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1 Introduction

One of the most profound predictions of primordial inflation is that the accelerated expan-
sion literally rips long wavelength quanta out of the vacuum [1]. This is what produced the
tensor power spectrum ∆2

h(k) [2]. The occupation number N(η, k) of a single polarization
of wave number ~k at conformal time η is simply staggering,

N(η, k) = π∆2
h(k)

64Gk2 ×a
2(η) , (1.1)

where G is Newton’s constant and a(η) is the scale factor, which we remind the reader
grows exponentially rapidly in co-moving time.

The tensor power spectrum is the primary, tree order signal of the production of
inflationary gravitons. However, there must be secondary, loop effects from the interactions
of these gravitons with each other and with other particles. Among these effects are:

1. The self-gravitation between inflationary gravitons may slow the expansion rate [3, 4];

2. Inflationary gravitons correct the linearized Einstein equation [5, 6], which enhances
the field strength of gravitational radiation [7, 8] and has the potential to change the
force of gravity [9];

3. Inflationary gravitons correct the linearized Dirac equation [10, 11], which enhances
the field strength of fermions [12];
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Figure 1. The left diagram shows how the self-mass (1.3) contributes to massive scalar scattering.
The diagram on the right gives the contribution from graviton correlations between the vertices.
Solid lines represent the massless scalar, wavy lines represent the graviton, and dashed lines are
massive scalars.

4. Inflationary gravitons correct the field equations for a massless, minimally coupled
scalar [13], but make no significant change in the field strength of scalar radiation [14];

5. Inflationary gravitons correct Maxwell’s equation [15], which enhances the field
strength of electromagnetic radiation [16] and makes significant changes to the re-
sponse to charges and currents at large distances and late times [17]; and

6. Inflationary gravitons correct the field equation for a massless, conformally coupled
scalar [18–20], but do not make significant changes, either in the propagation of
dynamical scalars or in the scalar exchange potential [21].

No one doubts that a classical ensemble of gravitational radiation would change kine-
matics and forces; this is the basis for the proposal to detect gravitational radiation using
the timing of pulsars [22, 23]. However, graviton propagators do require gauge fixing, and
it has been argued that the apparent effects of inflationary gravitons are artifacts of the
gauge [24–31]. These doubts persist in spite of the fact that similar effects derive from loops
of massless, minimally coupled scalars [9, 32], which experience the same growth (1.1) as
inflationary gravitons and require no gauge fixing.

A technique has been developed for removing gauge dependence from effective field
equations by including quantum gravitational correlations with the source which disturbs
the effective field and the observer who detects it [33]. The procedure is to build the same
diagrams (figure 1 gives two examples) that would go into an S-matrix element, and then
simplify them with a series of relations derived by Donoghue [34–36] to capture the infrared
physics. In the end only vestigial traces of the source and observer remain, and each of
the simplified diagrams can be regarded as a correction to the 1PI 2-point function in the
linearized, effective field equation.

It is worthwhile describing this for a massless, minimally coupled scalar on flat space
background (gµν ≡ ηµν +

√
16πGhµν) in the 2-parameter family of covariant gauge fixing

functions,

LGF = − 1
2αη

µνFµFν , Fµ = ηρσ
(
hµρ,σ −

β

2hρσ,µ
)
. (1.2)
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i 1 α 1
β−2

(α−3)
(β−2)2 Description

0 +3
4 −3

4 −3
2 +3

4 scalar exchange

1 0 0 0 +1 vertex-vertex

2 0 0 0 0 vertex-source,observer

3 0 0 +3 −2 vertex-scalar

4 +17
4 −3

4 0 −1
4 source-observer

5 −2 +3
2 −3

2 +1
2 scalar-source,observer

Total +3 0 0 0

Table 1. The gauge dependent factors Ci(α, β) for each contribution to the invariant scalar
self-mass-squared, and their gauge-independent sum. Figure 1 shows the i = 0 and i = 1 diagrams.

The renormalized self-mass is [33],

−iM2(x;x′) = C0(α, β)× G∂6

4π3

[
ln(µ2∆x2)

∆x2

]
, ∆x2 ≡ (x−x′)2 , (1.3)

C0(α, β) = +3
4 −

3
4 × α−

3
2 ×

1
β−2 + 3

4 ×
(α−3)
(β−2)2 . (1.4)

Now imagine quantum gravitational corrections to the scattering of two massive scalars by
the exchange of such a massless scalar. Figure 1 shows two of the many diagrams which
contribute. After applying the Donoghue Identities, each of these contributions can be
regarded as a correction to the self-mass, having the same spacetime dependence as (1.3)
but multiplied by different gauge dependent coefficients. Table 1 lists each contribution,
and one can see that the sum is indeed independent of α and β.

In position space all diagrams consist of products of (possibly differentiated) massive
and massless propagators (from the scalar and the graviton), i∆m(x;x′) and i∆(x;x′),
respectively. All the 3-point and 4-point diagrams can be reduced to 2-point form by
applying the Donoghue Identities [33],

i∆m(x; y)i∆(x;x′)i∆(y;x′) −→ iδD(x−y)
2m2

[
i∆(x;x′)

]2
, (1.5)

∂xµi∆(x;x′)∂µy i∆(y; y′)i∆m(x; y)i∆m(x′; y′)

−→ iδD(x−y)iδD(x′−y′)
2m2

[
i∆(x;x′)

]2
, (1.6)

∂xµi∆(x; y′)∂µy i∆(y;x′)i∆m(x; y)i∆m(x′; y′)

−→ − iδ
D(x−y)iδD(x′−y′)

2m2

[
i∆(x;x′)

]2
. (1.7)

Any 2-point contribution so obtained can be regarded as a correction to the self-mass
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through a trivial identity based the massless propagator equation ∂2i∆(x;x′) = iδD(x−x′),

f(x;x′) = −
∫
dDz i∆(x; z)

∫
dDz′ i∆(x′; z′)× ∂2

z∂
2
z′f(z; z′) . (1.8)

The procedure just described has been implemented on flat space background for
scalars [33] and for electromagnetism [37]. Generalizing it to de Sitter will be challenging
because the Hubble parameter H permits more varied spacetime dependence than (1.3)
on the dimensionless product H2∆x2. Our program is therefore to find the simplest venue
for implementing the gauge purge on de Sitter background, and then check gauge indepen-
dence using the family of de Sitter breaking gauges analogous to (1.2) [38]. In addition
to simplicity, we require a system for which the potentially gauge dependent computation
shows big effects, because there is little point to removing gauge dependence from a small
or null effect. Previous studies have revealed that graviton corrections to massless, con-
formally coupled scalars are simple but do not engender significant effects [20, 21]. In this
paper we show that the massless, minimally coupled scalar provides the system we seek.

