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1

Introduction

Missing data commonly occur in scientific research and have a significant impact on
the downstream analysis. First, most statistical analyses require complete data and
can not apply to incomplete data directly. Second, the reduced sample size arising
from missing data generally induces estimates with less efficiency and results in a loss
of statistical power (Rubin, 1987).

For instance, in clinical research, investigators may encounter difficulties with prog-
nostic covariates measurements, such as estrogen receptor status, nodal status, or size
of the tumour in cancer studies; CD4 counts in AIDS studies (Ibrahim et al., 2012).
Such missing variables restrict the assessment of balance in covariate distributions in
observational studies. In social science, longitudinal studies are used to investigate
some developmental trends over an extended period. However, longitudinal studies
suffer attrition of participants. Missing data occur when participants drop out before
the end of the study. In sample survey research, respondents may be assigned to a
subset of all questions by design. Additionally, they may refuse to answer specific
questions which involve private information (e.g., personal income) or cost much time
(e.g., watching one movie before answering questions).

Although missing data annoy scientists and researchers, the field of missing data
analysis has been dramatically developed. A large number of approaches were pro-
posed to handle missing data with different features. The general idea of missing
data methods is to deduce information about missing data from what we observed. I
will first introduce missingness mechanisms on which the properties of missing data
methods depend and a comprehensive overview of missing data methods. Since only
multiple imputation is discussed in this dissertation, I will also give details on the
framework of multiple imputation based on the structure of this dissertation: how MI
works, the software I used, data-driven and model-based methods, and diagnostics of
imputation models.
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1.1 Missingness mechanisms

It is necessary to understand the reason for non-response since it helps us identify
the missingness mechanism of the incomplete data and which missing data methods
we could apply. Rubin (1976) assumed that the mechanisms of missing data could
be modelled and defined three categories of missing data problems based on different
missingness mechanisms. If the probability of variables being missing is equal for all
cases, then the variables are missing completely at random (MCAR). An example of
MCAR is when a random sample is drawn from the population, each individual has
the same probability of being sampled. Individuals who are not included in the sample
could be viewed as MCAR. In such a case, the observed data is still representative
of the population, which implies the validity of complete data analysis. Although
simplifying missing data problems, MCAR is often impractical. If the probability of
variables being missing depends on the observed data, then the variables are missing
at random (MAR), which is more general than MCAR. An example of MAR is that
younger individuals have a higher probability of being sampled from the population,
where the age of the collected sample is completely observed. Most missing data
analyses are developed based on the MAR assumption because the MAR implies
an ignorable missingness mechanism (Little and Rubin, 2019). In such a case, the
unobserved data share identical distributions as the observed data, which means that
the model generated by the observed data could be applied to the missing data.
However, it is notable that ignorable missingness mechanisms do not entirely disregard
the missingness mechanisms. The imputer should consider variables that explain the
probability of being missing. Sometimes, the missingness mechanisms are scientific
interests. Suppose the probability of variables being missing depends on partially
observed or unobserved data. Then, the variables are missing not at random (MNAR),
which is a more complex situation to handle the missing data problem. MNAR means
that the research has no information about the missingness mechanism. An example
of MNAR is that a researcher would like to analyse the income of a population since,
people with higher income tend to refuse income disclosure.

The classification of missingness mechanisms inspires researchers to understand
the reason for missing data occurrence and provide information about which missing
data analyses will produce valid inferences. For instance, in general, mean imputation
requires MCAR to be true.

1.2 Missing data methods

There are mainly four categories of missing data approaches proposed in the literature:
complete-case analysis, weighting procedures, direct maximum likelihood methods
and multiple imputation methods (Little and Rubin, 2019). The four methods are not
mutually exclusive. This section will give an overview of the first three methods. Since
this dissertation focuses on multiple imputation (MI), a more detailed introduction
to MI will be given later.
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Complete case (CC) analysis, also named list-wise deletion, discards cases with
missing values and only analyses complete observations. Although CC analysis is a
straightforward and convenient solution to the missing data problem, it yields unbi-
ased but less efficient mean vectors, covariance matrix, and regression weights merely
under MCAR. Sometimes, it may also produce acceptable results when there are a mi-
nor amount of partially observed cases. However, CC analysis wastes a large amount
of data, which leads to loss of precision and bias when missingness mechanisms are
MAR or MNAR.

Weighting methods commonly apply for unit non-response, which means that all
outcome data for the respondent who refuses to participate in the survey are missing.
The general idea of weighting analysis is analogous to weighting in randomisation
inference. The weighting methods define the probability of selection (ϕ) in the sample
and apply the classical Horvitz - Thompson estimator (Horvitz and Thompson, 1952)
to evaluate scientific interest. Suppose yi is the value of the variable Y for unit i
(i = 1, 2, . . . , n), the Horvitz - Thompson estimator of the population mean is ȲHT =∑n

i=1 ϕ
−1yi/n.

