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Local measurements of the Hubble parameter obtained from the distance ladder at low redshift are in 
tension with global values inferred from cosmological standard rulers. A key role in the tension is played 
by the assumptions on the cosmological history, in particular on the origin of dark energy. Here we 
consider a scenario where dark energy originates from the amplification of quantum fluctuations of a 
light field in inflation. We show that spatial correlations inherited from inflationary quantum fluctuations 
can reduce the Hubble tension down to one standard deviation, thus relieving the problem with respect 
to the standard cosmological model. Upcoming missions, like Euclid, will be able to test the predictions 
of models in this class.

© 2022 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.
1. Introduction

The standard cosmological model, known as �CDM, provides a 
description of the Universe in agreement with a large number of 
observations, including the cosmic microwave background (CMB), 
large-scale structure data from galaxy surveys and distance mea-
surements of type-Ia supernovae (SNeIa). However, the values of 
some of the parameters in the model show tensions when com-
paring the results obtained by probing different scales. This is par-
ticularly relevant for the Hubble parameter, for which the tension 
has now overcome 4σ .

The Hubble tension within �CDM can be described as an 
incompatibility between H0 measurements from cosmological 
probes at early times and values deduced from distance measure-
ments at local scales. For simplicity, we will refer to these two 
classes of observations as global and local measurements, respec-
tively. Global measurements include studies of CMB anisotropies 
by the Planck mission [1] and observations of the sound horizon 
scale imprinted by baryon acoustic oscillations (BAO) on the galaxy 
correlation function (see [2,3] for estimation of H0 from BAO with 
a big bang nucleosynthesis prior on baryon density). It is also pos-
sible to study the variation in time of the Hubble parameter up 
to redshift z ∼ 2 using the so-called cosmic chronometers [4,5], 
which are galaxies with known time evolution. Local measure-
ments comprehend distances of SNeIa calibrated with Cepheids 
by the SH0ES collaboration [6] and time delays of multiple im-
ages of strongly lensed quasars studied by H0LiCOW [7]. Among 
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other local probes which have been considered, one can men-
tion calibrating SNeIa with the tip of the red giant branch (TRGB) 
(finding a lower H0 compared to Cepheids calibration, see [8]) 
or with Mira variables [9], measures of distances from surface 
brightness fluctuations [10] and observations of galaxies hosting 
megamasers [11]. The Hubble parameter estimated from Planck [1]
is H0 = (67.4 ±0.5) km/s Mpc−1 while the SH0ES collaboration [6]
finds H0 = (74.03 ± 1.42) km/s Mpc−1, thus resulting in a tension 
of more than 4σ .

Several ideas have been proposed in order to reconcile these 
two values. A possible approach consists in introducing new 
physics such that the Hubble parameter inferred from CMB is 
larger. Such modifications can affect the cosmological evolution at 
late times or even the early Universe. As an example of late-time 
proposal, it has been shown that a phantom dark energy equation 
of state shifts the Hubble parameter predicted from CMB towards 
higher values [12]. Other studies consider possible late-time solu-
tions coming from interacting dark energy [13], metastable dark 
energy [14] or decaying dark matter [15]. Indeed these scenar-
ios give higher values of H0 when fitting CMB data only, but in 
general the other independent H0 measurements coming from 
BAO and cosmic chronometers leave little room for such late-times 
modifications, see [16,17]. As for early-Universe proposals, an ex-
ample is early dark energy [18,19] where a scalar field dilutes 
faster than matter starting from an initial state frozen by Hub-
ble friction. Apart from fine-tuning difficulties (e.g. in the required 
potential of the scalar field, in its initial conditions or in making 
early dark energy appear and dilute at the right times), early dark 
energy still has troubles related to the σ8 tension between large-
scale structures and CMB [20]. Further early-Universe proposals try 
to reduce the sound speed of the primordial photon-baryon plasma 
le under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by 
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before recombination or attempt to make recombination occur ear-
lier [21]. While all these ideas deal with changing the prediction 
of H0 from CMB, other approaches focus instead on local measure-
ments by studying how the SNeIa calibration could be affected by 
new physics, like chameleon dark energy [22] or late-time changes 
in the effective Newton constant [23].

As an alternative line of thought, in this paper we want to ex-
plore the scenario where late-time dark energy originates from 
quantum fluctuations in the early Universe and we start a study 
of the consequences expected on the spatial correlations of dark 
energy today. The analysis will allow us to make quite general pre-
dictions on the relief of the Hubble tension within this framework. 
In such a scenario the Hubble parameter is a stochastic variable 
and the stochasticity source comes not only from (dark) matter 
fluctuations due to classical inhomogeneities, but also from the in-
trinsic quantum nature of dark energy. At time t and for every 
comoving coordinate �x the effect of quantum dark energy is such 
that the expansion rate at that point is an operator satisfying the 
first Friedmann equation

3M2
P Ĥ2(t, �x) = ρC (t)1 + ρ̂Q (t, �x) , (1)

where M P ≡ (8πG)−1/2 is the reduced Planck mass, ρC (t) is the 
classical contribution to energy density, 1 is the identity operator 
and ρ̂Q (t, �x) is the quantum energy density operator,1 which can 
depend on Ĥ2(t, �x).

