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We show that any 2-category with convenient colimits has an orthogonal LaxEpi-
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1. Introduction

A morphism e : A → B in a category A is an epimorphism if, for every object C, the map A(e, C) :
A(B, C) → A(A, C) is injective; looking at the hom-sets as discrete categories, this means that the functor 
A(e, C) is fully faithful. Lax epimorphisms (also called co-fully-faithful morphisms) are a 2-dimensional 
version of epimorphisms; in a 2-category they are precisely the 1-cells e making A(e, C) fully faithful for 
all C.

One of the most known (orthogonal) factorization systems in the category of small categories and functors 
is the comprehensive factorization system of Street and Walters [21]. Another known factorization system 
consists of bijective-on-objects functors on the left-hand side and fully faithful functors on the right. Indeed 
in both cases we have an orthogonal factorization system in the 2-category Cat in the sense of Definition 3.1. 
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This means that with the usual notion in ordinary categories we have a 2-dimensional aspect of the diagonal 
fill-in property. Here we show that Cat has also an orthogonal (E , M)-factorization system where E is the 
class of all lax epimorphisms, and present a concrete description of it, making use of a characterization of 
the lax epimorphic functors given in [1] (Theorem 4.6).

Moreover, any 2-category has an orthogonal (LaxEpi, LaxStrongMono)-factorization system provided 
that it has 2-colimits and is almost cowellpowered with respect to lax epimorphisms (Theorem 3.15). Here 
to be almost cowellpowered with respect to a class E of morphisms means that, for every morphism f , the 
category of all factorizations d · e of f with e ∈ E has a weakly terminal set. A key property is the fact that 
lax epimorphisms are closed under 2-colimits (Theorem 3.10).

We dedicate the last section to the study of lax epimorphisms in the 2-category V-Cat for V a complete 
symmetric monoidal closed category. In this context, it is natural to consider a variation of the notion of 
lax epimorphism: We say that a V-functor J : A → B is a V-lax epimorphism if the V-functor V-Cat[J, C] :
V-Cat[B, C] → V-Cat[A, C] is V-fully faithful for all small V-categories C. Assuming that V is also cocomplete, 
Theorem 5.6 gives several characterizations of the lax epimorphisms in the 2-category V-Cat. In particular, 
we show that they are precisely the V-lax epimorphisms, and also precisely those V-functors for which 
there is an isomorphism LanJB(B, J−) ∼= B(B, −) (V-natural in B ∈ Bop). Moreover, V-lax epimorphisms 
are equivalently defined if above we replace all small V-categories C by all possibly large V-categories C, 
or by just the category V. This last characterization, as well as Theorem 5.11, which characterizes V-lax 
epimorphisms as absolutely V-(co)dense V-functors, have been proved for V = Set in [1].

For the basic theory on 2-categories we refer to [16] and [17]. For a detailed account of 2-dimensional 
(co)limits, see [15]; here we use the notation lim(W, F ) for the limit of F : A → B weighted (“indexed” in 
Kelly’s language) by W : A → Cat. Concerning enriched categories, we refer to [14].

2. Lax epimorphisms in 2-categories

In this section we present some basic properties and examples on lax epimorphisms. We end up by 
showing that, under reasonable conditions, for 2-categories S and B, every lax epimorphism of the 2-category 
2-Cat[S, B] is pointwise. Pointwise lax epimorphisms will have a role in the main result of Section 3.

Definition 2.1. A lax epimorphism in a 2-category A is a 1-cell f : A → B for which all the hom-functors

A(f, C) : A(B,C) → A(A,C)

(with C ∈ A) are fully faithful.

Remark 2.2 (Duality and Coduality). The notion of lax epimorphism is dual to the notion of fully faithful 
morphism (in a 2-category). For this reason why lax epimorphisms are also called co-fully-faithful morphisms. 
Indeed, the notion fully faithful morphism in the 2-category of small categories Cat coincides with the 
notion of fully faithful functor, since a functor P : A → B is fully faithful if and only if the functor 
Cat(C, P ) : Cat(C, B) → Cat(C, A) is fully faithful for all categories C.

On the other hand, the notion of lax epimorphism is self-codual. Namely, a morphism p : A → B is a lax 
epimorphism in A if and only if the corresponding morphism in Aco (the 2-category obtained after inverting 
the directions of the 2-cells in A) is a lax epimorphism.

Remark 2.3. Lax epimorphisms are closed for isomorphism classes. That is to say, if f ∼= g and g is a lax 
epimorphism, then so is f . Moreover, we have that lax epimorphisms are closed under composition and are 
right-cancellable: for composable morphisms r and s, if r and sr are lax epimorphisms, so is s.
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Examples 2.4.

(1) In a locally discrete 2-category, lax epimorphisms are just epimorphisms, since fully faithful functors 
between discrete categories are injective functions on the objects. But, in general, the class of lax 
epimorphisms and the one of epimorphisms are different and no one contains the other (see [1]).

(2) Coequifiers are lax epimorphisms. The property of being a lax epimorphism is precisely the two-
dimensional aspect of the universal property of a coequifier (see [15, pag. 309]). But, as observed in [1], 
coequalizers in Cat are not necessarily lax epimorphisms.

(3) Any equivalence is a lax epimorphism. Recall that a morphism g : A → B is an equivalence if there is 
f : B → A with gf ∼= 1B and fg ∼= 1A. This is equivalent to the existence of an adjunction between f
and g with both unit and counit being invertible, and it is also well known that it is equivalent to the 
existence of an adjunction (ε, η) : f � g together with both f and g fully faithful. Dually, g : A → B

is an equivalence if and only if there is an adjunction (ε, η) : f � g with both f and g being lax 
epimorphisms. Moreover, given an adjunction (ε, η) : f � g : A → B in a 2-category A, the morphism g
is a lax epimorphism if and only if f is fully faithful, if and only if η is invertible (see [17, Lemma 2.1]).

(4) In a locally thin 2-category (i.e., with the hom-categories being preordered sets), the lax epimorphisms 
are the order-epimorphisms, i.e., morphisms f for which g · f ≤ h · f implies g ≤ h; and coinserters 
are lax epimorphisms – this immediately follows from the definition of coinserter (see, for instance, [15, 
pag. 307]).

However, coinserters are not lax epimorphisms in general; we indicate a simple counter-example in 
the 2-category Cat of small categories.1 Let A be the discrete category with a unique object A, B the 
discrete category with two objects, FA and GA, and F, G : A → B the functors defined according to 
the name of the objects of B. The coinserter of F and G is an inclusion P : B → C, where C has the 
same objects as B and a unique non trivial morphism, αA : FA → GA. More precisely, the coinserter 
is given by the pair (P, α). (For a description of coinserters in Cat, see [5], Example 6.5.) But P is not 
a lax epimorphism. Indeed, let J, K : C → D be two functors, where the category D consists of four 
objects and six non trivial morphisms as in the diagram below, with KαA · γFA = r �= s = γGA · JαA:

JFA
γFA

r
�=
s

JαA

KFA

KαA

JGA
γGA

KGA

Then, we have a natural transformation γ : JP → KP which cannot be expressed as γ = γ ∗ idP for 
any γ : J ⇒ K.

(5) In the 2-category Pos of posets, monotone functions and pointwise order between them, lax epimorphisms 
coincide with epimorphisms, and also with coinserters of some pair of morphisms (see [4, Lemma 3.6]).

(6) In Preord, lax epimorphisms need not to be epimorphisms: they are just the monotone maps f : A → B

such that every b ∈ B is isomorphic to f(a) for some a.
Moreover, coinserters are strictly contained in lax epimorphisms, they are precisely the monotone 

bijections. Indeed, given f, g : A → B, let B̄ be the underlying set of B with the preorder given by the 
reflexive and transitive closure of ≤B ∪ ≤′, where ≤B is the order in B and y ≤′ z whenever there is 
some x ∈ A with y ≤ f(x) and g(x) ≤ z; the coinserter is the identity map from B to B̄. Conversely, if 
h : B → C is a monotone bijection, it is the coinserter of the projections π1, π2 : P → B, where P is 
the comma object of h along itself.

1 This rectifies [1, Example 2.1.1].
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Observe that the functor P : B → C of Example (4) is indeed a morphism of the full 2-subcategory 
Preord of Cat; it is a lax epimorphism in Preord but not in Cat.