In section 2 of this paper we compute the single graviton loop contribution to the
self-mass −iM2(x;x′) of a massless, minimally coupled scalar on de Sitter background.
Section 3 uses this result to quantum-correct the linearized effective scalar field equation.
Solving this equation reveals no significant 1-loop correction to the field strength of scalar
radiation, but a large logarithmic correction to the scalar exchange potential. We also
explain the large logarithm using a version of the renormalization group. Our conclusions
comprise section 4.

2 Graviton loop contribution to −iM2(x; x′)

The purpose of this section is to compute the 1-graviton loop contribution to the 1PI (one-
particle-irreducible) 2-point function of a massless, minimally coupled scalar on de Sitter
background. We begin by precisely defining −iM2(x;x′), analytically and diagrammati-
cally, and by giving the required Feynman rules. We next employ dimensional regulariza-
tion to evaluate first the simplest diagram and then the more complicated one. The section
closes with a discussion of renormalization.

2.1 Feynman rules

The bare Lagrangian in D spacetime dimensions is,

L = [R−(D−2)Λ]√−g
16πG − 1

2∂µφ∂νφg
µν√−g , Λ ≡ (D−1)H2 , (2.1)

where G is Newton’s constant and Λ is the cosmological constant. We define the graviton
field hµν(x) as a perturbation of the conformally rescaled metric,

gµν(x) ≡ a2(η)g̃µν(x) ≡ a2(η)
[
ηµν + κhµν

]
, a(η) ≡ − 1

Hη
, (2.2)

where κ2 ≡ 16πG is the loop-counting parameter and η < 0. Our signature is spacelike,
and we employ an overlined tensor to denote the suppression of its temporal components,

ηµν ≡ ηµν + δ0
µδ

0
ν , ∂µ ≡ ∂µ − δ0

µ∂0 . (2.3)
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Figure 2. 1-graviton loop contributions to −iM2(x;x′) corresponding to the three terms of
expression (2.4). Graviton lines are wavy, scalar lines are straight and counterterms are denoted by
a cross.

The 1-graviton loop contribution to the scalar self-mass can be represented as the in-
out matrix element of variations of the action S[g, φ] and the counterterm action ∆S[g, φ]
(discussed in subsection 2.4),

−iM2(x;x′) =
〈

Ωout
∣∣∣T ∗{[ iδS[g, φ]

δφ(x)

]
hφ

×
[
iδS[g, φ]
δφ(x′)

]
hφ

+
[
iδ2S[g, φ]
δφ(x)δφ(x′)

]
hh

+
[
iδ2∆S[g, φ]
δφ(x)δφ(x′)

]
1

}∣∣∣Ωin
〉
. (2.4)

The T ∗-ordering symbol in expression (2.4) indicates that derivatives are taken outside
time-ordering; the subscripts of square-bracketed variations indicate how many perturba-
tive fields contribute to the 1-loop result. The associated diagrams are shown in figure 2.

The propagators mostly depend on the de Sitter length function y(x;x′),

y(x;x′) ≡ aa′H2∆x2(x;x′) ≡ aa′H2
[∥∥∥~x−~x′∥∥∥2

−
(
|η−η′|−iε

)2]
. (2.5)

The scalar propagator is [41, 42],

i∆A(x;x′) = A(y) + k ln(aa′) , k ≡ HD−2

(4π)D2
Γ(D−1)

Γ(D2 )
, (2.6)

where the derivative of A(y) is,

A′(y) = − HD−2

4(4π)D2

{
Γ
(
D

2

)(4
y

)D
2

+ Γ
(
D

2 +1
)(4

y

)D
2 −1

+
∞∑
n=0

[Γ
(
n+D

2 +2
)

Γ(n+3)

(
y

4

)n−D2 +2
− Γ(n+D)

Γ
(
n+D

2 +1
)(y4

)n]}
. (2.7)

The undifferentiated result can be inferred from the coincidence limit,

i∆A(x;x) = k

[
−πcot

(
Dπ

2

)
+ 2 ln(a)

]
. (2.8)

Our gauge fixing term is a de Sitter breaking analog of (1.2) for α = β = 1 [39, 40],

LGF = −1
2a

D−2ηµνFµFν , Fµ = ηρσ
[
hµρ,σ−

1
2hρσ,µ+(D−2)aHhµρδ0

σ

]
. (2.9)
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In this gauge the graviton propagator is the sum of three constant tensor factors times
scalar propagators,

i
[
µν∆ρσ

]
(x;x′) =

∑
I=A,B,C

[
µνT

I
ρσ

]
×i∆I(x;x′) . (2.10)

The A-type propagator is the same as the scalar propagator (2.6). The B-type and C-
type propagators are for minimally coupled scalars with masses M2

B = (D − 2)H2 and
M2
C = 2(D − 3)H2, which can be expressed as,

i∆B = − [(4y−y2)A′(y)+(2−y)k]
2(D−2) , i∆C = (2−y)i∆B

2 + k

D−3 . (2.11)

And the constant tensor factors [µνT Iρσ] are,[
µνT

A
ρσ

]
= 2ηµ(ρησ)ν −

2
D−3ηµνηρσ ,

[
µνT

B
ρσ

]
= −4δ0

(µην)(ρδ
0
σ) , (2.12)[

µνT
C
ρσ

]
= 2EµνEρσ

(D−2)(D−3) , Eµν ≡ (D−3)δ0
µδ

0
ν + ηµν . (2.13)

