
20

CHAD: Combinatory Homomorphic Automatic
Differentiation

MATTHIJS VÁKÁR and TOM SMEDING, Utrecht University, Netherlands

We introduce Combinatory Homomorphic Automatic Differentiation (CHAD), a principled, pure, provably

correct define-then-run method for performing forward and reverse mode automatic differentiation (AD)

on programming languages with expressive features. It implements AD as a compositional, type-respecting

source-code transformation that generates purely functional code. This code transformation is principled

in the sense that it is the unique homomorphic (structure preserving) extension to expressive languages of

Elliott’s well-known and unambiguous definitions of AD for a first-order functional language. Correctness

of the method follows by a (compositional) logical relations argument that shows that the semantics of the

syntactic derivative is the usual calculus derivative of the semantics of the original program.

In their most elegant formulation, the transformations generate code with linear types. However, the code

transformations can be implemented in a standard functional language lacking linear types: While the cor-

rectness proof requires tracking of linearity, the actual transformations do not. In fact, even in a standard

functional language, we can get all of the type-safety that linear types give us: We can implement all linear

types used to type the transformations as abstract types by using a basic module system.

In this article, we detail the method when applied to a simple higher-order language for manipulating stati-

cally sized arrays. However, we explain how the methodology applies, more generally, to functional languages

with other expressive features. Finally, we discuss how the scope of CHAD extends beyond applications in

AD to other dynamic program analyses that accumulate data in a commutative monoid.

This article provides an extended version of Reference [42], augmenting it with

• examples and interpretation of AD at higher-order types (notably in Section 2);

• an explicit definition of the AD algorithm, directly phrased on a λ-calculus rather than categorical combinators

(Section 7);

• a simplified semantics and correctness proof of the algorithm, based on sets rather than diffeological spaces, to

make the article more accessible (Sections 5 and 8);

• proofs (Section 8);

• an extended discussion of how to implement the proposed algorithm (Section 9);

• a reference implementation of CHAD, in Haskell (Section 9), available at https://github.com/VMatthijs/CHAD (un-

der continuous improvement by Tom Smeding, Matthijs Vákár, and others);

• the concept of CHAD as a more broadly applicable technique for AD (and even other program analyses) on expres-

sive functional languages (Section 11);

• various major rewrites throughout. .

This project has received funding from the European Union’s Horizon 2020 research and innovation programme under

the Marie Skłodowska-Curie grant agreement No. 895827. We thank Michael Betancourt, Philip de Bruin, Bob Carpenter,

Mathieu Huot, Danny de Jong, Ohad Kammar, Gabriele Keller, Pieter Knops, Fernando Lucatelli Nunes, Curtis Chin Jen

Sem, Amir Shaikhha, and Sam Staton for helpful discussions about automatic differentiation.

Authors’ address: M. Vákár and T. Smeding, Utrecht University, Buys Ballotgebouw Princetonplein 5 3584 CC Utrecht

Netherlands; emails: {m.i.l.vakar, t.j.smeding}@uu.nl.
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and

the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be

honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists,

requires prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2022 Copyright held by the owner/author(s). Publication rights licensed to ACM.

0164-0925/2022/08-ART20 $15.00

https://doi.org/10.1145/3527634

ACM Transactions on Programming Languages and Systems, Vol. 44, No. 3, Article 20. Publication date: August 2022.

https://orcid.org/0000-0003-4603-0523
https://orcid.org/0000-0002-4986-6820
https://github.com/VMatthijs/CHAD
mailto:permissions@acm.org
https://doi.org/10.1145/3527634

20:2 M. Vákár and T. Smeding

CCS Concepts: • Theory of computation→ Categorical semantics; • Mathematics of computing→

Automatic differentiation; • Software and its engineering→ Functional languages;

Additional Key Words and Phrases: Automatic differentiation, software correctness, denotational semantics,

functional programming

ACM Reference format:

Matthijs Vákár and Tom Smeding. 2022. CHAD: Combinatory Homomorphic Automatic Differentiation. ACM

Trans. Program. Lang. Syst. 44, 3, Article 20 (August 2022), 49 pages.

https://doi.org/10.1145/3527634

1 INTRODUCTION

Automatic differentiation (AD) is a technique for transforming code that implements a function
f into code that computes f ’s derivative, essentially by using the chain rule for derivatives. Due to
its efficiency and numerical stability, AD is the technique of choice whenever we need to compute
derivatives of functions that are implemented as programs, particularly in high-dimensional set-
tings. Optimization and Monte Carlo integration algorithms, such as gradient descent and Hamil-
tonian Monte Carlo methods, rely crucially on the calculation of derivatives. These algorithms are
used in virtually every machine learning and computational statistics application, and the calcula-
tion of derivatives is usually the computational bottleneck. These applications explain the recent
surge of interest in AD, which has resulted in the proliferation of popular AD systems such as
TensorFlow [1], PyTorch [36], and Stan Math [9].

AD, roughly speaking, comes in two modes: forward mode and reverse mode. When differenti-
ating a function Rn → Rm , forward mode tends to be more efficient ifm � n, while reverse mode
generally is more performant if n � m. As most applications reduce to optimization or Monte
Carlo integration of an objective function Rn → R with n very large (at the time of this article, in
the order of 104–107), reverse mode AD is in many ways the more interesting algorithm [5].

However, reverse AD is also more complicated to understand and implement than forward AD.
Forward AD can be implemented as a structure-preserving program transformation, even on lan-
guages with complex features [38]. As such, it admits an elegant proof of correctness [21]. By
contrast, reverse AD is only well understood as a compile-time source-code transformation that
does not rely on using a runtime interpreter (also called define-then-run style AD) on limited pro-
gramming languages, such as first-order functional languages. Typically, its implementations on
more expressive languages that have features such as higher-order functions make use of inter-
preted define-by-run approaches. These approaches first build a computation graph during run-
time, effectively evaluating the program until a straight-line first-order program is left, and then
they perform automatic differentiation on this new program [9, 36]. Such approaches first have the
severe downside that they can suffer from interpretation overhead. Second, the differentiated code
cannot benefit as well from existing optimizing compiler architectures. As such, these AD libraries
need to be implemented using carefully, manually optimized code, that, for example, does not con-
tain any common subexpressions. This implementation process is precarious and labour intensive.
Furthermore, some whole-program optimizations that a compiler would detect go entirely unused
in such systems.

Similarly, correctness proofs of reverse AD have taken a define-by-run approach or have relied
on non-standard operational semantics, using forms of symbolic execution [2, 8, 31]. Most work
that treats reverse AD as a source-code transformation does so by making use of complex transfor-
mations that introduce mutable state and/or non-local control flow [37, 44]. As a result, we are not
sure whether and why such techniques are correct. Furthermore, AD applications (e.g., in machine

ACM Transactions on Programming Languages and Systems, Vol. 44, No. 3, Article 20. Publication date: August 2022.

https://doi.org/10.1145/3527634

CHAD: Combinatory Homomorphic Automatic Differentiation 20:3

learning) tend to be run on parallel hardware, which can be easier to target with purely functional
code. Another approach has been to compile high-level languages to a low-level imperative repre-
sentation first and then to perform AD at that level [22] using mutation and jumps. This approach
has the downside that we might lose important opportunities for compiler optimizations, such as
map-fusion and embarrassingly parallel maps, which we can exploit if we perform define-then-run
AD on a high-level functional representation.

A notable exception to these define-by-run and non-functional approaches to AD is Elliott’s
work [16], which presents an elegant, purely functional, define-then-run version of reverse AD.
Unfortunately, their techniques are limited to first-order programs over tuples of real numbers. The
workshop paper [43] by Vytiniotis, Belov, Wei, Plotkin, and Abadi proposes two possible extensions
of Elliott’s functional AD to accommodate higher-order functions. However, it does not address
whether or why these extensions would be correct or establish a more general methodology for
applying AD to languages with expressive features.

This article introduces Combinatory Homomorphic Automatic Differentiation (CHAD)

and its proof of correctness. CHAD is based on the observation that Elliott’s work [16] has a unique
structure preserving extension that lets us perform AD on various expressive programming lan-
guage features. We see purely functional higher-order (parallel) array processing languages such
as Accelerate [10] and Futhark [19] as particularly relevant platforms for the machine learning ap-
plications that AD tends to be used for. With that in mind, we detail CHAD when applied to higher-
order functional programs over (primitive) arrays of reals. This article includes the following:

• We introduce CHAD, a categorical perspective on AD, that lets us see AD as a uniquely
determined homomorphic (structure-preserving) functor from the syntax of its source pro-
gramming language (Section 3) to the syntax of its target language (Section 4).
• We explain, from this categorical setting, precisely in what sense reverse AD is the “mirror

image” of forward AD (Section 6).
• We detail how this technique lets us define purely functional define-then-run reverse mode

AD on a higher-order language (Section 7).
• We present an elegant proof of semantic correctness of the resulting AD transformations,

based on a semantic logical relations argument, demonstrating that the transformations cal-
culate the derivatives of the program in the usual mathematical sense (Sections 5 and 8).
• We show that the AD definitions and correctness proof are extensible to higher-order prim-

itives such as a map-operation over our primitive arrays (Section 10).
• We show how our techniques are readily implementable in standard functional languages

to give purely functional, principled, semantically correct, compositional, define-then-run
reverse mode AD (Section 9).
• Finally, we place CHAD in a broader context and explain how it applies, more generally,

to dynamic program analyses that accumulate information in a commutative monoid
(Section 11).

We start by giving a high-level overview of the main insights and theorems in this article in
Section 2.

For a review of the basics of AD, we refer the reader to References [5, 32]. We discuss recent
related work studying AD from a programming languages perspective in Section 12.

2 KEY IDEAS

We start by providing a high-level overview of the article, highlighting the main insights and
theorems underlying our contributions.

ACM Transactions on Programming Languages and Systems, Vol. 44, No. 3, Article 20. Publication date: August 2022.

20:4 M. Vákár and T. Smeding

2.1 Aims of Automatic Differentiation

The basic challenge that automatic differentiation aims to solve is the following. We are given a
program x : realn � t : realm that takes an n-dimensional array of (floating point) real num-
bers as input and produces an m-dimensional array of reals as output. That is, t computes some
mathematical function �t� : Rn → Rm . We want to transform the code of t to1

• a program
−→
D(t)2 that computes the derivative D�t� : Rn → Rn � Rm , in the case of forward

AD;
• a program

←−
D(t)2 that computes the transposed derivative D�t�t : Rn → Rm � Rn , in the

case of reverse AD.

Here, we write Rn for the space of (co)tangent vectors to Rn ; we regard Rn as a commutative
monoid under elementwise addition. We write � for a linear function type to emphasize that
derivatives are linear in the sense of being monoid homomorphisms.

Furthermore, we have some more desiderata for these code transformations:

(1) we want these code transformations to be defined compositionally, so we can easily extend
the source programming language we apply the transformations to with new primitives;

(2) we want these transformations to apply to a wide range of programming techniques, so we
are not limited in our programming style even if we want our code to be differentiated;

(3) we want the transformations to generate purely functional code so we can easily prove its
correctness and deploy it on parallel hardware;

(4) we want the code size of
−→
D(t)2 and

←−
D(t)2 to grow linearly in the size of t , so we can apply

the technique to large code-bases;

(5) we want the time complexity of
−→
D(t)2 and

←−
D(t)2 to be proportional to that of t and, generally,

as low as possible; this means that we can use forward AD to efficiently compute a column
of the Jacobian matrix of partial derivatives, while reverse AD efficiently computes a row of
the Jacobian.

In this article, we demonstrate how the CHAD technique of automatic differentiation satisfies
desiderata (1)–(4); we leave (5) to future work. It achieves this by taking seriously the mathemat-
ical structure of programming languages as freely generated categories and by observing that
differentiation is compositional according to the chain rule.

2.2 The Chain Rule: Pairing and Sharing of Primals and Derivatives

To achieve desideratum (1) of compositionality, it is tempting to examine the chain rule, the key
property of compositionality of derivatives. Given f : Rn → Rm , we write

Tf : Rn → Rm × (Rn � Rm)

x �→ (f (x), v �→ Df (x)(v))

for the function that pairs up the primal function value f (x) with the derivative Df (x) of f at x
that acts on tangent vectors v . The chain rule then gives the following formula for the derivative
of the composition f ;д of f and д:

T(f ;д)(x) = (T1д(T1 f (x)),T2 f (x);T2д(T1 f (x))),

1The program transformations are really called
−→
D(−)2 and

←−
D(−)2 here. In Section 2.2, we discuss that it is better to define

our actual program transformations to have a slightly different type. The second half of those transformations (defined in

Section 2.3) corresponds to these
−→
D(−)2 and

←−
D(−)2.

ACM Transactions on Programming Languages and Systems, Vol. 44, No. 3, Article 20. Publication date: August 2022.

CHAD: Combinatory Homomorphic Automatic Differentiation 20:5

where we write T1 f
def
= Tf ;π1 and T2 f

def
= Tf ;π2 for the first and second components of Tf ,

respectively. We make two observations:

(1) the derivative of the composition f ;д does not only depend on the derivatives of д and f
but also on the primal value of f ;

(2) the primal value of f is used twice: once in the primal value of f ;д and once in its derivative;
we want to share these repeated subcomputations, to address desiderata (4) and (5).

Insight 1. It is wise to pair up computations of primal function values and derivatives and to

share computation between both if we want to calculate derivatives of functions compositionally and

efficiently.

Similarly, we can pair up f ’s transposed (adjoint) derivative Df t , which propagates not tangent
vectors but cotangent vectors:

T∗ f : Rn → Rm × (Rm � Rn)

x �→ (f (x), v �→ Df t (x)(v)).

It then satisfies the following chain rule, which follows from the usual chain rule above together
with the fact that (A;B)t = Bt ;At for linear maps A and B (transposition is contravariant—note
the resulting reversed order of T∗2 f and T∗2 д for reverse AD):

T∗(f ;д)(x) = (T ∗1 д(T ∗1 f (x)),T∗2 д(T ∗1 f (x));T∗2 f (x)).

Again, pairing and sharing the primal and (transposed) derivative computations is beneficial.

CHAD directly implements the operations Tand T∗ as source code transformations
−→
D and

←−
D on

a functional language to implement forward2 and reverse mode AD, respectively. These code trans-
formations are defined compositionally through structural induction on the syntax by exploiting
the chain rules above combined with the categorical structure of programming languages.

2.3 CHAD on a First-order Functional Language

Here, we outline how CHAD looks when applied to programs written in a first-order functional
language. We consider this material known, as it is essentially the algorithm of Reference [16].
However, we present it in terms of a λ-calculus rather than categorical combinators, by applying
the well-known mechanical translations between both formalisms [13]. We hope that this presen-
tation makes the algorithm easier to apply in practice.

We consider a source programming language (see Section 3) where we write τ ,σ , ρ for types
that are either statically sized arrays of n real numbers realn or tuples τ∗σ of types τ ,σ . These
types will be called first-order types in this section.3 We consider programs t of type σ in a typing
context Γ = x1 : τ1, . . . ,xn : τn , where xi are identifiers. We write such typing of programs in a
context as Γ � t : σ . As long as our language has certain primitive operations (which we represent

2For forward AD, we can also choose to implement instead

T′f : (Rn × Rn) → (Rm × Rm)

(x, v) �→ (f (x), Df (x)(v)),

together with its chain rule as code transformations. This leads to a different style of forward AD based on a dual numbers

representation. Reference [21] gives an analysis of this style of forward AD, similar to the treatment of reverse AD and

(non-dual number) forward AD in this article. Although dual numbers forward AD is more efficient in its memory use

and preferable in practical implementations, it does not have an obvious reverse mode variant. See Section 11.1 for more

discussion.
3In the rest of the article, we also consider the unit type 1 a first-order type. These types are also called ground types.

ACM Transactions on Programming Languages and Systems, Vol. 44, No. 3, Article 20. Publication date: August 2022.

20:6 M. Vákár and T. Smeding

schematically),

Γ � t1 : realn1 · · · Γ � tk : realnk

Γ � op(t1, . . . , tk) : realm
,

such as constants (as nullary operations), (elementwise) addition and multiplication of arrays, in-
ner products and certain non-linear functions like sigmoid functions, we can write complex pro-
grams by sequencing together such operations. Figure 1(a) and (b) give some examples of some
programs we can write, where we write real for real1 and indicate shared subcomputations with
let-bindings.

CHAD transforms the types and programs of this source language into types and programs of
a suitably chosen target language (see Section 4) that is a superset of the source language. CHAD
associates to each source language type τ types of

• forward mode primal values
−→
D(τ)1;

we define
−→
D(realn)

def
= realn and

−→
D(τ∗σ)1

def
=
−→
D(τ)1∗−→D(σ)1; that is, for now

−→
D(τ)1 = τ ;

• reverse mode primal values
←−
D(τ)1;

we define
←−
D(realn)

def
= realn and

←−
D(τ∗σ)1

def
=
←−
D(τ)1∗←−D(σ)1; that is, for now

←−
D(τ)1 = τ ;

• forward mode tangent values
−→
D(τ)2;

we define
−→
D(realn)2

def
= realn and

−→
D(τ∗σ) def

=
−→
D(τ)2∗−→D(σ)2;

• reverse mode cotangent values
←−
D(τ)2;

we define
←−
D(realn)2

def
= realn and

←−
D(τ∗σ) def

=
←−
D(τ)2∗←−D(σ)2.

The types
−→
D(τ)1 and

←−
D(τ)1 of primals are Cartesian types, which we can think of as denoting

sets, while the types
−→
D(τ)2 and

←−
D(τ)2 are linear types that denote commutative monoids. That is,

such linear types in our language need to have a commutative monoid structure (0,+). For exam-
ple, realn is the commutative monoid over realn with 0 is the zero vector and (+) as elementwise
addition of vectors. Derivatives and transposed derivatives are then linear functions, that is, homo-
morphisms of this (0,+)-monoid structure. As we will see, we use the monoid structure to initialize
and accumulate (co)tangents in the definition of CHAD.

We extend these operations
−→
D and

←−
D to act not only on types but also on typing contexts

Γ = x1 : τ1, . . . ,xn : τn to produce primal contexts and (co)tangent types:
−→
D(x1 : τ1, . . . ,xn : τn)1 = x1 :

−→
D(τ1)1, . . . ,xn :

−→
D(τn)1

−→
D(x1 : τ1, . . . ,xn : τn)2 =

−→
D(τ1)2∗ · · · ∗−→D(τn)2

←−
D(x1 : τ1, . . . ,xn : τn)1 = x1 :

←−
D(τ1)1, . . . ,xn :

←−
D(τn)1

←−
D(x1 : τ1, . . . ,xn : τn)2 =

←−
D(τ1)2∗ · · · ∗←−D(τn)2.

To each program Γ � t : σ , CHAD then associates programs calculating the forward mode and

reverse mode derivatives
−→
DΓ(t) and

←−
DΓ(t), whose definitions make use of the list Γ of identifiers

that occur in Γ:
−→
D(Γ)1 �

−→
DΓ(t) :

−→
D(σ)1∗(−→D(Γ)2 � −→

D(σ)2)
←−
D(Γ)1 �

←−
DΓ(t) :

←−
D(σ)1∗(←−D(σ)2 � ←−

D(Γ)2).

Observing that each program t computes a differentiable (infinitely differentiable) function �t�
between Euclidean spaces, as long as all primitive operations op are differentiable, the key property
that we prove for these code transformations is that they actually calculate derivatives:

Theorem A (Correctness of CHAD, Theorem 8.3). For any well-typed program (where τi and

σ are first-order types, i.e., realn and tuples of such types)

x1 : τ1, . . . ,xn : τn � t : σ

we have that �
−→
D(t)� = T�t� and �

←−
D(t)� = T∗�t�.

ACM Transactions on Programming Languages and Systems, Vol. 44, No. 3, Article 20. Publication date: August 2022.

CHAD: Combinatory Homomorphic Automatic Differentiation 20:7

Once we fix a semantics for the source and target languages, we can show that this theorem

holds if we define
−→
D and

←−
D on programs using the chain rule. The proof works by plain induction

on the syntax.
For example, we can correctly define reverse mode CHAD on a first-order language as follows

(see Section 7):

←−
DΓ(op(t1, . . . , tk))

def
= let 〈x1, x ′1 〉 =

←−
DΓ(t1) in · · · let 〈xk , x ′k 〉 =

←−
DΓ(tk) in

〈op(x1, . . . , xk), λv. let v = Dopt (x1, . . . , xk ; v) in x ′1•(proj1 v) + · · · + x ′k•(projk v)〉

←−
DΓ(x)

def
= 〈x, λv. coproj

idx(x ;Γ) (v)〉

←−
DΓ(let x = t in s)

def
= let 〈x, x ′ 〉 =

←−
DΓ(t) in let 〈y, y′ 〉 =

←−
DΓ,x (s) in 〈y, λv. let v = y′•v in fst v + x ′•(snd v)〉

←−
DΓ(〈t, s 〉)

def
= let 〈x, x ′ 〉 =

←−
DΓ(t) in let 〈y, y′ 〉 =

←−
DΓ(s) in 〈〈x, y 〉, λv. x ′•(fst v) + y′•(snd v)〉

←−
DΓ(fst t)

def
= let 〈x, x ′ 〉 =

←−
DΓ(t) in 〈fst x, λv. x ′•〈v, 0〉〉

←−
DΓ(snd t)

def
= let 〈x, x ′ 〉 =

←−
DΓ(t) in 〈snd x, λv. x ′•〈0, v〉〉.