(7) Let Grp be the 2-category of groups, homomorphisms, and 2-cells from f to g in Grp(A, B) given by 
those elements α of B with f(x) ◦α = α◦g(x), for all x ∈ A (where ◦ denotes the group multiplication). 
The horizontal composition of α : f → g with β : h → k : B → C is given by β ∗α = h(α) ◦β = β ◦k(α); 
and the unit on an arrow f : A → B is simply the neutral element of B (see [6]).2

The lax epimorphisms of Grp are precisely the regular epimorphisms, that is, surjective homomor-
phisms. Indeed, given a surjective homomorphism f : A → B, homomorphisms g, h : B → C and an 
element γ ∈ C, the equalities g(f(x)) ◦ γ = γ ◦ (h(f(x)) for all x ∈ A imply g(y) ◦ γ = γ ◦ h(y) for all 
y ∈ B, showing that f is a lax epimorphism. Conversely, given a lax epimorphism f : A → B, consider 
its (RegEpi, Mono)-factorization in Grp:

A
q

M
m

B .

Since q and qm are lax epimorphisms, so is m, by Remark 2.3. We show that then m is an isomorphism. 
In Grp, monomorphisms are regular (see [2]); let g, h : B → C be a pair whose equalizer is the inclusion 
m : M ↪→ B, that is, M = {y ∈ B | g(y) = h(y)}. Denoting the neutral element of C by e, we have 
a 2-cell e : gm → hm. Since m is a lax epimorphism, there is a unique α : g → h with α ∗ e = e. But 
α ∗ e = g(e) ◦α = α ◦ h(e) = α; hence α = e, that is, g(y) ◦ e = e ◦ h(y) for all y ∈ B. Thus, B = M and 
m is the identity morphism.

Remark 2.5. Recall that a 2-functor G : A → B is locally fully faithful if, for any A, B ∈ A, the functor 
GA,B : A (A,B) → B (G(A), G(B)) is fully faithful.

It is natural to consider lax epimorphisms in the context of 2-adjunctions or biadjunctions. Let (ε, η) :
F � G : A → B be a 2-adjunction (respectively, biadjunction). In this case, we have that, for any A, B ∈ A,

A (A,B) B (G(A), G(B))

A (FG(A), B)
A (εA, B)

GA,B

χG(A),B

(2.0.1)

commutes (respectively, commutes up to an invertible natural transformation), in which

χG(A),B : B (G(A), G(B)) → A (FG(A), B)

h �→ εB ◦ F (h)

is the invertible functor (respectively, equivalence) of the 2-adjunction (biadjunction).
In the situation above, since isomorphisms (respectively, equivalences) are fully faithul and fully faithful 

functors are left-cancellable (see Remark 2.3), we have that GA,B : A (A,B) → B (G(A), G(B)) is fully 
faithful if, and only if, A (εA, B) is fully faithful. Therefore, the 2-functor G : A → B is locally fully faithful 
if and only if εC is a lax epimorphism for every C ∈ A.

Remark 2.6. It is known that in a 2-category with cotensor products, fully faithful morphisms are those 
p : A → B such that the comma object of p along itself is isomorphic to the cotensor product 2 � A. Dually, 
assuming the existence of tensor products, a morphism p : A → B is a lax epimorphism if and only if

2 This 2-category is the full subcategory of Cat of all groupoids with just one object.
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A B

2 ⊗BB

p

ν1p

ν0

α ∗ idp

is an opcomma object, in which

B 2 ⊗B

ν0

ν1

α

is the tensor product.

Since, in the presence of tensor products, lax epimorphisms are characterized by opcomma objects as 
above, we conclude that:

Lemma 2.7. Let F : B → A be a 2-functor.

1. Assuming that B has tensor products, if F preserves opcomma objects and tensor products, then F
preserves lax epimorphisms.

2. Assuming that A has tensor products, if F creates opcomma objects and tensor products, then F reflects 
lax epimorphisms.

Moreover, we also have that:

Lemma 2.8. Let F � G be a 2-adjunction.

(1) The 2-functor F : B → A preserves lax epimorphisms.
(2) If G is essentially surjective, then F reflects lax epimorphisms.

Proof. For any object W of A and any morphism p : A → B of B, the diagram

A (F (B),W ) A (F (A),W )

B (A,G(W ))B (B,G(W ))

A (F (p),W )

∼=χA,W ∼= χB,W

B (p,G(W )) (2.0.2)

commutes.
(1) If p : A → B is a lax epimorphism in B, for any W ∈ A, we have that B (p,G(W )) is fully faithful 

and, hence, by the commutativity of (2.0.2), A (F (p),W ) is fully faithful.
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(2) Assuming that G is essentially surjective, if F (p) : F (A) → F (B) is a lax epimorphism in A, then, 
for any Z ∈ B, there is W ∈ A such that G(W ) ∼= Z. Moreover, A (F (p),W ) is fully faithful and, hence, 
B (p,G(W )) is fully faithful by the commutativity of (2.0.2). This implies that B (p, Z) is fully faithful for 
any Z ∈ B. �
Definition 2.9. A 2-natural transformation λ : F → G : S → B is:

1. a pointwise lax epimorphism if, for any C ∈ S, the morphism λC : F (C) → G(C) is a lax epimorphism 
in B;

2. a lax epimorphism if λ is a lax epimorphism in the 2-category of 2-Cat [S,B] of 2-functors, 2-natural 
transformations and modifications.

Proposition 2.10. Let λ : F → G : S → B be a 2-natural transformation. If λ is a pointwise lax epimorphism 
then it is a lax epimorphism in the 2-category 2-Cat [S,B].

Proof. Let λ : F → G : A → B be a 2-natural transformation with each λA : FA → GA a lax epimorphism 
in B. Let α, β : G → H : A → B be two 2-natural transformations, and let Θ : α ∗ λ � β ∗ λ be a 
modification. In particular, we have 2-cells in B indexed by A ∈ A:

GA
αA

ΘAFA

λA

λA

⇓ HA

GA
βA

This gives rise to unique 2-cells

ΦAGA

αA

βA

HA

with ΦA ∗ λA = ΘA. The uniqueness of Φ = (ΦA)A∈A is clear. It is straightforward to see that Φ is indeed 
a modification. �

However, not every lax epimorphic 2-natural transformation is a pointwise lax epimorphism. In fact, this 
is known to be true for epimorphisms and, as observed in (1) of Examples 2.4, lax epimorphisms in locally 
discrete 2-categories are the same as epimorphisms.

More precisely, consider the locally discrete 2-category S generated by

A B C
h

f

g

with the equation fh = gh. The pair (h, f) gives an epimorphism in 2-Cat [2,S], where 2 is the category of 
two objects and a non-trivial morphism between them, but h clearly is not an epimorphism in S. Since S
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and 2-Cat [2,S] are locally discrete, this proves that (h, f) gives a 2-natural transformation which is a lax 
epimorphism but not a pointwise lax epimorphism.

Yet, it follows from Lemma 2.8 that the converse holds for many interesting cases. More precisely:

Theorem 2.11. Let B be a 2-category with cotensor products. Then, a 2-natural transformation λ : F → G :
S → B is a lax epimorphism if and only if it is a pointwise lax epimorphism.

Proof. By Proposition 2.10, every pointwise lax epimorphism is an epimorphism. We prove the converse 
below.

Let 1 be the terminal category with only the object 0. For each s ∈ S, we denote by s : 1 → S the functor 
defined by s. For each B : 1 → B, we have the pointwise right Kan extension (see [8, Theorem I.4.2]) given 
by

RansB(a) = lim
(
S (a, s−) , B

) ∼= S (a, s) �
(
B0

)
.

We conclude that, for any s ∈ S, we have the 2-adjunction

2-Cat [s,B] � Rans.