When there are non-responses units, the probability of response p̂ should be con-
sidered and the adjusted estimator is:∑n

i=1(ϕp̂i)
−1yi∑n

i=1(ϕp̂i)
−1

Weighting methods are a conceptually and computationally convenient procedure
to reduce bias from CC analysis. However, although it takes account of missingness
mechanisms, the application of weighing methods is limited because of no full use of
incomplete observed units and less straightforward computation of variances.

Direct maximum likelihood methods include extensive procedures that define a
model for the complete data, estimate the parameters of the model with maximum
likelihood and conduct statistical inferences. Little and Rubin (2019) developed so-
phisticated direct maximum likelihood methods to estimate parameters of likelihood,
obtain standard errors from information matrix and create missing data. For example,
suppose a random variable Y consists of observed and missing parts (Yobs and Ymis).
Then, with the ignorable missingness mechanism assumption, the likelihood for the
parameters of the imputation model (θ) is an integral over the missing values:

L(θ|Yobs) =
∫
fY (Yobs, Ymis|θ) dYmis.

Direct maximum likelihood methods could provide unbiased and efficient estimates
under both MCAR and MAR.

1.3 Multiple imputation

Multiple imputation (MI) is a general approach for the analysis of incomplete datasets.
It involves generating several plausible imputed datasets and aggregating different re-
sults into a single inference. First, missing cells are filled with synthetic data drawn
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from corresponding posterior predictive distributions. Next, this procedure is repeated
multiple times, resulting in several imputed datasets. The scientific interest is then
estimated for each imputed dataset by complete-data analyses. Finally, different es-
timates are pooled into one inference using Rubin’s rule, which accounts for within
and across imputation uncertainty (Rubin, 1987).

Rubin proposed the main principles of MI at the end of the 70’s. The uptake and
development of MI techniques has been growing at a favorable rate over the last two
decades. Nowadays, various technologies of MI are generated for different statistical
models, for instance, multilevel multiple imputation (Longford, 2001), MI for longi-
tudinal data (Twisk and de Vente, 2002; Demirtas, 2004), MI for structural equation
modelling (Olinsky et al., 2003; Allison, 2003). Because of the methodological devel-
opment of MI, the techniques are applied to a wide range of fields (e.g., epidemiology
(Mueller et al., 2008), politics (Tanasoiu and Colonescu, 2008), genetics (Souverein
et al., 2006), psychology (Sundell et al., 2008) and sociology (Finke and Adamczyk,
2008)) and implemented in many software packages (e.g. mice and mi in R, IVEWARE in
SAS, ice in STATA and module MVA in SPSS) (van Buuren and Groothuis-Oudshoorn,
2011; Azur et al., 2011).

There are two general approaches for imputing multivariate data: joint modelling
(JM) and fully conditional specification (FCS). Joint modelling imputation assumes
a model p(Y mis, Y obs | θ) for the complete data and a prior distribution p(θ) for the
parameter θ. Joint modelling partitions the observed data into groups based on the
missing pattern and imputes the missing data within each missing pattern according
to the corresponding predictive distribution. Under the assumption of ignorability,
the parameters of the predictive distribution for different missing patterns are gen-
erated from the posterior joint distribution. Schafer (1997) proposed joint modelling
methods for multivariate normal data, categorical data and mixed normal-categorical
data. Joint modelling approaches have solid theoretical properties (i.e., compatibility
between the imputation and substantive models), while it lacks the flexibility of model
specification.

Let Y t
j = (Y obs

j , Y
mis(t)
j ), j = 1, . . . , p denote the observed and imputed values

of variable Yj at iteration t and Y t
−j = (Y t

1 , . . . , Y
t
j−1, Y

t−1
j+1 , . . . , Y

t−1
p ). Let X de-

note fully observed variables in the dataset. Fully conditional specification specifies
the distribution for each partially observed variable conditional on all other variables
P (Yj |Y−j , X, θj), where the vector θj is the coefficients of the fully condition model
of Yj , and imputes each missing variable iteratively. The FCS starts with naive im-
putations such as a random draw from the observed values. The tth iteration for the
incomplete variable Yj consists of the following draws:

θtj ∼ f(θj)f(Y
obs
j |Y t

−j , X, θj)

Y
mis(t)
j ∼ f(Y mis

j |Y t
j , X, θ

t
j),

where f(θj) is generally specified as a non-informative prior. After a sufficient number
of iterations, typically with 5 to 10 iterations (van Buuren, 018a; Oberman et al.,
2020), the stationary distribution is achieved. The final iteration generates a single
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imputed dataset and multiple imputations are created by applying FCS in parallel m
times. Since FCS provides tremendous flexibility in specifying imputation models for
multivariate partially observed data, FCS is now a widely accepted and popular MI
approach (Van Buuren, 2007). Even while, FCS lacks a satisfactory theory and has a
potential risk of incompatibility.