Here, we write λv. t for a linear function abstraction (merely a notational convention – it can
simply be thought of as a plain function abstraction) and t•s for a linear function application of
t : τ � σ to the argument s : τ (which again can be thought of as a plain function application).
Furthermore, given a program t of tuple type σ 1∗· · ·∗σn , we write proji t for its ith projection of
type σ i . Similarly, given a program t of linear type σ i , we write coproji (t) for the ith coprojection
〈0, . . . , 0, t , 0, . . . , 0〉 of type σ 1∗· · ·∗σn and we write idx(xi ;x1, . . . ,xn) = i for the index of an
identifier in a list of identifiers. Finally, Dopt here is a linear operation that implements the trans-
posed derivative of the primitive operation op. We note that we crucially need the commutative
monoid structure on linear types to correctly define the reverse mode derivatives of programs
that involve tuples (or n-ary operations for n � 1). Intuitively, matrix transposition (of derivatives)
flips the copying-deleting comonoid structure provided by tuples into the addition-zero monoid
structure.

Insight 2. In functional define-then-run reverse AD, we need to have a commutative monoid

structure on types of cotangents to mirror the comonoid structure coming from tuples: copying fan-

out in the original program gets translated into fan-in in the transposed derivative, for accumulating

incoming cotangents. This leads to linear types of cotangents.

Furthermore, observe that CHAD pairs up primal and (co)tangent values and shares common
subcomputations, as desired. We see that what CHAD achieves is a compositional efficient reverse
mode AD algorithm that computes the (transposed) derivatives of a composite program in terms
of the (transposed) derivatives Dopt of the basic building blocks op. Finally, it does so in a way
that satisfies desiderata (1)–(5).

For example, Figure 1(c) and (d) display the code that forward and reverse mode CHAD, respec-
tively, generate for the source programs of Figure 1(a) and (b). This is the code that is actually
generated by the CHAD code transformations in our Haskell implementation followed by some
very basic simplifications that do not affect time complexity and whose only purpose here is to aid
legibility. For more information about how exactly this code relates to the output one gets when
applying the forward and reverse AD macros in this article to the source programs, see Appendix B.

2.4 Intermezzo: The Categorical Structure of CHAD

While this definition of CHAD on a first-order language straightforwardly follows from the
mathematics of derivatives, it is not immediately clear how to should be extended to source

ACM Transactions on Programming Languages and Systems, Vol. 44, No. 3, Article 20. Publication date: August 2022.

20:8 M. Vákár and T. Smeding

Fig. 1. Forward and reverse AD illustrated on simple first-order functional programs.

languages with more expressive features such as higher-order functions. Indeed, we do not typ-
ically consider derivatives of higher-order functions in calculus. In fact, it is not even clear what
a tangent or cotangent to a function type should be, or, for that matter, what a primal associated
with a value of function type is. To solve this mystery, we employ some category theory.

Observe that the first-order source language we consider can be viewed as a category Syn with
products (see Section 3): Its objects are types τ ,σ , ρ and morphisms t ∈ Syn(τ ,σ) are programs
x : τ � t : σ modulo standard βη-program equivalence (identities are given by variables and
composition is done through let-bindings). This category is freely generated by the objects realn

and morphisms op in the sense that any consistent assignment of objects F (realn) and morphisms
F (op) in a category with products C extends to a unique product preserving functor F : Syn→ C.

Suppose that we are given a categorical model L : Cop → Cat of linear logic (a so-called locally
indexed category—see, for example, Section 9.3.4 in Reference [29]), where we think of the objects
and morphisms of C as the semantics of Cartesian types and their programs and of the objects and
morphisms ofL as the semantics of linear types and their programs. We observe that we can define
categories ΣCL and ΣCL

op (their so-called Grothendieck constructions, or Σ-types, see Section 6)
with objects that are pairs (A1,A2) with A1 an object of C and A2 an object of L and homsets

ΣCL((A1,A2), (B1,B2))
def
= C(A1,B1) × L(A1)(A2,B2) � C(A1,B1 × (A2 � B2))

ACM Transactions on Programming Languages and Systems, Vol. 44, No. 3, Article 20. Publication date: August 2022.

CHAD: Combinatory Homomorphic Automatic Differentiation 20:9

ΣCL
op ((A1,A2), (B1,B2))

def
= C(A1,B1) × L(A1)(B2,A2) � C(A1,B1 × (B2 � A2)).

We prove that these categories have finite products, provided that some conditions are
satisfied: namely that C has finite products and L has indexed finite biproducts (or, equiva-
lently, has indexed finite products and is enriched over commutative monoids). Indeed, then∏

i ∈I (A1i ,A2i) = (
∏

i ∈I A1i ,
∏

i ∈I A2i). In other words, it is sufficient if our model of linear logic
is biadditive. In particular, the categorical model of linear logic that we can build from the syntax
of our target language for CHAD, LSyn : CSynop → Cat, satisfies our conditions (in fact, it is the
initial model that does so), so ΣCSynLSyn and ΣCSynLSynop have finite products. By the universal
property of the source language Syn, we obtain a canonical definition of CHAD.

Theorem B (CHAD from a Universal Property, Corollary 7.1). Forward and reverse mode

CHAD are the unique structure preserving functors
−→
D(−) : Syn→ ΣCSynLSyn

←−
D(−) : Syn→ ΣCSynLSynop

from the syntactic category Syn of the source language to (opposite) Grothendieck construction of the

target language LSyn : CSynop → Cat that send primitive operations op to their derivative Dop and

transposed derivative Dopt , respectively.

The definitions following from this universal property reproduce the definitions of CHAD that
we have given so far. Intuitively, the linear types represent commutative monoids, implementing
the idea that (transposed) derivatives are linear functions in the sense that Df (x)(0) = 0 and
Df (x)(v + v ′) = Df (x)(v) + Df (x)(v ′). We have seen that this commutative monoid structure is
important when writing down the definitions of AD as a source-code transformation.

Seeing that a higher-order language can be viewed as a freely generated Cartesian closed cate-
gory Syn, it is tempting to find a suitable target language such that ΣCSynLSyn and ΣCSynLSynop

are Cartesian closed. Then, we can define CHAD on this higher-order language via Theorem B.

Insight 3. To understand how to perform CHAD on a source language with language feature X
(e.g., higher-order functions), we need to understand the categorical semantics of language feature X
(e.g., categorical exponentials) in categories of the form ΣCL and ΣCL

op . Giving sufficient conditions

on a model of linear logic L : Cop → Cat for such a semantics to exist yields a suitable target

language for CHAD as the initial such model LSyn : CSynop → Cat , with the definition of the

algorithm falling from the universal property of the source language.

2.5 Cartesian Closure of ΣCL and ΣCL
op and CHAD of Higher-order Functions

Having had this insight, we identify conditions on a locally indexed category L : Cop → Cat that
are enough to guarantee that ΣCL and ΣCL

op are Cartesian closed (see Section 6).

Theorem C (Cartesian Closure of ΣCL and ΣCL
op , Theorems 6.1–6.2). Suppose that a lo-

cally indexed category L : Cop → Cat supports (we are intentionally a bit vague here for the sake of

legibility)

• linear !(−) ⊗ (−)-types (copowers);

• linear (−) ⇒ (−)-types (powers);

• Cartesian (−)� (−)-types (types of linear functions);

• linear biproduct types (or equivalently, linear (additive) product types and enrichment ofL over

commutative monoids);

• Cartesian tuple and function types.

Then, ΣCL and ΣCL
op are Cartesian closed with, respective, exponentials:

(A1,A2) ⇒ ΣCL(B1,B2) = (A1 ⇒ B1 × (A2 � B2),A1 ⇒ B2)

ACM Transactions on Programming Languages and Systems, Vol. 44, No. 3, Article 20. Publication date: August 2022.

20:10 M. Vákár and T. Smeding

(A1,A2) ⇒ ΣCL
op (B1,B2) = (A1 ⇒ B1 × (B2 � A2), !A1 ⊗ B2).

In particular, if we extend our target language with (linear) powers, (linear) copowers and (Carte-
sian) function types, then LSyn : CSynop → Cat satisfies the conditions of Theorem C, so we can
extend Theorem B to our higher-order source language. In particular, we find the following defi-
nitions of CHAD for primals and (co)tangents to function types:

−→
D(τ → σ)1

def
=
−→
D(τ)1 →

−→
D(σ)∗(−→D(τ)2 � −→

D(σ)2)
−→
D(τ → σ)2

def
=
−→
D(τ)1 →

−→
D(σ)2

←−
D(τ → σ)1

def
=
←−
D(τ)1 →

←−
D(σ)∗(←−D(σ)2 � ←−

D(τ)2)
←−
D(τ → σ)2

def
= !
←−
D(τ)1 ⊗

←−
D(σ)2.

Interestingly, we see that for higher-order programs, the primal transformations are no longer the

identity. Indeed, the primals
−→
D(τ → σ)1 and

←−
D(τ → σ)1 of the function type τ → σ store not

only the primal function itself, but also its derivative with respect to its argument. The other half
of a function’s derivative, namely the derivative with respect to the context variables over which

it closes, is stored in the tangent space
−→
D(τ → σ)2 and cotangent space

←−
D(τ → σ)2 of the function

type τ → σ .

Insight 4. A forward (respectively, reverse) mode primal to a function type τ → σ keeps track of

both the function and its derivative with respect to its argument (respectively, transposed derivative).

For reverse AD, a cotangent at function type τ → σ (to be propagated back to the enclosing context of

the function), keeps track of the incoming cotangentsv of type
←−
D(σ)2 for each a primal x of type

←−
D(τ)1

on which we call the function. We store these pairs (x ,v) in the type !
←−
D(τ)1⊗

←−
D(σ)2 (which we will see

is essentially a quotient of a list of pairs of type
←−
D(τ)1∗←−D(σ)2). Less surprisingly, for forward AD, a tan-

gent at function type τ → σ (propagated forward from the enclosing context of the function) consists

of a function sending each argument primal of type
−→
D(τ)1 to the outgoing tangent of type

−→
D(σ)2.

On programs, we obtain the following extensions of our definitions for reverse AD:

←−
DΓ(λx . t)

def
= let y = λx .

←−
DΓ,x (t) in 〈λx . let 〈z, z′ 〉 = y x in 〈z, λv. snd (z′•v)〉, λv. case v of !x ⊗ v→ fst ((snd (y x))•v)〉

←−
DΓ(t s)

def
= let 〈x, x ′ctx 〉 =

←−
DΓ(t) in let 〈y, y′ 〉 =

←−
DΓ(s) in let 〈z, x ′arg 〉 = x y in 〈z, λv. x ′ctx•(!y ⊗ v) + y′•(x ′arg•v)〉.

With regards to
←−
DΓ(λx . t): suppose that (λx . t) : τ → σ . Note then that we have Γ,x : τ � t : σ and

hence we get for t ’s derivative that
←−
D(Γ)1,x :

←−
D(τ)1 �

←−
DΓ,x (t) :

←−
D(σ)1∗(←−D(σ)2 � ←−

D(Γ)2∗←−D(τ)2).
Calling the transposed derivative function for t (z ′ in the primal, snd (y x) in the dual) hence gives
us both halves of the transposed derivative (the derivative with respect to the function argument
and the context variables, that is) of the function; we then select the appropriate ones using projec-

tions. Similarly, in
←−
DΓ(t s)we extract the transposed derivative x ′ctx of t with respect to the context

variables from the cotangent of t and obtain the transposed derivative x ′arg of t with respect to
its function arguments from t ’s primal. We combine these two halves of the transposed deriva-
tive with s’s transposed derivative (which we get from its cotangent) to get the correct transposed
derivative for the function application t s .

2.6 Proving CHAD Correct

With these definitions in place, we turn to the correctness of the source-code transformations. To
phrase correctness, we first need to construct a suitable semantics with an uncontroversial notion
of semantic differentiation (see Section 5). We choose to work with a semantics in terms of the
category Set of sets and functions,4 noting that any function f : Rn → Rm has a unique derivative

4In Reference [42], we worked with a semantics in terms of diffeological spaces and differentiable functions, instead, to

ensure that any first-order function is differentiable. This choice amounted to a separation between the proof that every

first-order denotation is differentiable and that AD computes the correct derivative. To make the presentation of this article

ACM Transactions on Programming Languages and Systems, Vol. 44, No. 3, Article 20. Publication date: August 2022.

CHAD: Combinatory Homomorphic Automatic Differentiation 20:11

as long as f is differentiable. We will only be interested in this semantic notion of derivative of first-
order functions for the sake of correctness of AD, and we will not concern ourselves with semantic
derivatives of higher-order functions. We interpret the required linear types in the category CMon

of commutative monoids and homomorphisms.
By the universal properties of the syntax, we obtain canonical, structure-preserving (homomor-

phic) functors �−� : Syn → Set, �−� : CSyn → Set and �−� : LSyn → CMon once we fix
interpretations Rn of realn and well-typed (differentiable) interpretations �op� for each operation
op. These functors define a concrete denotational semantics for our source and target languages.

Having constructed the semantics, we can turn to the correctness proof (of Section 8). Because
calculus does not provide an unambiguous notion of derivative at function spaces, we cannot prove
that the AD transformations correctly implement mathematical derivatives by plain induction on
the syntax. Instead, we use a logical relations argument over the semantics.

Insight 5. Once we show that the (transposed) derivatives of primitive operations op are correctly

implemented, correctness of (transposed) derivatives of all other programs follows from a standard

logical relations construction over the semantics that relates a curve to its primal and (co)tangent

curve. By the chain rule for (transposed) derivatives, all CHAD transformed programs respect the

logical relations. By basic calculus results, CHAD therefore has to compute the (transposed) derivative.

In Section 8, we present an elegant high-level formulation of this correctness argument, using
categorical logical relations techniques (subsconing). To make this argument accessible to a wider
audience of readers, we present here a low-level description of the logical relations argument. The
reader may note that these arguments look significantly different from the usual definitions of
logical relations. That difference is caused by the non-standard Cartesian closed structure of ΣCL
and ΣCL

op and the proof is entirely standard when viewed from the higher level of abstraction
that subsconing gives us.

We first sketch the correctness argument for forward mode CHAD. By induction on the structure
of types, writing (f , f ′) for the product pairing of f and f ′, we construct a logical relation Pτ on
types τ as

Pτ ⊆ (R
d ⇒ �τ �) × (Rd ⇒ (�

−→
D(τ)1� × (R

d � �
−→
D(τ)2�)))

Prealn
def
= {(f ,д) | f is differentiable and д = Tf }

P1
def
= {(x �→ (),x �→ ((), r �→ ()))}

Pτ ∗σ
def
=

{
(((f , f ′), ((д,д′),x �→ r �→ (h(x)(r),h′(x)(r))))) | (f , (д,h)) ∈ Pτ , (f

′, (д′,h′)) ∈ Pσ

}
Pτ→σ

def
=

{
(f , (д,h)) | ∀(f ′, (д′,h′)) ∈ Pτ .(x �→ f (x)(f ′(x)), (x �→ π1(д(x)(д

′(x))),

x �→ r �→ (π2(д(x)(д
′(x))))(h′(x)(r)) + h(x)(r)(д′(x)))) ∈ Pσ

}
.

We extend the logical relation to typing contexts Γ = x1 : τ1, . . . ,xn : τn as PΓ
def
= Pτ1∗· · ·∗τn

. Then,
we establish the following fundamental lemma, which says that all well-typed source language
programs t respect the logical relation.

Lemma 2.1. For any source language program Γ � t : σ and any f : Rd → �Γ�, д : Rd → �
−→
D(Γ)1�,

h : Rd → Rd � �
−→
D(Γ)2� such that (f , (д,h)) ∈ PΓ , we have that (f ; �t�, (д; �

−→
DΓ(t)�;π1,x �→ r �→

π2(�
−→
DΓ(t)�(д(x)))(h(x)(r)))) ∈ Pσ .

more accessible, we have chosen to simply work with sets and functions and to prove differentiability of every first-order

denotation simultaneously in the proof that AD computes the correct derivative.

ACM Transactions on Programming Languages and Systems, Vol. 44, No. 3, Article 20. Publication date: August 2022.

20:12 M. Vákár and T. Smeding

The proof goes via induction on the typing derivation of t . The main remaining step in the argu-
ment is to note that any tangent vector at �τ1∗ · · · ∗τn� � RN , for first-order τi , can be represented
by a curve R→ �τ1∗ · · · ∗τn�.

Similarly, for reverse mode CHAD, we define, by induction on the structure of types, a logical
relation Pτ on types τ (and, as before, we also define PΓ = Pτ1∗· · ·∗τn

for typing contexts Γ = x1 :
τ1, . . . ,xn : τn):

Pτ ⊆ (R
d → �τ �) × (Rd → (�

←−
D(τ)1� × (�

←−
D(τ)2� � Rd)))

Prealn
def
=

{
(f ,д) | f is differentiable and ,д = T∗ f

}
P1

def
= {(x �→ (),x �→ ((),v �→ 0))}

Pτ ∗σ
def
=

{
(((f , f ′), ((д,д′),x �→ v �→ h(x)(π1v) + h

′(x)(π2v)))) | (f , (д,h)) ∈ Pτ , (f
′, (д′,h′)) ∈ Pσ

}
Pτ→σ

def
=

{
(f , (д,h)) | ∀(f ′, (д′,h′)) ∈ Pτ .(x �→ f (x)(f ′(x))), (x �→ π1(д(x)(д

′(x))),

x �→ v �→ h(x)(!д′(x) ⊗ v) + h′(x)((π2(д(x)(д
′(x))))v)) ∈ Pσ

}
.

Then, we establish the following fundamental lemma.

Lemma 2.2. For any source language program Γ � t : σ and any f : Rd → �Γ�, д : Rd → �
←−
D(Γ)1�,

h : Rd → �
←−
D(Γ)2� � Rd such that (f , (д,h)) ∈ PΓ , we have that (f ; �t�, (д; �

←−
DΓ(t)�;π1,x �→ v �→

h(x)(π2(�
←−
DΓ(t)�(д(x)))(v)))) ∈ Pσ .

The proof goes via induction on the typing derivation of t . Correctness follows from the funda-
mental lemma by observing that any cotangent vector at �τ1∗ · · · ∗τn� � RN , for first-order τi , can
be represented by a curve R→ �τ1∗ · · · ∗τn�.

We obtain our main theorem, Theorem A, but now for our CHAD algorithms applied to a higher-
order source language.

2.7 A Practical Implementation in Haskell

Next, we address the practicality of our method (in Section 9). The code transformations we employ
are not too daunting to implement and they are well behaved in the sense that the derivative code
they generate grows linearly in the size of the original source code. However, the implementation
of the required linear types presents a challenge. Indeed, types like !(−) ⊗ (−) and (−)� (−) are
absent from languages such as Haskell and OCaml. Luckily, in this instance, we can implement
them using abstract data types by using a (basic) module system:

Insight 6. Under the hood, !τ ⊗σ can consist of a list of values of type τ∗σ . Its API ensures that the

list order and the difference between xs ++ [(t , s), (t , s ′)] and xs ++ [(t , s + s ′)] (or xs and xs ++ [(t , 0)])
cannot be observed: as such, it is a quotient type. Meanwhile, τ � σ can be implemented as a standard

function type τ → σ with a limited API that enforces that we can only ever construct linear functions:

as such, it is a subtype.

This idea leads to our reference implementation of CHAD in Haskell (available at
https://github.com/VMatthijs/CHAD), which generates perfectly standard simply typed functional
code that is given a bit of extra type-safety with the linear types, implemented as abstract types. To
illustrate what our method does in practice, we consider two programs of our higher-order source
language, that we may want to differentiate in Figure 2(a) and (b). The forward and reverse mode
derivatives that our CHAD implementation generates for these programs are listed in Figure 2(c)

ACM Transactions on Programming Languages and Systems, Vol. 44, No. 3, Article 20. Publication date: August 2022.

https://github.com/VMatthijs/CHAD

CHAD: Combinatory Homomorphic Automatic Differentiation 20:13

Fig. 2. Forward and reverse AD illustrated on higher-order functional array processing programs. The parts of
the programs that involve AD on higher-order functions are marked in blue. Observe that in (c) (respectively,
(d)), the primal value associated with the function f from program (a) (respectively, (b)) computes both the
original function f as well as its derivative (respectively, transposed derivative) with respect to its argument
z (respectively, x2i). In (c), the tangent f ′ to f is produced by propagating forwards the tangent x ′ to the
context variable x that f captures, by using f ’s derivative with respect to x . This lets us correctly propagate
forwards the contributions to ys ′ from both f ’s dependence on its argument z and on its context variable x .
Dually, in (d), the cotangent to f , which we construct from the cotangent ys ′, is consumed by propagating it
backwards to the cotangent x1′ to the context variable x1 that f captures, by using f ’s transposed derivative
with respect to x1. Meanwhile, the adjoint x2′ is constructed using the part of the primal of f that captures
f ’s transposed derivative with respect to x2i .

and (d), again modulo minor simplifications that aid legibility but have no significant runtime
implications.5

In Section 9, we also phrase the correctness proof of the AD transformations in elementary
terms, such that it holds in the applied setting where we use abstract types to implement linear
types. We show that our correctness results are meaningful, as they make use of a denotational se-
mantics that is adequate with respect to the standard operational semantics. Furthermore, to stress

5For information on the exact simplifications performed, see Appendix B.