A natural hypothesis for the form of the space dependence of 
dark-energy correlators is a power law behavior, which is in fact 
realized in the simple model that we discuss below.

In order to establish whether a dark energy of quantum ori-
gin could be enough to relieve the Hubble tension, we evaluate 
the conditional probability for local measurements (averaged over 
a spatial volume V 1) of the squared Hubble parameter to find a 
value above a threshold H2

1, given that global measurements (av-
eraged over a larger volume V 2 containing V 1) find a value below 
H2

2. The square of the Hubble parameter is a natural fundamental 
variable to consider, as it appears in the Friedmann equation (1). 
We write the aforementioned conditional probability as

P

([
H2
]

V 1
> H2

1

∣∣∣∣ [H2
]

V 2
< H2

2

)
, (2)

where 
[

H2
]

V 1
≡ (1/V 1) 

∫
V 1

d3x H2(t0, �x) and similarly for V 2.2 The 
notation t0 indicates cosmological time today.

The values of H1 and H2 are chosen as the mean values 
of the results from SH0ES and Planck mentioned before: H1 =
74.03 km/s Mpc−1, H2 = 67.4 km/s Mpc−1. For the volumes V 1
and V 2, we assume spheres centered around the observer with 
radii R1 and R2 that we specify below.

2. The model

Let us consider a light spectator field during inflation that, for 
the sake of simplicity, will be taken as a scalar �. The key in-
gredient of the class of theories that we want to study is the 
assumption that some mechanism determines the effective mass 
M2(t) of the spectator field in a cosmological background in such a 
way that, by the end of inflation, correlators reach super-Planckian 

1 In general, only a part of the full quantum energy density operator behaves as 
dark energy and other terms can act as additional matter contents.

2 More precisely, we are implicitly defining a classical stochastic variable 
H2(t0, �x), whose statistical properties are the same as those of the quantum op-
erator Ĥ2(t0, �x).
2

values and that these correlators are then translated into an ef-
fective dark energy at late times. A simple realization of such a 
mechanism is discussed in [24] (see also [25–27]) and consists in 
a non-minimally coupled massive scalar field with action

S[�] =
∫

dD x
√−g

{
−1

2
gμν∂μ�∂ν�− 1

2
m2�2 − 1

2
ξ R�2

}
, (3)

where R is the Ricci curvature scalar of the metric gμν and g =
det[gμν ]. It is clear that here the effective mass of the scalar field, 
M2 = m2 + ξ R , receives contributions from the bare mass m and 
from a non-minimal coupling to the metric with coefficient ξ . As 
predicted in [24], in this model the field correlators of a light 
scalar grow during inflation and their enhancement is larger when 
the non-minimal coupling is negative and it dominates over the 
bare mass. Other mechanisms contributing to an effective mass are 
conceivable, like dynamical mass generation via interaction with 
another field acquiring a non-zero vacuum expectation value in a 
symmetry-breaking scenario. In the general case the effective mass 
is a field operator with a non-trivial derivative structure.

Notice that assuming a quadratic action for the spectator field 
at the classical level ensures a minimal amount of non-Gaussianity. 
However, at the level of quantum effective action, interactions with 
the metric perturbations (or in general with other fields) intro-
duce additional non-Gaussianities in the evolution of the spectator 
scalar field, e.g. by generating effective self-interactions.

We consider a spatially flat FLRW Universe in D = 4 spacetime 
dimensions with scale factor a(t), i.e. ds2 = −dt2 +a2(t)d�x2, where 
t is cosmological time and �x are comoving coordinates.

The spectator scalar field is �(x) = �(t, �x) and its action, com-
puted by specializing (3) to the FLRW metric, is of the form

S[�] ≡
∫

dtd3xL� =
∫

dtd3x a3 (4)

×
{

1

2
�̇2 − 1

2a2

( �∇�
)2 − 1

2

[
m2 + 6ξ(2 − ε)H2

]
�2
}

,

where the dot (˙) denotes the derivative with respect to cosmo-
logical time d/dt and we introduced ε ≡ −Ḣ/H2. After introduc-
ing the canonical momentum �(x) = a3�̇(x), quantization of the 
model goes in the standard way (see e.g. [24]) by promoting field 
and momentum to operators �̂ and �̂ obeying canonical commu-
tation relations.