Here and henceforth, parenthesized indices are symmetrized.
A hatted 2nd rank tensor denotes the trace-reversal,

ĥµν ≡ hµν −
1
2ηµνh . (2.14)

Trace-reversing a single index of the graviton propagator gives,

i
[
µ̂ν∆ρσ

]
= 2ηµ(ρησ)νi∆A + 4δ0

(µην)(ρδ
0
σ)(i∆A−i∆B)−

2δ0
µδ

0
νEρσ

D−3 (i∆A−i∆C) . (2.15)

This form is desirable because the noncovariant tensor factors multiply differences, (i∆A−
i∆B) and (i∆A − i∆C), which are only logarithmically singular at coincidence. Trace-
reversing on both indices gives,

i
[
µ̂ν∆ρ̂σ

]
=
[
2ηµ(ρησ)ν−ηµνηρσ

]
i∆A

+4δ0
(µην)(ρδ

0
σ)(i∆A−i∆B)− 2

(
D−2
D−3

)
δ0
µδ

0
νδ

0
ρδ

0
σ(i∆A−i∆C) . (2.16)

2.2 The primitive 4-point contribution

We might call the middle diagram of figure 2 −iM2
4 (x;x′). From expression (2.4) we see

that it involves the in-out matrix element of,[
iδ2S[g, φ]
δφ(x)δφ(x′)

]
hh

= i∂µ
[√
−g(x) gµν(x)∂νδD(x−x′)

]
hh
, (2.17)

= iκ2∂µ

[
aD−2

(
ĥµρ(x)hνρ(x)− 1

4η
µν ĥρσ(x)hρσ(x)

)
∂νδ

D(x−x′)
]
. (2.18)

The matrix element involves the single trace-reversed propagator (2.15),

− iM2
4 = iκ2∂µ

{
aD−2

(
i
[
µ̂ρ∆ν

ρ

]
(x;x)− 1

4η
µνi
[
ρ̂σ∆ρσ

]
(x;x)

)
∂νδ

D(x−x′)
}
. (2.19)

– 6 –



J
H
E
P
0
3
(
2
0
2
2
)
0
8
8

It can be reduced to give,

−iM2
4 (x;x′) = iκ2∂µ

{
aD−2

(
ηµν

[
−(D−5)D

4 i∆A(x;x) + 1
2

(
D−4
D−3

)
k

]

+δµ0δν0
[
Di∆A(x;x) + (D−1)(D−4)

(D−2)(D−3)k
])
∂νδ

D(x−x′)
}
, (2.20)

where we used the coincidence limits of i∆B and i∆C inferred from (2.11).

2.3 The primitive 3-point contribution

The left hand diagram of figure 2 might be called −iM2
3 (x;x′). From expression (2.4) we

see that it involves the product of two first variations,[
iδS[g, φ]
δφ(x)

]
hφ

= i∂µ
[√
−g gµν∂νφ

]
hφ

= −iκ∂µ
[
aD−2ĥµν∂νφ

]
. (2.21)

The 3-point contribution involves the twice trace-reversed propagator (2.16),

− iM2
3 (x;x′) = −κ2∂µ∂

′
ρ

{
(aa′)D−2i

[
µ̂ν∆ρ̂σ

]
(x;x′) ∂ν∂′σi∆A(x;x′)

}
. (2.22)

Expression (2.16) suggests a natural decomposition into four parts,

−iM2
3A ≡−κ2∂ ·∂′

{
(aa′)D−2i∆A×∂ ·∂′i∆A

}
, (2.23)

−iM2
3B ≡−κ2∂µ∂′

ρ
{

(aa′)D−2i∆A×(∂ρ∂′µ−∂µ∂′ρ)i∆A

}
, (2.24)

−iM2
3C ≡−κ2∂µ∂′

ρ
{

(aa′)D−2(i∆A−i∆B)

×
[
ηµρ∂0∂

′
0−δ0

µ∂ρ∂
′
0+δ0

ρ∂µ∂0−δ0
µδ

0
ρ∇2

]
i∆A

}
, (2.25)

−iM2
3D ≡ 2

(
D−2
D−3

)
κ2∂0∂

′
0

{
(aa′)D−2(i∆A−i∆C)∂0∂

′
0i∆A

}
. (2.26)

The terms inside the curly brackets of expression (2.23) are quadratically divergent,
whereas the curly brackets of (2.24)–(2.26) are only logarithmically divergent. This means
we only need a few terms of i∆A(x;x′),

i∆A(x;x′) =
Γ
(
D
2 −1

)
4πD2 (aa′)D2 −1

{
1

∆xD−2 + D(D−2)
8(D−4)

aa′H2

∆xD−4 + . . .

}

+k
{
−πcot

(
Dπ

2

)
+ ln(aa′) + . . .

}
. (2.27)

The 4-step procedure for reducing expressions (2.23)–(2.26) is,
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1. Act the two inner derivatives on i∆A;1

2. Multiply by the scalar propagators from the graviton propagator, and retain only
those terms which are nonzero in the unregulated limit;

3. Extract derivatives from the quadratically divergent terms to reach a logarithmically
divergent form,

1
∆x2D−2 = ∂2

2(D−2)2

[ 1
∆x2D−4

]
; and (2.28)

4. Localize the divergence and take the unregulated limit on the remainder using the
flat space propagator equation [41],

1
∆x2D−4 = ∂2

2(D−3)(D−4)

[ 1
∆x2D−6

]
, (2.29)

= µD−44πD2 iδD(x−x′)
2(D−3)(D−4)Γ

(
D
2 −1

) + ∂2

2(D−3)(D−4)

[ 1
∆x2D−6−

µD−4

∆xD−2

]
, (2.30)

= µD−44πD2 iδD(x−x′)
2(D−3)(D−4)Γ

(
D
2 −1

) − 1
4∂

2
[ ln(µ2∆x2)

∆x2

]
+O(D−4) . (2.31)