Hybrid imputation, also called block imputation, combines the flexibility of FCS
with the attractive theoretical properties of JM (Van Buuren, 018b). A block consists
of one or more variables. If the block has multiple variables, then multivariate impu-
tation methods will be applied to impute those variables jointly. The joint modelling
approach is the case where all variables form one block, while the FCS approach treats
each variable as a separate block. When the imputation model of one variable is po-
tentially incompatible, or when its theoretical properties are not thoroughly studied,
hybrid imputation would merge that variable with other variables and apply the joint
modelling imputation approach to that block.

On the other hand, when the joint distribution of several missing variables is
ambiguous, hybrid imputation could use the FCS approach to impute each variable.
In general, the apparent advantage of hybrid imputation is the flexibility of model
specification. However, hybrid imputation methods are hardly known or studied.

1.4 Aim

This dissertation develops hybrid imputation in both methodological and practical as-
pects. Based on missingness patterns and restrictions on the data, different block-wise
partition strategies and the corresponding block imputation methods are considered
to provide plausible imputations. Although hybrid imputation is a broad and unde-
veloped field, it could be a more user-friendly and flexible strategy for multivariate
imputation. This dissertation addresses the following hybrid imputation problems.

First, in medical and epidemiological research, the analysis model commonly con-
tains squared terms (Seaman et al., 2012; Bartlett et al., 2015). In order to generate
plausible imputations, the MI procedure should preserve the relationship between
the original variable and its squared counterpart. Vink and van Buuren (2013) pro-
posed a hot-deck multiple imputation method, named the polynomial combination
(PC) method, for imputation models containing squared terms. The method yields
unbiased regression estimates and preserves the quadratic relationships in the im-
puted data for both MCAR and MAR mechanisms. However, the coverage rate of
the PC method is not thoroughly studied. Chapter 2 dives into the coverage rate of
the PC method and proposes a minor adjustment to the PC method. As a result, the
performance of the PC method is improved to some extent.

Second, in many domains of statistics, restrictions among variables are not lim-
ited to the quadratic effect, for instance, data transformations, interactions, and range
restrictions. Therefore, it is sensible to embrace all relations of scientific interest in
the imputation model. With hybrid imputation strategies, the researcher could set
variables involved in a restriction into one block and perform a joint imputation.
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Chapter 3 proposes a multivariate predictive mean matching (MPMM), which gen-
eralises univariate predictive mean matching (Rubin, 1986; Little, 1988) to impute
multiple variables simultaneously.

Third, causal inference is widely used in epidemiology, biology, and social science.
The treatment effect is usually calculated by the average treatment effect. However, to
provide more accurate treatment recommendations, the analyst should take account
of the heterogeneity of treatment effects across individuals, also known as the indi-
vidual treatment effect. Because only one of the potential outcomes is observed for
each individual, the causal inference could also be viewed as a missing data problem.
Chapter 4 proposes a hybrid imputation method that sets potential outcomes in one
block and imputes them to estimate individual treatment effects.

Fourth, the missing data and parameters of imputation models are often generated
from the corresponding posterior distribution. However, the prior is limited to the non-
informative setting. Multiple imputation with informative prior is not well developed.
Open problems could be: how to implement MI with informative prior elegantly;
the compatibility of FCS with informative prior; what is the corresponding prior of
the substantive joint distribution when the compatibility of FCS with informative
prior holds; How could MI with informative prior be applied in practice. Chapter 5
investigates the compatibility of univariate imputation under normal linear regression
with normal inverse-gamma priors.

Finally, a critical part of the multiple imputation process is selecting sensible
models to generate plausible values for the missing data. The validity of complete
data analysis on imputed datasets relies on the congeniality of the imputation model
and the substantive model of interest (Meng, 1994). A comprehensive overview of
model diagnostic in multiple imputation is available in Nguyen et al. (2017). Chapter
6 proposes a novel strategy to diagnose multiple imputation models based on posterior
predictive checking.

1.5 Workflow of MICE

A straightforward implementation of hybrid imputation can be found in the MICE

algorithm proposed by van Buuren and Groothuis-Oudshoorn (2011). Version 3.0 of
MICE added a new block argument with which the user could partition the variables
into blocks. The algorithm of MICE will iterate over blocks rather than variables.
For the block that contains one variable, all imputation methods developed under
the fully conditional specification framework are available. For the block that con-
tains multiple variables, the MICE algorithm allows calling joint modelling imputation
methods from other packages. For example, mice::jomoImpute is a wrapper around
the jomoImpute function from the mitml package. This function is used for joint
modelling imputation of multilevel data.