ACM Transactions on Programming Languages and Systems, Vol. 44, No. 3, Article 20. Publication date: August 2022.

20:14 M. Vákár and T. Smeding

the applicability of our method, we show in Section 10 that it extends to higher-order (primitive)
operations, such as map.

Finally (in Section 11), we zoom out and reflect on how this method generalizes. The crux of
CHAD is in the following steps:

• view the source language as a freely generated category Syn with some appropriate struc-
tureS (such as Cartesian closure, coproducts, (co)inductive types, iteration), generated from
objects realn and morphisms op;
• find a suitable target language LSyn (with linear types arising from the effect of commutative

monoids) for the translation such that ΣCSynLSyn and ΣCSynLSynop are categories with the
structure S; in our experience, this is possible for most common choices of S corresponding
to programming language constructs;
• then, by the universal property of Syn, we obtain unique structure preserving (homomor-

phic) functors
−→
D : Syn → ΣCSynLSyn and

←−
D : Syn → ΣCSynLSynop defining forward and

reverse mode AD transformations, as soon as we fix their action on op (and realn) to imple-
ment the derivative of the operations;
• the correctness of these AD methods follows by a standard categorical logical relations ar-

gument as the subscones
−−−−−→
SScone and

←−−−−−
SScone tend to also be categories with the structure S

for most choices of S.

Insight 7. The definition and correctness proof of forward and reverse AD on expressive pro-

gramming languages follow automatically, by viewing the algorithms as structure preserving functors
−→
D : Syn→ ΣCSynLSyn and

←−
D : Syn→ ΣCSynLSynop .

We conclude by observing that, in this sense, CHAD is not specific to automatic differentiation
at all. We can choose different generators than realn and op for Syn and different mappings of these

generators under
−→
D and

←−
D . Doing so lets CHAD derive various other dynamic program analyses

that accumulate data in a commutative monoid, together with their correctness proofs by logical
relations (see Section 11.3).

3 λ-CALCULUS AS A SOURCE LANGUAGE FOR AUTOMATIC DIFFERENTIATION

As a source language for our AD translations, we can begin with a standard, simply typed λ-
calculus that has ground types realn of statically sized6 arrays of n real numbers, for all n ∈ N,
and sets Opm

n1, ...,nk
of primitive operations op for all k,m,n1, . . . ,nk ∈ N. These operations will

be interpreted as differentiable7 functions (Rn1 × · · · × Rnk) → Rm . Examples to keep in mind for
op include

• constants c ∈ Opn for each c ∈ Rn , for which we slightly abuse notation and write c() as c;
• elementwise addition and product (+), (∗)∈Opn

n,n and matrix-vector product (�) ∈Opn
n ·m,m ;

• operations for summing all the elements in an array: sum ∈ Op1
n ;

• some non-linear functions like the sigmoid function ς ∈ Op1
1.

We intentionally present operations in a schematic way, as primitive operations tend to form a
collection that is added to in a by-need fashion, as an AD library develops. The precise operations

6Here, we work with statically sized arrays to simplify the theoretical development. However, in our implementation, we

show that CHAD applies equally well to types of varying dimension such as dynamically sized arrays.
7Observe that this restriction does not exclude, for example, functions that are differentiable almost everywhere like ReLU

in a meaningful way, as such functions can be approximated with differentiable functions. Given how coarse an approxima-

tion real numbers already are to the reality of floating point arithmetic, the distinction between everywhere differentiable

and almost-everywhere differentiable is not meaningful, in practice.

ACM Transactions on Programming Languages and Systems, Vol. 44, No. 3, Article 20. Publication date: August 2022.

CHAD: Combinatory Homomorphic Automatic Differentiation 20:15

Fig. 3. Typing rules for the AD source language.

needed will depend on the applications. In statistics and machine learning applications, Op tends
to include a mix of multi-dimensional linear algebra operations and mostly one-dimensional non-
linear functions. A typical library for use in machine learning would work with multi-dimensional
arrays (sometimes called “tensors”). We focus here on one-dimensional arrays as the issues of how
precisely to represent the arrays are orthogonal to the concerns of our development.

The types τ ,σ , ρ and terms t , s, r of our AD source language are as follows:

τ ,σ , ρ ::= types

| realn real arrays

| 1 nullary product

t , s, r ::= terms

x identifier

| letx = t in s let-bindings

| op(t1, . . . , tk) operations

| τ1∗τ2 binary product

| τ → σ function

| 〈〉 | 〈t , s〉 product tuples

| fst t | snd t product projections

| λx . t function abstraction

| t s function application

The typing rules are in Figure 3. We use the usual conventions for free and bound variables and
write the capture-avoiding substitution of x with s in t as t[s/x]. We employ the usual syntactic

sugar λ〈x ,y〉. t
def
= λz. t[fst z/x ,

snd z/y], and we write real for real1. As Figure 4 displays, we consider
the standard βη-equational theory for our language, where equations hold on pairs of terms of the
same type in the same context. We could consider further equations for our operations, but we do
not as we will not need them.

This standard λ-calculus is widely known to be equivalent to the free Cartesian closed category
Syn generated by the objects realn and the morphisms op (see Reference [27]).

• Syn has types τ ,σ , ρ as objects;
• Syn has morphisms t ∈ Syn(τ ,σ) that are in 1-1 correspendence with terms x : τ � t : σ up

to βη-equivalence (which includes α-equivalence);
• identities are represented by x : τ � x : τ ;
• composition of x : τ � t : σ and y : σ � s : ρ is represented by x : τ � lety = t in s : ρ;
• 1 and τ∗σ represent nullary and binary product, while τ → σ is the categorical exponential.

Syn has the following well-known universal property.

Proposition 3.1 (Universal Property of Syn). For any Cartesian closed category (C,1,×,⇒),
we obtain a unique Cartesian closed functor F : Syn → C, once we choose objects F (realn) of C as

well as, for each op ∈ Opm
n1, ...,nk

, make well-typed choices of C-morphisms F (op) : (F (realn1) ×

· · · × F (realnk)) → Frealm .

4 LINEAR λ-CALCULUS AS AN IDEALISED AD TARGET LANGUAGE

As a target language for our AD source code transformations, we consider a language that extends
the language of Section 3 with limited linear types. We could opt to work with a full linear logic as
in Reference [3] or Reference [6]. Instead, however, we will only include the bare minimum of linear

ACM Transactions on Programming Languages and Systems, Vol. 44, No. 3, Article 20. Publication date: August 2022.

20:16 M. Vákár and T. Smeding

Fig. 4. Standard βη-laws for products and functions. We write
#x1, ...,xn
= to indicate that the variables

x1, . . . ,xn need to be fresh in the left hand side. As usual, we only distinguish terms up to α-renaming
of bound variables.

type formers that we actually need to phrase the AD transformations. The resulting language is
closely related to, but more minimal than, the Enriched Effect Calculus of Reference [14]. We limit
our language in this way because we want to stress that the resulting code transformations can
easily be implemented in existing functional languages such as Haskell or OCaml. As we discuss
in Section 9, the idea will be to make use of a module system to implement the required linear
types as abstract data types.

In our idealised target language, we consider linear types (aka computation types) τ , σ , ρ, in

addition to the Cartesian types (value types) τ , σ , ρ that we have considered so far. We think of
Cartesian types as denoting sets and linear types as denoting sets equipped with an algebraic
structure. The Cartesian types will be used to represent sets of primals. The relevant algebraic
structure on linear types, in this instance, turns out to be that of a commutative monoid, as this
algebraic structure is needed to phrase automatic differentiation algorithms. Indeed, we will use
the linear types to denote sets of (co)tangent vectors. These (co)tangents form a commutative
monoid under addition.

Concretely, we extend the types and terms of our language as follows:

τ , σ , ρ ::= linear types

| realn real array

| 1 unit type

τ , σ , ρ ::= Cartesian types

| . . . as in Section 3

t, s, r ::= terms

| . . . as in Section 3

| v linear identifier

| let v = t in s linear let-binding

| τ ∗σ binary product

| τ → σ power

| !τ ⊗ σ copower

| τ � σ linear function

| lop(t1, . . . , tk ; s) linear operation

| !t ⊗ s | case t of !y ⊗ v→ s copower intro/elim

| λv. t | t•s abstraction/application

| 0 | t + s monoid structure.

We work with linear operations lop ∈ LOpm1, ...,mr

n1, ...,nk ;n′1, ...,n
′
l

, which are intended to represent differ-

entiable functions

(Rn1 × · · · × Rnk × Rn′1 × · · · × Rn′
l) → Rm1 × · · ·Rmr

that are linear (in the sense of respecting 0 and +) in the last l arguments but not in the first k . We
write

LDom(lop)
def
= realn

′
1∗ · · · ∗realn

′
l and CDom(lop)

def
= realm1∗ · · · ∗realmr

for lop ∈ LOpm1, ...,mr

n1, ...,nk ;n′1, ...,n
′
l

. These operations can include dense and sparse matrix-vector

multiplications, for example. Their purpose is to serve as primitives to implement deriva-
tives Dop(x1, . . . ,xk ; v) and transposed derivatives Dopt (x1, . . . ,xk ; v) of the operations op from
the source language as terms with free variables x1, . . . ,xk , v that are linear in v. In fact, one can
also opt to directly include primitive linear operations

Dop ∈ LOpm
n1, ...,nk ;n1, ...,nk

Dopt ∈ LOpn1, ...,nk
n1, ...,nk ;m

in LOp as the derivatives of each (Cartesian) operation op ∈ Op.

ACM Transactions on Programming Languages and Systems, Vol. 44, No. 3, Article 20. Publication date: August 2022.

CHAD: Combinatory Homomorphic Automatic Differentiation 20:17

Fig. 5. Typing rules for the idealised AD target language with linear types, which we consider on top of the
rules of Figure 3.

Fig. 6. Equational rules for the idealised, linear AD language, which we use on top of the rules of Figure 4.
In addition to standard βη-rules for !(−) ⊗ (−)- and �-types, we add rules making (0,+) into a commutative
monoid on the terms of each linear type as well as rules that say that terms of linear types are homomor-
phisms in their linear variable.

In addition to the judgement Γ � t : τ , which we encountered in Section 3, we now consider
an additional judgement Γ; v : τ � t : σ . While we think of the former as denoting a function
between sets, we think of the latter as a function from the set that Γ denotes to the set of monoid
homomorphisms from the denotation of τ to that of σ .

Figures 3 and 5 display the typing rules of our language.
We consider the βη+-equational theory of Figures 4 and 6 for our language, where equations

hold on pairs of terms of the same type in the same context. It includes βη-rules as well as com-
mutative monoid and homomorphism laws.

5 SEMANTICS OF THE SOURCE AND TARGET LANGUAGES

5.1 Preliminaries

5.1.1 Category Theory. We assume familiarity with categories, functors, natural transforma-
tions, and their theory of (co)limits and adjunctions. We write:

ACM Transactions on Programming Languages and Systems, Vol. 44, No. 3, Article 20. Publication date: August 2022.

20:18 M. Vákár and T. Smeding

• unary, binary, and I -ary products as 1, X1 × X2, and
∏

i ∈I Xi , writing πi for the projections
and (), (x1,x2), and (xi)i ∈I for the tupling maps;
• unary, binary, and I -ary coproducts as 0, X1 + X2, and

∑
i ∈I Xi , writing ιi for the injections

and [], [x1,x2], and [xi]i ∈I for the cotupling maps;
• exponentials as Y ⇒ X , writing Λ and ev for currying and evaluation.

5.1.2 Commutative Monoids. A monoid (|X |, 0X ,+X) consists of a set |X | with an element 0X ∈

|X | and a function (+X) : |X | × |X | → |X | such that 0X +X x = x = x +X 0X for any x ∈ |X |
and x +X (x

′ +X x ′′) = (x +X x ′) +X x ′′ for any x ,x ′,x ′′ ∈ |X |. A monoid (|X |, 0X ,+X) is called
commutative if x +X x ′ = x ′ +X x for all x ,x ′ ∈ |X |. Given monoids X and Y , a function f : |X | →
|Y | is called a homomorphism of monoids if f (0X) = 0Y and f (x +X x ′) = f (x) +Y f (x ′). We write
CMon for the category of commutative monoids and their homomorphisms. We will frequently
simply write 0 for 0X and + for +X , if X is clear from context. We will sometimes write

∑n
i=1 xi for

((x1 + x2) + · · ·) · · · + xn .

Example 5.1. The real numbers R form a commutative monoid with 0 and + equal to the number
0 and addition of numbers.

Example 5.2. Given commutative monoids (Xi)i ∈I , we can form the product monoid
∏

i ∈I Xi

with underlying set
∏

i ∈I |Xi |, 0 = (0Xi
)i ∈I and (xi)i ∈I + (yi)i ∈I

def
= (xi +yi)i ∈I . Given a set I and a

commutative monoidX , we can form the power monoid I ⇒ X
def
=

∏
i ∈I X as the I -fold self-product

monoid.

Example 5.2 gives the categorical product in CMon. We can, for example, construct a commuta-

tive monoid structure on any Euclidean space Rk def
= {0, . . . ,k − 1} ⇒ R by combining the one on

R with the power monoid structure.

Example 5.3. Given commutative monoids (Xi)i ∈I , we can form the coproduct monoid
∑

i ∈I Xi

with underlying set
{
(xi)i ∈I ∈

∏
i ∈I Xi |

{
j ∈ I | x j � 0X j

}
is finite

}
, 0 = (0Xi

)i ∈I and (xi)i ∈I +

(yi)i ∈I
def
= (xi + yi)i ∈I . Given a set I and a commutative monoid X , we can form the copower

monoid !I ⊗ X
def
=

∑
i ∈I X as the I -fold self-coproduct monoid. We will often write !i ⊗ x

def
= (if j =

i then x else 0X)j ∈I ∈ !I ⊗ X .

Example 5.3 gives the categorical coproduct in CMon.

Example 5.4. Given commutative monoidsX andY , we can form the commutative monoidX �
Y of homomorphisms from X to Y . We define |X � Y |

def
= CMon(X ,Y), 0X �Y

def
= (x �→ 0Y), and

f +X �Y д
def
= (x �→ f (x) +Y д(x)).

Example 5.4 gives the categorical internal hom in CMon. Commutative monoid homomor-
phisms !I ⊗ X → Y are in 1-1-correspondence with functions I → |X � Y |.

Finally, a category C is called CMon-enriched if we have a commutative monoid structure
on each homset C(C,C ′) and function composition gives monoid homomorphisms C(C,C ′) →
C(C ′,C ′′) � C(C,C ′′). In a category C with finite products, these products are well-known to
be biproducts (i.e., simultaneously products and coproducts) if and only if C is CMon-enriched

(for more details, see, for example, Reference [17]): define []
def
= 0 and [f ,д]

def
= π1; f + π2;д and,

conversely, 0
def
= [] and f + д

def
= (id, id); [f ,д].

ACM Transactions on Programming Languages and Systems, Vol. 44, No. 3, Article 20. Publication date: August 2022.

CHAD: Combinatory Homomorphic Automatic Differentiation 20:19

5.2 Abstract Denotational Semantics

By the universal property of Syn (Proposition 3.1), the language of Section 3 has a canonical inter-
pretation in any Cartesian closed category (C,1,×,⇒), once we fix C-objects �realn� to interpret
realn and C-morphisms �op� ∈ C(�Dom(op)�, �realm�) to interpret op ∈ Opm

n1, ...,nk
. That is, any

Cartesian closed category with such a choice of objects and morphisms is a categorical model of

the source language of Section 3. We interpret types τ and contexts Γ as C-objects �τ � and �Γ�:

�x1 : τ1, . . . ,xn : τn�
def
= �τ1�× · · · × �τn� �1�

def
= 1 �τ∗σ�

def
= �τ �× �σ� �τ → σ�

def
= �τ �⇒ �σ�.

We interpret terms Γ � t : τ as morphisms �t� in C(�Γ�, �τ �):

�op(t1, . . . , tk)�
def
= (�t1�, . . . , �tk �); �op�

�x1 : τ1, . . . ,xn : τn � xk : τk �
def
= πk �letx = t in s�

def
= (id, �t�); �s�

�〈〉�
def
= () �〈t , s〉�

def
= (�t�, �s�)

�fst t�
def
= �t�;π1 �snd t�

def
= �t�;π2 �λx . t�

def
= Λ(�t�) �t s�

def
= (�t�, �s�); ev.

We discuss how to extend �−� to apply to the full target language of Section 4 by defining an
appropriate notion of categorical model for the target language of Section 4.

Definition 5.5 (Categorical Model of the Target Language). By a categorical model of the target
language, we mean the following data:

• A categorical model C of the source language.
• A locally indexed category (see, for example, Section 9.3.4 in Reference [29])L : Cop → Cat,

i.e.,8 a (strict) contravariant functor from C to the category Cat of categories, such that
obL(C) = obL(C ′) and L(f)(L) = L for any object L of obL(C) and any f : C ′ → C in C.
• L is biadditive: each category L(C) has (chosen) finite biproducts (1,×) and L(f) preserves

them, for any f : C ′ → C in C, in the sense that L(f)(1) = 1 and L(f)(L × L′) = L(f)(L) ×
L(f)(L′).
• L supports !(−)⊗ (−)-types and⇒-types: L(π1) has a left adjoint !C ′ ⊗C − and a right adjoint

functor C ′ ⇒C −, for each product projection π1 : C × C ′ → C in C, satisfying a Beck-
Chevalley condition9: !C ′ ⊗C L = !C ′ ⊗C ′′ L and C ′ ⇒C L = C ′ ⇒C ′′ L for any C,C ′′ ∈ obC.
We simply write !C ′ ⊗ L and C ′ ⇒ L. We write Φ and Ψ for the natural isomorphisms

L(C)(!C ′ ⊗ L,L′)
�
−→ L(C ×C ′)(L,L′) and L(C ×C ′)(L,L′)

�
−→ L(C)(L,C ′ ⇒ L′).

• L supports Cartesian �-types: the functor Cop → Set; C �→ L(C)(L,L′) is representable
for any objects L,L′ of L. That is, we have objects L � L′ of C with isomorphisms Λ :

L(C)(L,L′)
�
−→ C(C,L � L′), natural in C .

• L interprets primitive types and operations: we have a choice �realn� ∈ obL to interpret
realn and, for each lop ∈ LOpm1, ...,mr

n1, ...,nk ;n′1, ...,n
′
l

, compatibleL-morphisms �lop� inL(�realn1�×

· · · × �realnk �)(�LDom(lop)�, �CDom(lop)�).

In particular, any biadditive model of intuitionistic linear/non-linear logic [6, 17, 35] is such a
categorical model, as long as we choose interpretations for primitive types and operations.

8A locally C-indexed category L can be equivalently defined as a category L enriched over the presheaf category

[Cop, Set]. We prefer to consider locally indexed categories as special cases of indexed categories, instead, as CHAD’s

natural generalization to data types of varying dimension, such as unsized arrays or sum types, requires us to work with

more general (non-locally) indexed categories [30].
9This condition says that the types !C′ ⊗C L and C′ ⇒C L do not depend on C . We need to add this condition to match

the syntax of the target language, in which copowers and powers only depend on two argument types.

ACM Transactions on Programming Languages and Systems, Vol. 44, No. 3, Article 20. Publication date: August 2022.

20:20 M. Vákár and T. Smeding

Next, we turn to the interpretation of our target language in such models, which gives an oper-
ational intuition of the different components of a categorical model. We can interpret linear types
τ as objects �τ � of L:

�1�
def
= 1 �τ∗σ�

def
= �τ � × �σ� �τ → σ�

def
= �τ �⇒ �σ� �!τ ⊗ σ�

def
= !�τ � ⊗ �σ�.

We can interpret τ � σ as the C-object �τ � σ�
def
= �τ � � �σ�. Finally, we can interpret terms

Γ � t : τ as morphisms �t� in C(�Γ�, �τ �) and terms Γ; v : τ � t : σ as �t� in L(�Γ�)(�τ �, �σ�):

�lop(t1, . . . , tk ; s)�
def
= �s�;L((�t1�, . . . , �tk �))(�lop�)

�Γ; v : τ � v : τ �
def
= id�τ � �letx = t in s�

def
= L((id, �t�))(�s�) �let v = t in s�

def
= �t�; �s�

�〈〉�
def
= () �〈t , s〉�

def
= (�t�, �s�) �fst t�

def
= �t�;π1 �snd t�

def
= �t�;π2

�λx . t�
def
= Ψ(�t�) �t s�

def
= L((id, �s�))(Ψ−1(�t�))

�!t ⊗ s�
def
= L((id, �t�))(Φ(id)); (!�σ� ⊗ �s�) �case t of !y ⊗ v→ s�

def
= �t�; Φ−1(�s�)

�λv. t�
def
= Λ(�t�) �t•s�

def
= Λ−1(�t�); �s� �0�

def
= [] �t + s�

def
= (id, id); [�t�, �s�].