Before applying the 4-step procedure on −iM2
3B(x;x′) it is useful to expand the traces

over µ and ρ,

− iM2
3B(x;x′) = −κ2(∂0+∂′0)∂i

{
(aa′)D−2i∆A(x;x′)(∂0+∂′0)∂ii∆A(x;x′)

}
. (2.32)

A similar expansion of −iM2
3C(x;x′) gives,

−iM2
C = κ2∇2

{
(aa′)D−2(i∆A−i∆B)∂0∂

′
0i∆A

}
+ κ2∂0∂i

{
(aa′)D−2

×(i∆A−i∆B)∂′0∂ii∆A

}
+ κ2∂′0∂i

{
(aa′)D−2(i∆A−i∆B)∂0∂ii∆A

}
+κ2∂0∂

′
0

{
(aa′)D−2(i∆A−i∆B)∇2i∆A

}
. (2.33)

Also note that each divergence is proportional to one of two constants,

A0 ≡ κ2kπcot
(
Dπ

2

)
, A1 ≡

κ2H2

4πD2
µD−4Γ(D2 )

(D−3)(D−4) . (2.34)

1Note that this can produce a delta function when acting on the most singular term,

∂α∂
′
β

[
1

∆xD−2

]
=
δ0
αδ

0
β4πD

2 iδD(x−x′)
Γ
(
D
2 −1

) + (D−2)
[
ηαβ

∆xD − D∆xα∆xβ
∆xD+2

]
.
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Now apply the 4-step procedure to find,

−iM2
3A(x;x′) =

[
A0 + 3

4A1

]
∂µ
[
a2∂µiδ

D(x−x′)
]

+ κ2H2∂ ·∂′

64π4

{
aa′∂2

0

[ 1
∆x2

]

+3
2aa

′∂2
[ ln(µ2∆x2)

∆x2

]
+ 4a2a′

2
H2
[ ln

(
1
4H

2∆x2
)

+1
∆x2

]
+1

2a
2a′

2
H2∂2

0

[
ln2
(

1
4H

2∆x2
)

+3 ln
(

1
4H

2∆x2
)]}

, (2.35)

−iM2
3B(x;x′) = 1

2A1∂i
[
a2∂iiδ

D(x−x′)
]
− κ2H2∇2

64π4

{
aa′∂2

[ ln(µ2∆x2)
∆x2

]

+12a2a′
2
H2
[ ln

(
1
4H

2∆x2
)

+ 3
2

∆x2

]
+ 1

2a
2a′

2
H2∆η2∂2

[ ln(µ2∆x2)
∆x2

]

+4a3a′
3
H4∆η2

[ ln
(

1
4H

2∆x2
)

+ 3
2

∆x2

]}
, (2.36)

−iM2
3C(x;x′) =A1

{
−1

4∂i
[
a2∂iiδ

D(x−x′)
]

+ 1
4 (D−1)∂0

[
a2∂0iδ

D(x−x′)
]}

+κ2H2∇2

64π4

{
1
2aa

′∂2
[ ln(µ2∆x2)

∆x2

]
+ 6aa′∂2

0

[ ln
(

1
4H

2∆x2
)

+2
∆x2

]
+1

2a
2a′

2
H2∂2

[
ln2
(

1
4H

2∆x2
)

+ 1
2 ln

(
1
4H

2∆x2
)]
−a2a′

2
H2∂2

0

[
ln2
(

1
4H

2∆x2
)

+7
2 ln

(
1
4H

2∆x2
)]

+ a3a′
3
H4
[
ln2
(

1
4H

2∆x2
)

+3 ln
(

1
4H

2∆x2
)]

+1
2a

3a′
3
H4∂2

0

(
∆x2

[
ln2(1

4H
2∆x2)+ln

(
1
4H

2∆x2
)
−1
])}

+κ2H2∂0∂
′
0

64π4

{
3
2aa

′∂2
[ ln(µ2∆x2)

∆x2

]
−2aa′∇2

[ ln
(

1
4H

2∆x2
)

+2
∆x2

]
− 3

2a
2a′

2
H2

×∂2 ln
(

1
4H

2∆x2
)

+ 1
2a

2a′
2
H2∇2

[
ln2
(

1
4H

2∆x2
)

+3 ln
(

1
4H

2∆x2
)]}

, (2.37)

−iM2
3D(x;x′) =A1∂0

[
a2∂0iδ

D(x−x′)
]

+ κ2H2∂0∂
′
0

64π4

{
2aa′∂2

[ ln(µ2∆x2)
∆x2

]

+8aa′∂2
0

[ ln
(

1
4H

2∆x2
)

+2
∆x2

]}
. (2.38)

2.4 Renormalization

Reducing the 4-point contribution (2.20) to the 3-point form (2.35)–(2.38) gives,

− iM2
4 (x;x′) = 1

4D(D−5)A0∂
µ
[
a2∂µiδ

D(x−x′)
]
−DA0∂0

[
a2∂0iδ

D(x−x′)
]
. (2.39)
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We can now sum the divergent parts from expressions (2.35)–(2.39),

−iM2
div(x;x′) =

[
1
4 (D−1)(D−4)A0+A1

]
∂µ
[
a2∂µiδ

D(x−x′)
]

+
[
−DA0+ 1

4 (D+4)A1

]
∂0
[
a2∂0iδ

D(x−x′)
]
. (2.40)

Recall that A0 and A1 were defined in (2.34).
The 1-loop divergences (2.40) are canceled by three counterterms,

∆L = −1
2α1 φ φ

√
−g − 1

2α2R∂µφ∂νφg
µν√−g − 1

2α3R∂0φ∂0φg
00√−g . (2.41)

Hence the final diagram of figure 2 is,

−iM2
ctm(x;x′) ≡

[
iδ2∆S

δφ(x)δφ(x′)

]
1

= −α1∂
µ∂′

ρ

[
(aa′)D−2∂µ∂

′
ρ

(
iδD(x−x′)

aD

)]

+α2∂
µ
[
RaD−2∂µiδ

D(x−x′)
]
− α3∂0

[
RaD−2∂0iδ

D(x−x′)
]
, (2.42)

where the Ricci scalar is R = D(D − 1)H2. Comparison between expressions (2.40)
and (2.42) implies,

α1 = 0 , (2.43)

α2R = −κ
2H2µD−4

4πD2

{Γ(D)
Γ
(
D
2
) (D−4)

16 πcot
(
Dπ

2

)
+

Γ
(
D
2
)

(D−3)(D−4)

}
, (2.44)

α3R = −κ
2H2µD−4

4πD2

{Γ(D−1)
Γ
(
D
2
) D

4 πcot
(
Dπ

2

)
−

(D+4)Γ
(
D
2
)

4(D−3)(D−4)

}
. (2.45)

The vanishing of α1 is an artifact of α = β = 1 gauge in the flat space limit (1.3). The
counterterms proportional to α2 and α3 vanish in the flat space limit and their potential
gauge dependence is not known.