Therefore, by Lemma 2.8, assuming that λ : F → G : S → B is a lax epimorphism in 2-Cat [S,B], we 
have that, for every s ∈ S,

2-Cat [s,B] (λ) = λ ∗ ids = λs

is a lax epimorphism in B. �
3. The orthogonal LaxEpi-factorization system

Factorization systems in categories have largely shown their importance, taking the attention of many 
authors since the pioneering work exposed in [10]. (For a comprehensive account of the origins of the study 
of categorical factorization techniques see [23].) When the category has appropriate colimits, we get one of 
the most common orthogonal factorization systems, the (Epi, StrongMono) system. Since lax epimorphisms 
look like an adequate 2-version of epimorphisms, it is natural to ask for a factorization system involving 
them. In this section, we will obtain an orthogonal (LaxEpi, LaxStrongMono)-factorization system in 
2-categories. In the next section we give a description of this orthogonal factorization system in Cat.

The notion of orthogonal factorization system in 2-categories generalizes the ordinary one (see [2] or [11]) 
by incorporating the two-dimensional aspect in the diagonal fill-in property. Here we use a strict version of 
the orthogonal factorization systems studied in [9] (see Remark 3.2):

Definition 3.1. In the 2-category A, let E and M be two classes of morphisms closed under composition with 
isomorphisms from the left and the right, respectively. The pair (E , M) forms an orthogonal factorization 
system provided that:

(i) Every morphism f of A factors as a composition f = me with e ∈ E and m ∈ M.
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(ii) For every A e−→ B in E and C m−→ D in M, the square

A(B,C)
A(B,m)

A(e,C)

A(B,D)

A(e,D)

A(A,C)
A(A,m)

A(A,D)

is a pullback in Cat.

Remark 3.2. In [9], Dupont and Vitale studied orthogonal factorization systems in 2-categories in a non-
strict sense. Thus, in (i) of Definition 3.1 the factorization holds up to an invertible 2-cell, and in (ii), instead 
of a pullback, we have a bi-pullback.

Remark 3.3. (1) The one-dimensional aspect of (ii) asserts, for each pair of morphisms f : A → C and 
g : B → D with mf = ge, the existence of a unique t : B → C with te = f and mt = g. The two-
dimensional aspect of (ii) means that, whenever, with the above equalities, we have t′e = f ′ and mt′ = g′, 
and 2-cells α : f → f ′ and β : g → g′ such that m ∗ α = β ∗ e,

A
e

f ′f α⇒

B

gβ⇐g′

t′

θ⇒

t

C
m

D

(3.0.1)

then there is a unique 2-cell θ : t → t′ with θ ∗ e = α and m ∗ θ = β.
(2) If E is made of lax epimorphisms, the two-dimensional aspect comes for free. Indeed, for α : f = te ⇒

t′e = f ′, there is a unique θ : t ⇒ t′ with θ ∗ e = α; and, since β ∗ e = m ∗ α = m ∗ θ ∗ e, we have β = m ∗ θ.

Definition 3.4. A 1-cell m : C → D is said to be a lax strong monomorphism if it has the diagonal fill-in 
property with respect to lax epimorphisms; that is, for every commutative square

A
e

f

B

t
g

C
m

D

(3.0.2)

with e a lax epimorphism, there is a unique t : B → C such that te = f and mt = g.
In other words, taking into account Remark 3.3(2), m : C → D is a lax strong monomorphism if for 

every lax epimorphism e, the morphisms e and m fulfil condition (ii) of Definition 3.1.

Remark 3.5. It is obvious that lax strong monomorphisms are closed under composition and left-cancellable; 
moreover, their intersection with lax epimorphisms are isomorphisms.

Proposition 3.6. In a 2-category:

(i) Every inserter is a lax strong monomorphism.
(ii) In the presence of coequifiers, every lax strong monomorphism is faithful, i.e., a morphism m such 

that A(X, m) is faithful for all X.
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Proof. (i) For the commutative square (3.0.2) above let e be a lax epimorphism and let the diagram

D
r

αC

m

m

⇓ E

D
s

(3.0.3)

be an inserter. Since e is a lax epimorphism, there is a unique β : rg ⇒ sg with α ∗ f = β ∗ e. This implies 
the existence of a unique t : B → C such that mt = g and α ∗ t = β. Then we have α ∗ (te) = β ∗ e = α ∗ f
and m(te) = ge = mf . Hence, by the universality of (m, α), we conclude that te = f . And t is unique: if 
mt = mt′ and te = t′e, then we have α ∗ t ∗ e = α ∗ t′ ∗ e, which implies α ∗ t = α ∗ t′; this together with 
mt = mt′ shows that t = t′.

(ii) Given a lax strong monomorphism m : A → B and two 2-cells α, β : r → s : X → A with 
m ∗ α = m ∗ β, let e : A → C be the coequifier of the 2-cells. Then m factors through e. Since, by 2.4(2), 
e is a lax epimorphism, using the diagonal fill-in property, there is some t : C → A with te = 1A. Then 
α = β. �

Examples 3.7.

(1) In Pos and Preord the converse of 3.6(i) also holds. In Pos lax strong monomorphisms are just order-
embeddings3 and order-embeddings coincide with inserters ([4, Lemma 3.3]).

Also in Preord lax strong monomorphisms coincide with inserters. It is easily seen that lax strong 
monomorphisms are precisely the order-embeddings m : X → Y with m[X] closed in Y under isomorphic 
elements. Let m : X → Y be a lax strong monomorphism. Let Z be obtained from Y just replacing 
every element y ∈ Y \m[X] by two unrelated elements (y, 1) and (y, 2), and let the maps f1, f2 : Y → Z

be equal on m[X] and fi(y) = (y, i), i = 1, 2, for the other cases. Endowing Z with the least preorder 
which makes f1 and f2 monotone, we see that m is the inserter of f1 and f2.

(2) But, in general, the converse of 3.6(i) is false. Just consider an ordinary category (i.e. a locally discrete 
2-category) with an orthogonal (Epi, StrongMono)-factorization system, where strong monomorphisms 
and regular monomorphisms do not coincide. This is the case, for instance, of the category of semigroups 
(see [2, 14I]). In the 2-category Cat the coincidence of the inserters with the lax strong monomorphisms 
is left as an open problem (see Question 4.7).

Remark 3.8. In contrast to 3.6, neither equifiers nor equalizers are, in general, lax strong monomorphisms. 
Consider the following equivalence of categories, where only the non trivial morphisms are indicated:

A = a �E a −→f b←−
f−1

= B

The functor E is a lax epimorphism (see Example 2.4(3)), but not a lax strong monomorphism, since there 
is no T : B → A making the following two triangles

3 A morphism m : X → Y in Pos or Preord is an order-embedding if m is injective and m(x) ≤ m(y) ⇔ x ≤ y.
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A
E

B

T

A
E

B

commutative. But E is both an equifier and an equalizer. To see that it is an equalizer consider the pair 
F, idB : B → B, where F takes all objects to a and all morphisms to 1a. To see that it is an equifier consider 
the category

C =

Ra

αa=βa

Rf

Rb

Rf−1

αbβb

Sa

Sf

Sb

Sf−1

(3.0.4)

and 2-cells α, β : R → S : B → C given in the obvious way.

A key property in the sequel is the closedness of lax epimorphisms under colimits, in the sense of 3.9
below. The closedness of classes of morphisms under limits in ordinary categories was studied in [12].

Definition 3.9. Let E be a class of morphisms in a 2-category B. We say that E is closed under (2-dimensional) 
colimits in B if, for every small 2-category S, every weight W : Sop → Cat and every 2-natural transformation 
λ : D → D′ : S → B, the induced morphism

colim (W,λ) : colim(W,D) → colim(W,D′)

is a morphism in the class E whenever, for any C ∈ S, λC is a morphism in E .

Theorem 3.10. Lax epimorphisms are closed under (2-dimensional) colimits.

Proof. In fact, if the 2-natural transformation λ : D → D′ : S → B is a pointwise lax epimorphism, then, 
for any A ∈ B, the 2-natural transformation

B (λ,A) : B (D′−, A) → B (D−, A) ,

pointwise defined by B (λ,A)C = B (λC , A), is pointwise fully faithful. Hence it is fully faithful in the 
2-category Cat[S, B] (dual of Proposition 2.10). Therefore, for any weight W : Sop → Cat and X ∈ B,

B (colim (W,λ) , X) ∼= 2-Cat [S,B] (W,B (λ,A))

is fully faithful. This proves that colim (W,λ) is a lax epimorphism in B. �
Remark 3.11. As shown in [7], see also [10], for any orthogonal (E , M)-factorization system in an ordinary 
category, E and M are closed under, respectively, colimits and limits.