Observe that we interpret 0 and + using the biproduct structure of L.

Proposition 5.6. The interpretation �−� of the language of Section 4 in categorical models is both

sound and complete with respect to the βη+-equational theory: t
βη+
= s iff �t� = �s� in each such model.

The proof is a minor variation of syntax-semantics correspondences developed in detail in chap-
ters 3 and 5 of Reference [41], where we use the well-known result that finite products in a category
are biproducts iff the category is enriched over commutative monoids [17]. Soundness follows by
case analysis on the βη+-rules. Completeness follows by the construction of the syntactic model
LSyn : CSynop → Cat:

• CSyn extends its full subcategory Syn with Cartesian �-types;
• Objects of LSyn(τ) are linear types σ of our target language.
• Morphisms in LSyn(τ)(σ , ρ) are terms x : τ ; v : σ � t : ρ modulo (α)βη+-equivalence.

• Identities in LSyn(τ) are represented by the terms x : τ ; v : σ � v : σ .
• Composition of x : τ ; v : σ 1 � t : σ 2 and x : τ ; v : σ 2 � s : σ 3 in LSyn(τ) is represented by
x : τ ; v : σ 1 � let v = t in s : σ 3.
• Change of base LSyn(t) : LSyn(τ) → LSyn(τ ′) along (x ′ : τ ′ � t : τ) ∈ CSyn(τ ′,τ) is defined

LSyn(t)(x : τ ; v : σ � s : ρ)
def
= x ′ : τ ′; v : σ � letx = t in s : ρ.

• All type formers are interpreted as one expects based on their notation, using introduction
and elimination rules for the required structural isomorphisms.

5.3 Concrete Denotational Semantics

5.3.1 Sets and Commutative Monoids. Throughout this article, we have a particularly simple
instance of the abstract semantics of our languages in mind, as we intend to interpret realn as the
usual Euclidean space Rn (considered as a set) and to interpret each program x1 : realn1 , . . . ,xk :
realnk � t : realm as a function Rn1 × · · · × Rnk → Rm . Similarly, we intend to interpret realn as
the commutative monoid Rn and each program x1 : realn1 , . . . ,xk : realnk ;y : realm � t : realr

as a function Rn1 × · · · × Rnk → Rm � Rr . That is, we will work with a concrete denotational
semantics in terms of sets and commutative monoids.

ACM Transactions on Programming Languages and Systems, Vol. 44, No. 3, Article 20. Publication date: August 2022.

CHAD: Combinatory Homomorphic Automatic Differentiation 20:21

Some readers will immediately recognize that the free-forgetful adjunction Set � CMon gives
a model of full intuitionistic linear logic [35]. In fact, seeing that CMon is CMon-enriched, the
model is biadditive [17].

However, we do not need such a rich type system. For us, the following suffices. Define

CMon(X), for X ∈ ob Set, to have the objects of CMon and homsets CMon(X)(Y ,Z)
def
=

Set(X ,Y � Z). Identities are defined as x �→ (y �→ y) and composition f ;CMon(X) д is given
by x �→ (f (x);CMon д(x)). Given f ∈ Set(X ,X ′), we define change-of-base CMon(X ′) → CMon(X)

as CMon(f)(д)
def
= f ;Set д. CMon(−) defines a locally indexed category. By taking C = Set and

L(−) = CMon(−), we obtain a concrete instance of our abstract semantics. Indeed, we have natu-
ral isomorphisms

CMon(X)(!X ′ ⊗ Y ,Z)
Φ
−→ CMon(X × X ′)(Y ,Z) CMon(X × X ′)(Y ,Z)

Ψ
−→ CMon(X)(Y ,X ′ ⇒ Z)

Φ(f)(x ,x ′)(y)
def
= f (x)(!x ′ ⊗ y) Ψ(f)(x)(y)(x ′)

def
= f (x ,x ′)(y)

Φ−1(f)(x)

(
n∑

i=1

(!x ′i ⊗ yi)

)
def
=

n∑
i=1

f (x ,x ′i)(yi) Ψ−1(f)(x ,x ′)(y)
def
= f (x)(y)(x ′).

The prime motivating examples of morphisms in this category are derivatives. Recall that the
derivative at x , Df (x), and transposed derivative at x , Df t (x), of a differentiable function f : Rn →

Rm are defined as the unique functions Df (x) : Rn → Rm and Df t (x) : Rm → Rn satisfying

Df (x)(v) = limδ→0
f (x + δ · v) − f (x)

δ
D f t (x)(w) � v = w � Df (x)(v),

where we write v � v ′ for the inner product
∑n

i=1(πiv) · (πiv
′) of vectors v,v ′ ∈ Rn . Now, for

differentiable f : Rn → Rm ,Df andDf t give maps in CMon(Rn)(Rn ,Rm) and CMon(Rn)(Rm ,Rn),
respectively. Indeed, derivatives Df (x) of f at x are linear functions, as are transposed derivatives
Df t (x). Both depend differentiably on x in case f is differentiable. Note that the derivatives are
not merely linear in the sense of preserving 0 and +. They are also multiplicative in the sense that
(Df)(x)(c ·v) = c ·(Df)(x)(v). We could have captured this property by working with vector spaces
rather than commutative monoids. However, we will not need this property to phrase or establish
correctness of AD. Therefore, we restrict our attention to the more straightforward structure of
commutative monoids.

Defining �realn�
def
= Rn and interpreting each lop ∈ LOp as the (differentiable) function �lop� :

(Rn1 × · · · × Rnk) → (Rn′1 × · · · × Rn′
l)� (Rm1 × · · · × Rmr) it is intended to represent, we obtain

a canonical interpretation of our target language in CMon.

5.4 Operational Semantics

In this section, we describe an operational semantics for our source and target languages. We con-
sider call-by-value evaluation, but similar results can be obtained for call-by-name evaluation.10

We present this semantics in big-step style. Finally, we show that our denotational semantics are
adequate with respect to this operational semantics, showing that the denotational semantics are
sound tools for reasoning about our programs.

10In fact, we conjecture our target language to be pure in the sense that reductions are confluent.

ACM Transactions on Programming Languages and Systems, Vol. 44, No. 3, Article 20. Publication date: August 2022.

20:22 M. Vákár and T. Smeding

Fig. 7. The big-step call-by-value operational semantics t ⇓ v for the source and target languages. In the
first rule, we intend to indicate that v ⇓ v unless v is a linear function between tuples of real arrays in the
sense that Γ; v : realn1∗ · ·∗realnk � v : realn1∗ · ·∗realnk .

We consider the following programs values, where we write c for op() and lc(v) for lop(; v):

v,w,u ::= values
| x
| c
| 〈〉

| 〈v,w〉

| v
| λx . t
| λv. t
| !v1 ⊗ w1 + (!v2 ⊗ w2 + (· · · !vn ⊗ wn) · · ·)

| lc(v).

We then define the big-step reduction relation t ⇓ v , which says that a program t evaluates to the
value v , in Figure 7. To be able to define this semantics, we assume that our languages contain,
at least, nullary operations op = c for all constants c ∈ Rn and nullary linear operations lc for
all linear maps (matrices) lc ∈ Rn � Rm . For all operations op and linear operations lop, we
assume that an intended semantics �op� and �lop� is specified as (functions on) vectors of reals. As
a side-note, we observe that this operational semantics has the following basic properties:

Lemma 5.7 (Subject Reduction, Termination, Determinism). If Γ � t : τ , then there is a

unique value v such that t ⇓ v . Then, Γ � v : τ . Similarly, if Γ; v : τ � t : σ , then there is a unique

value v , such that t ⇓ v . Then, Γ, v : τ � v : σ .

Subject reduction and termination are proved through a standard logical relations argument
similar to the ones in Reference [39]. Determinism is observed by simply noting that all rules in
the definition of ⇓ have conclusions t ⇓ v with disjoint t .

In fact, seeing that every well-typed program t has a unique value v such that t ⇓ v , we write
⇓ t for this v .

ACM Transactions on Programming Languages and Systems, Vol. 44, No. 3, Article 20. Publication date: August 2022.

CHAD: Combinatory Homomorphic Automatic Differentiation 20:23

We assume that only first-order types are observable (i.e., have decidable equality on their
values):

ϕ,ψ ::= first-order Cartesian types

| realn

| 1

| ϕ∗ψ

ϕ,ψ ::= first-order linear types

| realn

| 1

| ϕ∗ψ .

We define program contexts C[_] to be programs C[_] that use the variable _ exactly once. We
call such program contexts of first-order type if they satisfy the typing judgement _ : τ � C[_] : ϕ
for first-order Cartesian type ϕ or _ : τ ; v : ψ � C[_] : ϕ for first-order linear types ψ and ϕ. We

write C[t] for the capturing substitution of t for _ in C[_]. This operational semantics and notion
of observable types lead us to define observational equivalence (aka contextual equivalence) t ≈ s
of programs · � t , s : τ , where we say that t ≈ s holds if ⇓ C[t] =⇓ C[s] for all program contexts
of first-order type. Similarly, we call two programs ·; v : τ � t , s : σ of linear type observationally
equivalent (write also t ≈ s) if λv. t ≈ λv. s .

Note that we consider values ·; v : ψ � v : ϕ for first-order linear typesψ and ϕ to be observable,

seeing that linear functions between finite-dimensional spaces are finite-dimensional objects that
can be fully observed by evaluating them on a (finite) basis for their domain typeψ . Indeed, such

values v are always of the form lc(v) for some lc : Rn → Rm hence are effectively matrices.
We first show two standard lemmas.

Lemma 5.8 (Compositionality of �−�). For any two terms Γ � t , s : τ and any type-compatible

program context C[_] we have that �t� = �s� implies �C[t]� = �C[s]�.

This is proved by induction on the structure of terms.

Lemma 5.9 (Soundness of ⇓). In case t , we have that �t� = �⇓ t�.

This is proved by induction on the definition of ⇓: note that every operational rule is also an
equation in the semantics. Then, adequacy follows.

Theorem 5.10 (Adeqacy). In case �t� = �s�, it follows that t ≈ s .

Proof. Suppose that �t� = �s� and letC[_] be a type-compatible program context of first-order
type. Then, �⇓ C[t]� = �C[t]� = �C[s]� = �⇓ C[s]� by the previous two lemmas. Finally, as values
of observable types are easily seen to be faithfully (injectively) interpreted in our denotational
semantics, it follows that ⇓ C[t] =⇓ C[s]. Therefore, t ≈ s . �

That is, the denotational semantics is a sound means for proving observational equivalences of
the operational semantics.

6 PAIRING PRIMALS WITH (CO)TANGENTS, CATEGORICALLY

In this section, we show that any categorical model L : Cop → Cat of our target language gives
rise to two Cartesian closed categories ΣCL and ΣCL

op . We believe that these observations of
Cartesian closure are novel. Surprisingly, they are highly relevant for obtaining a principled un-
derstanding of AD on a higher-order language: the former for forward AD and the latter for reverse
AD. Applying these constructions to the syntactic category LSyn : CSynop → Cat of our target
language, we produce a canonical definition of the AD macros, as the canonical interpretation of
the λ-calculus in the Cartesian closed categories ΣCSynLSyn and ΣCSynLSynop . In addition, when
we apply this construction to the denotational semantics CMon : Setop → Cat and invoke a cat-
egorical logical relations technique, known as subsconing, we find an elegant correctness proof of
the source code transformations. The abstract construction delineated in this section is in many
ways the theoretical crux of this article.

ACM Transactions on Programming Languages and Systems, Vol. 44, No. 3, Article 20. Publication date: August 2022.

20:24 M. Vákár and T. Smeding

6.1 Grothendieck Constructions on Strictly Indexed Categories

Recall that for any strictly indexed category, i.e., a (strict) functor L : Cop → Cat, we can con-
sider its total category (or Grothendieck construction) ΣCL, which is a fibered category over C
(see Sections A1.1.7 and B1.3.1 in Reference [23]). We can view it as a Σ-type of categories, which
generalizes the Cartesian product. Concretely, its objects are pairs (A1,A2) of objects A1 of C and
A2 of L(A1). Its morphisms (A1,A2) → (B1,B2) are pairs (f1, f2) of a morphism f1 : A1 → B1 in

C and a morphism f2 : A2 → L(f1)(B2) in L(A1). Identities are id(A1,A2)
def
= (idA1 , idA2) and com-

position is (f1, f2); (д1,д2)
def
= (f1;д1, f2;L(f1)(д2)). Furthermore, given a strictly indexed category

L : Cop → Cat, we can consider its fibrewise dual category Lop : Cop → Cat, which is defined as

the composition Cop L
−→ Cat

op
−−→ Cat. Thus, we can apply the same construction to Lop to obtain

a category ΣCL
op .

6.2 Structure of ΣCL and ΣCL
op for Locally Indexed Categories

Section 6.1 applies, in particular, to the locally indexed categories of Section 5. In this case, we
will analyze the categorical structure of ΣCL and ΣCL

op . For reference, we first give a concrete
description.

ΣCL is the following category:

• objects are pairs (A1,A2) of objects A1 of C and A2 of L;
• morphisms (A1,A2) → (B1,B2) are pairs (f1, f2) with f1 : A1 → B1 ∈ C and f2 : A2 → B2 ∈

L(A1);

• composition of (A1,A2)
(f1,f2)
−−−−→ (B1,B2) and (B1,B2)

(д1,д2)
−−−−−→ (C1,C2) is given by

(f1;д1, f2;L(f1)(д2)) and identities id(A1,A2) are (idA1 , idA2).

ΣCL
op is the following category:

• objects are pairs (A1,A2) of objects A1 of C and A2 of L;
• morphisms (A1,A2) → (B1,B2) are pairs (f1, f2) with f1 : A1 → B1 ∈ C and f2 : B2 → A2 ∈

L(A1);

• composition of (A1,A2)
(f1,f2)
−−−−→ (B1,B2) and (B1,B2)

(д1,д2)
−−−−−→ (C1,C2) is given by

(f1;д1,L(f1)(д2); f2) and identities id(A1,A2) are (idA1 , idA2).

These categories are relevant to automatic differentiation for the following reason. Let us write
CartSp for the category of Cartesian spaces Rn and differentiable functions between them. Observe
that for any categorical model L : Cop → Cat of the target language,

ΣCL((A1,A2), (B1,B2)) = C(A1,B1) × L(A1)(A2,B2) � C(A1,B1 × (A2 � B2))

ΣCL
op ((A1,A2), (B1,B2)) = C(A1,B1) × L(A1)(B2,A2) � C(A1,B1 × (B2 � A2)).

Then, observing that the composition in these Σ-types of categories is precisely the chain rule, we
see that the paired-up derivative Tand transposed derivative T∗ of Section 2.2 define functors

T : CartSp→ ΣSetCMon T∗ : CartSp→ ΣSetCMonop .

As we will see in Section 7, we can implement (higher-order extensions of) these functors as code
transformations

−→
D : Syn→ ΣCSynLSyn

←−
D : Syn→ ΣCSynLSynop .

As we will see, we can derive these code transformations by examining the categorical structure
present in ΣCL and ΣCL

op for categorical models L : Cop → Cat of the target language in the

ACM Transactions on Programming Languages and Systems, Vol. 44, No. 3, Article 20. Publication date: August 2022.

CHAD: Combinatory Homomorphic Automatic Differentiation 20:25

sense of Section 5. We believe the existence of this categorical structure is a novel observation. We
will make heavy use of it to define our AD algorithms and to prove them correct.

Theorem 6.1. For a categorical model L : Cop → Cat of the target language, ΣCL has:

• terminal object 1 = (1,1) and binary products (A1,A2) × (B1,B2) = (A1 × B1,A2 × B2);

• exponentials (A1,A2) ⇒ (B1,B2) = (A1 ⇒ (B1 × (A2 � B2)),A1 ⇒ B2).

Proof. We have (natural) bijections

ΣCL((A1,A2), (1,1)) = C(A1,1) × L(A1)(A2,1) � 1 × 1 � 1 { 1 terminal in C and L(A1) }

ΣCL((A1,A2), (B1 ×C1,B2 ×C2)) = C(A1,B1 ×C1) × L(A1)(A2,B2 ×C2)

� C(A1,B1) × C(A1,C1) × L(A1)(A2,B2) × L(A1)(A2,C2) { × product in C and L(A1) }

� ΣCL((A1,A2), (B1,B2)) × ΣCL((A1,A2), (C1,C2))

ΣCL((A1,A2) × (B1,B2), (C1,C2)) = ΣCL((A1 × B1,A2 × B2), (C1,C2))

= C(A1 × B1,C1) × L(A1 × B1)(A2 × B2,C2)

� C(A1 × B1,C1) × L(A1 × B1)(A2,C2) × L(A1 × B1)(B2,C2) { × coproducts in L(A1 × B1) }

� C(A1 × B1,C1) × L(A1)(A2,B1 ⇒ C2) × L(A1 × B1)(B2,C2) { ⇒-types in L }

� C(A1 × B1,C1) × L(A1)(A2,B1 ⇒ C2) × C(A1 × B1,B2 � C2) { Cartesian �-types }

� C(A1 × B1,C1 × (B2 � C2)) × L(A1)(A2,B1 ⇒ C2) { × is product in C }

� C(A1,B1 ⇒ (C1 × (B2 � C2))) × L(A1)(A2,B1 ⇒ C2) { ⇒ is exponential in C }

= ΣCL((A1,A2), (B1 ⇒ (C1 × (B2 � C2)),B1 ⇒ C2))

= ΣCL((A1,A2), (B1,B2) ⇒ (C1,C2)). �

We observe that we need L to have biproducts (equivalently, to be CMon enriched) to show
Cartesian closure. Furthermore, we need linear⇒-types and Cartesian �-types to construct ex-
ponentials. Codually, we also obtain the Cartesian closure of ΣCL

op . However, for concreteness,
we write out the proof by hand.

Theorem 6.2. For a categorical model L : Cop → Cat of the target language, ΣCL
op has

• terminal object 1 = (1,1) and binary products (A1,A2) × (B1,B2) = (A1 × B1,A2 × B2);

• exponentials (A1,A2) ⇒ (B1,B2) = (A1 ⇒ (B1 × (B2 � A2)), !A1 ⊗ B2).

Proof. We have (natural) bijections

ΣCL
op ((A1,A2), (1,1)) = C(A1,1) × L(A1)(1,A2) � 1 × 1 � 1 { 1 terminal in C, initial in L(A1) }

ΣCL
op ((A1,A2), (B1 ×C1,B2 ×C2)) = C(A1,B1 ×C1) × L(A1)(B2 ×C2,A2)

� C(A1,B1) × C(A1,C1) × L(A1)(B2,A2) × L(A1)(C2,A2) { × product in C, coproduct in L(A1) }

= ΣCL
op ((A1,A2), (B1,B2)) × ΣCL

op ((A1,A2), (C1,C2))

ΣCL
op ((A1,A2) × (B1,B2), (C1,C2)) = ΣCL

op ((A1 × B1,A2 × B2), (C1,C2))

= C(A1 × B1,C1) × L(A1 × B1)(C2,A2 × B2)

� C(A1 × B1,C1) × L(A1 × B1)(C2,A2) × L(A1 × B1)(C2,B2) { × is product in L(A1 × B1) }

� C(A1 × B1,C1) × C(A1 × B1,C2 � B2) × L(A1 × B1)(C2,A2) { Cartesian �-types }

� C(A1 × B1,C1 × (C2 � B2)) × L(A1 × B1)(C2,A2) { × is product in C }

ACM Transactions on Programming Languages and Systems, Vol. 44, No. 3, Article 20. Publication date: August 2022.

20:26 M. Vákár and T. Smeding

� C(A1,B1 ⇒ (C1 × (C2 � B2))) × L(A1 × B1)(C2,A2) { ⇒ is exponential in C }

� C(A1,B1 ⇒ (C1 × (C2 � B2))) × L(A1)(!B1 ⊗ C2,A2) { !(−) ⊗ (−)-types }

= ΣCL
op ((A1,A2), (B1 ⇒ (C1 × (C2 � B2)), !B1 ⊗ C2))

= ΣCL
op ((A1,A2), (B1,B2) ⇒ (C1,C2)). �

Observe that we need the biproduct structure of L to construct finite products in ΣCL
op .

Furthermore, we need Cartesian �-types and !(−) ⊗ (−)-types, but not biproducts, to construct
exponentials.

Interestingly, we observe that the exponentials in ΣCL and ΣCL
op are not fibered over C (unlike

their products, for example). Indeed (A1,A2) ⇒ (B1,B2) has first component not equal toA1 ⇒ B1.
In the context of automatic differentiation, this has the consequence that primals associated with
values f of function type are not equal to f itself. Instead, as we will see, they include both a copy of
f and a copy of its (transposed) derivative. These primals at higher-order types can be contrasted
with the situation at first-order types, where values are equal to their associated primal, as a result
of the finite products being fibered.

7 NOVEL AD ALGORITHMS AS SOURCE-CODE TRANSFORMATIONS

As ΣCSynLSyn and ΣCSynLSynop are both Cartesian closed categories by Theorems 6.1 and 6.2, the
universal property of the source language (Proposition 3.1) gives us the following definition of
forward and reverse mode CHAD as a canonical homomorphic functors.