Combining the primitive divergence with the counterterms and taking the unregulated
limit gives,

−iM2
div(x;x′)− iM2

ctm(x;x′) =−κ
2H2

4π2 ∂µ
[
a2 ln(a)∂µiδ4(x−x′)

]
+κ2H2

2π2 ∂0

[
a2 ln

(4µ2a

H2

)
∂0iδ

4(x−x′)
]

+O(D−4) . (2.46)

The renormalized self-mass comes from adding these local terms to the nonlocal parts
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of (2.35)–(2.38), and then simplifying the sum,

−iM2
ren(x;x′) =−κ

2H2

4π2 ∂µ
[
a2 ln(a)∂µiδ4(x−x′)

]
+κ2H2

2π2 ∂0

[
a2 ln

(4µ2a

H2

)
∂0iδ

4(x−x′)
]

+ κ2H2∂0∂
′
0

64π4

{
aa′∂0∂

′
0

[ 1
∆x2

]

+2aa′(∂0∂
′
0+∇2)

[ ln(µ2∆x2)
∆x2

]
− 2aa′(4∂0∂

′
0+∇2)

[ ln
(1

4H
2∆x2)+2

∆x2

]}

+κ2H2∇2

64π4

{
−2aa′(∂0∂

′
0+∇2)

[ ln(µ2∆x2)
∆x2

]
− 6aa′∂0∂

′
0

[ ln
(1

4H
2∆x2)+ 11

6
∆x2

]
+1

4a
2a′

2
H2(∂0∂

′
0−∇2) ln(µ2∆x2) + 15

4 a
2a′

2
H2∂0∂

′
0 ln

(
1
4H

2∆x2
)

−a2a′
2
H2∇2

[
3
2 ln2

(
1
4H

2∆x2
)

+ 5
4 ln

(
1
4H

2∆x2
)]}

. (2.47)

3 The linearized effective field equation

The purpose of this section is to use the renormalized self-mass (2.47) to quantum-correct
the linearized effective field equation and then solve this equation for scalar radiation and
for the scalar exchange potential. We begin by explaining the Schwinger-Keldysh formalism
that is used to produce a causal and real effective field equation. The equation is then solved
perturbatively, first for scalar radiation and then for the exchange potential. The section
closes by using the renormalization group to explain the latter.

3.1 Schwinger-Keldysh formalism

The linearized effective field equation is,

√
−g φ(x) = ∂µ

[
a2∂µφ(x)

]
≡ Dφ(x) = J(x) +

∫
d4x′M2(x;x′)φ(x′) , (3.1)

where J(x) is the source. Substituting expression (2.47) for the self-mass results in an
equation with three peculiar properties:

• It isn’t local because M2
ren(x;x′) fails to vanish for x′µ 6= xµ;

• It isn’t causal because M2
ren(x;x′) fails to vanish for x′µ outside the past light-cone

of xµ; and

• It isn’t real because M2
ren(x;x′) has a nonzero imaginary part.

Effective field equations are unavoidably nonlocal but the other two properties derive from
−iM2

ren(x;x′) representing an in-out amplitude rather than a true expectation value. Of
course that is what the Feynman rules produce, and it is exactly the right thing for scatter-
ing amplitudes. However, the “in” and “out” vacua disagree due to the very cosmological
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particle production (1.1) whose effect we seek to study, and causality precludes the S-
matrix from being an observable. It is therefore more sensible to study the evolution of the
expectation value of φ(x) in the presence of a state which was empty in the distant past.
The Schwinger-Keldysh formalism provides a diagrammatic procedure for computing this
which is almost as simple to use as the Feynman rules [43–47]. This expectation value obeys
the Schwinger-Keldysh effective field equations, which are both causal and real [48–50].

It is straightforward to convert the in-out effective field equations to the in-in equations
of the Schwinger-Keldysh formalism. The rules are [51]:

• End points of lines in the diagrammatic formalism have ± polarizations, resulting in
four propagators and 2N 1PI N -point functions;

• The ++ propagator is the same as the Feynman propagator, and the −− propagator
is its complex conjugate;

• The +− and −+ propagators are homogeneous solutions of the propagator equation,
which are obtained from the Feynman propagator by changing the iε in the conformal
coordinate interval from (2.5) to,

∆x2
+− ≡ ‖~x−~x′‖2 − (η−η′+iε)2 , (3.2)

∆x2
−+ ≡ ‖~x−~x′‖2 − (η−η′−iε)2 ; and (3.3)

• Vertices carry only a single polarity, so all their lines are either + or −, with the +
vertices being the same as those of the Feynman rules and the − vertices being their
complex conjugates.