The effect of the scalar field on cosmological evolution is deter-
mined by its energy-momentum tensor Tμν = (−2/

√−g)δS[�]/
δgμν , which in its operator form reads,

T̂μν = ∂μ�̂ ∂ν�̂ − 1

2
gμν gαβ∂α�̂ ∂β�̂ − m2

2
gμν�̂2

+ ξ
[
Gμν − ∇μ∇ν + gμν�

]
�̂2 , (5)

where Gμν is the Einstein curvature tensor.
Friedmann equations tell us that quantum fluctuations of the 

spectator field enter the expansion history of the Universe through 
expectation values of energy density ρQ ≡ 〈ρ̂Q 〉 ≡ −〈T̂ 0

0〉 and 
pressure p Q δi

j ≡ 〈T̂ i
j〉, evaluated on a homogeneous and isotropic 

state that we take to be the vacuum |�〉. Neglecting spatial gra-
dients of the field, the energy density operator from (5) simplifies 
to

ρ̂Q (t, �x) ≡ −T̂ 0
0(t, �x) = H2

2

{[(m

H

)2 + 6ξ
]
�̂2(t, �x)

+ 6ξ

a3 H

{
�̂(t, �x), �̂(t, �x)

}
+ 1

a6 H2
�̂2(t, �x)

}
. (6)

In [24], the relevant expectation values for Friedmann equa-

tions are coincident correlators, 
〈
�̂2(t, �x)

〉
, 
〈
�̂2(t, �x)

〉
and 

〈{
�̂(t, �x),
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�̂(t, �x)}〉, where { Â, B̂} ≡ Â B̂ + B̂ Â. The result is that quantum fluc-

tuations of the spectator field behave at late times as an effective 
dark energy.

Here we want to investigate the consequences of the spatial 
correlations inherited by dark energy. Therefore we turn our atten-
tion to 4-point functions built from field and momentum operators 
which are relevant for density-density correlators.

2.1. Stochastic formalism

The stochastic formalism of Alexey Starobinsky makes use of 
the fact that on super-Hubble scales non-conformal quantum fields 
(�̂, �̂) grow during inflation, such that their correlators can be 
accurately described by their classical stochastic equivalents (φ̂ , π̂ ). 
These infrared fields obey,

d

dt
φ̂(t, �x) − a−3 π̂ (t, �x) = f̂φ(t, �x) , (7)

a−3 d

dt
π̂ (t, �x) + M2(t) φ̂(t, �x) = a−3 f̂π (t, �x) , (8)

where f̂φ(t, �x) and f̂π (t, �x) are stochastic sources, which arise be-
cause of coupling between the infrared and ultraviolet modes (see 
e.g. [24] for the precise definition of stochastic sources).

2.2. IR correlators

We can now proceed to extend the treatment of [24] to 
study spatial correlations of long modes. Let us recall that, in 
eqs. (30–32) of that paper, three 2-point functions were in-
troduced because they appear in the expectation value of the 
energy-momentum tensor (conveniently rescaled with a power of 
a3(t)H(t) for each occurrence of a momentum operator), namely 
�φφ(t) ≡

〈
φ̂2(t, �x)

〉
, then �φπ(t) ≡

〈{
φ̂(t, �x), π̂ (t, �x)}〉/[a3(t)H(t)]

and �ππ(t) ≡
〈
π̂2(t, �x)

〉
/[a6(t)H2(t)]. Here we are interested in 

spatial fluctuations, therefore the relevant quantity is the density-
density correlator at two different comoving coordinates �x1 and �x2
at the same cosmological time t: 〈ρ̂Q (t, �x1)ρ̂Q (t, �x2)〉, where the 
energy density operator is ρ̂Q = −T̂ 0

0. Since each T̂ 0
0 is quadratic 

in field/momentum operators, we infer that 〈ρ̂(t, �x1)ρ̂(t, �x2)〉 de-
pends on 4-point functions of fields/momenta. Due to the homo-
geneity and isotropy of the FLRW background, comoving coordi-
nates �x1 and �x2 only appear in correlators through their relative 
comoving distance r ≡ ‖�x2 − �x1‖.

The relevant correlators are six symmetric combinations (see 
[28]), �φ2,φ2 , �φ2,φπ , �φπ,φπ , �φ2,π2 , �φπ,π2 , �π2,π2 . The sim-
plest one is

�φ2,φ2(t, r) ≡
〈
φ̂2(t, �x1)φ̂

2(t, �x2)
〉
. (9)

We can study the time evolution of 4-point functions and iden-
tify their stochastic noise sources induced by the stochastic forces 
f̂φ(t, �x) and f̂π (t, �x) of (7)–(8), to obtain a system of six coupled 
differential equations. Here we give two equations,

d

dN
�φ2,φ2 − �φ2,φπ = nφ2,φ2 , (10)

d

dN
�π2,π2 + 4(3 − ε)�π2,π2 +

(M

H

)2
�φπ,π2 = nπ2,π2 , (11)

where we have traded the time t for the number of e-foldings 
N ≡ ln a(t), and the source in Eq. (10) is,

nφ2,φ2(t, r) = 1

H(t)

