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ABSTRACT

Shallow water inertio-gravity Poincar�e waves in a rotating frame satisfy the Klein–Gordon equation, originally derived for relativistic, spinless
quantum particles. Here, we compare these two superficially unrelated phenomena, suggesting a reason for them sharing the same equation.
We discuss their energy conservation laws and the equivalency between the non-relativistic limit of the Klein–Gordon equation, yielding the
Schr€odinger equation, and the near-inertial wave limit in the shallow water system.

VC 2022 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (http://
creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0120375

I. INTRODUCTION

The Klein–Gordon wave equation (hereafter KGE) was originally
derived by Schr€odinger in 19251 but was not published by him, as the
equation failed to take into account the electron’s spin. The equation
was re-derived and published independently a year later by Klein2 and
by Gordon3 in two separate papers. Generally, the equation can be
written for a wave function W as

@2

@t2
þ f 2 � c2r2

� �
W ¼ 0; (1)

where f and c are some constant frequency and speed, respectively, t
denotes time, and the nabla denotes the gradient operator in 3D.
Plane-wave solutions of the form W ¼ Ŵeiðk�x�xtÞ (k and x are the
wavenumber vector and frequency, respectively, and x denotes the
position vector) yield the familiar dispersion relation

x2 ¼ f 2 þ ðkcÞ2 (2)

(k ¼ jkj). For relativistic (spinless) quantum mechanics, the dispersion
relation agrees with the Einstein relativistic energy–momentum relation

E2 ¼ E2
0 þ ðpcÞ

2; (3)

when E0 ¼ mc2 ¼ �hf (where f is the reduced Compton frequency, so
that kCompt ¼ c=f ¼ �h=mc is the reduced Compton length) and the de
Broglie postulates

E ¼ �hx and p ¼ �hk (4)

are satisfied. Here, E0 ¼ mc2 is the Einstein relativistic rest energy, m
is the mass of the particle, and c is the speed of light. E and p are the
energy and momentum of the quantum particle (where p ¼ jpj),
respectively, and �h is the reduced Planck constant.4
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Consider, in turn, the momentum and continuity equations in
the shallow water system, linearized about a basic state of rest, in a
rotating frame with a rotation rate f =2, where f is the Coriolis fre-
quency parameter5

@u
@t
¼ f v� g

@g
@x
; (5a)

@v

@t
¼ �fu� g

@g
@y
; (5b)

@g
@t
¼ �H @u

@x
þ @v
@y

� �
: (5c)

Here, g denotes gravity and (u, v) are the components of the
velocity perturbations in the horizontal directions (x, y), H is the
constant mean height of the shallow layer, and g is the height devia-
tion from it. Writing the perturbation field as a plane wave normal
mode ðu; v; gÞ ¼ ðû; v̂; ĝÞeiðk�x�xtÞ, one can bring (5) into the gen-
eral form of KGE given in Eq. (1), where now the nabla indicates the
horizontal gradient operator, with W playing the role of any of the
variables ðu; v; gÞ to satisfy the Poincar�e inertio-gravity wave disper-
sion relation given in (31). Now, f denotes the Coriolis parameter,
and c ¼ ffiffiffiffiffiffi

gH
p

is the shallow water gravity wave’s phase speed, so
that LR ¼ c=f ¼ ffiffiffiffiffiffi

gH
p

=f is the Rossby deformation radius. The only
difference is that, by construction, shallow water dynamics is
restricted to the (x, y, t) space, whereas the general KGE is applied to
the ðx; y; z; tÞ space.