Corollary 7.1 (Canonical Definition of CHAD). Once we fix compatible definitions
−→
D(realn)

and
−→
D(op) (resp.

←−
D(realn) and

←−
D(op)), we obtain a unique structure-preserving functor

−→
D(−) : Syn→ ΣCSynLSyn (resp.

←−
D(−) : Syn→ ΣCSynLSynop).

In this section, we discuss

• the interpretation of the above functors as a type-respecting code transformation;

• how we can define the basic definitions
−→
D(realn),

←−
D(realn),

−→
D(op) and

←−
D(op);

• what the induced AD definitions
−→
D(t) and

←−
D(t) are for arbitrary source language programs t ;

• some consequences of the sharing of subexpressions that we have employed when defining
the code transformations.

7.1 Some Notation

In the rest of this section, we use the following syntactic sugar:

• a notation for (linear) n-ary tuple types: (τ 1∗ . . . ∗τn)
def
= (((τ 1∗τ 2) · · · ∗τn−1)∗τn);

• a notation for n-ary tuples: 〈t1, . . . , tn〉
def
= 〈〈〈t1, t2〉 · · · , tn−1〉, tn〉;

• given Γ; v : τ � t : (σ 1∗ · · · ∗σn), we write Γ; v : τ � proji (t) : σ i for the obvious ith
projection of t , which is constructed by repeatedly applying fst and snd to t ;

• given Γ; v : τ � t : σ i , we write the ith coprojection Γ; v : τ � coproji (t)
def
=

〈0, . . . , 0, t , 0, . . . , 0〉 : (σ 1∗ · · · ∗σn);
• for a list x1, . . . ,xn of distinct identifiers, we write idx(xi ;x1, . . . ,xn)

def
= i for the index of

the identifier xi in this list;

• a let-binding for tuples: let 〈x ,y〉 = t in s
def
= let z = t in letx = fstz in lety = snd z in s,

where z is a fresh variable.

ACM Transactions on Programming Languages and Systems, Vol. 44, No. 3, Article 20. Publication date: August 2022.

CHAD: Combinatory Homomorphic Automatic Differentiation 20:27

Furthermore, all variables used in the source code transformations below are assumed to be freshly
chosen.

7.2
−→
D(−) and

←−
D(−) as Type-Respecting Code Transformations

Writing out the definitions of the categories Syn, ΣCSynLSyn, ΣCSynLSynop ,
−→
D(−) and

←−
D(−) pro-

vide for each type τ of the source language (Section 3) the following types in the target language
(Section 4):

• a Cartesian type
−→
D(τ)1 of forward mode primals;

• a linear type
−→
D(τ)2 of forward mode tangents;

• a Cartesian type
←−
D(τ)1 of reverse mode primals;

• a linear type
←−
D(τ)2 of reverse mode cotangents.

We can extend the actions of
−→
D(−) and

←−
D(−) to typing contexts Γ = x1 : τ1, . . . ,xn : τn as

−→
D(Γ)1

def
= x1 :

−→
D(τ1)1, . . . ,xn :

−→
D(τn)n (a Cartesian typing context)

−→
D(Γ)2

def
= (−→D(τ1)2∗ · · · ∗−→D(τn)2) (a linear type)

←−
D(Γ)1

def
= x1 :

←−
D(τ1)1, . . . ,xn :

←−
D(τn)n (a Cartesian typing context)

←−
D(Γ)2

def
= (←−D(τ1)2∗ · · · ∗←−D(τn)2) (a linear type).

Similarly,
−→
D(−) and

←−
D(−) associate to each source language program Γ � t : τ the following

programs in the target language (Section 4):

• a forward mode primal computation
−→
D(Γ)1 �

−→
DΓ(t)1 :

−→
D(τ)1;

• a forward mode tangent computation
−→
D(Γ)1; v :

−→
D(Γ)2 �

−→
DΓ(t)2 :

−→
D(τ)2;

• a reverse mode primal computation
←−
D(Γ)1 �

←−
DΓ(t)1 :

←−
D(τ)1;

• a reverse mode cotangent computation
←−
D(Γ)1; v :

←−
D(τ)2 �

←−
DΓ(t)2 :

←−
D(Γ)2.

Here, we write Γ for the list of identifiers x1, . . . ,xn that occur in the typing context Γ = x1 :
τ1, . . . ,xn : τn . As we will see, we need to know these context identifiers to define the code trans-
formation. Equivalently, we can pair up the primal and (co)tangent computations as

• a combined forward mode primal and tangent computation
−→
D(Γ)1 �

−→
DΓ(t) :

−→
D(τ)1∗(−→D(Γ)2 � −→

D(τ)2), where
−→
DΓ(t)

βη+
= 〈
−→
DΓ(t)1, λv.

−→
DΓ(t)2〉;

• a combined reverse mode primal and cotangent computation
←−
D(Γ)1 �

←−
DΓ(t) :

←−
D(τ)1∗(←−D(τ)2 � ←−

D(Γ)2), where
←−
DΓ(t)

βη+
= 〈
←−
DΓ(t)1, λv.

←−
DΓ(t)2〉.

We prefer to work with these combined primal and (co)tangent code transformations as this al-
lows us to share common subexpressions between the primal and (co)tangent computations using
let-bindings. Indeed, note that the universal property of Syn only defines the code transformations
−→
D(−) and

←−
D(−) up to

βη+
= . In writing down the definitions of CHAD on programs, we make sure to

choose sensible representatives of these βη+-equivalence classes: ones that share common subex-
pressions through let-bindings. While these let-bindings naturally do not affect correctness of the
transformation, they let us avoid code explosion at compile-time and unnecessary recomputation
at runtime.

Finally, we note that, due to their definition from a universal property, our code transformations

automatically respect equational reasoning in the sense that Γ � t
βη
= s : τ implies that

−→
DΓ(t)

βη+
=

−→
DΓ(s) and

←−
DΓ(t)

βη+
=
←−
DΓ(s).

ACM Transactions on Programming Languages and Systems, Vol. 44, No. 3, Article 20. Publication date: August 2022.

20:28 M. Vákár and T. Smeding

7.3 The Basic Definitions:
−→
D(realn),

←−
D(realn),

−→
D(op), and

←−
D(op)

In Section 4, we have assumed that there are suitable terms (for example, linear operations)

x1 : realn1 , . . . ,xk : realnk ; v : realn1∗ · · · ∗realnk � Dop(x1, . . . ,xk ; v) : realm

x1 : realn1 , . . . ,xk : realnk ; v : realm � Dopt (x1, . . . ,xk ; v) : realn1∗ · · · ∗realnk

to represent the forward and reverse mode derivatives of the primitive operations op ∈ Opm
n1, ...,nk

.
Using these, we define

−→
D(realn)1

def
= realn

−→
D(realn)2

def
= realn

−→
DΓ(op(t1, . . . , tk))

def
= let 〈x1, x ′1 〉 =

−→
DΓ(t1) in · · · let 〈xk , x ′k 〉 =

−→
DΓ(tk) in

〈op(x1, . . . , xk), λv. Dop(x1, . . . , xn ; 〈x ′1•v, . . . , x ′k•v〉)〉

←−
D(realn)1

def
= realn

←−
D(realn)2

def
= realn

←−
DΓ(op(t1, . . . , tk))

def
= let 〈x1, x ′1 〉 =

←−
DΓ(t1) in · · · let 〈xk , x ′k 〉 =

←−
DΓ(tk) in

〈op(x1, . . . , xk), λv. let v = Dopt (x1, . . . , xk ; v) in x ′1•(proj1 v) + · · · + x ′k•(projk v)〉

These basic definitions of CHAD for primitive operations implement the well-known multivariate
chain rules for (transposed) derivatives of Section 2.2.

For the AD transformations to be correct, it is important that these derivatives of language
primitives are implemented correctly in the sense that

�x1, . . . ,xk ;y � Dop(x1, . . . ,xk ; v)� = D�op� �x1, . . . ,xk ; v � Dopt (x1, . . . ,xk ; v)� = D�op�t .

For example, for elementwise multiplication (∗) ∈ Opn
n,n , which we interpret as the usual elemen-

twise product �(∗)�
def
= (∗) : Rn × Rn → Rn , we need, by the product rule for differentiation,

that

�D(∗)(x1,x2; v)�((a1,a2), (b1,b2)) = a1 ∗ b2 + a2 ∗ b1

�D(∗)t (x1,x2; v)�((a1,a2),b) = (a2 ∗ b,a1 ∗ b).

By Proposition 3.1, the extension of the AD transformations
−→
D and

←−
D to the full source language

are now canonically determined, as the unique Cartesian closed functors that extend these basic
definitions.

7.4 The Implied Forward Mode CHAD Definitions

We define the types of (forward mode) primals
−→
D(τ)1 and tangents

−→
D(τ)2 associated with a type τ

as follows:

−→
D(1)1

def
= 1

−→
D(1)2

def
= 1

−→
D(τ ∗σ)1

def
=

−→
D(τ)1∗

−→
D(σ)1

−→
D(τ ∗σ)2

def
=

−→
D(τ)2∗

−→
D(σ)2

−→
D(τ → σ)1

def
=

−→
D(τ)1 → (

−→
D(σ)1∗(

−→
D(τ)2 � −→

D(σ)2))
−→
D(τ → σ)2

def
=

−→
D(τ)1 →

−→
D(σ)2 .

ACM Transactions on Programming Languages and Systems, Vol. 44, No. 3, Article 20. Publication date: August 2022.

CHAD: Combinatory Homomorphic Automatic Differentiation 20:29

Observe that the type of primals associated with a function type is not equal to the original type.
This is a consequence of the non-fibered nature of the exponentials in Σ-types ΣCSynLSyn of cate-
gories (Section 6).

For programs t , we define their efficient CHAD transformation
−→
DΓ(t) as follows:

−→
DΓ(x)

def
= 〈x, λv. proj

idx(x ;Γ) (v)〉

−→
DΓ(let x = t in s)

def
= let 〈x, x ′ 〉 =

−→
DΓ(t) in let 〈y, y′ 〉 =

−→
DΓ,x (s) in 〈y, λv. y′•〈v, x ′•v〉〉

−→
DΓ(〈〉)

def
= 〈〈〉, λv. 〈〉〉

−→
DΓ(〈t, s 〉)

def
= let 〈x, x ′ 〉 =

−→
DΓ(t) in let 〈y, y′ 〉 =

−→
DΓ(s) in 〈〈x, y 〉, λv. 〈x ′•v, y′•v〉〉

−→
DΓ(fst t)

def
= let 〈x, x ′ 〉 =

−→
DΓ(t) in 〈fst x, λv. fst (x ′•v)〉

−→
DΓ(snd t)

def
= let 〈x, x ′ 〉 =

−→
DΓ(t) in 〈snd x, λv. snd (x ′•v)〉

−→
DΓ(λx . t)

def
= let y = λx .

−→
DΓ,x (t) in 〈λx . let 〈z, z′ 〉 = y x in 〈z, λv. z′•〈0, v〉〉, λv. λx . (snd (y x))•〈v, 0〉〉

−→
DΓ(t s)

def
= let 〈x, x ′ctx 〉 =

−→
DΓ(t) in let 〈y, y′ 〉 =

−→
DΓ(s) in let 〈z, x ′arg 〉 = x y in

〈z, λv. (x ′ctx•v)y + x ′arg•(y
′•v)〉.

We explain and justify these transformations in the next subsection after discussing the transfor-
mations for reverse CHAD.

7.5 The Implied Reverse Mode CHAD Definitions

We define the types of (reverse mode) primals
←−
D(τ)1 and cotangents

←−
D(τ)2 associated with a type

τ as follows:

←−
D(1)1

def
= 1

←−
D(1)2

def
= 1

←−
D(τ ∗σ)1

def
=

←−
D(τ)1∗

←−
D(σ)1

←−
D(τ ∗σ)2

def
=

←−
D(τ)2∗

←−
D(σ)2

←−
D(τ → σ)1

def
=

←−
D(τ)1 → (

←−
D(σ)1∗(

←−
D(σ)2 � ←−

D(τ)2))
←−
D(τ → σ)2

def
= !

←−
D(τ)1 ⊗

←−
D(σ)2 .

Again, we associate a non-trivial type of primals to function types as exponentials are not fibered
in ΣCSynLSynop (Section 6).

For programs t , we define their efficient CHAD transformation
←−
DΓ(t) as follows:

←−
DΓ(x)

def
= 〈x, λv. coproj

idx(x ;Γ) (v)〉

←−
DΓ(let x = t in s)

def
= let 〈x, x ′ 〉 =

←−
DΓ(t) in let 〈y, y′ 〉 =

←−
DΓ,x (s) in 〈y, λv. let v = y′•v in fst v + x ′•(snd v)〉

←−
DΓ(〈〉)

def
= 〈〈〉, λv. 0〉

←−
DΓ(〈t, s 〉)

def
= let 〈x, x ′ 〉 =

←−
DΓ(t) in let 〈y, y′ 〉 =

←−
DΓ(s) in 〈〈x, y 〉, λv. x ′•(fst v)〉 + y′•(snd v)

←−
DΓ(fst t)

def
= let 〈x, x ′ 〉 =

←−
DΓ(t) in 〈fst x, λv. x ′•〈v, 0〉〉

←−
DΓ(snd t)

def
= let 〈x, x ′ 〉 =

←−
DΓ(t) in 〈snd x, λv. x ′•〈0, v〉〉

←−
DΓ(λx . t)

def
= let y = λx .

←−
DΓ,x (t) in

〈λx . let 〈z, z′ 〉 = y x in 〈z, λv. snd (z′•v)〉, λv. case v of !x ⊗ v→ fst ((snd (y x))•v)〉

←−
DΓ(t s)

def
= let 〈x, x ′ctx 〉 =

←−
DΓ(t) in let 〈y, y′ 〉 =

←−
DΓ(s) in let 〈z, x ′arg 〉 = x y in

〈z, λv. x ′ctx•(!y ⊗ v) + y′•(x ′arg•v)〉.

ACM Transactions on Programming Languages and Systems, Vol. 44, No. 3, Article 20. Publication date: August 2022.

20:30 M. Vákár and T. Smeding

We now explain and justify the forward and reverse CHAD transformations. The transformations
for variables, tuples and projections implement the well-known multivariate calculus facts about
(transposed) derivatives of differentiable functions into and out of products of spaces. The trans-
formations for let-bindings add to that the chain rules for T and T∗ of Section 2.2. The transfor-
mations for λ-abstractions split the derivative of a closure λx . t into the derivative z ′ with respect
to the function argument x and the derivative snd (y x) with respect to the captured context vari-
ables; they store z ′ together with the primal computation z of λx . t in the primal associated with
the closure and they store snd (y x) in the (co)tangent associated with the closure. Conversely, the
transformations for evaluations extracts those two components of the (transposed) derivative x ′ctx

(w.r.t. context variables) and x ′arg (w.r.t. function argument) from the (co)tangent and primal, respec-

tively, and recombine them to correctly propagate (co)tangent contributions from both sources.

7.6 Sharing of Common Subexpressions

Through careful use of let-bindings, we have taken care to ensure that the CHAD code transforma-
tions we specified have the following good property: for every program former C[t1, . . . , tn] that
takes n subprograms t1, . . . , tn (for example, function application t s takes two subprograms t and

s), we have that
−→
DΓ(C[t1, . . . , tn]) uses

−→
DΓi
(ti) exactly once in its definition for each subprogram ti ,

for some list of identifiers Γi . Similarly,
←−
DΓ(C[t1, . . . , tn]) uses

←−
DΓi
(ti) exactly once in its definition

for each subprogram ti , which demonstrates the following.

Corollary 7.2 (No Code Explosion). The code sizes of the forward and reverse CHAD trans-

formed programs
−→
DΓ(t) and

←−
DΓ(t) both grow linearly in the size of the original source program t .

This compile-time complexity property is crucial if we are to keep compilation times and exe-
cutable sizes manageable when performing AD on large code-bases.

Of course, our use of let-bindings has the additional benefit at runtime that repeated subcom-
putations are performed only once and their stored results are shared, rather than recomputing
every time their results are needed. We have taken care to avoid any unnecessary computation in
this way, which we hope will benefit the performance of CHAD in practice. However, we leave a
proper complexity and practical performance analysis to future work.

8 PROVING REVERSE AND FORWARD AD SEMANTICALLY CORRECT

In this section, we show that the CHAD code transformations described in Section 7 correctly
compute mathematical derivatives (Theorem 8.3). The proof mainly consists of an (open) logical
relations argument over the semantics in the Cartesian closed categories Set × ΣSetCMon and
Set × ΣSetCMonop . The intuition behind the proof is as follows:

• the logical relations relate a differentiable functions Rd → �τ � to associated primal and
(co)tangent functions;

• the semantics �t� × �
−→
DΓ(t)� and �t� × �

←−
DΓ(t)� of forward and reverse mode CHAD respect

the logical relations;
• therefore, by basic results in calculus, they must equal the derivative and transposed deriv-

ative of �t�.

This logical relations proof can be phrased in elementary terms, but the resulting argument is
technical and would be hard to discover. Instead, we prefer to phrase it in terms of a categorical
subsconing construction, a more abstract and elegant perspective on logical relations. We discov-
ered the proof by taking this categorical perspective, and, while we have verified the elementary
argument (see Section 2.6), we would not otherwise have come up with it.

ACM Transactions on Programming Languages and Systems, Vol. 44, No. 3, Article 20. Publication date: August 2022.

CHAD: Combinatory Homomorphic Automatic Differentiation 20:31

8.1 Preliminaries

8.1.1 Subsconing. Logical relations arguments provide a powerful proof technique for demon-
strating properties of typed programs. The arguments proceed by induction on the structure of
types. Here, we briefly review the basics of categorical logical relations arguments, or subsconing

constructions. We restrict to the level of generality that we need here, but we would like to point
out that the theory applies much more generally.

Consider a Cartesian closed category (C,1,×,⇒). Suppose that we are given a functor F : C →
Set to the category Set of sets and functions that preserves finite products in the sense that F (1) � 1
and F (C ×C ′) � F (C) × F (C ′). Then, we can form the subscone of F , or category of logical relations
over F , which is Cartesian closed, with a faithful Cartesian closed functor π1 to C that forgets
about the predicates [24]:

• objects are pairs (C, P) of an object C of C and a predicate P ⊆ FC;
• morphisms (C, P) → (C ′, P ′) are C morphisms f : C → C ′ that respect the predicates in the

sense that F (f)(P) ⊆ P ′;
• identities and composition are as in C;
• (1, F1) is the terminal object, and binary products and exponentials are given by

(C, P) × (C ′, P ′) = (C ×C ′,
{
α ∈ F (C ×C ′) | F (π1)(α) ∈ P , F (π2)(α) ∈ P

′
}
)

(C, P) ⇒ (C ′, P ′) = (C ⇒ C ′, {F (π1)(γ) | γ ∈ F ((C ⇒ C ′) ×C) s.t. F (π2)(γ) ∈ P implies F (ev)(γ) ∈ P ′}).

In typical applications, C can be the syntactic category of a language (like Syn), the codomain
of a denotational semantics �−� (like Set), or a product of the above, if we want to consider n-ary
logical relations. Typically, F tends to be a hom-functor (which always preserves products), like
C(1,−) or C(C0,−), for some important objectC0. When applied to the syntactic category Syn and
F = Syn(1,−), the formulae for products and exponentials in the subscone clearly reproduce the
usual recipes in traditional, syntactic logical relations arguments. As such, subsconing generalises
standard logical relations methods.

8.2 Subsconing for Correctness of AD

We apply the subsconing construction above to

C = Set × ΣSetCMon F = Set × ΣSetCMon((Rd , (Rd ,Rd)),−) (forward AD)

C = Set × ΣSetCMonop F = Set × ΣSetCMonop ((Rd , (Rd ,Rd)),−) (reverse AD),

where we note that Set, ΣSetCMon, and ΣSetCMonop are Cartesian closed (given the arguments of
Sections 5 and 6) and that the product of Cartesian closed categories is again Cartesian closed. Let

us write
−−−−−→
SScone and

←−−−−−
SScone, respectively, for the resulting categories of logical relations.

Seeing that
−−−−−→
SScone and

←−−−−−
SScone are Cartesian closed, we obtain unique Cartesian closed functors

�−�f : Syn →
−−−−−→
SScone and �−�r : Syn →

←−−−−−
SScone, by the universal property of Syn (Section 3), once

we fix an interpretation of realn and all operations op. We write P
f
τ and Pr

τ , respectively, for the

relations π2�τ �f and π2�τ �r . Let us interpret

�realn�f def
= (((Rn , (Rn ,Rn)), {(f , (д,h)) | f is differentiable, f = д and h = Df }))

�realn�r def
= (((Rn , (Rn ,Rn)), {(f , (д,h)) | f is differentiable, f = д and h = Df t }))

�op�f def
= (�op�, (�op�, �Dop�)) �op�r def

= (�op�, (�op�, �Dopt �)),

where we write Df for the semantic derivative of f and (−)t for the matrix transpose (see
Section 5).

ACM Transactions on Programming Languages and Systems, Vol. 44, No. 3, Article 20. Publication date: August 2022.

20:32 M. Vákár and T. Smeding

Lemma 8.1. These definitions extend uniquely to define Cartesian closed functors

�−�f : Syn→
−−−−−→
SScone and �−�r : Syn→

←−−−−−
SScone.