The term “M2(x;x′)” in the Schwinger-Keldysh effective field equation (3.1) is
M2

++(x;x′) +M2
+−(x;x′). It is real because the ± vertex at x′µ results in a relative minus

sign, and because ∆x2
+− = ∆x2

++ for η < η′ whereas ∆x2
+− = (∆x2

++)∗ for η > η′. To see
causality one first eliminates inverse powers of ∆x2,

1
∆x2 = 1

4∂
2 ln(µ2∆x2) , (3.4)

ln(µ2∆x2)
∆x2 = 1

8∂
2
[
ln2(µ2∆x2)− 2 ln(µ2∆x2)

]
. (3.5)

Now note that differences of powers of ++ and +− logarithms are proportional to θ(∆η−
∆r), where ∆η ≡ η − η′ and ∆r ≡ ‖~x− ~x′‖,

ln(µ2∆x2
++)− ln(µ2∆x2

+−) = 2πiθ(∆η−∆r) , (3.6)

ln2(µ2∆x2
++)− ln2(µ2∆x2

+−) = 4πiθ(∆η−∆r) ln[µ2(∆η2−∆r2)] . (3.7)
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In converting expression (2.47) to Schwinger-Keldysh form we will employ the notation
Θ ≡ θ(∆η −∆r) to achieve a more compact form,

M2
SK(x;x′) = κ2H2

4π2

{
∂µ
[
a2 ln(a)∂µ

]
−2∂0

[
a2 ln

(4µ2a

H2

)
∂0

]}
δ4(x−x′)

+κ2H2∂0∂
′
0

128π3

{
−2aa′(∂0∂

′
0+∇2)∂2

[
Θ ln[µ2(∆η2−∆r2)]

]
+ 9aa′∂0∂

′
0∂

2Θ

+4aa′∇2∂2Θ + 2aa′(4∂0∂
′
0+∇2)∂2

[
Θ ln

[
1
4H

2(∆η2−∆r2)
]]}

+κ2H2∇2

128π3

{
2aa′(∂0∂

′
0+∇2)∂2

[
Θ ln[µ2(∆η2−∆r2)]

]
+ 3aa′∂0∂

′
0∂

2Θ

−2aa′∇2∂2Θ + 6aa′∂0∂
′
0∂

2
[
Θ ln

[
1
4H

2(∆η2−∆r2)
]]
− 16a2a′

2
H2∂0∂

′
0Θ

+6a2a′
2
H2∇2Θ + 12a2a′

2
H2∇2

[
Θ ln

[
1
4H

2(∆η2−∆r2)
]]}

. (3.8)

3.2 The scalar mode function

Scalar radiation corresponds to J(x) = 0 and solutions take the form,

φ(x) = u(η, k)ei~k·~x , k ≡ ‖~k‖ . (3.9)

The spatial exponential can be factored out using translation invariance,

Du(η, k) ≡ −a2
[
∂2

0 + 2aH∂0 + k2
]
u(η, k) =

∫
d4x′M2

SK(x;x′)u(η′, k)e−i~k·∆~x. (3.10)

Here any spatial derivatives in the self-mass are replaced by ∂i −→ iki.
Because we only have the 1-loop self-mass, equation (3.10) must be solved perturba-

tively (u = u0 + u1 + . . . ) in powers of the loop-counting parameter κ2 ≡ 16πG. The tree
order solution is,

u0(η, k) = H√
2k3

[
1− ik

aH

]
exp

[
ik

aH

]
a→∞−−−→ H√

2k3

[
1 + k2

2a2H2 + . . .

]
, (3.11)

and it is useful to note,

∂0u0(η, k) = H√
2k3

[
− k2

aH

]
exp

[
ik

aH

]
=⇒ (∂2

0 + k2)
[
a∂0u0(η, k)

]
= 0 . (3.12)

Relation (3.12) means that the 2nd and 3rd lines of expression (3.8) for M2
SK make no

– 13 –



J
H
E
P
0
3
(
2
0
2
2
)
0
8
8

contribution to the 1-loop correction,

Du1(η, k) = κ2H2

4π2

{
−3a3H∂0u0(η, k) + 2 ln

(4µ2a

H2

)
a2k2u0(η, k)

}

−κ
2H4k2a

64π3

{
2(∂2

0 +k2)
∫
d4x′Θ ln[µ2(∆η2−∆r2)]a′3u0(η′, k)e−i~k·∆~x

+(3∂2
0−2k2)

∫
d4x′Θa′3u0(η′, k)e−i~k·∆~x+6∂2

0

∫
d4x′Θ ln[ 1

4H
2(∆η2−∆r2)]

×a′3u0(η′, k)e−i~k·∆~x + a(8∂2
0−3k2)

∫
d4x′Θa′2u0(η′, k)e−i~k·∆~x

−6ak2
∫
d4x′Θ ln

[
1
4H

2(∆η2−∆r2)
]
a′

2
u0(η′, k)e−i~k·∆~x

}
. (3.13)

In reaching this form we have also used,

(∂2
0 +k2)

[
au0(η, k)

]
= 2a3H2u0(η, k) . (3.14)

Equation (3.13) has the general form,

− a2
[
∂2

0 + 2aH∂0 + k2
]
u1(η, k) = S(η) . (3.15)

It is important to understand the relation between the asymptotic late time form of the
source S(η) and the late time form it induces in u1(η, k),

S = a4H2 ln(a) =⇒ u1 → −1
6 ln2(a), S = a4H2 =⇒ u1 → −1

3 ln(a) , (3.16)

S = a3H2 ln(a) =⇒ u1 → +ln(a)
2a , S = a3H2 =⇒ u1 → + 1

2a , (3.17)

S = a2H2 ln(a) =⇒ u1 → +ln(a)
2a2 , S = a2H2 =⇒ u1 → + 1

2a2 . (3.18)

One can see that the leading asymptotic form of the local source terms on the first line
of (3.13) is,

κ2H2

4π2

{
−3a3H∂0u0 + 2 ln

(4µ2a

H2

)
a2k2u0

}
−→ κ2H2

4π2 × 2a2 ln(a)k2u0(0, k) . (3.19)

Because all the nonlocal terms contain at least one factor of k2, we can suppress higher
powers of k2, which carry factors of 1/a2. This simplifies the integrations,

−κ
2H4k2u0(0, k)a

64π3

{
2∂2

0

∫
d4x′Θ ln[µ2(∆η2−∆r2)]a′3 + 3∂2

0

∫
d4x′Θa′3

+6∂2
0

∫
d4x′Θ ln[ 1

4H
2(∆η2−∆r2)]a′3 + 8a∂2

0

∫
d4x′Θa′2

}

−→ κ2H2

4π2 ×
[
ln
(
H

2µ

)]
+ 5

4

]
a2k2u0(0, k) . (3.20)
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In view of (3.18), expressions (3.19) and (3.20) imply,

u1(η, k) −→ κ2H2

4π2 ×
k2 ln(a)
a2H2 ×u0(0, k) . (3.21)

Hence 1-loop graviton corrections do not change the constant freeze-in value of the mode
function (3.11), but they do slow down the rate of approach to this constant.

