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Comparison of cluster algorithms for the bond-diluted Ising model
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Monte Carlo cluster algorithms are popular for their efficiency in studying the Ising model near its critical
temperature. We might expect that this efficiency extends to the bond-diluted Ising model. We show, however,
that this is not always the case by comparing how the correlation times τw and τsw of the Wolff and Swendsen-
Wang cluster algorithms scale as a function of the system size L when applied to the two-dimensional bond-
diluted Ising model. We demonstrate that the Wolff algorithm suffers from a much longer correlation time than
in the pure Ising model, caused by isolated (groups of) spins which are infrequently visited by the algorithm.
With a simple argument we prove that these cause the correlation time τw to be bounded from below by Lzw with
a dynamical exponent zw = γ /ν ≈ 1.75 for a bond concentration p < 1. Furthermore, we numerically show
that this lower bound is actually taken for several values of p in the range 0.5 < p < 1. Moreover, we show
that the Swendsen-Wang algorithm does not suffer from the same problem. Consequently, it has a much shorter
correlation time, shorter than in the pure Ising model even. Numerically at p = 0.6, we find that its dynamical
exponent is zsw = 0.09(4).
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I. INTRODUCTION

The Ising model is one of the most popular models in
statistical physics; its simplicity makes it easy to study while it
is complex enough that many interesting physical phenomena
can be studied with it, such as phase transitions and critical-
ity [1]. Since its inception, numerous variants of the Ising
model have been proposed to study different phenomena. An
important class of such variants are the Ising models with
impurities. These are used to investigate how the presence
of impurities, which occur frequently in nature, affects the
properties of a system. Common ways to model impurities in
the Ising model is by randomly removing spins (site dilution
[2–4]), bonds (bond dilution [5–9]), or alternatively by ran-
domly modifying the strength of the interactions in some other
way [6,10]. In this paper we focus on the variant with bond
dilution.

The introduction of bond dilution to the Ising model
changes its properties significantly. For example, it has been
shown that the critical temperature that separates the ferro-
magnetic and paramagnetic phases of the Ising model changes
depending on the extent of the bond dilution [8]. This even
introduces a different type of phase transition because the crit-
ical temperature drops to zero at a certain bond concentration
creating two phases (zero and nonzero critical temperature)
separated by what is referred to as the percolation threshold
[11]. In addition, it appears that the presence of impurities also
alters the universality class of the model [2].

A common approach to study the Ising model is the use
of Monte Carlo methods. The choice of the algorithm does
not change any of the equilibrium properties: all algorithms

sample the same (Boltzmann) distribution. However, the
dynamics of different algorithms can vary strongly leading
to pronounced differences in their efficiency for studying a
certain model. In the pure Ising model, cluster algorithms
such as the Wolff and Swendsen-Wang algorithms have
proven themselves to be much more effective at criticality
than single spin-flip algorithms like Metropolis [12]. This
difference is expected to be even more pronounced in the
bond-diluted Ising model since it has been recently shown that
single spin-flip algorithms suffer from a diverging correlation
time when the percolation threshold is approached [5]. The
dynamics of cluster algorithms for the bond-diluted Ising
model remains poorly studied and so it is still unclear whether
they actually are more effective. Some studies have proposed
that the efficiency of these cluster algorithms carries over
to the bond-diluted Ising model and that correlation times
actually decrease when site or bond dilution is introduced
[4,13]. We present a quantitative analysis of the dynamics
of the Wolff and Swendsen-Wang algorithms to show that
this is in fact not the case for the Wolff algorithm. We will
demonstrate that the Wolff algorithm suffers from much
longer correlation times than in the pure model, caused by
isolated (groups of) spins, a fact which has previously been
hinted at by Ballesteros et al., who showed that depending
on the degree of bond dilution there are different regions,
characterized by the size of the groups of isolated spins,
where certain Monte Carlo updates are more efficient at
thermalizing the system [14]. We expand upon their work
by proving a lower bound on the dynamical exponent of the
Wolff algorithm and numerically showing that this lower
bound is actually taken for several values of the dilution.
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This paper is organized as follows. We first define the
bond-diluted Ising model, the cluster algorithms, and the ob-
servables that we use. Next, we present our results and discuss
what they teach us about the correlation times of the Wolff
and Swendsen-Wang algorithms. In the final section we sum-
marize our main findings and conclude.