Proof. This follows from the universal property of Syn (Proposition 3.1) once we verify that
(�op�, (�op�, �Dop�)) and (�op�, (�op�, �Dopt �)) respect the logical relations P f and Pr , respectively.
This respecting of relations follows immediately from the chain rule for multivariate differentia-
tion, as long as we have implemented our derivatives correctly for the basic operations op, in the
sense that

�x ;y � Dop(x ;y)� = D�op� and �x ;y � Dopt (x ;y)� = D�op�t .

Writing realn1, ...,nk
def
= realn1∗ · · · ∗realnk and Rn1, ...,nk

def
= Rn1 × · · · × Rnk , we compute

�realn1, ...,nk �f = ((Rn1, ...,nk , (Rn1, ...,nk ,Rn1, ...,nk)), {(f , (д,h)) | f is differentiable, f = д,h = Df })

�realn1, ...,nk �r = ((Rn1, ...,nk , (Rn1, ...,nk ,Rn1, ...,nk)), {(f , (д,h)) | f is differentiable, f = д,h = Df t }),

since derivatives of tuple-valued functions are computed component-wise. (In fact, the correspond-
ing facts hold more generally for any first-order type, as an iterated product of realn .) Suppose that

(f , (д,h)) ∈ P
f

realn1, . . .,nk
, i.e., f is differentiable, д = f and h = Df . Then, using the chain rule in

the last step, we have

(f , (д,h)); (�op�, (�op�, �Dop�))

= (f , (f ,Df)); (�op�, (�op�, �x ;y � Dop(x ;y)�))

= (f , (f ,Df)); (�op�, (�op�,D�op�))

= (f ; �op�, (f ; �op�,x �→ r �→ D�op�(f (x))(Df (x)(r))))

= (f ; �op�, (f ; �op�,D(f ; �op�))) ∈ P
f

realm
.

Similarly, if (f , (д,h)) ∈ Pr
realn1, . . .,nk

, then by the chain rule and linear algebra

(f , (д,h)); (�op�, (�op�, �Dopt �))

= (f , (f ,Df t)); (�op�, (�op�, �x ;y � Dopt (x ;y)�))

= (f , (f ,Df t)); (�op�, (�op�,D�op�t
))

= (f ; �op�, (f ; �op�,x �→ v �→ Df t (x)(D�op�t
(f (x))(v))))

= (f ; �op�, (f ; �op�,x �→ v �→ Df (x);D�op�(f (x))t (v)))

= (f ; �op�, (f ; �op�,D(f ; �op�)t)) ∈ Pr
realm
.

Consequently, we obtain our unique Cartesian closed functors �−�f and �−�r . �

Furthermore, observe that Σ�−��−�(t1, t2)
def
= (�t1�, �t2�) defines a Cartesian closed functor

Σ�−��−� : ΣCSynLSyn → ΣSetCMon. Similarly, we get a Cartesian closed functor Σ�−��−�
op :

ΣCSynLSynop → ΣSetCMonop . As a consequence, both squares below commute.

ACM Transactions on Programming Languages and Systems, Vol. 44, No. 3, Article 20. Publication date: August 2022.

CHAD: Combinatory Homomorphic Automatic Differentiation 20:33

Indeed, going around the squares in both directions define Cartesian closed functors that agree on
their action on the generators realn and op of the Cartesian closed cateogry Syn.

Corollary 8.2. For any source language (Section 3) program Γ � t : τ , (�t�, (�
−→
DΓ(t)1�, �

−→
DΓ(t)2�))

is a morphism in
−−−−−→
SScone and therefore respects the logical relations P f . Similarly,

(�t�, (�
←−
DΓ(t)1�, �

←−
DΓ(t)2�)) is a morphism in

←−−−−−
SScone and therefore respects the logical relations Pr .

Most of the work is now in place to show correctness of AD. We finish the proof below. To ease
notation, we work with terms in a context with a single type. Doing so is not a restriction as our
language has products, and the theorem holds for arbitrary terms between first-order types.

Theorem 8.3 (Correctness of AD). For programs Γ � t : σ where σ and all types τi in Γ = x1 :
τ1, . . . ,xn : τn are first-order types, �t� is differentiable and

�
−→
DΓ(t)1� = �t� �

−→
DΓ(t)2� = D�t� �

←−
DΓ(t)1� = �t� �

←−
DΓ(t)2� = D�t�t ,

where we write D and (−)t for the usual calculus derivative and matrix transpose. Hence,

�
−→
DΓ(t)� = (�t�,D�t�) and �

←−
DΓ(t)� = (�t�,D�t�t

).

Proof. Seeing that our language has tuples, we may assume without loss of generality that
Γ = x : τ . We use the logical relations for general d to show differentiability of all programs. Next,
the case of d = 1 suffices to show that CHAD computes correct derivatives.

First, we observe that �t� sends differentiable functions Rd → �τ � to differentiable functions

Rd → �σ�, as t respects the logical relations. Observing that �τ � � RN for some N , as τ is a first-

order type, we can choose d = N . Then, P
f
τ contains (f , (д,h)) for a differentiable isomorphism f .

It therefore follows that �t� is differentiable.

Second, we focus on the correctness of forward AD,
−→
D .

Let x ∈ �
−→
D(τ)1� = �τ � � RN and v ∈ �

−→
D(τ)2� � RN (for some N). Then, there is a differentiable

curve γ : R→ �τ �, such that γ (0) = x and Dγ (0)(1) = v . Clearly, (γ , (γ ,Dγ)) ∈ P
f
τ (for d = 1).

As (�t�, (�
−→
DΓ(t)1�, �

−→
DΓ(t)2�)) respects the logical relation P f by Corollary 8.2, we have

(γ ; �t�, (γ ; �
−→
DΓ(t)1�,x �→ r �→ �

−→
DΓ(t)2�(γ (x))(Dγ (x)(r)))) = (γ , (γ ,Dγ)); (�t�, (�

−→
DΓ(t)1�, �

−→
DΓ(t)2�)) ∈ P

f
σ ,

where we use the definition of composition in Set × ΣSetCMon. Therefore,

γ ; �t� = γ ; �
−→
DΓ(t)1�

and, by the chain rule,

x �→ r �→ D�t�(γ (x))(Dγ (x)(r)) = D(γ ; �t�) = x �→ r �→ �
−→
DΓ(t)2�(γ (x))(Dγ (x)(r)).

Evaluating the former at 0 gives �t�(x) = �
−→
DΓ(t)1�(x). Similarly, evaluating the latter at 0 and 1

gives D�t�(x)(v) = �
−→
DΓ(t)2�(x)(v).

Third, we turn to the correctness of reverse AD,
←−
D .

Let x ∈ �
←−
D(τ)1� = �τ � � RN and v ∈ �

←−
D(τ)2� � RN (for some N). Let γi : R → �τ � be a

differentiable curve such that γi (0) = x and Dγi (0)(1) = ei , where we write ei for the ith standard

basis vector of �
←−
D(τ)2� � RN . Clearly, (γi , (γi ,Dγi

t)) ∈ Pr
τ (for d = 1).

As (�t�, (�
←−
DΓ(t)1�, �

←−
DΓ(t)2�)) respects the logical relation Pr by Corollary 8.2, we have

(γi ; �t�, (γi ; �
←−
DΓ(t)1�, x �→ w �→ Dγi (x)

t (�
←−
DΓ(t)2�(γi (x))(w)))) = (γi , (γi , Dγi

t)); (�t�, (�
←−
DΓ(t)1�, �

←−
DΓ(t)2�)) ∈ P r

σ ,

ACM Transactions on Programming Languages and Systems, Vol. 44, No. 3, Article 20. Publication date: August 2022.

20:34 M. Vákár and T. Smeding

by using the definition of composition in Set × ΣSetCMonop . Consequently,

γi ; �t� = γi ; �
←−
DΓ(t)1�

and, by the chain rule,

x �→ w �→ Dγi (x)
t (D�t�(γi (x))

t
(w)) = D(γi ; �t�)

t
= x �→ w �→ Dγi (x)

t (�
←−
DΓ(t)2�(γi (x))(w)).

Evaluating the former at 0 gives �t�(x) = �
←−
DΓ(t)1�(x). Similarly, evaluating the latter at 0 and v

gives us ei � D�t�(x)t (v) = ei � �
←−
DΓ(t)2�(x)(v). As this equation holds for all basis vectors ei of

�
←−
D(τ)�, we find that

D�t�(x)t (v) =
N∑

i=1

(ei � D�t�(x)t (v)) · ei =

N∑
i=1

(ei � �
←−
DΓ(t)2�(x)(v)) · ei = �

←−
DΓ(t)2�(x)(v). �

9 PRACTICAL RELEVANCE AND IMPLEMENTATION IN FUNCTIONAL LANGUAGES

Most popular functional languages, such as Haskell and OCaml, do not natively support linear
types. As such, the transformations described in this article may seem hard to implement. However,
as we will argue in this section, we can easily implement the limited linear types used in phrasing
the transformations as abstract data types by using merely a basic module system, such as that of
Haskell. The key idea is that linear function types τ � σ can be represented as plain functions
τ → σ and copowers !τ ⊗ σ can be represented as lists or arrays of pairs of type τ∗σ .

To substantiate that claim, we provide a reference implementation of CHAD operating on
strongly typed deeply embedded DSLs Haskell at https://github.com/VMatthijs/CHAD. This sec-
tion explains how that implementation relates to the theoretical development in the rest of this
article. It is rather short, because our implementation almost exactly follows the theoretical devel-
opment in Sections 3, 4, 5, and 7.

9.1 Implementing Linear Functions and Copowers as Abstract Types
in Functional Languages

Based on the denotational semantics, τ � σ -types should hold (representations of) functions f
from τ to σ that are homomorphisms of the monoid structures on τ and σ . We will see that these
types can be implemented using an abstract data type that holds certain basic linear functions (ex-
tensible as the library evolves) and is closed under the identity, composition, argument swapping,
and currying. Again, based on the semantics, !τ ⊗σ should contain (representations of) finite maps
(associative arrays)

∑n
i=1 !ti ⊗ si of pairs (ti , si), where ti is of type τ , and si is of type σ , and where

we identify xs + !t ⊗ s + !t ⊗ s ′ and xs + !t ⊗ (s + s ′).
To implement this idea, we consider abstract types LFun(τ ,σ) of linear functions and

Copower(τ ,σ) of copowers. Their programs are generated by the following grammar

τ ,σ , ρ ::= types

| . . . as in Section 3

t , s, r ::= terms

| . . . as in Section 3

| lop(t1, . . . , tn) linear operations

| 0τ zero

| t + s plus

| lid linear identity

| t ;� s linear composition

| Copower(τ ,σ) copower types

| LFun(τ ,σ) linear function

| lswap t swapping args

| levalt linear evaluation

| {(t ,−)} singletons

| lcopowfold t Copower-elimination

| lfst linear projection

| lsnd linear projection

| lpair(t , s) linear pairing,

and their API can be typed according to the rules of Figure 8.

ACM Transactions on Programming Languages and Systems, Vol. 44, No. 3, Article 20. Publication date: August 2022.

https://github.com/VMatthijs/CHAD

CHAD: Combinatory Homomorphic Automatic Differentiation 20:35

Fig. 8. Typing rules for the applied target language, to extend the source language.

We note that these abstract types give us precisely the functionality and type safety of the linear
function and copower types of our target language of Section 4. Indeed, we can define a semantics
and type preserving translation (−)T from that target language to our source language extended

with these LFun(τ ,σ) and Copower(τ ,σ ,) types, for which (!τ ⊗ σ)T
def
= Copower(τT ,σT ,), (τ �

σ)T
def
= LFun(τT ,σT), (realn)T

def
= realn and we extend (−)T structurally recursively, letting it

preserve all other type formers. We then translate (x1 : τ , . . . ,xn : τ ;y : σ � t : ρ)T
def
= x1 :

τT , . . . ,xn : τT � tT : (σ � ρ)T and (x1 : τ , . . . ,xn : τ � t : σ)T
def
= x1 : τT , . . . ,xn : τT � tT : σT .

We believe an interested reader can fill in the details.

9.2 Implementing the API of LFun(τ ,σ) and Copower(τ ,σ ,) Types

We observe that we can implement this API of LFun(τ ,σ) and Copower(τ ,σ) types, as follows, in a
language that extends the source language with types List(τ) of lists (or arrays) of elements of type
τ . Indeed, we implement LFun(τ ,σ) under the hood, for example, as τ → σ and Copower(τ ,σ)
as List(τ∗σ). The idea is that LFun(τ ,σ), which arose as a right adjoint in our linear language, is
essentially a subtype of τ → σ . However, Copower(τ ,σ), which arose as a left adjoint, is a quotient

type of List(τ∗σ). We achieve the desired subtyping and quotient typing by exposing only the API
of Figure 8 and hiding the implementation. We can then implement this interface as follows.11

lop
def
= lop 01

def
= 〈〉 t +1 s

def
= 〈〉 0τ ∗σ

def
= 〈0τ , 0σ 〉 t +τ ∗σ s

def
= 〈fst t +τ fst s, snd t +σ snd s 〉

0τ→σ

def
= λ_. 0σ t +τ→σ s

def
= λx . t x +σ s x 0LFun(τ ,σ)

def
= λ_. 0σ t +LFun(τ ,σ) s

def
= λx . t x +σ s x

0Copower(τ ,σ)
def
= [] t +Copower(τ ,σ) s

def
= fold x :: acc over x in t from acc = s

lid
def
= λx . x t ;� s

def
= λx . s (t x) lswap t

def
= λx . λy . t y x levalt

def
= λx . x t

{(t, −)}
def
= λx . 〈t, x 〉 :: [] lcopowfold t

def
= λz . fold t (fst x) (snd x) + acc over x in z from acc = 0

lfst
def
= λx . fst x lsnd

def
= λx . snd x lpair(t, s)

def
= λx . 〈t x, s x 〉

11Note that the implementation of t +Copower(τ ,σ) s is merely list concatenation written using a fold.

ACM Transactions on Programming Languages and Systems, Vol. 44, No. 3, Article 20. Publication date: August 2022.

20:36 M. Vákár and T. Smeding

Here, we write lop for the function that lop is intended to implement, [] for the empty list, t :: s for
the list consisting of s with t prepended on the front, and fold t overx in s fromacc = init for (right)
folding an operation t over a list s , starting from init . The monoid structure 0τ , +τ can be defined
by induction on the structure of types, by using, for example, type classes in Haskell or OCaml’s
module system or (in any functional language with algebraic data types) by using reified types.
Furthermore, the implementer of the AD library can determine which linear operations lop to
include within the implementation of LFun. We expect these linear operations to include various
forms of dense and sparse matrix-vector multiplication as well as code for computing Jacobian-
vector and Jacobian-adjoint products for the operations op that avoids having to compute the full
Jacobian. Another option is to simply include two linear operations Dop and Dopt for computing
the derivative and transposed derivative of each operation op.

9.3 Maintaining Type Safety throughout the Compilation Pipe-Line in Our
Reference Implementation

In a principled approach to building a define-then-run AD library, one would shield this imple-
mentation using the abstract data types Copower(τ ,σ) and LFun(τ ,σ) as we describe, both for
reasons of type safety and because it conveys the intuition behind the algorithm and its correct-
ness. By using such abstract data types in our Haskell implementation combined with GADTs and
type families, we achieve a fully type-safe (well-scoped, well-typed De Bruijn) implementation of
the source and target languages of Sections 3 and 4 with their semantics of Section 5 and statically
type-checked code transformations of Section 7.

However, nothing stops library implementers from exposing the full implementation rather than
working with abstract types. In fact, this seems to be the approach [43] have taken. A downside of
that “exposed” approach is that the transformations then no longer respect equational reasoning
principles. In our reference implementation, we include a compiler from the (linearly typed) target
language to a less type-safe “concrete” target language (implementing Section 9.2 as a compilation
step): essentially the source language extended with list (or array) types.12 This demonstrates defi-
nitely that CHAD implements a notion of compile-time AD code transformation that takes in and
spits out standard functional code without any custom semantics.

9.4 Compiling Away Copowers

As a final observation on this implementation, we would like to note that while the proposed im-
plementation of copowers as lists is generally applicable, more efficient implementation strategies
can often be achieved in practice. In fact, in unpublished follow-up work to this article led by Tom
Smeding, we show that when we implement CHAD to operate on Accelerate [34], we can optimize
away uses of copower types.

10 ADDING HIGHER-ORDER ARRAY PRIMITIVES

The aim of this article is to answer the foundational question of how to perform (reverse) AD at
higher types. The problem of how to perform AD of evaluation and currying is highly challenging.
For this reason, we have devoted this article to explaining a solution to that problem in detail,
working with a toy language with ground types of black-box, sized arrays realn with some

12To be exact, the to-concrete compilation step in the implementation does convert copowers and linear functions to lists

and regular functions, but retains 0 and + primitives. We feel this brings a major increase in readability of the output.

Actually implementing the inductive definitions for 0 and + is easy when reified types (singletons) are added to the imple-

mentation, which itself is an easy change if one modifies the LT type class.

ACM Transactions on Programming Languages and Systems, Vol. 44, No. 3, Article 20. Publication date: August 2022.

CHAD: Combinatory Homomorphic Automatic Differentiation 20:37

first-order operations op. However, many of the interesting applications only arise once we can
use higher-order array primitives such as map and fold on realn .

Our definitions and correctness proofs extend to this setting with standard array processing
primitives including map, fold, filter, zipWith, permute (aka scatter), backpermute (aka gather),
generate (or build), and array indexing. We plan to discuss these primitives as well as CHAD
applied to dynamically sized arrays in detail in an applied follow-up paper, which will focus on an
implementation of CHAD to operate on Accelerate [34].

To illustrate the idea behind such an extension, we briefly discuss the case for map here and
leave the rest to future work. Suppose that we add operations13

Γ,x : real � t : real Γ � s : realn

Γ � map(x .t , s) : realn

to the source language, to “map” functions over the black-box arrays. Then, supposing that we add
to the target language primitives

Γ,x : real; v : τ∗real � t : real Γ � s : realn Γ; v : τ � r : realn

Γ; v : τ � Dmap(x .t , s, r) : realn

Γ,x : real; v : real � t : τ∗real Γ � s : realn Γ; v : realn � r : τ

Γ; v : realn � Dmapt (x .t , s, r) : τ ,
,

we can define

−→
DΓ(map(x .t , s))

def
= lety = λx .

−→
DΓ,x (t) in let 〈z, z ′〉 =

−→
DΓ(s) in

〈map(x .fst (y x), z), λv.Dmap(x .(snd (y x))•v, z, z ′•v)〉

←−
DΓ(map(x .t , s))

def
= lety = λx .

←−
DΓ,x (t) in let 〈z, z ′〉 =

←−
DΓ(s) in

〈map(x .fst (y x), z), λv.Dmapt (x .(snd (y x))•v, z, z ′•v)〉.

In our practical API of Section 9.1, the required target language primitives correspond to

Γ,x : real � t : LFun(τ∗real, real) Γ � s : realn Γ � r : LFun(τ , realn)

Γ � Dmap(x .t , s, r) : LFun(τ , realn)

Γ,x : real � t : LFun(real,τ∗real) Γ � s : realn Γ � r : LFun(realn ,τ)

Γ � Dmapt (x .t , s, r) : LFun(realn ,τ).
.

Extending Section 9.2, we can implement this API as

Dmap(x .t , s, r)
def
= λy. zipWith((x ,x ′).t 〈y,x ′〉, s, r y)

Dmap(x .t , s, r)t
def
= λy. let zs = zipWith((x ,x ′).t x ′, s,y) in sum(map(w .fst w, zs)) + r map(w .snd w, zs),

13We prefer to work with this elementary formulation of maps rather than the usual higher-order formulation of

Γ � t : real→ real Γ � s : realn

Γ � map(t, s) : realn
,

because it makes sense in the wider context of languages without function types as well and because it simplifies its

CHAD correctness proof. Note that both are equivalent in presence of function types: map(t, s) = map(x .t x, s) and

map(x .t, s) = map(λx . t, s).

ACM Transactions on Programming Languages and Systems, Vol. 44, No. 3, Article 20. Publication date: August 2022.

20:38 M. Vákár and T. Smeding

where

Γ,x : τ � t : σ Γ � s : τn

Γ � map(x .t , s) : σn

Γ,x : τ ,x ′ : σ � t : ρ Γ � s : τn Γ � s : σn

Γ � zipWith((x ,x ′).t , s, r) : ρn

Γ � t : τn

Γ � sum t : τ

are the usual functional programming idiom for mapping a unary function over an array, zipping
two arrays with a binary operation and for taking the sum of the elements in an array. Note that
we assume that we have types τn for length-n arrays of elements of type τ , here, generalizing the
arrays realn of elements of type real. We present a correctness proof for this implementation of
the derivatives in Appendix A.

Applications frequently require AD of higher-order primitives such as differential and algebraic
equation solvers, e.g., for use in pharmacological modelling in Stan [40]. Currently, derivatives of
such primitives are derived using the calculus of variations (and implemented with define-by-run
AD) [7, 18]. Our proof method provides a more lightweight and formal method for calculating,
and establishing the correctness of, derivatives for such higher-order primitives. Indeed, most for-
malizations of the calculus of variations use infinite-dimensional vector spaces and are technically
involved [26].