Although Poincar�e is one of the major founders of both the the-
ory of relativity6 (along with Einstein) and the theory of tides7 (along
with Laplace), it is still hard to avoid asking why two such remote
physical phenomena—the wave function dynamics of a quantum rela-
tivistic particle and the classical wave dynamics in a shallow water
rotating system—obey the same equation. The analysis suggested here
is aimed at providing some partial answers to this question. It is a
follow-up of a previous paper in which we compared the propagation
mechanism of inertio-gravity waves with the one of transverse electro-
magnetic waves in a cold collisionless plasma.8

In Sec. II, we consider the mechanical analog of the continuous
limit of an infinite array of coupled harmonic oscillators, often invoked
to provide a mental picture of a 1D quantum field,9 to show how it
could also be used to describe the Poincar�e inertio-gravity waves in a
rotating frame. Then in Sec. III, we compare the energy conservation
laws for the quantum and fluid systems, where in Sec. IV, we compare
their energy–momentum relations. In Sec. V, we consider the equiva-
lency between the non-relativistic limit, in which the Schr€odinger
equation is extracted from the Klein–Gordon equation, and the near-
inertial waves parabolic approximation range of (31). In Sec. VI, we
conclude with a discussion about what we learned from the compari-
son between the two phenomena and suggestions for follow-up
analyses.

II. MECHANICAL ANALOG

Consider an infinite 1D array of identical oscillators with the
same natural frequency f and mass m, distributed evenly in the x
direction with distance Dx between each other. The oscillators are
coupled by springs of constant stiffness j. Denote the small displace-
ment from equilibrium of oscillator n by Wn, it satisfies the momen-
tum equation

@2

@t2
Wn ¼ �f 2 Wn þ

j
m

Wnþ1 �Wnð Þ � Wn �Wn�1ð Þ
� �

: (6)

The first term of the RHS represents the harmonic restoring force in
isolation of oscillator n, while the second term denotes the coupling
with the adjacent oscillators. [For instance, when the spring between
oscillators n and nþ 1 is stretched, ðWnþ1 �WnÞ > 0, and the spring
between oscillators n and n � 1 is compressed, ðWn �Wn�1Þ < 0,
both interactions accelerate oscillator n in the positive direction of x.]

Equation (6) can be written equivalently as

@2

@t2
Wðx; tÞ ¼ �f 2 Wðx; tÞ þ j

m
Wðx þ Dx; tÞ �Wðx; tÞð Þ½

� Wðx; tÞ �Wðx � Dx; tÞð Þ�: (7)

The 1D version of KGE is then recovered for the combined limit
Dx ! 0 and

ffiffiffi
j
m

p
!1, so that Dx

ffiffiffi
j
m

p
¼ c (where c is finite). The

generalization for a 3D array of oscillators is straightforward; however,
for the sake of simplicity, we stay in 1D where x represents the direc-
tion of propagation.

Hence, without loss of generality, we assume that @
@y ¼ 0 in (5).

Define W to be the small fluid particle displacement in the x direction,
so that u ¼ @W

@t , then for modal dynamics (5b) and (5c) imply, respec-
tively, that

v ¼ �fW; (8a)

g ¼ �H @W
@x

: (8b)

Substituting back into (5a), we obtain the 1D version of KGE.
It seems, therefore, that the mechanical analog of coupled oscilla-

tors is the common denominator between the Poincar�e propagation
mechanism in rotating shallow water and the “mental model” of a sca-
lar quantum field. The inertial oscillation frequency is analogous to the
Compton frequency, and the action of the pressure gradient force is
analogous to the coupling between the oscillators with the shallow
water surface gravity wave’s phase speed playing the role of the speed
of light.

The analogy of the inertio-gravity waves to the coupled oscillators
is illustrated in Fig. 1. This shows the vertical displacement of the free
surface g (solid blue line) and associated vertically uniform horizontal
velocities u, v (arrows and arrow-heads/tails in wave propagation and
orthogonal directions, respectively) associated with a rightward propa-
gating, rotationally modified surface gravity wave (see its location after
a quarter cycle in red). The fluid element’s horizontal displacement in
the x-direction, w, is indicated by a green arrow. w can also refer to the
small displacement of the coupled oscillator array described in (7),
where the coupled oscillators are illustrated by simple pendulums