〈{
f̂φ(t, �x1), φ̂(t, �x1)

}
φ̂2(t, �x2)

+ φ̂2(t, �x1)
{

f̂φ(t, �x2), φ̂(t, �x2)
}〉

(r = ‖�x1 − �x2‖). (12)
3

The complete set of equations and sources is found in [28]. The 
stochastic sources can be computed in terms of the mode function 
ϕ(t, k) of �̂. The source in (12) is thus,

nφ2,φ2 = 1

2π4
(μaH)3(1 − ε)

[
|ϕ(t,k)|2

]
k=μaH

×
μaH∫
k0

dk k2|ϕ(t,k)|2 [1 + 2 j0(μaHr) j0(kr)] , (13)

where j0(kr) ≡ sin(kr)/(kr) is the spherical Bessel function and 
μaH (μ � 1) is an UV cut-off.

2.3. Time evolution of correlators

Analogously as it was done in [24], one can solve the equations 
of motion for the correlators (10)–(11) from an early inflation, 
through radiation and matter era. Even though the correct evo-
lution of the correlators in matter era requires taking account of 
the dark energy backreaction, for simplicty here we model the late 
time universe by non-relativistic matter and cosmological constant. 
This introduces a few percent error [24], but has the advantage 
that one can solve the evolution of the relevant four-point func-
tions exactly. The result is [28]

�(4)(N0, r) ≡ (�φ2,φ2 ,�φ2,φπ ,�φπ,φπ ,�φ2,π2 ,�φπ,π2 ,�π2,π2

)
� H4

I e16|ξ |NI e8ζ N0

1024π4ξ2
s(r)(1,8ζ,16ζ 2,8ζ 2,32ζ 3,16ζ 4),

(14)

where N0 = ln
(

�M
�R

)
� 8.1 e-foldings since matter-radiation equal-

ity,

ζ ≡ |ξ | −
1

6��

(
m
H0

)2 − |ξ |
3
2

ln(�R )
ln(�M )

− 1
, (15)

and s(r) contains spatial dependence, which is well approximated 
by,

s(r) �

⎧⎪⎨
⎪⎩

3 if 0 ≤ μain H I r < e−NI

3 − 2 (μain H I r)16|ξ | if e−NI < μain H I r < 1

1 if μain H I r ≥ 1 ,

(16)

where ain is the scale factor at the beginning of inflation. Therefore 
the comoving length scale ruling spatial variations is the quantity 
(μain H I )

−1, i.e. the comoving Hubble horizon at the beginning of 
inflation (up to the μ−1 factor). Furthermore, �R , �M and �� �
1 − �M are the energy density fractions in radiation and matter 
today, taken to be �R = 9.1 · 10−5 and �M = 0.3.

The quantum backreaction of the scalar field contributes to en-
ergy density and pressure during matter domination as in [24],

ρQ = H2
I

32π2|ξ |e8|ξ |NI

(
m2

2
− 3|ξ |H2

)
,

p Q = − H2
I

32π2|ξ |e8|ξ |NI
m2

2
. (17)

Matching the cosmological constant-like term to its value today 
�� determines the number of inflationary e-foldings NI in terms 
of the model parameters m and |ξ |,

NI = 1
ln

[
24π |ξ |

(mP
)2(H D E

)2
]

, (18)

8|ξ | H I m
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where mP ≡ G−1/2 is the Planck mass, HDE ≡ H0
√

�� and H0 is 
the Hubble parameter today.

Dark energy eventually leads the cosmological expansion pro-
vided that the cosmological constant-like term dominates over the 
matter-like term in the quantum backreaction until late times, i.e.
we require

|ξ | < 1

6

(
m

HDE

)2

and ξ < 0 . (19)

We also need m/HDE < 1 so that the scalar field stays light 
throughout the cosmological expansion.

The spatial dependence in (14) is the one inherited from infla-
tion through the function s(r) in (16). Before discussing the Hubble 
tension problem, it is useful to work on the comoving length scale 
(μain H I )

−1 associated to s(r) in order to relate its physical size 
today to the model parameters. Assuming an instantaneous re-
heating after inflation, we find the following ratio between the 
physical length scale of spatial variations today and the current 
Hubble horizon:

(μain H I )
−1a0

H−1
0

= μ−1eNI

(
H I

H0

)− 1
2

�
− 1

4
R . (20)

Spatial variations are relevant for the Hubble tension problem dis-
cussed in section 3 only if they are significant at sub-Hubble scales. 
Therefore, we require that the ratio appearing in the left-hand side 
of (20) is at most of order one, which then limits the number of 
inflationary e-foldings. For H I � 1013 GeV, H0 � 10−33 eV (and μ
not too small), this gives NI � 60. The condition on NI translates 
into a requirement on the parameters of the model, because NI is 
determined by |ξ | and m via the combination in (18).