In Cat, lax epimorphisms are not closed under (2-dimensional) limits, fully faithful functors are not closed 
under (2-dimensional) colimits, and, moreover, equivalences are neither closed under limits nor colimits.
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Indeed, consider the category ∇2 with two objects and one isomorphism between them. Let d0 and 
d1 be the two possible inclusions 1 → ∇2 of the terminal category in ∇2. There is only one 2-natural 
transformation ι between the diagram

1 ∇2
d0

d1

and the terminal diagram 1 1.
Clearly, ι is a pointwise equivalence (and, hence, a pointwise lax epimorphism and fully faithful functor). 

However, the induced functor between the equalizers and the coequalizers are respectively

ι : ∅ → 1 and ι : ΣZ → 1

in which ΣZ is just the group (Z,+, 0) seen as a category with only one object. The functor ι is not a lax 
epimorphism, while ι is not fully faithful. Hence, neither functor is an equivalence.

Therefore, equivalences may not be the left or the right class of a (strict) orthogonal factorization system 
in a 2-category with reasonable (co)limits.

The closedness under colimits has several nice consequences. We indicate three of them (cf. [12]), which 
are going to be useful in the proof of Theorem 3.15 below.

Lemma 3.12. Lax epimorphisms are stable under pushouts and cointersections. Moreover, the multiple co-
equalizer of a family of morphisms equalized by a lax epimorphism is a lax epimorphism.

Proof. (1) Let the two squares in the following picture be pushouts:

•

g

id

•

g

f•
f

g

•
g′

•
f ′

•

•

id

•

f ′

Then, the dotted arrows form a 2-natural transformation between the corresponding origin diagrams, 
and the dashed arrow is the unique one induced by the universality of the inner square. From Theo-
rem 3.10, if f is a lax epimorphism, so is f ′. In conclusion, lax epimorphisms are stable under pushouts.

(2) Analogously, we see that the cointersection e : A → E of a family ei : A → Ei of lax epimorphisms is a 
lax epimorphism.

A

e

A

id

A
ei

A
ei

e

Ei

E
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(3) Let fi : B → C be a family of morphisms equalized by a lax epimorphism e, i.e., fie = fje for all fi and 
fj of the family. Then, the closedness under colimits ensures that c is a lax epimorphism, as illustrated 
by the diagram:

E
fie

e

B

id

B
c

A
fi

B
c

C

�

Remark 3.13. Many of everyday categories are cowellpowered, that is, the family of epimorphisms with 
a same domain is essentially small. By contrast, in the “mother” of all 2-categories, Cat, the class of lax 
epimorphisms is not cowellpowered: For every cardinal n, let An denote the category whose objects are 
ai, i ∈ n, and whose morphisms are fij : ai → aj with fjkfij = fik and fii = 1ai

for i, j, k ∈ n. Every 
inclusion functor En : A0 → An, being an equivalence, is a lax epimorphism, but the family of all these En

is a proper class. Moreover, the family En, n ∈ Card, fails to have a cointersection in Cat. However, Cat is 
almost cowellpowered in the sense of Definition 3.14 as shown in the next section.

Definition 3.14. Let E be a class of 1-cells in a 2-category A. Given a morphism f : A → B, denote by 

E|f the category whose objects are factorizations A d−→ D
p−→ B of f with d ∈ E , and whose morphisms 

u : (d, D, p) → (e, E, m) are 1-cells u : D → E with ud = e and md = p. We say that A is almost 
cowellpowered with respect to E , if E|f has a weakly terminal set for every morphism f .

The closedness of lax epimorphisms under colimits allows to obtain the following theorem, whose proof 
makes use of a standard argumentation for the General Adjoint Functor Theorem.

Theorem 3.15. Let the 2-category A have conical colimits and be almost cowellpowered with respect to lax 
epimorphisms. Then A has an orthogonal (LaxEpi, LaxStrongMono)-factorization system.

Proof. Let E be the class of lax epimorphisms in A. Given a morphism f : A → B, let {(ei, Ei, mi) | i ∈ I}
be a weakly terminal object of the category E|f ; that is, for every factorization A d−→ D

p−→ B of f with 
d ∈ E there is some i and some morphism u : (d, D, p) → (ei, Ei, mi). Take the cointersection e : A → E of 
all ei : A → Ei. By Lemma 3.12, the morphism e belongs to E ;

A

e

ei
Ei

ti

mi

B

E

m

moreover, the cointersection gives rise to a unique m : E → B with me = f . Thus, (e, E, m) is clearly a 
weakly terminal object of E|f .

Consider all s : E → E forming a morphism s : (e, E, m) → (e, E, m) in E|f . Let c : E → C be the 
multiple coequalizer of the family of all these morphisms s : E → E. By Lemma 3.12, c is a lax epimorphism. 
Since 1E is one of those morphisms s, and ms = m for all of them, the universality of c gives a unique 
n : C → B with nc = m. It is easy to see that, c : (e, E, m) → (ce, C, n) is also the coequalizer in E|f of 
all the above morphisms s. Since lax epimorphisms are closed under composition, ce belongs to E|f , hence, 
(ce, C, n) is a terminal object of E|f (cf. e.g. [20], Ch. V, Sec.6).

We show that n : C → B is a lax strong monomorphism. In the following diagram, let the outer square 
be commutative with q ∈ E ; form the pushout (q̄, ̄r) of q along r, and let w be the unique morphism with 
wq̄ = n and wr̄ = s:
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P
q

r

Q
r̄

sR
w

C

q̄

n
B

(3.0.5)

The closedness under colimits of lax epimorphisms ensures that q̄ is a lax epimorphism (Lemma 3.12), so 
(q̄ce, R, w) ∈ E|f . Since (ce, C, n) is terminal, there is a unique u : R → C forming a morphism in E|f
from (q̄ce, R, w) to (ce, C, n), and it makes uq̄ : C → C an endomorphism on (ce, C, n), then uq̄ = 1C . The 
morphism t = ur̄ fulfils the equalities tq = r and nt = s. Moreover t is unique; indeed, if t′ is another 
morphism fulfilling the same equalities, let k be the coequalizer of t and t′ and let p : K → B be such that 
pk = n. Again by Lemma 3.12, (kce, K, p) belongs to E|f . Arguing as before for q̄, we conclude that k is a 
split monomorphism and, then, t = t′.

Taking into account Remark 3.3, we conclude that we have indeed an orthogonal factorization system in 
the 2-category A. �
Remark 3.16. In [9], an orthogonal factorization system (E , M) which has E made of lax epimorphisms 
and M made of faithful morphisms is said to be (1,2)-proper. By Proposition 3.6, this is the case for the 
(LaxEpi, LaxStrongMono) factorization system.

Examples 3.17. Some of the well-known orthogonal factorization systems in ordinary categories are indeed 
of the (LaxEpi, LaxStrongMono) type for convenient 2-cells. This is the case in the 2-categories Pos and 
Grp. In Pos it is the usual orthogonal (Surjections, Order-embeddings)-factorization system. Analogously for 
the category Top0 of T0-topological spaces and continuous maps, with 2-cells given by the pointwise special-
ization order, we obtain (Surjections, Embeddings). For the 2-category Grp, the (LaxEpi, LaxStrongMono)
factorization is precisely the (RegEpi, Mono) one.

Recall that, for every category with an orthogonal factorization system (E , M), we have that M = E↓, 
i.e., M consists of all morphisms m fulfilling the diagonal fill-in property as in (3.0.2) of Definition 3.4. 
From the proof of Theorem 3.15, it immediately follows that, more generally, we have the following:

Corollary 3.18. Let E be a class of morphisms closed under post-composition with isomorphisms in a co-
complete category A. Then, (E , E↓) forms an orthogonal factorization system if and only if A is almost 
cowellpowered with respect to E and E is closed under composition and under colimits.