whose natural frequency f ¼
ffiffi
g
l

q
, where l is the length of the pendu-

lum’s string. The oscillating pendulums represent a metaphor for the
inertial oscillations that each fluid element performs in the absence of
free-surface displacements (g ¼ 0, indicated by a blue dashed line),
while the springs represent the pressure gradient forces associated
with a sloping surface. For rightward propagation of the wave, u is in
phase with the vertical displacement, g. Both Coriolis force (repre-
sented by the pendulum restoring force) as well as pressure gradient
force (represented by coupling springs) displace the pendulum in
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concert and together force its rightward propagation. For leftward
propagation, u is in anti-phase with the vertical displacement so the
blue arrows are now in the opposite direction but the arrow heads/tails
(indicating the action of the Coriolis force) are left unchanged.
Standing waves can be described as well by a superposition of leftward
and rightward propagation; hence, u vanishes exactly under the crests
and troughs of g. Note then that, apart from the horizontal arrows rep-
resenting u, the snapshot in the figure of g, v and the pendulums’ dis-
placements fits equivalently for positive, negative, or zero (standing
wave) propagation in the x direction.

III. ENERGY CONSERVATION

Defining U � @W
@t , the Hamiltonian of KGE can be obtained

when multiplying (1) by U,

@

@t
H ¼ r � c2UrWð Þ; (9a)

H � 1
2

U2 þ ð fWÞ2 þ ðcrWÞ2
� �

; (9b)

where H is the KGE Hamiltonian density.10 Here, 1
2U

2 of a generic
quantity U ¼ AeiS, possessing a complex amplitude A and real phase
S, signifies its phase averaged value

hRe U½ �2i � 1
2p

ð2p
0
Re U½ �2dS ¼ 1

2
AA�; (10)

where an asterisk denotes the complex conjugate. For the conceptual
model of continuous coupled oscillators, the first term of the
Hamiltonian density can be regarded as the kinetic energy density of
the oscillators, the second as the potential energy density stored in
their intrinsic oscillation mechanism, and the third as the potential
energy density resulting from the coupling between the oscillators.
The term in the RHS of (9a) represents the energy flux convergence.
For plane-waves satisfying dispersion relation (31), employing (10) it
is straightforward to verify that

@

@t
H ¼ r � c2UrWð Þ ¼ �r � cgH

� �
; (11a)

cg � rkx ¼
c2

x
k; (11b)

where cg denotes the group velocity. The energy flux convergence van-
ishes when integrated over the volume domain V, when assuming

Dirichlet and/or Neumann boundary conditions on W, or alternatively
periodic boundary conditions. Then the KGE Hamiltonian becomes

H ¼
ð
1
2

U2 þ ð fWÞ2 þ ðcrWÞ2
� �

dV : (12)

For the continuous coupled oscillator system, plane wave solutions
yield equipartition between the kinetic energy-like term of the
Hamiltonian and the sum of the potential energy-like terms, associated
with the self-oscillation and the coupling. When related to the Einstein
energy–momentum relation (3), the first term is proportional to the
square of the total energy, the second to the square of the rest energy,
and the third to the square of the momentum term.

For the linearized rotating shallow water system (5), the energy E
over area A can be written as the sum of the kinetic energy KE and the
available (gravitational) potential energy PE,5

E ¼ KE þ PE ¼
ð

q
H
2

u2 þ v2ð ÞdAþ
ð

q
g
2
g2dA; (13)

where q is the constant density of the fluid. As is known in the litera-
ture, the presence of rotation alters the equipartition between kinetic
and potential energy for surface gravity waves.11 Although the Coriolis
force does not perform work, the rotation affects the kinetic energy of
the Poincar�e inertio-gravity waves. For instance, denoting W as
the small fluid particle displacement in the x direction, in case we set
@
@y ¼ 0 and insert expressions (8) in (5), we find that, up to a common
proportionality term, the energy partition reads

x2|{z}
E

¼ ðkcÞ2

2
þ f 2

	 

|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}

KE

þ ðkcÞ
2

2|ffl{zffl}
PE

: (14)

Here, evaluating (13) by employing (10), we use spectral fields,
indicated by a hat, ðû; v̂Þ ¼ 1

kH ðx;�if Þĝ, obtained from (5c) and (8),
respectively, so that in this normalization kinetic energy of motions in
x and y directions contribute 1

2 ½ðkcÞ
2 þ f 2� and 1

2 f
2, respectively.