3. Relieving the Hubble tension

Note that the local expansion rate operator Ĥ2(t, �x) in (1) can 
be recast as,

Ĥ2(t0, �x) = 1

3M2
P

ρC (t0)1 + m2

2 φ̂2(t0, �x)
1 + |ξ |

M2
P
φ̂2(t0, �x)

, (21)

where we made use of ρ̂Q from (6) and neglected contributions 
from of {φ̂, π̂} and π̂2, which is a reasonable assumption [28]. 
Next, we assume that H0 � H2 = 67.4 km/s Mpc−1, meaning that 
the statistical average value H0 is estimated very well by the result 
of global measurements.

The translation of a probability statement for Ĥ2 like that in (2)
into an equivalent statement for φ̂2 depends on whether these 
two quantities are related by a growing or decreasing function. 
A simple analysis of (21) shows that d(Ĥ2)

d(φ̂2)
∝ m2

2 − |ξ |
M2

P
ρC (t0) ∝[

1 − 6|ξ |
(

H0
m

)2
]

, such that Ĥ2 is a growing (decreasing) function 

of φ̂2 when |ξ | < 1
6 (m/H0)

2 (|ξ | > 1
6 (m/H0)

2). For example, with 
the choice ξ = − 1

6 (m/HDE)
2 that saturates the constraint (19), the 

quantity 1 − 6|ξ | (H0/m)2 = 1 − �−1
� < 0 and Ĥ2 is a decreasing 

function of φ̂2.
In what follows, we introduce some simplifications, whose ac-

curacy is discussed in detail in Ref. [28]. Firstly, we shall assume 
that the field ψ̂(t0, �x) ≡ φ̂2(t0, �x) is a classical stochastic variable 
ψ(t0, �x) which is Gaussian distributed. Secondly, we shall assume 
that the stochastic properties of ψ can be modeled by a Gaussian 
probability distribution,
4

P [ψ] ∝ exp

{
− 1

2

∫
d3x

∫
d3 y

[
ψ(t0, �x) − ψ0

]
× C−1(t0,‖�x − �y‖) [ψ(t0, �y) − ψ0

]}
, (22)

where the position-independent mean value is ψ0 = �φφ(t0), 
while the covariances are

C(t0,‖�x − �y‖) = �φ2,φ2(t0,‖�x − �y‖) − �2
φφ(t0) . (23)

As for the domain of definition, the probability distribution P [ψ]
is assumed to be normalized in the global volume V 2 (which in-
cludes V 1).

Using the usual relation between conditional probabilities and 
joint probabilities, the problem of finding (2) amounts to study 
the joint probability distribution of the mean variables [ψ]V 1 ≡
(1/V 1) 

∫
V 1

d3x ψ(t0, �x) and [ψ]V 2 ≡ (1/V 2) 
∫

V 2
d3x ψ(t0, �x). These 

are still Gaussian variables and one can evaluate their (2 × 2 and 
symmetric) covariance matrix

M =
[
M11 M12
M12 M22

]
, Mi j = 1

V i V j

∫
V i

d3x

∫
V j

d3 y C(t0,‖�x − �y‖) .

An important quantity is the correlation coefficient ρ defined as 
ρ = M12/

√
M11M22. We can evaluate the covariance matrix M

and the correlation coefficient ρ by using for the volumes V 1 and 
V 2 two spheres of radii R1 and R2 centered around the observer. 
The conditional probability (2) can be reduced to,

P

([
H2
]

V 1
> H2

1

∣∣∣∣ [H2
]

V 2
< H2

2

)
(24)

= 2 T

(√
2δχ,

−ρ√
1 − ρ2

)
+ 1

2
[1 ∓ erf (δχ)] ,

where T (h, a) = 1
2π

∫ a
0 dx exp

(
− h2

2 (1 + x2)
)
/(1 + x2) is Owen’s T 

function and

δχ =
H2

1
H2

0
− 1

√
2 J11

(m/HDE)
2 + 6|ξ |

(m/H0)2 − 6|ξ | H2
1

H2
0

, J11 = I11e8ζ N0 − 1, (25)

where I11 = ∫ 2
0 dx

(
3

16 x5 − 9
4 x3 + 3x2

)
s1(x) and

s1(x) =

⎧⎪⎪⎨
⎪⎪⎩

3 if 0 ≤ x ≤ k1 e−NI

3 − 2
(

x
k1

)16|ξ |
if k1 e−NI < x ≤ k1

1 if x ≥ k1

, (26)

with k1 = eNI

(
H I
H0

)− 1
2
�

− 1
4

R (μH0 R1)
−1.