3.3 The response to a point source

The scalar exchange potential corresponds to J(x) = Kaδ3(~x). The solution has the form
Φ(η, r), so this system is fundamentally 2-dimensional, unlike the 1-dimensional problem
of the mode function u(η, k). The tree order response is [52],

Φ0(t, r) = KH

4π

{
− 1
aHr

+ ln
(
Hr+ 1

a

)}
a→∞−−−→ HK

4π

{
ln(Hr)− 1

2a2H2r2 + . . .

}
. (3.22)

Derivatives of Φ0(η, r) are,

∂0Φ0(η, r) = KH2

4π

{ 1
Hr
− 1
Hr+ 1

a

}
, ∂2

0Φ0(η, r) = −KH
3

4π
1(

Hr+ 1
a

)2 , (3.23)

∇2Φ0(η, r) = Kδ3(~x)
a

+ 1
a2∂0

[
a2∂0Φ0

]
. (3.24)

In addition to DΦ0 = Kaδ3(~x), two useful consequences are,

∂2
[
aΦ0

]
= Kδ3(~x)− 2a3H2Φ0 , ∂2

[
a∂0Φ0

]
= −HKaδ3(~x) . (3.25)

The second identity of (3.25) can be used to perform the spatial integrations in the
1-loop sources induced by the 2nd and 3rd lines of (3.8),

DΦ1(η, r) = κ2H2

4π2

{
Ka ln(a)δ3(~x)− 3a3H∂0Φ0 − 2 ln

(4µ2a

H2

)
∂0
[
a2∂0φ0

]}

+κ2H3K∂0
128π3

{
−2a∂2

∫ η−r

ηi

dη′a′ ln[µ2(∆η2−r2)] + a(4∇2−9∂2
0)
∫ η−r

ηi

dη′a′

+2a(∇2−4∂2
0)
∫ η−r

ηi

dη′a′ ln
[

1
4H

2(∆η2−r2)
]}

+ κ2H2∇2

128π3

{
2a∂2

∫
d4x′Θ

× ln[µ2(∆η2−∆r2)]∂′2[a′Φ0(x′)]− a(2∇2+3∂2
0)
∫
d4x′Θ∂′2[a′Φ0(x′)]

−6a∂2
0

∫
d4x′Θ ln

[
1
4H

2(∆η2−∆r2)
]
∂′

2[a′Φ0(x′)]+a2H2(16∂2
0 +6∇2)

∫
d4x′Θ

×a′2Φ0(x′) + 12a2H2∇2
∫
d4x′Θ ln

[
1
4H

2(∆η2−∆r2)
]
a′

2Φ0(x′)
}
. (3.26)

Each of the source terms on the right hand side of (3.26) can be evaluated, at least for
late times, and then its contribution to Φ1(η, r) can be derived by integrating against the
retarded Green’s function associated with the differential operator D ≡ ∂µa2∂µ,

Gret(x;x′) = − 1
4π

{
δ(∆η−∆r)
aa′∆r +H2θ(∆η−∆r)

}
. (3.27)
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However, it turns out that only the first source term in equation (3.26) makes a significant
contribution at late times,∫

d4x′Gret(x;x′)×κ
2H2

4π2 Ka′ ln(a′)δ3(~x′)

= −κ
2H3K

32π3

{
ln2
(
Hr+ 1

a

)
−

2 ln
(
Hr+ 1

a

)
aHr

}
. (3.28)

The easiest way to see that the other source terms in equation (3.26) do not contribute
at late times is by changing the time variable to a and the space variable to aHr, and then
extracting a factor of a4H2 from both sides of equation (3.26). The left hand side becomes,

D = a4H2
[
−a2 ∂

2

∂a2 − 4a ∂
∂a

+ 1
a2H2

∂2

∂r2 + 2
a2H2r

∂

∂r

]
. (3.29)

For an example of the right hand side, consider the second of the nonlocal source terms,

κ2H3K∂0
128π3

{
a(4∇2−9∂2

0)
∫ η−r

ηi

dη′a′
}

= κ2H2K∂0
128π3

{
a(4∇2−9∂2

0) ln
( 1
Hr+ 1

a

)}
, (3.30)

= a4H2×κ
2H3K

128π3

{
− 16
aHr

+ 16
aHr+1 + 3

(aHr+1)2−
10

(aHr+1)3

}
. (3.31)

The part of expression (3.31) inside the curly brackets goes like 1/(aHr)2 at late times,
which corresponds to a late time contribution to Φ1(η, r) of the same strength according
to (3.29). The strongest nonlocal source goes like ln(a)/aHr. Hence the leading (a � 1,
aHr � 1) form comes from (3.28),

Φ1(t, r) −→ −κ
2H2

8π2 ln(Hr)×HK4π ln(Hr) . (3.32)

3.4 Renormalization group explanation

The h∂φ∂φ interaction of gravity with our scalar is very similar to the A∂B∂B interaction
of a nonlinear sigma model which was recently studied [53]. It was shown that the lead-
ing inflationary logarithms of that model could all be explained by combining a variant
of Starobinsky’s stochastic formalism [54, 55], based on curvature-dependent effective po-
tentials, with a variant of the renormalization group, based on curvature-dependent field
strength renormalizations. The φ→ φ+ constant shift symmetry of our Lagrangian (2.1)
precludes there being any effective potential for φ but it does seem possible to identify a
curvature-dependent field strength renormalization among the three 1-loop counterterms
of expression (2.41),

∆L = −1
2α1 φ φ

√
−g − 1

2α2R∂µφ∂νφg
µν√−g − 1

2α3R∂0φ∂0φg
00√−g . (3.33)

This is the α2 counterterm, which can be viewed as a field strength renormalization of
the original Lagrangian (2.1) with δZ = α2R. Just as for A-B nonlinear sigma model
of ref. [53], the higher derivative counterterm proportional to α1 plays no role because it
cannot be viewed as a renormalization of the bare Lagrangian. Nor can the noncovariant
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counterterm proportional to α3, whose existence is partially due to our use of the simple,
de Sitter breaking gauge [39, 40], and partly to the time-ordering of interactions which
seems unavoidable in the Schwinger-Keldysh formalism [56].