Comparing (13) and (14) to (12) reveals that the Poincar�e KE corre-
sponds to the first two terms of the Hamiltonian

Ð
1
2 ½U2 þ ð fWÞ2�dV ,

where its available (gravitational) potential energy PE corresponds to
the last term

Ð
1
2 ðcrWÞ2dV . The analogy with the continuous coupled

oscillators system suggests an explanation for this asymmetric energy
partition. PE represents the energy signature of the pressure gradient
force, �grg, which is analogous only to the coupling between the

FIG. 1. Sketch of the mechanistic interpre-
tation of the Klein–Gordon equation for
long surface waves on a rotating plane.
For further explanation, see the main text.
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oscillators, whereas the rest of the oscillation energy, in the absence of
coupling, is represented by KE. It is also straightforward to show that
the energy flux �c2UrW, in the RHS of (9a), results from the work
done by the wave pressure perturbation along the direction of propa-
gation. For instance, in the case where we set @

@y ¼ 0 in (5) and having

W as the small fluid particle displacement in the x direction,
�c2U @W

@x ¼ u p0, where here from (8b) the pressure perturbation is

p0 ¼ qgg ¼ �c2 @W@x and u ¼ @W
@t ¼ U .

It is interesting that KGE yields three different interpretations of
the energy conservation law, when related to the continuous model of
coupled oscillators (12), to the free relativistic, spinless quantum parti-
cle (3), and to the inertio-gravity waves in the rotating shallow water
system (14).

IV. ENERGY–MOMENTUM RELATION

The de Broglie postulates (4) satisfy the fundamental wave
energy–momentum relation

E ¼ p cp; (15)

where cp ¼ x
k is the wave phase speed. Applied to a quantum particle, for

the non-relativistic case E ¼ p2

2m (where v, p ¼ mv, and E ¼ mv2

2 are the
particle speed, momentum, and kinetic energy, respectively), Eqs. (4) and
(15) imply that v ¼ cg ¼ 2cp, where cg ¼ dx

dk is the wave group speed.
For relativistic particles, it can be shown,12 after some math, that

relations (4), (31), and (15) hold when

E ¼ cmc2; p ¼ cmv; v ¼ cg ; c2 ¼ cpcg ; (16)

where

c ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� v2

c2

r (17)

represents the Lorentz contraction factor.
For classical waves, relation (15) holds in the average sense13

hEi ¼ hpicp; (18)

where here averaging, indicated by brackets, is over a wavelength,
hð�Þi � 1

k

Ð k
0 ð:Þdx. The total average energy of the Poincar�e waves is

11

hEi ¼ 2
x2

ðkcÞ2
hPEi ¼ 2

c2p
c2
hPEi; (19)

where hPEi ¼ 1
4 qgĝ2: The average wave-momentum, integrated over

the total water depth from the bottom at z¼ 0 to surface at
z ¼ H þ g, is

hpi ¼
�ðHþg

0
qu dz


¼
�ðg

0
qu dz0


¼ hq u gi; (20)

where we use that density q and velocity u are z-independent and u is
a plane wave. Hence, the integral to the mean, undisturbed surface,
z¼H, vanishes, leaving the net momentum flux to result from the sur-
face displacement. For instance, for rightward propagation (Fig. 1),
positive (negative) values of u correlate with crests (troughs) of g; thus,
the vertical integration yields net positive eastward momentum in the

direction of the wave propagation. Using again @
@y ¼ 0 in (5), from (8)

we obtained û ¼ x
kH ĝ that we now use to evaluate (20) as

hpi ¼ hq u gi ¼ x
kc2

1
2
qgĝ2 ¼ 2

cp
c2
hPEi; (21)

which indeed differs from the average energy (19) by a multiplication
factor equal to the phase speed cp.