11 SCOPE OF CHAD AND FUTURE WORK

11.1 Memory Use of CHAD’s Forward AD

CHAD has formulated reverse and forward AD to be precisely each other’s categorical dual. The
former first computes the primals in a forward pass and next the cotangents in a reverse pass.
Dually, the latter first computes the primals in a forward pass and next the tangents in another
forward pass. Seeing that the two forward passes in forward AD have identical control-flow, it
can be advantageous to interleave them and simultaneously compute the primals and tangents.
Such interleaving greatly reduces the memory consumption of the algorithm, as it means that all
primals no longer need to be stored for most of the algorithm. We present such an interleaved
formulation of forward AD in Reference [21].

While it is much more memory efficient, it has the conceptual downside of no longer being the
mirror image of reverse AD. Furthermore, these interleaved formulations of forward AD work by
operating on dual numbers. That is, they use an array-of-structs representation, by contrast with
the struct-of-arrays representation used to pair primals with tangents in CHAD. Therefore, an
SoA-to-AoS optimization is typically needed to make interleaved implementations of forward AD
efficient [38].

Finally, we note that such interleaving techniques do not apply to reverse AD, as we need to
have completed the forward primal pass before we can start the reverse cotangent pass, due to the
dependency structure of the algorithm.

11.2 Applying CHAD to Richer Source Languages

The core observations that let us use CHAD for AD on a higher-order language were the following:

(1) there is a class of categories with structure S (in this case, Cartesian closure) such that the
source language Syn that we want to perform AD on can be seen as the freely generated
S-category on the operations op;

(2) we identified structure T that suffices for a CMon-enriched strictly indexed category L :
Cop → Cat to ensure that ΣCL and ΣCL

op are S-categories;
(3) we gave a description LSyn : CSynop → Cat of the freely generated CMon-enriched strictly

indexed category with structure T , on the Cartesian operations op in CSyn and linear

ACM Transactions on Programming Languages and Systems, Vol. 44, No. 3, Article 20. Publication date: August 2022.

CHAD: Combinatory Homomorphic Automatic Differentiation 20:39

operations Dop and Dopt in LSyn; we interpret these linear/non-linear language as the
target language of our AD translations;

(4) by the universal property of Syn, we now obtained unique S-homomorphic AD functors
−→
D : Syn → ΣCSynLSyn and

←−
D : Syn → ΣCSynLSynop such that

−→
D(op) = (op,Dop)

and
←−
D(op) = (op,Dopt), whose correctness proof follows immediately because of the

well-known theory of subsconing for S-categories.

CHAD applies equally to source languages with other choices of S, provided that we can follow
steps (1)–(4).

In particular, in Reference [30] it is shown how CHAD applies equally to languages with sum
types and (co)inductive types (and tuple and function types). In that setting, the category LSyn is
a genuine strictly indexed category over CSyn, to account for the fact that the (co)tangent space
to a space of varying dimension depends on the chosen base point. That is, in its most principled
formulation, the target language has (linear) dependent types. However, we can also work with
a simply typed target language in this setting, at the cost of some extra type safety. In fact, our
Haskell implementation already supports such a treatment of coproducts.

As discussed in Section 10, S can also be chosen to include various operations for manipulat-
ing arrays, such as map, fold, filter, zipWith, permute (aka scatter), backpermute (aka gather),
generate (aka build), and array indexing. We plan to describe this application of CHAD to array
processing languages and we are implementing CHAD to operate on the Accelerate parallel array
processing language.

In work in progress, we are applying CHAD to partial features such as real conditionals, itera-
tion, recursion and recursive types. Our Haskell implementation of CHAD already supports real
conditionals, iteration and recursion. The challenge in this setting is to understand the subtle in-
teractions between the ωCPO-structure needed to model recursion and the commutative monoid
structure that CHAD uses to accumulate (co)tangents.

11.3 CHAD for Other Dynamic Program Analyses

As noted in Reference [43], source-code transformation AD has a lot of similarities with other
dynamic program analyses such as dynamic symbolic analysis and provenance analysis.

In fact, as the abstract perspective on CHAD given in Section 11.2 makes clear, CHAD is in no
way tied to automatic differentiation. In many ways, it is much more general, and can best be seen
as a framework for applying dynamic program analyses that accumulate data (either by going
through the program forwards or backwards) in a commutative monoid to functional languages

with expressive features. In fact, by varying the definitions of
−→
D(R) and

←−
D(R) for the ground types

R and the definitions of
−→
D(op) and

←−
D(op) for the primitive operations op (we do not even need

to use
−→
D(R)1 = R,

←−
D(R)1 = R,

−→
D(op)1 = op or

←−
D(op)1 = op!), we can completely change the

nature of the analysis. In most cases, as long as a notion of correctness of the analysis can be
phrased at the level of a denotational semantics, we conjecture that our subsconing techniques
lead to straightforward correctness proofs of the analysis.

To give one more example application of such an analysis, beyond AD, dynamic symbolic
analysis and provenance analysis, one can note that for a source language Syn, generated from a
base type R that is a commutative semi-ring, we have a notion of algebraic (or formal) derivative
of any polynomial x1 : R, . . . ,xn : R � op(x1, . . . ,xn) : R [28]. CHAD can be used to extend
and compute this notion of derivative for arbitrary functional programs generated from the
polynomials op as basic operations. The particular case of such formal derivatives for the Boolean
semi-ring R = B are used in Reference [45] to feed into a gradient descent algorithm to learn

ACM Transactions on Programming Languages and Systems, Vol. 44, No. 3, Article 20. Publication date: August 2022.

20:40 M. Vákár and T. Smeding

Boolean circuits. CHAD makes this method applicable to more general (higher-order) programs
over (arrays of) Booleans.

12 RELATED WORK

This work is closely related to References [21] and [20], which introduced a similar semantic cor-
rectness proof for a dual-numbers version of forward mode AD and higher-order forward AD,
using a subsconing construction. A major difference is that this article also phrases and proves
correctness of reverse mode AD on a λ-calculus and relates reverse mode to forward mode AD.
Using a syntactic logical relations proof instead, Reference [4] also proves correctness of forward
mode AD. Again, it does not address reverse AD.

Reference [12] proposes a similar construction to that of Section 6, and it relates it to the differen-
tial λ-calculus. This article develops sophisticated axiomatics for semantic reverse differentiation.
However, it neither relates the semantics to a source-code transformation, nor discusses differ-
entiation of higher-order functions. Our construction of differentiation with a (biadditive) linear
target language might remind the reader of differential linear logic [15]. In differential linear logic,
(forward) differentiation is a first-class operation in a (biadditive) linear language. By contrast, in
our treatment, differentiation is a meta-operation.

Importantly, Reference [16] describes and implements what are essentially our source-code
transformations, though they were restricted to first-order functions and scalars. After completing
this work, we realized that Reference [43] describes an extension of the reverse mode transforma-
tion to higher-order functions in a similar manner as we propose in this article, but without the
linear or abstract types. Though that paper did not derive the algorithm or show its correctness,
it does discuss important practical considerations for its implementation and offers a dependently
typed variant of the algorithm based on typed closure conversion, inspired by Reference [37].

Next, there are various lines of work relating to correctness of reverse mode AD that we con-
sider less similar to our work. For example, Reference [31] define and prove correct a formulation
of reverse mode AD on a higher-order language that depends on a non-standard operational
semantics, essentially a form of symbolic execution. Reference [2] does something similar for
reverse mode AD on a first-order language extended with conditionals and iteration. Reference [8]
defines a beautifully simple AD algorithm on a simply typed λ-calculus with linear negation (es-
sentially, a more finely typed version of the continuation-based AD of Reference [21]) and proves
it correct using operational techniques. Reference [33] extends this work to apply to recursion.
Furthermore, they show with an impressive operational argument that this simple algorithm, sur-
prisingly, corresponds to true reverse mode AD with the correct complexity under an operational
semantics with a “linear factoring rule.” While this is a natural operational semantics for a linear
λ-calculus, it is fundamentally different from normal call-by-value or call-by-name evaluation
(under which the generated code has the wrong computational complexity). For this reason, we
require a custom interpreter or compiler to use this reverse AD method in practice. Very recently,
Reference [25] specified another purely functional reverse AD algorithm, which appears similar
to, and, which we conjecture to be equivalent to an implementation of the techniques of Reference
[33]. These formulations of reverse mode AD all depend on non-standard run-times and hence
fall into the category of “define-by-run” formulations of reverse mode AD, for our purposes.
Meanwhile, we are concerned with “define-then-run” formulations: source-code transformations
producing differentiated code at compile-time that can then be optimized during compilation
with existing compiler tool-chains (such as the Accelerate [11], Futhark [19], and TensorFlow
[1] frameworks for generating highly performant GPU code). While we can compile such define-
by-run transformations together with their interpreter to achieve a source-code transformation

ACM Transactions on Programming Languages and Systems, Vol. 44, No. 3, Article 20. Publication date: August 2022.

CHAD: Combinatory Homomorphic Automatic Differentiation 20:41

(hence a sort of define-then-run transformation), the resulting code recursively traverses an AST,
so does not obviously seem suitable for generating, via existing tool-chains, optimized machine
code for the usual parallel hardwares that we use as targets for AD, such as GPUs and TPUs.

Finally, there is a long history of work on reverse mode AD, though almost none of it applies
the technique to higher-order functions. A notable exception is Reference [37], which gives
an impressive source-code transformation implementation of reverse AD in Scheme. While
very efficient, this implementation crucially uses mutation. Moreover, the transformation is
complex and correctness is not considered. More recently, Reference [44] describes a much
simpler implementation of a reverse AD code transformation, again very performant. However,
the transformation is quite different from the one considered in this article as it relies on a
combination of delimited continuations and mutable state. Correctness is not considered, perhaps
because of the semantic complexities introduced by impurity.

Our work adds to the existing literature by presenting a novel, generally applicable method for
compositional source-code transformation (forward and) reverse AD on expressive functional lan-
guages without a need for a non-standard runtime, by giving a method for compositional correct-
ness proofs of such AD algorithms, and by observing that the CHAD method and its correctness
proof are not limited to AD but apply generally to dynamic program analyses that accumulate data
in a commutative monoid.

APPENDICES

A CHAD CORRECTNESS FOR HIGHER-ORDER OPERATIONS SUCH AS MAP

We extend the proofs of Lemmas 2.1 and 2.2 to apply to the map-constructs of Section 10.

A.1 The Semantics of map and Its Derivatives

First, we observe that

�map(x .t , s, r)� :�Γ�→ Rn

γ �→
(
�t�(γ ,π1(�s�(γ))), . . . , �t�(γ ,πn(�s�(γ)))

)
.

Similarly,

�Dmap(x .t , s, r)� :�Γ�→ �τ � � Rn

γ �→ v �→
(
�t�(γ ,π1(�s�(γ)))(v,π1(�r�(γ)(v))), . . . , �t�(γ ,πn (�s�(γ)))(v,πn(�r�(γ)(v)))

)
�Dmapt (x .t , s)� :�Γ�→ Rn � �τ �

γ �→ v �→ π1(�t�(γ ,π1(�s�(γ)))(π1(v))) + · · · + π1(�t�(γ ,πn (�s�(γ)))(πn(v)))+

�r�(γ)(π2(�t�(γ ,π1(�s�(γ)))(π1(v))), . . . ,π2(�t�(γ ,πn(�s�(γ)))(πn(v))))

This implies that

π1(�
−→
DΓ(map(x .t , s))�(γ)) =

(
π1(�

−→
DΓ,x (t)�(γ ,π1(π1(�

−→
DΓ(s)�(γ))))), . . . ,π1(�

−→
DΓ,x (t)�(γ ,πn(π1(�

−→
DΓ(s)�(γ)))))

)
π2(�

−→
DΓ(map(x .t , s))�(γ))(v) =

(
π2(�

−→
DΓ,x (t)�(γ ,π1(π1(�

−→
DΓ(s)�(γ)))))(v,π1(π2(�

−→
DΓ(s)�(γ))(v))), . . . ,

π2(�
−→
DΓ,x (t)�(γ ,πn(π1(�

−→
DΓ(s)�(γ)))))(v,πn(π2(�

−→
DΓ(s)�(γ))(v)))

)
π1(�

←−
DΓ(map(x .t , s))�(γ)) =

(
π1(�

←−
DΓ,x (t)�(γ ,π1(π1(�

←−
DΓ(s)�(γ))))), . . . ,π1(�

←−
DΓ,x (t)�(γ ,πn(π1(�

←−
DΓ(s)�(γ)))))

)
π2(�

←−
DΓ(map(x .t , s))�(γ))(v) = π1(π2(�

←−
DΓ,x (t)�(γ ,π1(π1(�

←−
DΓ(s)�(γ)))))(π1(v))) + · · ·

+ π1(π2(�
←−
DΓ,x (t)�(γ ,πn (π1(�

←−
DΓ(s)�(γ)))))(πn(v)))

ACM Transactions on Programming Languages and Systems, Vol. 44, No. 3, Article 20. Publication date: August 2022.

20:42 M. Vákár and T. Smeding

+ π2(�
←−
DΓ(s)(γ)�)(π2(π2(�

←−
DΓ,x (t)�(γ ,π1(π1(�

←−
DΓ(s)�(γ)))))(π1(v))), . . . ,

π2(π2(�
←−
DΓ,x (t)�(γ ,πn (π1(�

←−
DΓ(s)�(γ)))))(πn(v))))

=

n∑
i=1

π1(π2(�
←−
DΓ,x (t)�(γ ,πi (π1(�

←−
DΓ(s)�(γ)))))(πi (v)))

+ π2(�
←−
DΓ(s)(γ)�)(0, . . . , 0,π2(π2(�

←−
DΓ,x (t)�(γ ,πi (π1(�

←−
DΓ(s)�(γ)))))(πi (v))), 0, . . . , 0),

where the last equation holds by linearity of π2(�
←−
DΓ(s)(γ)�).

A.2 Extending the Induction Proof of the Fundamental Lemma for Forward CHAD

First, we focus on extending the induction proof of the fundamental lemma for forward CHAD to
apply to maps. Assume the induction hypothesis that t and s respect the logical relation. We show
that map(x .t , s) does as well. (Where we assume all terms all well-typed.) Suppose that (f , (д,h)) ∈
PΓ . We want to show that

(f ′, (д′, h′))
def
= (f ; �map(x .t, s)�, (д; �

−→
DΓ(map(x .t, s))�; π1, x �→ r �→ π2(�

−→
DΓ(map(x .t, s))�(д(x)))(h(x)(r)))) ∈ Prealn .

Note f ′ = (f ′1 , . . . , f
′

n), д
′ = (д′1, . . . ,д

′
n) and h′(x) = (h′1(x), . . . ,h

′
n(x)) that, as derivatives are

computed componentwise, it is equivalent to show that (f ′i , (д
′
i ,h
′
i)) ∈ Preal for i = 1, . . . ,n. That

is, we need to show that

(x �→ �t�(f (x),πi (�s�(f (x)))), (x �→ π1(�
−→
DΓ,x (t)�(д(x),πi (π1(�

−→
DΓ(s)�(д(x)))))),

x �→ r �→ π2(�
−→
DΓ,x (t)�(д(x),πi (π1(�

−→
DΓ(s)�(γ)))))(h(x)(r),πi (π2(�

−→
DΓ(s)�(д(x)))(h(x)(r)))))) ∈ Preal.

As t respects the logical relation by our induction hypothesis, it is enough to show that

(x �→ (f (x),πi (�s�(f (x)))), (x �→ (д(x),πi (π1(�
−→
DΓ(s)�(д(x)))))

x �→ r �→ (h(x)(r),πi (π2(�
−→
DΓ(s)�(д(x)))(h(x)(r)))))) ∈ PΓ,x :real.

Seeing that (f , (д,h)) ∈ PΓ by assumption, it is enough, by definition of PΓ,x :real, to show that

(x �→ πi (�s�(f (x))), (x �→ πi (π1(�
−→
DΓ(s)�(д(x)))),

x �→ r �→ πi (π2(�
−→
DΓ(s)�(д(x)))(h(x)(r))))) ∈ Preal.

By definition of Prealn , it is enough to show that

(x �→ �s�(f (x)), (x �→ π1(�
−→
DΓ(s)�(д(x))),

x �→ r �→ π2(�
−→
DΓ(s)�(д(x)))(h(x)(r)))) ∈ Preal.

Seeing that s respects the logical relation by our induction hypothesis, it is enough to show that

(x �→ f (x), (x �→ д(x),

x �→ r �→ h(x)(r))) ∈ Preal,

which is true by assumption.

A.3 Extending the Induction Proof of the Fundamental Lemma for Reverse CHAD

Next, we extend the fundamental lemma for reverse CHAD to apply to maps. Assume the induction
hypothesis that t and s respect the logical relation. We show that map(x .t , s) does as well. (Where
we assume all terms all well-typed.) Suppose that (f , (д,h)) ∈ PΓ . We want to show that

(f ′, (д′, h′))
def
= (f ; �map(x .t, s)�, (д; �

←−
DΓ(map(x .t, s))�; π1, x �→ v �→ h(x)(π2(�

←−
DΓ(map(x .t, s))�(д(x)))(v)))) ∈ Prealn .

ACM Transactions on Programming Languages and Systems, Vol. 44, No. 3, Article 20. Publication date: August 2022.

CHAD: Combinatory Homomorphic Automatic Differentiation 20:43

Observing that (f ′, (д′,h′)) ∈ Prealn are all of the form f ′ = (f ′1 , . . . , f
′

n), д
′ = (д′1, . . . ,д

′
n) and

h′(x)(v) = h′1(x)(π1(v)) + · · · + h
′
n(x)(πn(v)) where (f ′i , (д

′
i ,h
′
i)) ∈ Preal for i = 1, . . . ,n, by basic

multivariate calculus. That is, we need to show (by linearity of h(x)) that

(x �→ �t�(f (x),πi (�s�(f (x)))), (x �→ π1(�
←−
DΓ,x (t)�(д(x),πi (�s�(f (x))))),

x �→ v �→ h(x)(π1(π2(�
←−
DΓ,x (t)�(д(x),πi (π1(�

←−
DΓ(s)�(д(x))))))(v))

+ π2(�
←−
DΓ(s)(д(x))�)(0, . . . , 0,π2(π2(�

←−
DΓ,x (t)�(д(x),πi (π1(�

←−
DΓ(s)�(д(x))))))(v)), 0, . . . , 0)))) ∈ Preal.

As t respects the logical relation by our induction hypothesis, it is enough to show that

(x �→ (f (x),πi (�s�(f (x)))), (x �→ (д(x),πi (�
←−
DΓ(s)�(д(x)))),

x �→ v �→ h(x)(π1(v) + π2(�
←−
DΓ(s)(д(x))�)(0, . . . , 0,π2(v), 0, . . . , 0)))) ∈ PΓ,x :real.

Seeing that (f , (д,h)) ∈ PΓ by assumption, we merely need to check the following, by definition of
PΓ,x :real:

(x �→ πi (�s�(f (x))), (x �→ πi (�
←−
DΓ(s)�(д(x))),

x �→ v �→ h(x)(π2(�
←−
DΓ(s)(д(x))�))(0, . . . , 0,v, 0, . . . , 0))) ∈ Preal.

By definition of Prealn and linearity of h(x), it is enough to show that

(x �→ �s�(f (x)), (x �→ �
←−
DΓ(s)�(д(x)),

x �→ v �→ h(x)(π2(�
←−
DΓ(s)(д(x))�))(v))) ∈ Prealn .

Seeing that s respects the logical relation by our induction hypothesis, it is enough to show that

(f , (д,h)) ∈ PΓ,

which holds by assumption.

B TERM SIMPLIFICATIONS IN THE IMPLEMENTATION

Our implementation14 of the AD macros that is described in Section 9 includes a number of simpli-
fication rules on the concrete target language whose only purpose is to make the produced code
more readable and clear (without changing its asymptotic runtime cost). The motivation for these
rules is to be able to generate legible code when applying the AD macros to example programs. In
this appendix, we list these simplification rules explicitly and show the implementation’s output
on the four example programs in Figures 1 and 2 under these simplification rules. We do this to
illustrate that

(1) the simplifications given here are evidently meaning-preserving, given the βη+ rules in
Figures 4 and 6, and are standard rules that any optimizing compiler would apply;

(2) the thus simplified output of the AD macros from Section 7 is indeed equivalent to the
differentiated programs in Figures 1 and 2.

The simplification rules in question are given below in Table 1. In the implementation, these are
(at the time of writing) implemented in the simplifier for the concrete target language.15

The last column in the table shows the justification for the simplification rule: “let substitution,”
“β pair,” “η pair,” “lambda substitution,” and “η lambda” refer to the corresponding rules in Figure 4.
The equational rules are either from Figure 6 in the case of t+0 = t and its symmetric variant, from

14As also mentioned in Section 9, the implementation is available at https://github.com/VMatthijs/CHAD.
15https://github.com/VMatthijs/CHAD/blob/eedd6b12f224ed28ef9ca8650718d901c2b5e6a3/src/Concrete/Simplify.hs.