If we accept the α2 counterterm as a field strength renormalization, and employ our
result (2.44) for α2R, the associated γ function is,

Z = 1 + α2R+O(κ4) =⇒ γ ≡ ∂ ln(Z)
∂ ln(µ2) = −κ

2H2

8π2 +O(κ4) . (3.34)

The exchange potential Φ(η, r) represents an integral of the 1PI 2-point function, so the
Callan-Symanzik equation for it should read,[

∂

∂ ln(µ) − 2γ
]
Φ(t, r) = 0 . (3.35)

If we replace the scale parameter µ by r, it will be seen that equation (3.35) exactly explains
the leading 1-loop logarithm from the known tree order result (3.22),

∂Φ1
∂ ln(r) = −2×κ

2H2

8π2 ×Φ0 =⇒ Φ1(t, r) −→ −κ
2H3K

32π3 ln2(Hr) . (3.36)

No similar explanation can be given for the late time correction (3.21) to the mode
function. This seems to be because u1(η, k) is not a leading logarithm effect; indeed, it
vanishes at late times. Replacing µ by a, or any other time variable, is also problematic
because most of the time dependence of the mode function comes in the form of k/aH .

4 Conclusions

Our long term goal is to establish the reality of large loop corrections from inflationary
gravitons (1.1) by purging the effective field equations of gauge dependence. The Introduc-
tion described a procedure which has already been implemented on flat space background
for massless, minimally coupled scalars [33], and for electromagnetism [37]. We plan to
generalize this procedure to de Sitter background and, for that purpose, we have sought
the simplest system which exhibits large graviton loop corrections before the gauge purge.
Although conformally coupled scalars are very simple, neither their mode function nor their
exchange potential shows a large correction at 1-loop order [21]. The next simplest system
is the massless, minimally coupled scalar which we analyzed in this paper. We found that
there is no large correction to the 1-loop mode function (3.21), but the 1-loop exchange
potential (3.32) does experience such a correction. Our main conclusion is therefore that
the massless, minimally coupled scalar (2.1) is the system we have been seeking, and its
exchange potential is the proper thing to study.

Section 2 employed dimensional regularization to compute the fully renormalized 1-loop
graviton contribution to the scalar self-mass (2.47). Although we discovered some small
mistakes in a previous computation [14], which do not alter the conclusion of that work that
there are no growing secular corrections to the mode function, our biggest improvement
is the use of a simple representation which is not burdened with cumbersome de Sitter
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invariant inverse differential operators. In section 3 we used the result to quantum-correct
the linearized, Schwinger-Keldysh effective field equation (3.1). Specializing this equation
to scalar radiation gave relation (3.13) for the 1-loop mode function, whose asymptotic
late time solution is (3.21). We find no correction to the freeze-in amplitude of the mode
function, but we do find a large temporal logarithm correction to the approach to freeze-
in. Specializing (3.1) to the response to a point source gave relation (3.26) for the 1-loop
exchange potential, whose asymptotic late time solution is (3.32). We find a large spatial
logarithm correction to the exchange potential. It is significant that this correction derives
entirely from the first of the source terms on the right hand side of equation (3.26). Of
course that means we can focus on just this term when carrying out the gauge purge, which
is a huge simplification and justifies the effort put into this study.

In section 3.4 we used the renormalization group to explain the large logarithm in the
1-loop exchange potential (3.32). This is significant for two reasons:

• It is the first time a large logarithm from inflationary gravitons has been explained
using the renormalization group; and

• It ties the appearance of a large inflationary logarithm to the existence of the α2
counterterm in (2.41).

The second point is relevant to the continuing controversy over the reality of graviton-
induced logarithms because it means that the absence of inflationary logarithms at `-loop
order requires that divergences proportional to (GR)`∂µφ∂νφgµν

√
−g must vanish, for all

`, and in the absence of any symmetry argument. That seems to strain credulity.
Before closing we should adumbrate the subsequent steps in our program, its relation

to the manner in which one combines Green’s functions to produce an S-matrix, and our
expectations for the fate of large logarithms. Our aim is to purge gauge dependence from
the linearized effective field equations of massless fields. The procedure was described
in some detail in the Introduction, and it has been explicitly carried out on flat space
background for gravtion corrections to the massless, minimally coupled scalar [33] and for
graviton corrections to electromagnetism [37]. What one does is to consider exactly the
same Green’s functions that would contribute to the scattering amplitude for the exchange
of a massless particle between two massive particles. These Green’s functions will include
2-point, 3-point and 4-point diagrams of the massive particle. Instead of going on-shell
in momentum space (which would not be observable in cosmology) one applies a series
relations derived by Donoghue [34–36] which reduce the 3-point and 4-point diagrams to
2-point form, without disturbing the long-range part of the amplitude. The flat space forms
of these relations were given in equations (1.5)–(1.7), and we propose to make the most
straightforward generalizations to de Sitter background. The next step is using the propa-
gator equation for the massless field to regard the various 2-point diagrams as contributions
to a gauge-independent 1PI 2-point function of the massless field, as per equation (1.8). We
then use this 1PI 2-point function to quantum-correct the linearized effective field equation
of the massless field. Gauge independence can be checked by repeating the computation in
the 2-parameter family of simple, de Sitter-breaking gauges for which the graviton propa-
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gator has been derived [38]. Our expectation is that whatever large logarithmic corrections
occurred with the gauge-dependent computation in the simplest gauge [39, 40] will persist
in the gauge-independent computation but with possibly different numerical coefficients.
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