A similar result can be derived for the chain of pendulums. For
this, first associate the local density with the spatial distribution of the
bobs attached to the pendulums (see Fig. 1). In the equilibrium rest posi-
tion, the distance between every two adjacent pendulums is
xjþ1 � xj ¼ Dx, so the mean constant density of the bobs is q ¼ 1

Dx.
When the pendulums are displaced, the in-between distance between

two adjacent bobs becomes Dx þ ðwjþ1 � wjÞ � Dx 1þ @w
@x

� �
, assum-

ing small displacements of the bobs. Thus, the local bob density

becomes q 1� @w
@x

� �
. As� @w

@x ¼ g in the continuum limit and hui ¼ 0,

we obtain that hpi ¼ hq 1� @w
@x

� �
ui ¼ hqugi. Using u ¼ @W

@t , this eval-

uates to hpi ¼ 1
2qxkjŴj2, which indeed differs by a multiplication factor

equal to the phase speed from the average energy obtained from (12) [as
well as the constant density q which is assumed unity in (12)].

V. THE NON-RELATIVISTIC LIMIT AND NEAR-INERTIAL
WAVES

The non-relativistic limit of the Klein–Gordon equation and the
near-inertial wave limit are both central to their own respective fields
of quantum mechanics and geophysical fluid dynamics. The non-
relativistic limit yields the Schr€odinger equation,14 whereas near-
inertial waves are the dominant mode of high-frequency variability in
the ocean.15 In this section, we show that the two limits are equivalent.

Beginning with the quantum field aspect, we write (31) in its
non-dimensional form

x
f
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ðkkComptÞ2

q
; (22)

where the frequency x is considered positive and recall that f is the
reduced Compton frequency, satisfying �hf ¼ mc2. Now
kkCompt ¼ �hk=mc ¼ p=mc ¼ c v

c, where we used the de Broglie postu-
late for the momentum (4) and its relativistic expression (16). For
non-relativistic dynamics, v

c � �� 1, thus using the definition of the
Lorentz contraction factor kkCompt ¼ �ffiffiffiffiffiffiffi

1��2
p ! � in the non-relativistic

limit. Expanding then (22) for small values of kkCompt , we obtain the
parabolic approximation for the frequency

x
f
¼ 1þ 1

2
ðkkComptÞ2 þ O ðkkComptÞ4

� �
: (23)

Dropping the fourth order terms of kkCompt and defining the non-
relativistic frequency limit as the difference between the frequency and
the reduced Compton frequency: xNR � x� mc2

�h , we obtain, after mul-
tiplying by �h, the familiar de Broglie matter wave dispersion relation

ENR � �hxNR ¼
ð�hkÞ2

2m
¼ p2

2m
; (24)

which forms the basis for the Schr€odinger equation, just as the
Einstein relativistic energy–momentum relation (3) together with the
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dispersion relation of (31) form the basis for Klein–Gordon
equation (1).

The formal way to obtain the Schr€odinger equation from KGE is
to note that the non-relativistic energy ENR ¼ �hðx� f Þ ¼ E � E0 is
the small residual available energy in this limit; thus, we can regard the
non-relativistic field U as a (complex) carrier’s amplitude of the rela-
tivistic fieldW, whose base frequency is f,

W ¼ Ue�ift ; (25)

so that if W 	 e�ixt then U 	 e�ixNRt , where xNR=f ! �2=2 in the
non-relativistic limit. SubstitutingW back in (1), we obtain

@2U
@t2
¼ c2 i

2m
�h
@U
@t
þr2U

� �
: (26)