For definiteness we choose the radius R2 of the global volume 
such that μR2 = H−1

0 � 4400 Mpc and the radius R1 of the local 
volume such that μR1 = 100 Mpc (we set μ = 1). The conditional 
probability (24) depends on the two parameters of the model ξ
and m. Solid lines in Fig. 1 show its behavior as a function of |ξ |
for constant values of the ratio α ≡ 1

6|ξ | (m/HDE)
2. Notice that the 

condition (19) imposes to choose α > 1. Furthermore the condi-
tion of light field m/HDE < 1 means that, for a given constant α, 
only values of |ξ | with |ξ | < 1/(6α) have to be considered (this is 
automatically true for the values of α and the plot range chosen in 
Fig. 1). The number of inflationary e-foldings throughout the range 
of parameters in Fig. 1 is of order NI ∼ 60 and is therefore com-
patible with the approximate constraint NI � 60.
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Fig. 1. The conditional probability in (24), as a function of the non-minimal coupling 
|ξ |, for constant values of α = 1

6|ξ | (m/HDE)
2. The blue curves correspond to the 

limit case α = 1, which is its minimum possible value. The parameter ξ is mildly 
tuned to a rather natural value, since the width of the region of ξ values relevant 
for relieving the Hubble tension (to less than 2σ ) can reach �ξ/|ξ | ∼ O(10%) in 
the best case.

Fig. 2. Hubble tension in standard deviations σ as a function of the non-minimal 
coupling |ξ |, in the same conditions for m/HDE as in Fig. 1. The plot range is slightly 
zoomed in with respect to that in Fig. 1. The tension can be reduced down to � 1σ
(solid lines) and � 1.2σ (dashed lines) for local measurements in R1 = 100 Mpc
and R1 = 1 Gpc, respectively.

Fig. 2 shows the corresponding Hubble tension zooming slightly 
on a more central region. As can be seen from the plot, the model 
is able to reduce the tension down to almost 1σ which is a great 
improvement with respect to the > 4σ tension in �CDM. This has 
been possible thanks to spatial fluctuations of dark energy inher-
ited from inflation.

In the limit of zero local volume one gets the largest con-
ditional probability that can be reached, which can be obtained 
from (24) to be 1

2 − 1
π arctan

(
1√
2

)
� 30.4%, corresponding to a 

“tension” of only 1.03σ . This is in agreement with the solid lines 
in Figs. 1-2, where the ratio R1/R2 � 0.02 is small but finite. To 
mimic H0LiCOW measurements [7] we increase R1 � 1 Gpc and 
set H1 = 73.3 km/s Mpc−1. The corresponding results are shown 
by the dashed lines in Figs. 1-2. Our model relieves the Hubble 
tension, but now the probability peaks at about 20%, correspond-
ing to about 1.2σ tension.

Another major problem in �C DM is the σ8 tension. A full 
quantitative discussion of our model with regard to this issue goes 
beyond the scope of the paper. However, it is interesting to have a 
qualitative understanding of it. In our model, a higher local value 
of the Hubble parameter (with respect to the global one) means 
a positive local fluctuation in dark energy. Assuming for simplicity 
5

that there is no local curvature effect so that the sum of the local 
matter density fraction and local dark energy density fraction is 
still 1, this would correspond to a reduced value of the local mat-
ter density fraction (�M ) with respect to its global value. Smaller 
�M means less growth of structures (e.g. assuming that the growth 
rate f obeys the widely used power law f = �

γ
M with γ ≈ 0.55), 

thus going in the direction of reducing the amplitude of local mat-
ter perturbations. This is in agreement with current data, see e.g. 
Fig. 2 in [31].

More work is needed to reveal and test the deviations of the 
model proposed here from �CDM. Some plots on the evolution 
of the Hubble rate and the dark energy equation of state in re-
cent cosmological times were presented in Figs. 2, 3, 4, 5 of [24]
for a few choices of the parameters ξ and m; the expected de-
viations are within reach of Euclid and Vera Rubin Observatory. 
In [29] the authors test the same quantum dark energy model 
against cosmological data and compare its performance to �CDM, 
finding that the model is slightly favored, although not at a sta-
tistically significant level. We are currently investigating the form 
of luminosity distance correlators for type Ia supernovae induced 
by spatially correlated dark energy, which provide a test for devia-
tions from �CDM. This is just an example of physical observables 
that could be used to test the features predicted by the model. It 
is also worth mentioning that, within a different approach using 
cosmological perturbations, dark energy with very large-scale in-
homogeneities has been considered in [30] and their amplitude is 
constrained with CMB anisotropies data.
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Appendix A. Four-point functions calculation

Here we provide some details on the calculation leading to the 
result (14) by following the evolution of correlators in the three 
cosmological epochs.