Proof. Following the proof of Theorem 3.15, we see that, if E is a class of morphisms closed under composi-
tion and under colimits, and A is almost cowellpowered with respect to E , then (E , E↓) forms an orthogonal 
factorization system. Conversely, a category with an orthogonal (E , M)-factorization system is almost cow-
ellpowered with respect to E : the (E , M)-factorization of f : A → B is indeed a terminal object of E|f . 
The closedness of E under composition and under colimits is a well-known fact for orthogonal factorization 
systems. �
4. The Lax Epi-factorization in Cat

We describe the orthogonal (LaxEpi, LaxStrongMono)-factorization system in the 2-category Cat of 
small categories, functors and natural transformations. Everything we do in this section applies also to the 
bigger universe CAT of possibly large (locally small) categories.

Let us recall, by the way, two well-known orthogonal factorization systems (E , M) in the category Cat:
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(a) E consists of all functors bijective on objects and M consists of all fully faithful functors.
(b) E consists of all initial functors and M consists of all discrete opfibrations; analogously, for final functors 

and discrete fibrations [21].

It is easy to see that in both cases, (a) and (b), the system (E , M) fulfils the two-dimensional aspect 
of the fill-in diagonal property, thus we have an orthogonal factorization system in the 2-category Cat as 
defined in 3.1.

We recall a characterization of the lax epimorphisms in the 2-category Cat of small categories, functors 
and natural transformations presented in [1].

Given a functor F : A → B and a morphism g : b → c in B, let

g//F

denote the category whose objects are triples (h, a, k) such that the composition b h−→ Fa k−→ c is equal to g, 
and whose morphisms f : (h, a, k) → (h′, a′, k′) are those f : a → a′ of A with Fa · h = h′ and k′ · Fa = k. 
Then:

Theorem 4.1. [1] A functor F : A → B is a lax epimorphism in Cat if and only if, for every morphism g of 
B, the category g//F is connected.

We start by defining discrete splitting bifibrations. We will see that they are precisely the lax strong 
monomorphisms.

Notation 4.2. For a functor P : A → B and every decomposition of a morphism g of the form b r−→ Pe s−→ c, we 
denote by [(r, s)] the corresponding connected component in the category g//P . By composing a morphism 
t : d → b with C = [(r, s)] we obtain C · t = [(rt, s)], a connected component of tg//P . Analogously, for the 
composition on the right hand side: for u : b → c, u · C = [(h, uk)].

Definition 4.3. Let P : E → B be a functor.

(a) A P -split consists of a factorization of an identity 1b of the form

b
h

1b

Pe
k

b

with [(1Pe, hk)] = [(hk, 1Pe)].
(b) A P -split diagram is a rectangle

b
h

g

Pe
k

b

g

c
h′

Pe′
k′

c

(4.0.1)

where (h, k) and (h′, k′) are P -splits such that [(h, gk)] = [(h′g, k′)] in g//P . The wavy line in the middle 
of the rectangle indicates the existence of an appropriate P -zig-zag between (h, gk) and (h′g, k′); that 
is, the existence of a finite number of morphisms hi, ki, fi making the following diagram commutative:



F. Lucatelli Nunes, L. Sousa / Journal of Pure and Applied Algebra 226 (2022) 107126 15
b
h

Pe

Pf0

k
b

g

b
h1

Pe1
k1

c

b
h2

Pe2

Pf1

Pf2

k2
c

b
h3

Pe3
k3

c

b
hn

g

Pen
kn

c

c
h′

Pe′

Pfn

k′
c

(c) The functor P : E → B is said to be a discrete splitting bifibration if, for every P -split diagram (4.0.1), 
there is a unique commutative rectangle in E of the form

b0
h0

g0

e
k0

b0

g0

c0
h′
0

e′
k′
0

c0

(4.0.2)

whose image by P is the outer rectangle of (4.0.1). (That is, Px0 = x, for each letter x with x0 appearing 
in (4.0.2).)

Remark 4.4. If P is a discrete splitting bifibration, then it is clear that, for every P -split of 1b,

b
h−→ Pe

k−→ b

there are unique morphisms h0 : b0 → e and k0 : e → b0 such that Ph0 = h and Pk0 = k.

Proposition 4.5. Every discrete splitting bifibration

(1) is faithful,
(2) is conservative, and
(3) reflects identities.

Proof. Let P : E → B be a discrete splitting bifibration.
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(1) For a
f

g
b with Pf = Pg = x, consider the following diagrams:

Pa

x

Pa

Pf

Pa

x

Pb Pb Pb

a

f

a a

f

b b b

a

g

a a

g

b b b

The first one is a P -split rectangle and it is the image by P of the two last ones. Then f = g.
(2) Let f : a → b be such that Pf is an isomorphism in B. Then we have a P -split diagram:

Pb

(Pf)−1

Pb Pb

(Pf)−1

Pa Pa

Pf

Pa

Consequently, there is a unique t0 : b → a with Pt0 = (Pf)−1. Since, by (1), P is faithful, t0 is the 
inverse of f .

(3) Let f : d → e be such that Pf = 1x. By (2), f is an isomorphism. Concerning the diagrams

x Pe

P1e

x

x Pe x

d
f

1d

e
f−1

d

1d

d
f

e
f−1

d

d
f

f

e
f−1

d

f

e
1e

e
1e

e

the first one is a P -split rectangle which is the image by P of the two rectangles on the right hand side. 
Consequently, f = 1d. �

Theorem 4.6. For E the class of lax epimorphisms and M the class of discrete splitting bifibrations, (E , M)
is an orthogonal factorization system in Cat (and also in CAT).

Proof. Along the proof we represent the categories by blackboard bold letters: A, B, etc.

(1) The factorization. Given a functor F : A → B, we define the category E as follows:

obE: pairs (b, B) where b ∈ B and B is a connected component of the category 1b//F , for which some 
representative is an F -split;
morE: all (b, B) g−→ (c, C) with g : b → c a morphism of B and g ·B = C · g, see Notation 4.2.
The identities and composition are evident.

Let

E
P−→ B

be the obvious projection, and define

A
E−→ E

by Ea = (Fa, Ca) where Ca is the connected component of (1Fa, 1Fa) in 1Fa//F , and E(a 
f−→ a′) =

((Fa, Ca) 
Ff−−→ (Fa′, Ca′)). E is clearly well-defined and F = P · E.
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(2) E is a lax epimorphism. We need to show that, for every (b, B) g−→ (d, D) in E, the category g//E is 
connected.

Every identity (b, B) 1b−→ (b, B) factorizes through Ea for some a ∈ A. Indeed, B contains some F -split 
b h−→ Fa k−→ b, and this means that (b, B) h−→ Ea and Ea k−→ (b, B) are morphisms in E. From this, it 
immediately follows that the category g//E is nonempty for all morphism g in E.

Given two factorizations (ui, Eai, vi), i = 1, 2, of g in E as in the figure

(Fa1, Ca1)
v1

(b,B)
g

u2

u1

(d,D)

(Fa2, Ca2)
v2

(4.0.3)

by the definition of morphisms in E, we have the following equalities of connected components in g//F (see 
Notation 4.2): g ·B = v1u1 ·B = v1 ·Ca1 ·u1 = v1 · [(u1, 1Fa1)] = [(u1, v1)]; and, analogously, g ·B = [(u2, v2)], 
showing that [(u1, v1)] = [(u2, v2)] in g//F ; hence, [(u1, v1)] = [(u2, v2)] also in g//E.

(3) P is a discrete splitting bifibration.
(3a) First observe that, given two factorizations in B of a same morphism g of the form

P (e, E)
s

b

r

r′

c

P (e′, E′)
s′

if 
(
r, (e, E), s

)
and 

(
r′, (e′, E′), s′

)
belong to the same connected component of g//P , then s ·E ·r = s′ ·E′ ·r′

in g//F . Indeed, a P -zig-zag connecting the two factorizations, as illustrated in the left hand side diagram 
below, gives rise to an F -zig-zag connecting s ·E · r to s′ ·E′ · r′ in g//F , as indicated in the right hand side 
diagram, where E = [(h, a, k)], E′ = [(h′, a′, k′)] and Ej = [(hj , aj , kj)]:

P (e, E)

Pf1
s

b

r

r′

P (e1, E1) c

P (e2, E2)

Pf2

P (e′, E′)

s′

e

f1

h
Fa

k
e

f1
s

b

r

r′

e1
h1

Fa1
k1

e1 c

e2
h2

f2

Fa2
k2

e2

f2

e′
h′

Fa′
k′

e′

s′
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(3b) Let

b

g

u1
P (d,D)

v1
b

g

c
u2

P (e, E)
v2

c

(4.0.4)

be a P -split diagram with D = [(h1, a1, k1)] and E = [(h2, a2, k2)], where (hi, ai, ki) is F -split, i = 1, 2. Let 
B and C be the connected components of 1b//F and 1c//F given, respectively, by

B = v1 ·D · u1 = [(h1u1, a1, v1k1)] and C = v2 · E · u2 = [(h2u2, a2, v2k2)].