Dividing (26) by f2 on both sides, then it is straightforward to show
that the LHS terms are of the order of �4, whereas the two terms on
the RHS are each of the order of �2. Therefore, in the non-relativistic
limit, the LHS term is negligible compared to the RHS; thus, the terms
in brackets yield the Schr€odinger equation

i�h
@U
@t
¼ � �h2

2m
r2U: (27)

Returning to the geophysical context [so that now the reduced
Compton frequency and wavelength in (22) are replaced by the
Coriolis frequency and the Rossby deformation radius, respectively],
the two “textbook limits” that are usually considered5 are the short
wave limit of (non-rotational) surface gravity waves ðkLRÞ 
 1 ) x
! 6kc and the long wave limit of inertial oscillations ðkLRÞ � 1
) x! f. Geometrically, the first limit is represented in Fig. 2 by the
two linear dash-dotted lines having slopes of 645�, whereas the sec-
ond is represented by the horizontal dotted line, tangent to the mini-
mum of x at k¼ 0. The equivalent non-relativistic-like parabolic

approximation in which time and space are scaled with �2 and �,
respectively, leading to ðkLRÞ ¼ � < 1 ) x ! f ½1þ 1

2 ðkLRÞ
2�, can

be, therefore, regarded as the limit corresponding to the dynamics of
near-inertial waves (Fig. 2). Following the same logic for the geophysi-
cal context, we then obtain the equivalent Schr€odinger equation

i
@U
@t
¼ � c2

2f

 !
r2U: (28)

Noting that in the quantum context, upon dividing (27) by �h and
using that �hf ¼ mc2, we retrieve this exact form except for the relevant
change of meaning of c and f.

The near-inertial wave limit is illustrated in terms of coupled
oscillators in Fig. 3. These are seen to be oscillating nearly in phase,
owing to the weak coupling by pressure gradient forces. This is weak
due to the large scale over which deflections of the surface appear,
which also explains why the pendulums have to be considered nearly
but not exactly in phase. Clearly, a better view of the inertial-gravity
wave in this limit (as metaphorically expressed by the pendulums) is
obtained by going to a co-oscillating frame in which the slow and
slight deviations in inclination and spatial variations would become
visible. In the physical plane, this would amount to a coordinate frame
whose origin traverses a circle while the axes maintain their original
orientation. This is what the demodulation (25) establishes. It suggests
that the two restoring forces, viz., that due to the metaphor-gravity act-
ing on the pendulums and the springs, start balancing each other due
to phase delays involved. This quasi balance can be understood when
substitutingU 	 eiðk�x�xNRtÞ in the right-hand side of (26) to obtain

@2U
@t2
¼ c2

2m
�h

xNR � k2
� �

U: (29)

As xNR is defined positive, the two terms in the RHS act one against
each other, and under the non-relativistic/near-inertial approximation,
they are assumed to be in balance.

A different way to look at the Schr€odinger equation as an approx-
imation to the Klein–Gordon equation is to substitute back U ¼ Weift

in the Schr€odinger equation (27), take the time-derivative of that equa-
tion, but using this equation to replace first-order time derivatives of
W. This yields a modified Klein–Gordon equation

@2

@t2
þ f 2 � c2r2

� �
W ¼ � c2

2f

 !2

r4W; (30)

accounting indeed for the modified parabolic dispersion relation

x2 ¼ f 2 þ ðkcÞ2 þ ðkcÞ2

2f

" #2
) x ¼ f 1þ 1

2
kc
f

� �2
" #

: (31)

Thus, the physical meaning of the Schr€odinger-like approximation to
the Klein–Gordon equation, both in the quantum and the geophysical
fluid dynamics (GFD) setups, can be understood as adding a short
scale (proportional to k4) restoring force.