II. MODEL AND METHODS

A. Model

In this paper we study the bond-diluted Ising model in two
dimensions on a square lattice of size L × L. This model is a
variant of the regular Ising model with nearest-neighbor inter-
actions and is obtained by randomly removing a fraction 1 − p
of the bonds (i.e., interactions between two neighbors) from
the lattice, where p is called the bond concentration. Defined
this way, p is the probability that there is a bond between two
neighbors. With this choice, p = 1 corresponds to the regular
Ising model and p = 0 to a collection of isolated spins (no
interactions). We define the model with the Hamiltonian

H = −J
∑

〈i j〉
ci j (p)sis j, (1)

where the sum runs over all pairs of nearest-neighbor sites,
si = ±1 is the spin on site i, and ci j (p) is a constant that
follows a Bernoulli distribution with probability p, i.e., it has
value 1 with probability p and value 0 with probability 1 − p.
We refer to a realization of the ci j’s for all nearest-neighbor
pairs as a configuration of the model. The bond-dilution is
frozen in for a particular configuration. In other words, the
values of the ci j’s are fixed for a specific configuration. All
through the paper, energy is measured in units of J .

B. Algorithms

We use the bond-diluted Ising model to study the behavior,
and in particular the dynamics, of two cluster Monte Carlo
algorithms. The first of these is the Wolff algorithm [15].
The basic idea behind this algorithm is to grow a cluster of
spins and flip all the spins in this cluster simultaneously with
probability 1. To grow a cluster we perform the following
steps [12]:

(1) Choose a spin at random from the lattice.
(2) Consider each of its neighbors. If the spins are aligned,

add the neighbor to the cluster with probability 1 − e−2βJ with
β = 1

kBT and J the coupling constant from the Hamiltonian.
(3) For each of the neighbors added in step 2 also consider

all their neighbors to be added to the cluster and repeat this
until no more neighbors exist that have not yet been consid-
ered.

It can be shown that by growing the cluster in this way
we satisfy both ergodicity and detailed balance [12]. It is
important to note that in the bond-diluted Ising model two
spins are only considered to be neighbors if there is a bond
between them.

The second algorithm under consideration is the
Swendsen-Wang algorithm [16]. Similar to the Wolff
algorithm, clusters of spins are grown according to the
aforementioned procedure. It differs, however, in the fact
that we do not just grow a single cluster, but cover the entire

lattice with clusters and flip each of these with probability 1
2

in a single step [12]. Since clusters are grown in the same way
as in the Wolff algorithm, showing that the Swendsen-Wang
algorithm satisfies ergodicity and detailed balance proceeds
analogously [12].

C. Observables

During our simulations we keep track of several quantities.
This includes the energy of a state, which follows directly
from the definition of the model and requires no further ex-
planation. Additionally, we measure a quantity which we will
refer to as the spin age and which we define as follows.

To extract more information about the dynamics of the
Wolff algorithm from our simulations, we label each site in
the lattice with a spin age ai, which we define to be the time
since site i was last visited (i.e., was part of a Wolff cluster)
measured in the number of Wolff cluster moves. Concretely,
this means that during each cluster move of the algorithm we
update the age of all spins according to the following rule. If
the spin is part of the cluster formed in this move its age is set
to 0. The age of all other spins is incremented by 1. Once the
system is thermalized, both with respect to its configuration of
spins and the distribution of ages, we count how often a certain
age occurs at various steps in the simulation, to produce a
histogram showing the distribution of ages in equilibrium. To
be specific, at certain steps in the simulation (between moves)
we measure for each age a how many spins in the lattice are
labeled with that age at that step and we call this number the
age frequency fL(a).

III. RESULTS AND DISCUSSION

A. Wolff algorithm

We first discuss the behavior of the Wolff algorithm applied
to the bond-diluted Ising model. We will start with a simple
argument to show that there must be a lower limit on the cor-
relation time. Then we discuss the results from our numerical
analysis to show that this lower bound is also taken for several
values of the bond concentration p. But before going into the
simple argument, let us first introduce some notation and two
different time scales that we have used.