A.1. Inflation

The mode function ϕ(t, k) to be used in exact de Sitter infla-
tion (ε = 0) is the Chernikov-Tagirov-Bunch-Davies (CTBD) mode 
function

ϕ(t,k) =
√

π

4a3 H I
H (1)

νI

( k

aH I

)
, νI ≡

√
9
4 − ( M

H I

)2
, (A.1)

where H I is the constant inflationary Hubble rate, M2 = m2 +
12ξ H2

I is the constant squared effective mass and H (1)
νI is the 

Hankel function of the first kind. The CTBD mode function is 
needed to specify the sources in the system of first-order differ-
ential equations including (10)–(11). Since we are dealing with 
long-wavelength modes in the integral of (13), it is sufficient to 
consider an IR approximation of the mode function

ϕ(t,k) ≈ −i√ 2νI −1�(νI )a
νI −3/2 HνI −1/2

I k−νI . (A.2)

π



E. Belgacem and T. Prokopec Physics Letters B 831 (2022) 137174
As initial conditions, we assume correlators to be zero at the 
beginning of inflation.3 During de Sitter inflation, the evolution 
with the number of e-foldings N of correlators �(4)(N, r) defined 
by �(4)(N, r) ≡ (�φ2,φ2 ,�φ2,φπ ,�φπ,φπ ,�φ2,π2 ,�φπ,π2 ,�π2,π2

)
can be read from equations like (10)–(11) with ε = 0, resulting 
in the system of equations

d

dN
�(4)(N, r) + A �(4)(N, r) = n(N, r) , (A.3)

where A is the following 6 × 6 constant matrix containing X ≡
(M/H I )

2 = (m/H I )
2 + 12ξ ,

A =

⎡
⎢⎢⎢⎢⎢⎣

0 −1 0 0 0 0
4X 3 −2 −2 0 0
0 2X 6 0 −2 0
0 X 0 6 −1 0
0 0 2X 2X 9 −4
0 0 0 0 X 12

⎤
⎥⎥⎥⎥⎥⎦ , (A.4)

and the source vector n(N, r) can be evaluated from the mode 
function. For4 ξ < 0 and (m/H I )

2 � |ξ | � 1, working at the low-
est order in the non-minimal coupling ξ , we get (recalling that the 
scale factor is a(N) = eN )

n(N, r) =
(

H I

2π

)4 [
1 + 2 j0(μeN H I r)

]

×
(

1

4|ξ | ,4,16|ξ |,8|ξ |,64ξ2,64|ξ |3
)

. (A.5)

The differential problem (A.3) is conveniently solved by diago-
nalizing the matrix A. Denoting by λ j the eigenvalues of A, by B
the change-of-basis matrix (matrix whose columns are the eigen-
vectors of A) and by B−1 its inverse, the i-th component of the 
correlators vector �(4)(N, r) is given by

�(4),i(N, r) =
∑

j

Bi je
−λ j N

N∫
0

dN ′ eλ j N ′∑
k

(B−1) jk nk(N ′, r) .

(A.6)

The integral can be evaluated by approximating the spherical 
Bessel function j0(x) = sin(x)/x appearing in (A.5) as j0(x) �
θ(1 − x) where θ is the Heaviside step function. Furthermore, in 
the limit of small X it can be shown that the sum over eigenval-
ues in (A.6) is dominated by the smallest eigenvalue of A which 
is 6 − 2

√
9 − 4X = 4/3 X +O(X2). With these simplifications one 

finds that, at the end of inflation (lasting NI e-foldings), the 4-pt 
correlators are

�(4)(NI , r) � H4
I

1024π4ξ2
e16|ξ |NI s(r)

×
(

1,16|ξ |,64ξ2,32ξ2,256|ξ |3,256ξ4
)

, (A.7)

where the function s(r) encoding spatial dependence was defined 
in (16).

3 The effect of non-zero initial conditions for 2-point functions (and therefore for 
4-point functions as well) inherited from a pre-inflationary epoch will be discussed 
in [28].

4 As already shown in [24], this hierarchy choice for the parameters gives the best 
enhancement of correlators in inflation, which also means that a smaller number of 
inflationary e-foldings is required to match the dark energy content of the Universe 
today.
6

A.2. Radiation epoch

After the end of inflation, the correlators will evolve in radi-
ation era starting from the initial conditions (A.7) inherited from 
inflation. Similarly to the case of 2-pt functions studied in [24], we 
can safely neglect stochastic sources after inflation because their 
contribution will be irrelevant compared to that of initial condi-
tions. This is true due to the enhancement factor e16|ξ |NI /ξ2, which 
is present in (A.7) but not in the stochastic sources of radiation 
epoch.

In radiation epoch (ε = 2) the Ricci scalar is null and we can 
also neglect (m/H(t))2 (due to the assumption of very light scalar 
field, this term only becomes relevant at recent cosmological times, 
when matter and cosmological constant dominate the evolution of 
the Universe). This leads to a simplified evolution during radiation 
era, of the form

d

dN
�(4)(N, r) + A �(4)(N, r) = 0 , (A.8)

where A is the constant matrix

A =

⎡
⎢⎢⎢⎢⎢⎣

0 −1 0 0 0 0
0 1 −2 −2 0 0
0 0 2 0 −2 0
0 0 0 2 −1 0
0 0 0 0 3 −4
0 0 0 0 0 4

⎤
⎥⎥⎥⎥⎥⎦ . (A.9)