Based on multiple timescale separation, the same substitution of
(25) has been suggested for Boussinesq flow,16 and later for the shallow
water system, to study the propagation of near-inertial waves in geo-
strophic currents.17 Indeed, when neglecting the nonlinear advection
terms, one obtains (28) with an additional potential, which is propor-
tional to the vorticity of the steady geostrophic current.17

FIG. 2. Dispersion relation of the Poincar�e waves x=f ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ðkLRÞ2

q
, indicated

by the solid (red) curve. The frequency x is scaled by the Coriolis frequency f,
and the wavenumber k is scaled by the Rossby deformation radius LR. The
other lines denote the limit of surface gravity waves ðkLRÞ 
 1) x=f ! 6kLR
() x ! 6kc, blue dashed-dotted curve), the long wave limit of inertial
oscillations ðkLRÞ � 1 ) x=f ! 1 (magenta dotted curve), and the parabolic
limit ðkLRÞ < 1) x=f ! 1þ 1

2 ðkLRÞ
2 (green dashed curve).
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VI. DISCUSSION

When an equation describes seemingly two different phenomena
in unrelated areas, it is intriguing to investigate whether a common
underlying mechanism governs their dynamics.

Here, we suggest that the common denominator between the
dynamics of relativistic quantum particles and the propagation of clas-
sical inertio-gravity waves is the mechanical analog paradigm of the
continuous limit of a set of coupled oscillators. While this model (and
its generalization to a 3D lattice) is invoked in the literature to provide
a mental picture of quantum fields, its relevancy to the Poincar�e waves,
where the natural frequency of the oscillators is the Coriolis (inertial)
frequency and the coupling is mediated by the pressure gradient force,
seems to be new.

From the quantum mechanics aspect, the Madelung transforma-
tion18 of the Schr€odinger equation into the equations of a compressible
fluid has been shown to provide a different point of view on quantum
phenomena such as tunneling.19 While the Madelung transformation
can be extended to include relativistic dynamics,20 we are not familiar
with an extension in which the energy associated with the rotation of
the fluid system becomes equivalent to the relativistic rest energy.
Regarding the mechanical analog, it was shown by the authors in a
previous paper21 that the rotation of a shear flow of an ideal gas with
zero absolute vorticity yields the solutions of the ground state har-
monic oscillator, and the physical mechanism behind it is indeed the
inertial oscillations. We do not know, however, whether these associa-
tions as well as of the surface gravity wave speed (or, equivalently, the
speed of sound in compressible fluids) with the speed of light are
merely analogies or that they contain some deeper meaning.

The universality of the Poincar�e dispersion relation and its
association with the Klein–Gordon equation describing both rela-
tivistic quantum particles as well as inertio-gravity waves in geo-
physical fluid dynamics (and also electromagnetic waves in cold
plasmas8) is interesting by itself. The one-to-one correspondence
between the non-relativistic limit and the near-inertial waves limit
allows us both to define its “parabolic limit” as well as to under-
stand why applying multi-timescale separation for near-inertial
waves yields the Schr€odinger equation, although the waves’ dynam-
ics is purely classical.

We envisage possible extensions of the KG and Schr€odinger
equations involving nonlinearities. For instance, in the shallow water
wave context, this is possible by the following approach. Consider uni-
directional ( @@y ¼ 0) long surface gravity waves, gðx; tÞ, propagating on
water of uniform depth H, so that total water depth h ¼ H þ g. Then,
using the total derivative D

Dt ¼ @
@t þ u @

@x, the nonlinear shallow water
equations read

Du
Dt
¼ f v� g

@h
@x
; (32a)

Dv

Dt
¼ �fu; (32b)

Dh
Dt
¼ �h @u

@x
: (32c)

We combine these equations by taking the total time derivative
of (32a), insert (32b), and in the near-inertial limit approximate total
depth h by H, neglecting the weak surface elevation g� H, except
when it is differentiated. However, we also neglect a nonlinear term
containing the surface slope @g

@x as this is small in this limit where the
waves have large length scale. In contrast, since horizontal velocities
are not small we do retain their nonlinear product terms so that these
equations combine into

