgang De Meuter. 2013. An
evaluation of reactive programming and promises for structuring collaborative
web applications. In Proceedings of the 7th Workshop on Dynamic Languages and
Applications. 1–9.

[19] AlessandroMargara and Guido Salvaneschi. 2014. We have a DREAM: Distributed
reactive programming with consistency guarantees. In Proceedings of the 8th
ACM International Conference on Distributed Event-Based Systems. 142–153.

[20] AlessandroMargara and Guido Salvaneschi. 2018. On the semantics of distributed
reactive programming: the cost of consistency. IEEE Transactions on Software
Engineering 44, 7 (2018), 689–711.

[21] Ragnar Mogk, Guido Salvaneschi, and Mira Mezini. 2018. Reactive program-
ming experience with rescala. In Conference Companion of the 2nd International
Conference on Art, Science, and Engineering of Programming. 105–112.

[22] Ragnar Mogk, Pascal Weisenburger, Julian Haas, David Richter, Guido Sal-
vaneschi, and Mira Mezini. 2018. From debugging towards live tuning of reactive
applications. In 2018 LIVE Programming Workshop. LIVE, Vol. 18.

[23] Marco Piccioni, Carlo A Furia, and Bertrand Meyer. 2013. An empirical study of
API usability. In 2013 ACM/IEEE International Symposium on Empirical Software
Engineering and Measurement. IEEE, 5–14.

[24] Marcel Rebouças, Gustavo Pinto, Felipe Ebert, Weslley Torres, Alexander Sere-
brenik, and Fernando Castor. 2016. An empirical study on the usage of the swift

programming language. In 2016 IEEE 23rd international conference on software
analysis, evolution, and reengineering (SANER), Vol. 1. IEEE, 634–638.

[25] Leonardo Jiménez Rodríguez, Xiaoran Wang, and Jilong Kuang. 2018. Insights on
apache spark usage bymining stack overflow questions. In 2018 IEEE International
Congress on Big Data (BigData Congress). IEEE, 219–223.

[26] Christoffer Rosen and Emad Shihab. 2016. What are mobile developers asking
about? a large scale study using stack overflow. Empirical Software Engineering
21, 3 (2016), 1192–1223.

[27] Guido Salvaneschi. 2016. What do we really know about data flow languages?.
In Proceedings of the 7th International Workshop on Evaluation and Usability of
Programming Languages and Tools. 30–31.

[28] Guido Salvaneschi, Gerold Hintz, and Mira Mezini. 2014. REScala: Bridging be-
tween object-oriented and functional style in reactive applications. In Proceedings
of the 13th international conference on Modularity. 25–36.

[29] Guido Salvaneschi, Alessandro Margara, and Giordano Tamburrelli. 2015. Re-
active programming: A walkthrough. In 2015 IEEE/ACM 37th IEEE International
Conference on Software Engineering, Vol. 2. IEEE, 953–954.

[30] Guido Salvaneschi and Mira Mezini. 2016. Debugging for reactive programming.
In 2016 IEEE/ACM 38th International Conference on Software Engineering (ICSE).
IEEE, 796–807.

[31] Guido Salvaneschi, Sebastian Proksch, Sven Amann, Sarah Nadi, and Mira Mezini.
2017. On the positive effect of reactive programming on software comprehension:
An empirical study. IEEE Transactions on Software Engineering 43, 12 (2017),
1125–1143.

[32] Amjed Tahir, Jens Dietrich, Steve Counsell, Sherlock Licorish, andAiko Yamashita.
2020. A large scale study on how developers discuss code smells and anti-pattern
in stack exchange sites. Information and Software Technology 125 (2020), 106333.

[33] Christoph Treude and Markus Wagner. 2019. Predicting good configurations
for github and stack overflow topic models. In 2019 IEEE/ACM 16th International
Conference on Mining Software Repositories (MSR). IEEE, 84–95.

[34] FengcaiWen, CsabaNagy,Michele Lanza, andGabriele Bavota. 2020. An empirical
study of quick remedy commits. In Proceedings of the 28th International Conference
on Program Comprehension. 60–71.

[35] Yisen Xu, Fan Wu, Xiangyang Jia, Lingbo Li, and Jifeng Xuan. 2020. Mining
the use of higher-order functions. Empirical Software Engineering 25, 6 (2020),
4547–4584.

[36] Tianyi Zhang, Björn Hartmann, Miryung Kim, and Elena L Glassman. 2020.
Enabling data-driven api design with community usage data: A need-finding
study. In Proceedings of the 2020 CHI Conference on Human Factors in Computing
Systems. 1–13.

214