If N = 0 is the beginning of radiation epoch, then the system is 
easily solved as �(4)(N, r) = e−A N�(4)(0, r), where �(4)(0, r) is 
the initial condition taken from the end of inflation (A.7). The ex-
ponential of the matrix −A is computed by diagonalizing A. At 
leading order in |ξ | we find that, by the end of radiation epoch 
lasting NR ≈ 50 e-foldings,

�(4)(NR , r) � H4
I e16|ξ |NI

1024π4ξ2
s(r)

×
(

1,16|ξ |e−NR ,64ξ2e−2NR ,32ξ2e−2NR ,

256|ξ |3e−3NR ,256ξ4e−4NR
)

. (A.10)

Since NR � 1, we can say that, up to contributions suppressed by 
powers of e−NR , at the end of radiation epoch

�(4)(NR , r) � H4
I

1024π4ξ2
e16|ξ |NI s(r)(1,0,0,0,0,0) . (A.11)

This is the initial condition that will be used in the final stage of 
cosmological evolution after matter-radiation equality. We remark 
that the spatial dependence is still that imprinted by inflation. This 
is a consequence of the smallness of stochastic sources after in-
flation, so that the post-inflationary evolution does not affect the 
form of s(r).

A.3. Matter + cosmological constant epoch

After matter-radiation equality, non-relativistic matter becomes 
the dominant component of the Universe leading its expansion. We 
know from eq. (90) of [24] that in matter period, the 2-pt func-
tions of the scalar field evolve in such a way to develop a dark 
energy component (more precisely they have a matter-like contri-
bution and a CC-like contribution). We are interested here in 4-pt 
functions, that should be evolved numerically in a background con-
taining the backreaction of the scalar field. However we can obtain 
a simplified analytical treatment by approximating the background 
evolution as an exact matter+CC Universe.
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We set N = 0 at matter-radiation equality and the current (to-

day) time corresponds to N0 = ln
(

�M
�R

)
� 8.1. As usual, we de-

note by �M and �� = 1 − �M the matter and cosmological con-
stant fractions of energy density today. Then ε(N) needed in (11)
evolves in time as

ε(N) = 3

2

1

1 + ��

�M
e3(N−N0)

. (A.12)

It is convenient to trade N for the variable x ≡
[

1 + ��

�M
e3(N−N0)

]−1

so that ε(x) = (3/2)x, and with simple algebra the quantity 
M(t)/H(t) appearing in (11) becomes, in the x variable,(

M(x)

H(x)

)2

=
(

m

HDE

)2

(1 − x) − 12|ξ |
(

1 − 3

4
x

)
, (A.13)

where HDE was already defined right after (18). The initial 
time N = 0 (matter-radiation equality) corresponds to xeq =(

1 + ��

�M
e−3N0

)−1
while the current time N0 gives x0 = �M . Using 

dx/dN = 3x(x − 1) the 4-pt functions obey a system of the form 
(again we can neglect stochastic sources)

d

dx
�(4)(x, r) + B(x) �(4)(x, r) = 0 , (A.14)

In the equation above B(x) is the time-dependent matrix B(x) =
b1(x)B1 + b2(x)B2 + b3(x)B3, where the time dependence is en-
coded in functions

b1(x) = 2 − x

2x(x − 1)
, b2(x) = −

(
m

HDE

)2

3x
− |ξ | 4 − 3x

x(x − 1)
,

b3(x) = 1

3x(x − 1)
, (A.15)

while B1, B2 and B3 are the following constant matrices

B1 = diag(0,1,2,2,3,4) , B2 =

⎡
⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0
4 0 0 0 0 0
0 2 0 0 0 0
0 1 0 0 0 0
0 0 2 2 0 0
0 0 0 0 1 0

⎤
⎥⎥⎥⎥⎥⎦ ,

B3 =

⎡
⎢⎢⎢⎢⎢⎣

0 −1 0 0 0 0
0 0 −2 −2 0 0
0 0 0 0 −2 0
0 0 0 0 −1 0
0 0 0 0 0 −4
0 0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎦ . (A.16)

The exact solution of (A.14) is

�(4)(x, r) = T exp

⎡
⎢⎣−

x∫
xeq

dx′ B(x′)

⎤
⎥⎦�(4)(xeq, r) , (A.17)

where T exp denotes the time-ordered exponential, which is there 
because B(x) matrices at different x’s do not commute. However 
we checked numerically that neglecting the time ordering gives ac-
curate results at a few percent level, with the advantage of display-
ing simpler formulas.5 Then the integrals can be solved analytically 
and the matrix exponential can be also evaluated analytically with 

5 More details on how the exact evolution of correlators in matter+CC period can 
be computed will be given in [28].
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a symbolic computation software. Further simplifications arise by 

the assumptions of small |ξ | and 
(

m
HDE

)2
, leading after a few steps 

to the result (14) at the current epoch N0.
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