@2

@t2
þ f 2 � c2

@2

@x2

	 

þ 2u

@2

@x@t
þ @u
@x

@

@t
þ @u

@x

� �2

þ u2
@2

@x2

 !
u¼ 0:

(33)

Here, in square brackets, we recognize the linear KG operator. The
last two nonlinear terms in (33) appear to dynamically modify the
Coriolis frequency, f, and long-wave speed, c, respectively. Quasi-
linearization could handle this by replacing the u-dependent fac-
tors in the operator by their wavelength averages, leading to renor-
malized effective frequency and wave speed. Full nonlinear
equation (33) can be seen as a nonlinear modification of the KGE
(1) to be solved numerically in the subsequent work. This equa-
tion, describing bi-directional long surface waves, may offer an
alternative for the well-studied uni-directional Ostrovsky equation
(originally derived for internal wave modes),22 extending the
Korteweg–de Vries equation by adding the influence of Earth’s
rotation.23 Of course, (33) also invites applying the demodulation
(25) that, upon neglecting slow-time evolution of the carrier
amplitude field, previously led to the Schr€odinger equation, but as
this requires some further phase-averaging this is left for future
work.

ACKNOWLEDGMENTS

We are grateful to the two anonymous reviewers whose revisions
helped us to improve the manuscript. E.H. is grateful to Yair Zarmi,
Roy Barkan, Ronald Lubberts, and Mattias Terfelt for fruitful
discussion. J.M. acknowledges financial support from the RGC Early
Career Scheme, No. 2630020 and the Center for Ocean Research in
Hong Kong and Macau, a Joint Research Center between the Qingdao

FIG. 3. Sketch of the mechanistic interpre-
tation of the Klein–Gordon equation for
long surface waves on a rotating plane
when the pendulums turn synchronous for
waves having infinite length scale and
infinitesimal amplitudes to which the near-
inertial limit �! 0 applies.

Physics of Fluids ARTICLE scitation.org/journal/phf

Phys. Fluids 34, 116608 (2022); doi: 10.1063/5.0120375 34, 116608-6

VC Author(s) 2022

https://scitation.org/journal/phf


National Laboratory for Marine Science and Technology and Hong
Kong University of Science and Technology. This research was
supported in part by NSF-BSF via Grant No. 1025495.

AUTHOR DECLARATIONS
Conflict of Interest

The authors have no conflicts to disclose.

Author Contributions

Eyal Heifetz: Conceptualization (lead); Formal analysis (lead);
Investigation (lead); Writing – original draft (lead); Writing – review
& editing (equal). Leo R. M. Maas: Conceptualization (supporting);
Formal analysis (supporting); Investigation (supporting); Visualization
(supporting); Writing – original draft (supporting); Writing – review &
editing (equal). Julian Mak: Funding acquisition (equal);
Visualization (lead); Writing – review & editing (equal). Ishay
Pomerantz: Conceptualization (supporting); Funding acquisition
(equal);Writing – review & editing (supporting).

DATA AVAILABILITY

Data sharing is not applicable to this article as no new data were
created or analyzed in this study.

REFERENCES
1J. Gribbin, Erwin Schr€odinger and the Quantum Revolution (Random House,
2012).

2O. Klein, “Quantentheorie und f€unfdimensionale relativit€atstheorie,” Z. Phys.
37, 895–906 (1926).

3W. Gordon, “Der comptoneffekt nach der schr€odingerschen theorie,” Z. Phys.
40, 117–133 (1926).

4F. Gross, Relativistic Quantum Mechanics and Field Theory (John Wiley &
Sons, 2008).

5G. K. Vallis, Atmospheric and Oceanic Fluid Dynamics: Fundamentals and
Large-Scale Circulation (Cambridge University Press, 2006).

6H. Poincar�e, Sur la Dynamique de L’�electron (Circolo Matematico di Palermo,
1906).
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