By (3a), since [(1d, u1v1)] = [(u1v1, 1d)] in u1v1//P , we have that u1v1·D = D·u1v1. Then u1B = u1v1Du1 =
Du1v1u1 = Du1 and Bv1 = v1Du1v1 = v1u1v1D = v1D. Thus, in order to conclude that (b, B) u1−→ (d, D)
and (d, D) v1−→ (b, B) are morphisms in E, we just need to show that (b, B) is an object of E. Indeed, from 
the equalities [(h, uvk)] = [(huv, k)] and [1Fa, hk)] = [(hk, 1Fa)], where the subscripts of the letters were 
removed by the sake of simplicity, we see that the pair (hu, a, vk) is an F -split:

[(1Fa, huvk)] = huvk · [(1Fa, hk)] = huvk · [(hk, 1Fa)] = h · [(h, uvk)] · k = h · [(huv, k)] · k
= [(huvk, hk)] = [(1, hk)] · huvk = [(hk, 1)] · huvk = [(huvk, 1Fa)].

And B is unique, because, if B′ is a connected component of 1b//F such that u1B
′ = Du1 and v1D = B′v1, 

then B′ = v1u1B
′ = v1Du1 = B. Analogously for c u2−→ P (e, E) v2−→ c.

It remains to be shown that g : (b, B) → (c, C) is a morphism of E. By (3a), the P -split diagram (4.0.4)
gives rise to a diagram of the form

b

g

u1
d

h1
Fa1

k1
d

v1
b

g

c
u2

e
h2

Fa2
k2

e
v2

c

showing that

gv1Du1 = v2Eu2g in g//F.

Hence, by definition of B and C,

gB = Cg,

that is, g is a morphism in E. Since (b, B) and (c, C) are unique, g is clearly unique too. In conclusion, we 
have a unique diagram of morphisms of E of the form

(b,B)

g

u1 (d,D)
v1 (b,B)

g

(c, C)
u2

(e, E)
v2

(c, C)
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whose image by P is the rectangle of (4.0.4).

(4) (E , M) fulfils the diagonal fill-in property. Let

A
Q

G

B

H

C
M

D

be a commutative diagram where Q is a lax epimorphism and M is a discrete splitting bifibration.
(4a) We define T : B → C as follows:
Given b ∈ B, since Q is a lax epimorphism, the category b//Q is connected. Let B be the unique connected 

component of 1b//Q, and let (h, a, k) be a representative of B. It is a Q-split, since (1Qa, hk) and (hk, 1Qa)
belong to the same connected component of hk//Q. Hence,

Hb
Hh−−→ MGa

Hk−−→ Hb

is an M -split in D.
By Remark 4.4, since M is a discrete splitting bifibration, there are unique morphisms h0 : b0 → Ga and 

k0 : Ga → b0 with Mh0 = Hh and Mk0 = Hk. We put

Tb = b0. (4.0.5)

We show that b0 does not depend on the representative of B. Indeed, for another representative (h′, a′, k′), 
we have a Q-split diagram as on the left hand side of (4.0.6); by applying H, we get the M -split diagram 
on the right hand side:

b
h

Qa
k

b

b
h′

Qa′
k′

b

Hb
Hh

MGa
Hk

Hb

Hb
Hh′

MGa′
Hk′

Hb

(4.0.6)

By hypothesis, there is a unique diagram

b1

s

h1
Ga

k1
b1

s

b2
h2

Ga′
k2

b2

whose image by M is the outside rectangle of the first diagram of (4.0.6). But M reflects identities, by 
Proposition 4.5. Then s is an identity and, taking into account the unicity of b0 and k0 above, it must be 
b1 = b2 = b0 and s = 1b0 .

Let

b
g−→ c

be a morphism in B. Since Q is a lax epimorphism, there is some Q-split diagram of the form
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b

g

h1
Qa1

k1
b

g

c
h2

Qa2
k2

c

.

By applying H to it, we obtain an M -split diagram:

Hb

Hg

Hh1
MGa1

Hk1
Hb

Hg

Hc
Hh2

MGa2
Hk2

Hc

. (4.0.7)

By hypothesis, there are unique morphisms

b0

g0

ĥ1
Ga1

k̂1
b

g0

c0
ĥ2

Ga2
k̂2

c0

(4.0.8)

making the diagram commutative and whose image by M is the rectangle of (4.0.7). We put

Tg = g0.

Again, by the unicity, we know that b0 and c0 do not depend on the representative of 1b//Q and 1c//Q. 
And the unicity of g0 follows then from the faithfulness of M (Proposition 4.5).

T is clearly a functor, the preservation of identities and composition being obvious.
(4b) We show that T satisfies the diagonal fill-in condition.
Given b ∈ obB, MTb = Mb0 = Hb, by construction, and, analogously, MTg = Hg, for each g ∈ morB.
Given f : a → a′ in A, the M -split diagram

HQa = MGa

HQf=MGf

MGa

MGf

MGa

MGf

HQa′ = MGa′ MGa′ MGa′

ensures that TQf = Gf .
Finally, if T ′ : B → C is another functor such that T ′Q = G and MT ′ = H, we show that T = T ′. Let 

g : b → d be a morphism of B. The morphism T (b g−→ d) = b0
g0−→ d0 is the unique one making part of a 

commutative rectangle as in (4.0.8) whose image by M is the rectangle of the M -split diagram (4.0.7). But 
the image by M of the rectangle

T ′b

T ′g

T ′h
Ga

T ′k
T ′b

T ′g

T ′d
T ′h′

Ga′
T ′k′

T ′d

gives also the M -split diagram (4.0.7). Then T ′g = g0 = Tg. �



F. Lucatelli Nunes, L. Sousa / Journal of Pure and Applied Algebra 226 (2022) 107126 21
Question 4.7. Inserters in Cat are discrete splitting bifibrations (by Proposition 3.6). We don’t know if the 
converse is true or not.

5. Lax epimorphisms in the enriched context

In this section we study lax epimorphisms in the enriched setting.

Assumption 5.1. Throughout the section, V = (V0,⊗, I) is a symmetric monoidal closed category with V0
complete.

We denote by V-Cat the 2-category of small V-categories, V-functors and V-natural transformations.
Let A be a small V-category, and B a (possibly large) V-category. By abuse of language, we also denote 

by V-Cat(A, B) the (ordinary) category of V-functors from A to B and V-natural transformations between 
them. Moreover, in this setting, the designation V-Cat[A, B] (or just [A, B]) represents the V-category of 
V-functors; thus, for any pair of V-functors F, G : A → B, the hom-object V-Cat[A, B](F, G) is given by the 
end

∫

A∈A

B(FA,GA) .

Recall that a V-functor P : A → B is V-fully faithful (called just fully faithful in [14]) if the map 
PA,A′ : A(A, A′) → B(PA, PA′) is an isomorphism in V0 for all A, A′ ∈ A.

Let I be the unit V-category with one object 0 and I(0, 0) = I. Given a V-functor P : A → B, the 
underlying functor of P is denoted by P0 = V-Cat(I, P ) : A0 → B0.

In general, we use the notations of [14]; concerning limits, we denote a weighted limit over a functor 
F : D → C with respect to a weight W : D → V by lim(W, F ) (called indexed limit and designated by 
{W, F} in [14]).

Lemma 5.2. For a V-functor P : A → B, consider the following conditions.

(a) P is V-fully faithful.
(b) P0 is fully faithful.
(c) The functor Cat(C, P0) : Cat(C, A0) → Cat(C, B0) is fully faithful for every (ordinary) category C.
(d) The functor V-Cat(C, P ) : V-Cat(C, A) → V-Cat(C, B) is fully faithful for every V-category C.
(e) The V-functor V-Cat[C, P ] : V-Cat[C, A] → V-Cat[C, B] is V-fully faithful for every V-category C.