For all the results we measure time in cluster moves of the
algorithm used, because we found this to be the most intuitive
timescale for understanding the results. However, when eval-
uating the performance of an algorithm, we prefer to measure
time such that it scales with required CPU time. Since the
CPU time per single Wolff cluster move can vary significantly,
we require a second timescale for the Wolff algorithm. A good
candidate is to measure time such that t = 1 corresponds to
the situation where on average as many spins are flipped as
there are in the lattice. The relation between the time t and
our previous time, which we denote by tsteps for Wolff, is
given by t = tsteps

〈n〉
L2 , where 〈n〉 is the average size of a Wolff

cluster [12]. It can also be shown that 〈n〉 scales as Lγ /ν at
the critical temperature such that Lγ /ν−2 acts as a conversion
factor when required [12]. By construction, the same number
of spins, namely all the spins in the lattice, are visited by
the Swendsen-Wang algorithm in each cluster move, so tsteps

already scales with CPU time for Swendsen-Wang and there is
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FIG. 1. Convergence of the energy E (t ) to the thermal equilib-
rium 〈E〉 during thermalization with the Wolff algorithm for different
system sizes L with p = 0.6 at (βJ )−1 = 0.940 where β = 1

kBT and
J is the coupling constant. For tsteps = 0 the system starts in a state
with all spins pointing up. Both the vertical and horizontal axes were
scaled with L2. Note the collapse of the right tails of the curves,
suggesting that the correlation time τsteps,w ∼ L2.

no additional timescale, meaning we use t to denote the time
measured in Swendsen-Wang cluster moves.

Now let us turn to the simple argument. We argue that the
correlation time τsteps,w for p < 1 is bounded from below by
L2, i.e., τsteps,w = �(L2). To see this, note that for any p < 1
there will always exist at least one isolated spin in the lattice
for a sufficiently large system size (i.e., for a sufficiently large
system the expectation value for the number of isolated spins

will be at least 1). With an isolated spin we mean spins which
have all their bonds to the rest of the lattice removed. Such
spins would only be flipped by the Wolff algorithm if they are
chosen as the seed spin. And since each spin is equally likely
to be picked and there are L2 spins, the correlation stored
in these spins, however small it might be, will also survive
for �(L2) cluster moves. Therefore, we can conclude that the
correlation time τsteps,w is bounded from below by L2.

To study the behavior numerically, we ran simulations with
the Wolff algorithm for various system sizes with p = 0.6
at (βJ )−1 = 0.940 where β = 1

kBT and J the coupling con-
stant. We chose this value for p because the effects of bond
dilution become more pronounced when the bond fraction p
is significantly below 1. The temperature was chosen to be
in the vicinity of the critical temperature as determined with
the Binder cumulant. The value we found is also in good
agreement with the critical temperature found in other papers;
see, for example, [5]. Unless otherwise mentioned, we used
100 000 different realizations of the bond dilution in each
simulation.

Figure 1 shows the evolution of the energy of the system
towards its thermal equilibrium value as a function of Wolff
cluster moves. For L = 40 we ran for 400 cluster moves per
configuration, for L = 100 we ran for 300 cluster moves, and
in between we tuned the number of cluster moves to roughly
keep the CPU time used per simulation constant. At tsteps = 0,
the system starts in the configuration with all spins pointing
up (si = 1 for all i). Notice how the curve seems to transition
from a fast decay for small tsteps to a slower decay at large
tsteps. When the vertical and horizontal axes are scaled with L2

the tails of the curves, the regions of slower decay, collapse.
Since these tails are the limiting factor in convergence of the
energy to its equilibrium this suggests that the correlation time

FIG. 2. Distribution of spin ages a during a simulation with the Wolff algorithm at equilibrium. In (a) we see the data for p = 0.6 at
(βJ )−1 = 0.940, p = 0.7 at (βJ )−1 = 1.310, p = 0.8 at (βJ )−1 = 1.648, and p = 0.9 at (βJ )−1 = 1.964. In (b) we see the data for p = 1
at (βJ )−1 = 2.27. Here β = 1

kBT and J is the coupling constant. The spin age is defined as the time since the site was last visited, measured