ACM Transactions on Programming Languages and Systems, Vol. 44, No. 3, Article 20. Publication date: August 2022.

https://github.com/VMatthijs/CHAD
https://github.com/VMatthijs/CHAD/blob/eedd6b12f224ed28ef9ca8650718d901c2b5e6a3/src/Concrete/Simplify.hs

20:44 M. Vákár and T. Smeding

Table 1. The Simplification Rules to Aid Legibility That Are Available in the CHAD Implementation
in Haskell on the Concrete Target Language

Name Rule Justification

lamAppLet (λx . e) a � let x = a in e lambda subst., let subst.

letRotate let x = (let y = a in b) in e � let y = a in let x = b in e let substitution

letPairSplit let x = (a,b) in e � let x1 = a in let x2 = b in e[〈x1,x2 〉/x] let substitution

letInline let x = a in e � e[a/x] let substitution

(if a is cheap or used at most once in e)

pairProj1 fst 〈a,b〉 � a β pair

pairProj2 snd 〈a,b〉 � b β pair

pairEta 〈fst a, snd a〉 � a η pair

letProj1 fst (let x = a in e) � let x = a in fst e let substitution

letProj2 snd (let x = a in e) � let x = a in snd e let substitution

plusZero1 plus zero a � a equational rule

plusZero2 plus a zero � a equational rule

plusPair plus 〈a,b〉 〈c,d〉 � 〈plus a c, plus b d〉 equational rule

plusLet1 plus (let x = e in a) b � let x = e in plus a b let substitution

plusLet2 plus a (let x = e in b) � let x = e in plus a b let substitution

algebra 0 ∗ x , 0 ∗ x � 0 (etc.) basic algebra

letLamPairSplit let f = λx . 〈a,b〉 in e � let f1 = λx . a in let f2 = λx . b

in e[λx . 〈f1 x,f2 x 〉/f]
η lambda, let subst.

mapPairSplit map (λx . (b, c)) a � let a′ = a
in 〈map (λx . b) a′,map (λx . c) a′〉 equational rule

mapZero map (λx . zero) a � zero equational rule

sumZip sum (zip a b) � 〈sum a, sum b〉 equational rule

sumZero sum zero � zero equational rule

sumSingleton sum (map (λx . [x]) e) � e equational rule

the type-based translation rules in Section 9.2 in the case of plus on pairs, or otherwise general
laws that hold for zero (i.e., 0) and/or the array combinators in question.

Note that all of the rules preserve time complexity of the program through careful sharing of
values with let-bindings. These let-bindings could only be argued to increase work if the value
is only used once in the body of the let – but in that case, the “letInline” rule will eliminate the
let-binding anyway.

B.1 First-order Example Programs

The output of our implementation for the forward derivative of Figure 1(a) and the reverse deriv-
ative of Figure 1(b) can be found below in Figure 9.

The simplification rules listed above have already been applied (otherwise the output would,
indeed, be much less readable). The only change we made to the literal text output of the imple-
mentation is formatting and renaming of variables.

For both programs, we note that in the implementation, environments are encoded using snoc-
lists: that is, the environment Γ = x1 : real,x2 : real,x3 : real is represented as ((ϵ,x1 : real),x2 :

real),x3 : real. Hence, for this Γ,
−→
D(Γ)2 would be represented as ((1∗real)∗real)∗real. This has

an effect on the code in Figure 9, where in subfigure (a), the variable x′ has type 1∗real instead of
real, which it had in Figure 1(c). Furthermore, the output in Figure 9(b), which is the cotangent (i.e.,
adjoint) of the environment, has type (((1∗real)∗real)∗real)∗real, meaning that the “zero” term in
the result has type 1 and is thus equal to 〈〉.

We hope that it is evident to the reader that these outputs are equivalent to the programs given
in Figure 1(c) and (d).

ACM Transactions on Programming Languages and Systems, Vol. 44, No. 3, Article 20. Publication date: August 2022.

CHAD: Combinatory Homomorphic Automatic Differentiation 20:45

Fig. 9. Output of our Haskell implementation when executed on the first-order example programs in
Figure 1(a) and (b).

B.2 Second-order Example Program Figure 2(a)

The implementation’s forward derivative of Figure 2(a) is shown below in Figure 10. This version
contains a let-bound function “g” that does not occur in the code of Figure 2(c). However, inlining
this function in the two places where it is used does not increase work, because due to pair projec-
tion and equational rules concerning “zero” and “plus,” only one half of the “plus” expression in
“g” remains at both of the invocation sites of “g.” A version with “g” manually inlined and simpli-
fied using the stated rules is shown in Figure 11. (Our automatic simplifier is currently not smart
enough to prove that inlining “g” does not increase work, and hence keeps it let-bound.)

Fig. 10. Output of our Haskell implementation of the forward AD macro when executed on Figure 2(a). The
implementation writes operations on scalar arrays (realn) with a “v” prefix.

First, we notice that the type of the variable x′ here is 1∗real instead of real because of the
snoc-list representation of environments, as was discussed in the previous subsection. Because of
this, the expression snd x′ in Figure 11 is equivalent to the expression x′ in Figure 2(c). Knowing
this, let us work out how the implementation got this output code, and how it is equivalent to the
code in Figure 2(c).

ACM Transactions on Programming Languages and Systems, Vol. 44, No. 3, Article 20. Publication date: August 2022.

20:46 M. Vákár and T. Smeding

Fig. 11. Manually simplified code from Figure 10, as described in the text.

For the purposes of this explanation, the most important component of the source of Figure 2(a)
is its first line: “let f = λz. x * z + 1 in....” Recall from the forward AD macro from Section 7.4:

−→
DΓ(letx = t in s)

def
= let 〈x ,x ′〉 =

−→
DΓ(t) in let 〈y,y ′〉 =

−→
DΓ,x (s) in 〈y, λv.y ′•〈v,x ′•v〉〉.

Hence, the binding of t is transformed to a binding of
−→
DΓ(t), which is then used somehow in the

body. Since t is the term “λz. x * z + 1” here, and since the macro rule for lambda abstraction is as
follows:

−→
DΓ(λx . t)

def
= lety = λx .

−→
DΓ,x (t) in 〈λx . let 〈z, z′〉 = y x in 〈z, λv. z′•〈0, v〉〉, λv. λx . (snd (y x))•〈v, 0〉〉,

we get the following result for
−→
DΓ(λz. x ∗ z + 1) with Γ = ϵ,x : real:

−→
Dϵ,x (λz. x ∗ z + 1) = let y = λz. 〈x ∗ z + 1, λ〈〈〈〉,x ′〉, z ′〉. x ∗ z ′ + z ∗ x ′〉

in 〈λz. let 〈u,u ′〉 = y z in 〈u, λv.u ′•〈0, v〉〉, λv. λz. (snd (y z))•〈v, 0〉〉.

This is the term that appears on the right-hand side of a let-binding in the forward AD transformed
version of the code from Figure 2(a). Inlining of y and some further simplification yields:

−→
Dϵ,x (λz. x ∗ z + 1) = 〈λz. 〈x ∗ z + 1, λv. x ∗ v〉, λv. λz. z ∗ snd v〉.

wherein we recognize f and f′ from Figure 2(c).

The implementation proceeded differently in the simplification of
−→
Dϵ,x (λz. x ∗z + 1), namely by

splitting the lambda bound to y using “letLamPairSplit.” The second of the resulting two lambda
functions is λz. λ〈〈〈〉,x ′〉, z ′〉. x ∗ z ′ + z ∗ x ′, or by desugaring pattern matching, λz. λv. x ∗ snd v+
z ∗ snd (fst v). We recognise this expression as the right-hand side of the f′ binding in Figure 11.

After seeing this, we leave it to the reader to show that the code in Figures 11 and 2(c) is equiv-
alent under forward and reverse let-substitution.

B.3 Second-order Example Program Figure 2(b)

When the implementation performs reverse AD on the code in Figure 2(b) and simplifies the result
using the simplification rules in Table 1, the result is the code that is shown below in Figure 12.

First, note the evalOp EScalProd. Since scalar multiplication is implemented as an operation (op),
it does not take two separate arguments but rather a pair of the two scalars to multiply. Due to
application of the “pairEta” simplification rule from Table 1, the argument to the multiplication was
reduced from 〈fst p, snd p〉 to just “p,” preventing the pretty-printer from showing fst p * snd p;
instead, this becomes a bare operation application to the argument “p.” In the code in Figure 2(d),
this lambda is the argument to the “map” in the cotangents block, meaning that “p” stands for
〈x2i, y′〉.

ACM Transactions on Programming Languages and Systems, Vol. 44, No. 3, Article 20. Publication date: August 2022.

CHAD: Combinatory Homomorphic Automatic Differentiation 20:47

Fig. 12. Output of our Haskell implementation of the reverse AD macro when executed on Figure 2(b). The
implementation writes operations on scalar arrays (realn) with a “v” prefix; list operations are written without
a prefix. Contrast this to Figure 2, where all arrays are implemented as lists and hence there are no pure-array
operations that would have been written using a “v” prefix.

In this example, a copower structure is created because of the usage of a function abstraction
in the code to be differentiated using reverse AD. Here, this copower was interpreted using lists
as described in Section 9.2. The “toList” function converts an array of scalars (i.e., a value of type
realn) to a list of scalars. The code in Figure 2(d) goes further and interprets all arrays as lists,
effectively removing the distinction between arrays originating from arrays in the source program
and lists originating from copower values. Together with recognizing the snoc-list representation
of environments, it becomes sufficient to inline some let-bindings in Figure 2(d) to arrive at code
equivalent to the code shown here.

ACKNOWLEDGMENTS

We are grateful to the anonymous reviewers who gave excellent comments on earlier versions of
this article that prompted various much-needed rewrites.

REFERENCES

[1] Martín Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis, Jeffrey Dean, Matthieu Devin, Sanjay Ghe-

mawat, Geoffrey Irving, Michael Isard, et al. 2016. Tensorflow: A system for large-scale machine learning. In Proceed-

ings of the 12th USENIX Symposium on Operating Systems Design and Implementation (OSDI’16). 265–283.

[2] Martín Abadi and Gordon D. Plotkin. 2020. A simple differentiable programming language. In Proceedings of the ACM

SIGPLAN Symposium on Principles of Programming Languages (POPL’20). ACM.

[3] Andrew Barber and Gordon Plotkin. 1996. Dual Intuitionistic Linear Logic. University of Edinburgh, Department of

Computer Science, Laboratory for Foundations of Computer Science.

[4] Gilles Barthe, Raphaëlle Crubillé, Ugo Dal Lago, and Francesco Gavazzo. 2020. On the versatility of open logi-

cal relations - continuity, automatic differentiation, and a containment theorem. In Proceedings of the 29th Euro-

pean Symposium on Programming (ESOP’20) Held as Part of the European Joint Conferences on Theory and Prac-

tice of Software (ETAPS’20), Lecture Notes in Computer Science, Vol. 12075, Peter Müller (Ed.). Springer, 56–83.

https://doi.org/10.1007/978-3-030-44914-8_3

[5] Atilim Gunes Baydin and Barak A. Pearlmutter. 2018. Automatic differentiation in machine learning: a survey. Journal

of Machine Learning Research 18, 1 (2018), 1–43.

[6] P. Nick Benton. 1994. A mixed linear and non-linear logic: Proofs, terms and models. In Proceedings of the International

Workshop on Computer Science Logic. Springer, 121–135.

[7] Michael Betancourt, Charles C. Margossian, and Vianey Leos-Barajas. 2020. The discrete adjoint method: Efficient

derivatives for functions of discrete sequences. arXiv:2002.00326. Retrieved from https://arxiv.org/abs/2002.00326.

[8] Alois Brunel, Damiano Mazza, and Michele Pagani. 2020. Backpropagation in the simply typed lambda-calculus with

linear negation. In Proceedings of the ACM SIGPLAN Symposium on Principles of Programming Languages (POPL’20).

[9] Bob Carpenter, Matthew D. Hoffman, Marcus Brubaker, Daniel Lee, Peter Li, and Michael Betancourt. 2015. The Stan

math library: Reverse-mode automatic differentiation in C++. arXiv:1509.07164. Retrieved from https://arxiv.org/abs/

1509.07164.

[10] Manuel M. T. Chakravarty, Gabriele Keller, Sean Lee, Trevor L. McDonell, and Vinod Grover. 2011. Accelerating

Haskell array codes with multicore GPUs. In Proceedings of the 6th Workshop on Declarative Aspects of Multicore

Programming. 3–14.

ACM Transactions on Programming Languages and Systems, Vol. 44, No. 3, Article 20. Publication date: August 2022.

https://doi.org/10.1007/978-3-030-44914-8_3
https://arxiv.org/abs/2002.00326
https://arxiv.org/abs/1509.07164

20:48 M. Vákár and T. Smeding

[11] Manuel M. T. Chakravarty, Gabriele Keller, Sean Lee, Trevor L. McDonell, and Vinod Grover. 2011. Accelerating haskell

array codes with multicore GPUs. In Proceedings of the 6th Workshop on Declarative Aspects of Multicore Programming

(DAMP’11). ACM, New York, NY, 3–14. https://doi.org/10.1145/1926354.1926358

[12] J. Robin B. Cockett, Geoff S. H. Cruttwell, Jonathan Gallagher, Jean-Simon Pacaud Lemay, Benjamin MacAdam, Gor-

don D. Plotkin, and Dorette Pronk. 2020. Reverse derivative categories. In Proceedings of the Annual Conference on

Computer Science Logic (CSL’20).

[13] P.-L. Curien. 1986. Categorical combinators. Inf. Contr. 69, 1–3 (1986), 188–254.

[14] Jeff Egger, Rasmus Ejlers Møgelberg, and Alex Simpson. 2009. Enriching an effect calculus with linear types. In Pro-

ceedings of the International Workshop on Computer Science Logic. Springer, 240–254.

[15] Thomas Ehrhard. 2018. An introduction to differential linear logic: Proof-nets, models and antiderivatives. Math.

Struct. Comput. Sci. 28, 7 (2018), 995–1060.

[16] Conal Elliott. 2018. The simple essence of automatic differentiation. Proc. ACM Program. Lang. 2, ICFP (2018), 1–29.

[17] Marcelo P. Fiore. 2007. Differential structure in models of multiplicative biadditive intuitionistic linear logic. In Pro-

ceedings of the International Conference on Typed Lambda Calculi and Applications. Springer, 163–177.

[18] Ralf Hannemann-Tamas, Diego A. Munoz, and Wolfgang Marquardt. 2015. Adjoint sensitivity analysis for nonsmooth

differential-algebraic equation systems. SIAM J. Sci. Comput. 37, 5 (2015), A2380–A2402.

[19] Troels Henriksen, Niels G. W. Serup, Martin Elsman, Fritz Henglein, and Cosmin E. Oancea. 2017. Futhark: Purely

functional GPU-programming with nested parallelism and in-place array updates. In Proceedings of the 38th ACM

SIGPLAN Conference on Programming Language Design and Implementation. 556–571.

[20] Mathieu Huot, Sam Staton, and Matthijs Vákár. 2022. Higher order automatic differentiation of higher order functions.

Logical Methods in Computer Science 18, 1 (2022), 41:1–41:34.

[21] Mathieu Huot, Sam Staton, and Matthijs Vákár. 2020. Correctness of automatic differentiation via diffeologies and

categorical gluing. In Proceedings of the International Conference on Foundations of Software Science and Computation

Structures (FoSSaCS’20).

[22] Michael Innes. 2018. Don’t unroll adjoint: Differentiating SSA-Form programs. arXiv:1810.07951. Retrieved from https:

//arxiv.org/abs/1810.07951.

[23] Peter T. Johnstone. 2002. Sketches of An Elephant: A Topos Theory Compendium, Vol. 2. Oxford University Press.

[24] Peter T. Johnstone, Stephen Lack, and P. Sobocinski. 2007. Quasitoposes, quasiadhesive categories and artin glueing.

In Proceedings of the Conference on Algebra and Coalgebra in Computer Science (CALCO’07).

[25] Faustyna Krawiec, Neel Krishnaswami, Simon Peyton Jones, Tom Ellis, Andrew Fitzgibbon, and R. Eisenberg. 2022.

Provably correct, asymptotically efficient, higher-order reverse-mode automatic differentiation. Proc. ACM Program.

Lang. 6, POPL (2022), 1–30.

[26] Andreas Kriegl and Peter W. Michor. 1997. The Convenient Setting of Global Analysis, Vol. 53. American Mathematical

Soc.

[27] Joachim Lambek and Philip J. Scott. 1988. Introduction to Higher-order Categorical Logic, Vol. 7. Cambridge University

Press.

[28] Serge Lang. 2002. Algebra. Springer, New York, NY.

[29] Paul Blain Levy. 2012. Call-by-push-value: A Functional/imperative Synthesis, Vol. 2. Springer Science & Business

Media.

[30] Fernando Lucatelli Nunes and Matthijs Vákár. 2021. CHAD for expressive total languages. arXiv:2110.00446. Retrieved

from https://arxiv.org/abs/2110.00446.

[31] Carol Mak and Luke Ong. 2020. A differential-form pullback programming language for higher-order reverse-mode

automatic differentiation. arxiv:2002.08241. Retrieved from https://arxiv.org/abs/2002.08241.

[32] Charles C. Margossian. 2019. A review of automatic differentiation and its efficient implementation. Data Min. Knowl.

Discov. 9, 4 (2019), e1305.

[33] Damiano Mazza and Michele Pagani. 2021. Automatic differentiation in PCF. Proc. ACM Program. Lang. 5, POPL (2021),

1–27.

[34] Trevor L. McDonell, Manuel M. T. Chakravarty, Gabriele Keller, and Ben Lippmeier. 2013. Optimising purely functional

GPU programs. In Proceedings of the 18th ACM SIGPLAN International Conference on Functional Programming (ICFP’13).

ACM, New York, NY, 49–60. https://doi.org/10.1145/2500365.2500595

[35] Paul-André Mellies. 2009. Categorical semantics of linear logic. Panor. Synth. 27 (2009), 15–215.

[36] Adam Paszke, Sam Gross, Soumith Chintala, Gregory Chanan, Edward Yang, Zachary DeVito, Zeming Lin, Alban

Desmaison, Luca Antiga, and Adam Lerer. 2017. Automatic differentiation in pytorch. In NIPS 2017 Workshop on

Autodiff. https://openreview.net/forum?id=BJJsrmfCZ.

[37] Barak A. Pearlmutter and Jeffrey Mark Siskind. 2008. Reverse-mode AD in a functional framework: Lambda the ulti-

mate backpropagator. ACM Trans. Program. Lang. Syst. 30, 2 (2008), 7.

ACM Transactions on Programming Languages and Systems, Vol. 44, No. 3, Article 20. Publication date: August 2022.

https://doi.org/10.1145/1926354.1926358
https://arxiv.org/abs/1810.07951
https://arxiv.org/abs/2110.00446
https://arxiv.org/abs/2002.08241
https://doi.org/10.1145/2500365.2500595
https://openreview.net/forum?id=BJJsrmfCZ

CHAD: Combinatory Homomorphic Automatic Differentiation 20:49

[38] Amir Shaikhha, Andrew Fitzgibbon, Dimitrios Vytiniotis, and Simon Peyton Jones. 2019. Efficient differentiable pro-

gramming in a functional array-processing language. Proc. ACM Program. Lang. 3, ICFP (2019), 97.

[39] Lau Skorstengaard. 2019. An introduction to logical relations. arXiv:1907.11133. http://arxiv.org/abs/1907.11133.

[40] Periklis Tsiros, Frederic Y. Bois, Aristides Dokoumetzidis, Georgia Tsiliki, and Haralambos Sarimveis. 2019. Population

pharmacokinetic reanalysis of a Diazepam PBPK model: A comparison of stan and GNU MCSim. J. Pharmacokinet.

Pharmacodynam. 46, 2 (2019), 173–192.

[41] Matthijs Vákár. 2017. In search of effectful dependent types. arXiv:1706.07997. Retrieved from https://arxiv.org/abs/

1706.07997.

[42] Matthijs Vákár. 2021. Reverse AD at higher types: Pure, principled and denotationally correct. In Proceedings of the

European Symposium on Programming (ESOP’21).

[43] Dimitrios Vytiniotis, Dan Belov, Richard Wei, Gordon Plotkin, and Martin Abadi. 2019. The differentiable curry. In

NeurIPS Workshop Program Transformations.

[44] Fei Wang, Xilun Wu, Gregory Essertel, James Decker, and Tiark Rompf. 2019. Demystifying differentiable program-

ming: Shift/reset the penultimate backpropagator. Proc. ACM Program. Lang. 3, ICFP (2019).

[45] Paul W. Wilson and Fabio Zanasi. 2020. Reverse derivative ascent: A categorical approach to learning boolean circuits.

In Proceedings of the 3rd Annual International Applied Category Theory Conference (ACT’20), David I. Spivak and Jamie

Vicary (Eds.). 247–260. https://doi.org/10.4204/EPTCS.333.17

Received March 2021; revised October 2021; accepted March 2022

ACM Transactions on Programming Languages and Systems, Vol. 44, No. 3, Article 20. Publication date: August 2022.

http://arxiv.org/abs/1907.11133
https://arxiv.org/abs/1706.07997
https://doi.org/10.4204/EPTCS.333.17