We have that

(a) (e) (d) (c) (b)

The five conditions are equivalent whenever (i) P has a left or right V-adjoint, or (ii) V = V0(I, −) : V0 →
Set is conservative.

Proof. It is well-known that (a) ⇔ (b) in case we have (i) or (ii) [14, 1.3 and 1.11].
(b) ⇔ (c). It is just Remark 2.2.
(a) ⇒ (d). Given two V-functors F, G : C → A, and a V-natural transformation β : PF → PG, we want 

to show that there is a unique V-natural transformation α : F → G with Pα = β. Since P is V-fully faithful, 
PA,B is a V0-isomorphism for all A, B ∈ A. We just define α : F → G with each component αC given by
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αC ≡
(
I

βC−−→ B(PFC,PGC) (PFC,GC)−1

−−−−−−−−→ A(FC,GC)
)
.

Clearly βC = PαC for each C, and α is unique. From the V-naturality of β and the fact that P is a 
V-functor, it immediately follows that α is V-natural.

(d) ⇒ (b). It follows from the fact that P0 = V-Cat(I, P ) by definition.
(e) ⇒ (a). Recall that there is a bijection

A � A �→ A ∈ V-Cat[I,A]

in which A : I → A is the only V-functor from the unit V-category I to A such that A0 = A. More-
over, for any A, B ∈ A, the hom-object A(A, B) is the end 

∫
I A(A−, B−) which gives the hom-object 

V − Cat[I, A](A, B). We get that, for any V-functor P : A → B, the morphism PA,B is essentially 
V-Cat[I, A](A, B).

Therefore V-Cat[I, P ] is V-fully faithful if and only if P is V-fully faithful.
(a) ⇒ (e). Given a V-category C and V-functors F, G : C → A, we have that

V-Cat[C, P ]F,G : V-Cat[C,A](F,G) → V-Cat[B,A](PF, PG)

is, by definition, the morphism
∫

C∈C

P(FC,GC) :
∫

C∈C

A(FC,GC) →
∫

C∈C

B(PFC,PGC) (5.0.1)

induced by the V-natural transformation between the V-functors A(F−, G−) and B(PF−, PG−) whose 
components are given by

PFA,GB : A(FA,GB) → B(PFA,PGB). (5.0.2)

Since P is V-fully faithful, we have that (5.0.2) is invertible and, hence, (5.0.1) is invertible. �
From Lemma 5.2, we obtain:

Lemma 5.3. Given a V-adjunction (ε, η) : F � G : A → B, the V-functor G is V-fully faithful if and only if 
there is any (ordinary) natural isomorphism

F0G0 → idA0 .

Proof. By Lemma 5.2, G is V-fully faithful if and only if G0 is fully faithful. It is well known that G0 is fully 
faithful in Cat if and only if the counit ε0 is invertible (see diagram (2.0.1)), and, following [13, Lemma 1.3], 
if and only if there is any natural isomorphism between F0G0 and the identity.4 �

On one hand, by Definition 2.1, a V-functor P : A → B between small V-categories is said a lax 
epimorphism in the 2-category V-Cat if the (ordinary) functor

V-Cat(P, C) : V-Cat(B, C) → V-Cat(A, C)

is fully faithful, for all V-categories C. On the other hand, the notion of V-fully faithful functor and Lemma 5.2
inspire the following definition.

4 See [13] or [18] for further results on non-canonical isomorphisms.
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Definition 5.4. A V-functor J : A → B (between small V-categories) is a V-lax epimorphism if, for any C in 
V-Cat, the V-functor

V-Cat [J, C] : V-Cat [B, C] → V-Cat [A, C]

is V-fully faithful.

Assumption 5.5. Until now, we are assuming that V0, and then also the V-category V, is complete (Assump-
tion 5.1). From now on, we assume furthermore that V0 is also cocomplete.

Theorem 5.6. Given a V-functor J : A → B between small V-categories A and B, the following conditions 
are equivalent.

(a) J is a V-lax epimorphism.
(b) J is a lax epimorphism in the 2-category V-Cat.
(c) The functor V-Cat(J, V) : V-Cat(B, V) → V-Cat(A, V) is fully faithful.
(d) The V-functor V-Cat[J, V] : V-Cat[B, V] → V-Cat[A, V] is V-fully faithful.
(e) There is a V-natural isomorphism LanJB(B, J−) ∼= B(B, −) (V-natural in B ∈ Bop).
(f) The V-functor V-Cat[J, C] : V-Cat[B, C] → V-Cat[A, C] is V-fully faithful for every (possibly large) V-

category C.

Proof. (a) ⇒ (b). It follows from the implication (a) ⇒ (b) of Lemma 5.2. Namely, given a (small) V-category 
C, since V-Cat [J, C] is V-fully faithful, we get that V-Cat [J, C]0 = V-Cat (J, C) is fully faithful.

(b) ⇒ (c). Given any V-functors F, G : B → V, we denote by P : C → V the full inclusion of the (small) 
sub-V-category of V whose objects are in the image of F or in the image of G.

It should be noted that V-Cat (J, C)F,G is a bijection by hypothesis, and V-Cat (A, P )F,G , V-Cat (B, P )F,G

are bijections since P is V-fully faithful. Therefore, since the diagram

V-Cat (B, C) (F,G) V-Cat (A, C) (F · J,G · J)

V-Cat (B,V) (F,G) V-Cat (A,V) (F · J,G · J)
V-Cat (J,V)F,G

V-Cat (B, P )F,G V-Cat (A, P )F,G

V-Cat (J, C)F,G

(5.0.3)
commutes, we conclude that V-Cat (J,V)F,G is also a bijection. This proves that V-Cat (J,V) is fully faithful.

(c) ⇒ (d). Since V is complete, we have that V-Cat [J,V] has a right V-adjoint given by the (pointwise) 
Kan extensions RanJ . Therefore, assuming that V-Cat (J,V) is fully faithful, we conclude that V-Cat [J,V]
is V-fully faithful by Lemma 5.2.

(d) ⇒ (e). Since V is cocomplete, we have that LanJ � V-Cat [J,V]. Therefore, assuming that V-Cat [J,V]
is V-fully faithful, we have the V-natural isomorphism ε : LanJ (− · J) ∼= idV-Cat[B,V] given by the counit.

Denoting by YBop the Enriched Yoneda Embedding (see, for instance, [14, 2.4]), we have that ε−1 ∗ idYBop

gives an isomorphism LanJB(B, J−) ∼= B(B, −) (V-natural in B ∈ Bop).
(e) ⇒ (f). Let C be any (possibly large) V-category. We consider the V-functor V-Cat[J, C] and its factor-

ization
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V-Cat [B, C] Im (V-Cat [J, C])

V-Cat [A, C]
V-Cat [J, C]

V-Cat [J, C]Im

(5.0.4)

into a bijective on objects V-functor V-Cat [J, C]Im and the V-full inclusion Im (V-Cat [J, C]) → V-Cat[A, C]
of the sub-V-category Im (V-Cat [J, C]) whose objects are in the image of V-Cat [J, C]. We prove below that 
V-Cat[J, C] is V-fully faithful by proving that V-Cat [J, C]Im is V-fully faithful.

Given any V-functor G : A → C in Im (V-Cat [J, C]), we have that G = FJ for some F : B → C. 
Since LanJB(B, J−) ∼= B(B, −), we conclude that lim (LanJB(B, J−), F ) exists and, moreover, we have the 
isomorphisms

lim (LanJB(B, J−), F ) ∼= lim (B(B,−), F ) ∼= F (B) (5.0.5)

by the (strong) Enriched Yoneda Lemma (see [14, Sections 2.4 and 4.1]).
Since lim (LanJB(B, J−), F ) exists, it follows as a consequence of the universal property of left Kan 

extensions that lim (B(B, J−), F · J) exists and is isomorphic to lim (LanJB(B, J−), F ) (see [14, Proposi-
tion 4.57]). Therefore, by (5.0.5) and by the formula for pointwise right Kan extensions (see [8, Theorem I.4.2]
or, for instance, [14, Theorem 4.6]), we conclude that RanJ (F · J) exists and we have the isomorphism

RanJ (F · J)B ∼= lim (B(B, J−), F · J) ∼= lim (LanJB(B, J−), F ) ∼= lim (B(B,−), F ) ∼= F (B) (5.0.6)

V-natural in B ∈ B and F ∈ V-Cat[B, C].
Since we proved that RanJ (F · J) exists for any G = F ◦ J in Im (V-Cat [J, C]), we conclude that 

V-Cat [J, C]Im has a right V-adjoint, which we may denote by RanJ by abuse of language. Finally, by 
the natural isomorphism (5.0.6) and Lemma 5.3, we conclude that V-Cat [J, C]Im is V-fully faithful.