in Wolff cluster moves. Note the different scaling of the horizontal axis for (a) and (b). The horizontal axis in (a) was scaled with L2, while
in (b) it was scaled with Lzsteps,w where zsteps,w = 0.50 was chosen to correspond with the zw = 0.25(1) for the regular 2D Ising model [12].
The collapse of the curves in (a) again suggests that the correlation time τsteps,w of the Wolff algorithm scales as L2, in agreement with Fig. 1.
Scaling the horizontal axis in (b) with the dynamical exponent for the regular 2D Ising model from the literature also leads to a reasonable
collapse, as we would expect.
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τsteps,w scales as L2 such that τw scales as Lzw with zw = γ /ν.
Numerically, it is reported that γ /ν is independent of p for
p � 0.6, and is actually indistinguishable from γ /ν = 1.75 as
in the regular Ising model [8]. Note that, while the equilibrium
exponents are numerically indistinguishable, the dynamic
exponent is very different: in the regular two-dimensional
(2D) Ising model the dynamic exponent is reported as zw =
0.25(1) [12].

To verify our argument that isolated (groups of) spins exist
that are not touched by the algorithm for a long time, we
computed a histogram of the distribution of the spin ages
throughout a simulation with the Wolff algorithm in the man-
ner described in the Model and Methods section. For these
simulations we used 104 realizations of the bond dilution. To
initialize the system we first thermalize with 50 Swendsen-
Wang moves, starting from a state with all spins pointing up.
We also first run the simulation for 5L2 Wolff cluster moves
to make sure that spins can actually reach all the ages that we
report in the histogram. Finally, we measure the age for an ad-
ditional 1000 consecutive Wolff steps. We did the simulations
for both p = 0.6 at (βJ )−1 = 0.940 as before as well as for
p = 0.7 at (βJ )−1 = 1.310, p = 0.8 at (βJ )−1 = 1.648, and
p = 0.9 at (βJ )−1 = 1.964. For completeness, we also did
the simulations at p = 1 at (βJ )−1 = 2.27. We found these
temperatures to be in the vicinity of the critical temperature at
their respective bond fractions p, again in agreement with the
critical temperature found in other papers [5]. The results are
shown in Fig. 2.

The figure clearly shows that some spins survive for a very
long time. Also note the strikingly good collapse of the curves
in Fig. 2(a) when we scale the horizontal axis with L2, for
p = 0.6, p = 0.7, p = 0.8, and p = 0.9. This supports our
earlier finding that τw scales as Lzw with zw = γ /ν ≈ 1.75
for these values of p. In contrast, the histogram drops to zero
very quickly for p = 1 and we need a different scaling to get
a reasonable collapse. This seems to suggest that the effect of
long surviving spins only shows up for p < 1.

B. Swendsen-Wang algorithm

We now turn our attention to the Swendsen-Wang algo-
rithm. By construction, it visits every spin in each step of
the algorithm, so it should not suffer from the problems en-
countered with the Wolff algorithm, originating from long
surviving spins. Similar to the Wolff algorithm, we ran sim-
ulations for various system sizes L at p = 0.6 and (βJ )−1 =
0.940, i.e., the setup of the simulations was exactly the same,
only the algorithm used to update the spins was different.
Figure 3 shows the analog of Fig. 1, but for Swendsen-Wang.
In addition, it contains an inset figure that shows the same
data but plotted in a different way. At L = 30 we ran for
300 Swendsen-Wang steps per configuration while at L = 100
we ran for 100 steps; in between we tuned the steps to keep
the CPU time used roughly constant. In the main part of the
figure we can see that the energy quickly converges to its
thermal equilibrium value and the slowly decaying tail from
Fig. 1 is absent. Moreover, when scaling the vertical axis
with L2 and the horizontal axis with Lzsw with zsw = 0.09(4),
the curve collapse suggests that the correlation time τsw for
Swendsen-Wang at p = 0.6 scales as Lzsw . The value for zsw

FIG. 3. Convergence of the energy E (t ) to the thermal equilib-
rium 〈E〉 during thermalization with the Swendsen-Wang algorithm
for different system sizes L with p = 0.6 at (βJ )−1 = 0.940 where
β = 1

kBT and J is the coupling constant. For t = 0 the system starts in

a state with all spins pointing up. The vertical axis was scaled with L2

and the horizontal axis with Lzsw with zsw = 0.09(4), where zsw was
chosen to be the same as in Fig. 4. Note that this plot is equivalent to
Fig. 1 but for the Swendsen-Wang algorithm. The collapse of the
curves suggests that the correlation time for the Swendsen-Wang
algorithm scales as Lzsw with zsw = 0.09(4). Also note the absence of
a slowly decaying tail, demonstrating that the Swendsen-Wang algo-
rithm does not suffer from the same problems that plague the Wolff
algorithm (see Fig. 1). The inset figure in the top right shows the
same data but plotted differently. Here h(t ) = −ln(c|E (t ) − 〈E〉|)
with c = |E (0) − 〈E〉|−1. The blue curve is a straight line with slope
0.87. Since the data seem to be parallel to this blue curve instead
of a curve with slope 1, the convergence of the energy seems to be
stretched exponential

used to scale the horizontal axis was chosen to be the same as
the value we determined with a different method which will
be described below. Note that the dynamical exponent zsw is
significantly smaller at p = 0.6 than for the regular 2D Ising
model (p = 1) where zsw = 0.25(1) [12]. This is the oppo-
site of the super slowing down observed for the Metropolis
algorithm [5]. Finally, in the inset figure the data for h(t )
versus time t is plotted. Here h(t ) = −ln(c|E (t ) − 〈E〉|) with
c = |E (0) − 〈E〉|−1. The blue curve is a straight line with
slope 0.87. Since the data seem to be parallel to this blue curve
instead of a curve with slope 1, the convergence of the energy
seems to be a stretched exponential.

We have already shown that there is a value for the dy-
namical exponent zsw that gives a good collapse of the data
in Fig. 3. However, this plot shows data from simulations out
of equilibrium so we did not use these data to determine the
correct scaling of the correlation time (at least not in the form
presented in Fig. 3). Instead, we determined it from equi-
librium simulations. For this we computed the evolution of
the mean-square displacement of the energy 〈[E (t ) − E (0)]2〉
from the same data as were used for Fig. 3. To obtain equi-
librium data we discarded all data before the system was
thermalized. For L = 30 this concerns all data before t = 50
and for all other system sizes all data before t = 20 (i.e.,
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FIG. 4. Mean-square displacement of the energy 〈[E (t ) −
E (0)]2〉 in thermal equilibrium as a function of Swendsen-Wang
moves t for different system sizes L with p = 0.6 at (βJ )−1 = 0.940
where β = 1

kBT and J is the coupling constant. The vertical axis was
scaled with the numerically determined limit value of the curves,
while the horizontal axis was scaled with Lzsw with zsw = 0.09(4).
The dynamical critical exponent for the Swendsen-Wang algorithm
was determined by tuning the scaling of the horizontal axis until a
good collapse was found.

these times became the new t = 0 for determining 〈[E (t ) −
E (0)]2〉). The results are shown in Fig. 4. After scaling the
vertical axis with the numerically determined limiting values
of the curves, we can collapse the curves using a horizontal
scaling of Lzsw with zsw = 0.09(4). The uncertainty in the dy-
namical exponent was determined by tuning the scaling of the
axis to determine the range within which the collapse seemed

good. The size of this range was then used as a measure of
the uncertainty. This confirms our earlier numerical estimate
of the dynamical critical exponent for the Swendsen-Wang
algorithm at p = 0.6.

IV. SUMMARY AND CONCLUSIONS

We have shown how the correlation times τw and τsw of
the Wolff and Swendsen-Wang cluster algorithms scale as
a function of the system size L when applied to the 2D
bond-diluted Ising model. We demonstrated that the Wolff
algorithm suffers from a much longer correlation time than
in the pure Ising model, caused by isolated (groups of) spins
which are infrequently visited by the algorithm. With a simple
argument we proved that these cause the correlation time to
be bounded from below by Lzw where zw = γ /ν ≈ 1.75 for
a bond concentration p < 1. Furthermore, we showed nu-
merically that this lower bound is actually taken for several
values of the bond concentration in the region 0.5 < p < 1.
Moreover, we have shown that the Swendsen-Wang algorithm
does not suffer from the same problem, by construction. It has
a much shorter correlation time, even shorter than in the pure
Ising model. Numerically, we have found that its correlation
time scales as Lzsw with zsw = 0.09(4) at p = 0.6.

We expect that the Wolff algorithm will suffer from the
same problems in the three-dimensional bond-diluted Ising
model, albeit to a lesser degree, as more bonds will have to
be removed to create isolated spins. In addition, we think
the same will hold for the site-diluted and weakly diluted
(i.e., where you weaken instead of removing the bonds) Ising
models. This could be something to explore in the future.
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