(f) ⇒ (a). Trivial. �
Remark 5.7. For V = Set, the equivalence (b) ⇔ (c) of Theorem 5.6 was given in [1, Theorem 1.1].

Example 5.8. Let V be a frame, that is, a complete lattice satisfying the infinite distributive law of ∧ over 
∨, regarded as a symmetric monoidal closed category, where the multiplication and the unit object are ∧
and 1, respectively. Thus, V is a quantale, see [22] and [11]. The hom-objects of the V -category V are given 
by V (a, b) = a → b, where → is the Heyting operation. For every V -category X, the hom-objects of [X, V ]
are given, for every pair of V -functors f, g : X → V , by

[X,V ](f, g) =
∧
x∈X

(
f(x) → g(x)

)
.

Following Definition 5.4 and the equivalence (a)⇔(b) of Theorem 5.6, we see that a V -functor j : X → Y

is a lax epimorphism in the 2-category V -Cat if and only if, for every pair of V -functors f, g : Y → V ,
∧
y∈Y

(
f(y) → g(y)

)
=

∧
x∈X

(
fj(x) → gj(x)

)
.

Example 5.9. Two important examples covered by Theorem 5.6 are discrete fibrations and split fibrations. 
Every functor J : A → B between (small) ordinary categories induces a functor J∗ : DisFib (B) →
DisFib (A) between the categories of discrete fibrations, and a functor J∗ : Fib (B) → Fib (A) between 
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the 2-categories of split fibrations. By the Grothendieck construction, these two functors are essentially the 
precomposition functors Cat (J,Set) : Cat (B,Set) → Cat (A,Set) and Cat-Cat [J,Cat] : Cat-Cat [B,Cat] →
Cat-Cat [A,Cat], respectively. It is easy to see that J is a lax epimorphism in the 2-category Cat if and only 
if it is a lax epimorphism in the 2-category Cat-Cat, when regarded as a 2-functor between locally discrete 
categories. This actually follows from the fact that we have a 2-adjunction satisfying both conditions of 
Lemma 2.8, where the left 2-adjoint is given by the inclusion Cat → Cat-Cat. Thus, using the equivalence 
(b) ⇔ (d) of Theorem 5.6, we conclude that J∗ is fully faithful if and only if J∗ is V-fully faithful, if and 
only if J is a lax epimorphism in Cat.

Lemma 5.10 (Duality). A morphism J : A → B is a lax epimorphism in V-Cat if and only if Jop : Aop → Bop

is a lax epimorphism in V-Cat as well.

Proof. Indeed, since the 2-functor op : V-Cat → V-Catco is invertible, it takes lax epimorphisms to lax 
epimorphisms. Thus, J is a lax epimorphism in V-Cat if, and only if, op (J) is a lax epimorphism in V-Catco

which, by Remark 2.2, holds if and only if Jop is a lax epimorphism in V-Cat.
Therefore, assuming that V0 is complete and cocomplete,

J is a V-lax epimorphism ⇔ Jop is a V-lax epimorphism

by Theorem 5.6. �
Recall that a V-functor J : A → B between small V-categories is V-dense if and only if its density 

comonad LanJJ is isomorphic to the identity on B (see [14, Theorem 5.1]). Dually, J is V-codense if and 
only if the right Kan extension RanJJ is the identity. (Several concrete examples of (V-)codensity monads 
are given in [3].)

We say that J is absolutely V-dense if it is V-dense and LanJJ is preserved by any V-functor F : B → V. 
Dually, we define absolutely V-codense V-functor.

The following characterization of lax epimorphisms as absolutely dense functors was given in [1] for 
V = Set:

Theorem 5.11. Given a V-functor J : A → B between small V-categories A and B, the following conditions 
are equivalent.

(a) J is a V-lax epimorphism.
(b) J is absolutely V-dense.
(c) J is absolutely V-codense.

Proof. (a) ⇒ (b). Assume that J is a V-lax epimorphism. By (e) of Theorem 5.6, we have that B(B, −) ∼=
LanJB(B, J−). Hence, since lim (B(B,−), idB) ∼= B exists by the (strong) Enriched Yoneda Lemma, we have 
that lim (LanJB(B, J−), idB) exists and is isomorphic to lim (B(B,−), idB) ∼= B (in which isomorphisms 
are always V-natural in B).

Moreover, from the existence of lim (LanJB(B, J−), idB), we get that lim (B(B, J−), J) exists and is 
isomorphic to lim (LanJB(B, J−), idB) ∼= B (see [14, Proposition 4.57]).

Finally, then, from the formula for pointwise right Kan extensions and the above, we get the V-natural 
isomorphisms (in B ∈ B)

B ∼= lim (B(B,−), idB) ∼= lim (LanJB(B, J−), idB) ∼= lim (B(B, J−), J) ∼= RanJJ(B).

This proves that RanJJ is the identity on B. That is to say, J is V-codense.
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Moreover, assuming that J is a V-lax epimorphism, by Lemma 5.10, Jop is a V-lax epimorphism and, 
hence, by the proved above, Jop is V-codense. Therefore J is V-dense.

By (d) of Theorem 5.6, we have that V-Cat [J,V] is V-fully faithful. Since V is cocomplete, we get that 
LanJ exists and there is an isomorphism LanJ (F · J) ∼= F , V-natural in F ∈ V-Cat[B, V], given by the 
counit of LanJ � V-Cat [J,V]. This shows that LanJJ is preserved by any V-functor F : B → V.

(b) ⇒ (a). Assume that J is absolutely V-dense. We conclude that there is a natural isomorphism 
LanJ (F · J) ∼= F . Therefore, by Lemma 5.2, we conclude that V-Cat [J,V] is V-fully faithful. By Theorem 5.6, 
this proves that J is a V-lax epimorphism.

(a) ⇔ (c). By Lemma 5.10 and by the proved above, we conclude that

J is a V-lax epimorphism ⇔ Jop is absolutely V-dense ⇔ J is absolutely V-codense. �
Remark 5.12 (Counterexample: Density and Codensity). Of course, density and codensity are not enough 
for a functor to be a lax epimorphism: for 1 the terminal object in Cat, the functor J : 1 �1 → 1 is dense and 
codense, but not a lax epimorphism. Moreover, RanJJ (respectively, LanJJ) is preserved by F : 1 → Set if 
and only if the image of F is a preterminal object, i.e. the terminal set 1 (respectively, a preinitial object, 
i.e. the empty set ∅); see [19, Remark 4.14] and [18, Remark 4.5].

Let us recall from [21] that a 1-cell J : A → B of Cat is an initial functor precisely when

A B

SetB

J

∗↓J

∗↓

id

exhibits ∗↓ as a left Kan extension of ∗↓ · J along J , where ∗↓ is the constant functor on the terminal 
object 1. This characterization is a key point for the description of the comprehensive factorization system 
by means of left Kan extensions given by Street and Walters. The equivalence (b) ⇔ (e) of Theorem 5.6
shows that lax epimorphisms in V-Cat have an analogous presentation. More precisely:

A V-functor A J−→ B is a lax epimorphism in V-Cat precisely when

A B

B [Bop,V]

J

J

Y

Yid

(5.0.7)

exhibits Y as a left Kan extension of Y J along J .
In Section 4, we gave a concrete description of the orthogonal LaxEpi-factorization system in Cat

(Theorem 4.6), in particular Cat satisfies the hypotheses of Theorem 3.15. The characterization of the 
lax epimorphisms in V-Cat given by (5.0.7) suggests the possibility of describing the orthogonal LaxEpi-
factorization system in V-Cat by means of left Kan extensions in the style of [21] for the comprehensive 
factorization. This is far from having an obvious path, and will be the subject of future work.
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