The MICE package creates functions for three components: imputation, analysis,
and pooling. Imputed datasets are generated with function mice(). Complete data
analysis are performed on every imputed dataset by with() function and combined



1.6 Model-based imputation 7

into a single inference with function pool(). The software stores the output of each
step in a particular class: mids, mira and mipo.

The MICE algorithm starts with filling missing cells by randomly drawing values
from the observed data. Subsequently, incomplete variables are imputed in a block-
by-block iteration — a single iteration of the algorithm cycles through all specified
blocks.

The number of iterations (argument maxit in mice function) and imputations
(argument m in mice function) are of importance in MI. In general, a low number
of iterations appear to be enough (Brand, 1999; Van Buuren et al., 1999). However,
slow convergence may occur if there is a large amount of missing data or high au-
tocorrelation between the imputation iterations. Oberman et al. (2020) performed a
simulation study and concluded that five to ten iterations are enough for inferential
validity. The convergence of the MICE algorithm could be investigated by plotting the
statistics of interest in each imputation chain. If no definite trends appear, convergence
is achieved.

The default number of imputations in MICE is set to be five. Although it may be
beneficial to produce a higher number of imputed datasets (Royston, 2004; Graham
et al., 2007; Bodner, 2008; White et al., 2011), Schafer and Olsen (1998) showed that
in many cases, there is no remarkable advantage to pooling more imputed datasets.
An immense number of imputations implies more data storage and computational in-
tensity. However, it may not be a substantive issue with the development of computer
hardware.

1.6 Model-based imputation

The aim of model-based imputation is to find predictive models for incomplete vari-
ables. With the hybrid imputation strategy, both the univariate imputation model
for one incomplete variable and the multivariate imputation model for a set of in-
complete variables could be fitted based on how incomplete variables are partitioned.
The model-based approaches have a solid underpinning for theory. Joint modelling
procedures are commonly implemented by model-based imputation, for example, mul-
tivariate normal distribution for a set of incomplete continuous variables, multinomial
distribution for a set of incomplete categorical variables and general location model
for a set of incomplete mixed variables (Schafer, 1997).

For fully conditional specification, standard model-based imputation procedures
are available for substantive models based on regression models for continuous and
discrete outcomes and the proportional hazards model. If necessary, the research could
fit more complex parametric imputation models, such as hierarchical models and time
series models. Since compatibility is a potential weakness of FCS, it is feasible to assess
whether the iterative distribution of a set of univariate imputation models converges to
a joint distribution with explicit imputation models. If not, the imputations may differ
according to different orders in which missing variables are updated. The phenomenon
is called the order effect.
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There are two strategies to set up the imputation models. The first one, explained
by Meng (1994), is that assuming an imputation model, the researcher should assess
whether the analysis model is congenial to the imputation model. The second one,
proposed by Bartlett et al. (2015), is that the researcher should start with the analysis
model and then find an imputation model which is congenial to the analysis model.
Both methods highlight the importance of the match between the substantive model
and the imputation model. If there are solid scientific models for the incomplete data,
model-based imputation will ensure the generated values are compatible with the
substantive models. Otherwise, if a broad range of candidate models fit the data, or if
there is no convincing substantive model, it will be challenging to find an imputation
model to accommodate every substantive model.

For example, to estimate individual causal effects, we assume a multivariate normal
distribution for the continuous potential outcomes, the validity of which is illustrated
by Imbens and Rubin (2015). In such a case, we generally partition potential outcomes
and covariates into separate blocks. The continuous potential outcomes are drawn
from a conditional joint normal distribution, while the incomplete covariates could be
imputed with fully conditional models.

1.7 Data-based imputation

The most widely used data-based imputation method is predictive mean matching
(PMM), proposed by Rubin (1986) and Little (1988). Although there are other non-
parametric imputation methods such as tree-based imputation methods (e.g., clas-
sification and regression trees and random forest), we mainly develop imputation
methods based on PMM and overview it.

PMM calculates the estimated value for the observed and unobserved parts of an
incomplete variable through Bayesian normal linear regression. First, the procedure
selects a set of candidate donors from all complete cases by minimising the distance
between the predicted value of the missing unit and the predicted value of all observed
units. Then, the unobserved value is imputed by randomly drawing one of the observed
values of the candidate donors (van Buuren, 018a).

Predictive mean matching has been proven to perform well in a wide range of
simulation studies and is an attractive way to impute missing data (van Buuren and
Groothuis-Oudshoorn, 2011; Heitjan and Little, 1991; Morris et al., 2014; Vink et al.,
2014, 2015). PMM is applicable to missing variables at all measurement levels. The
imputations produced by PMM would always fall in the range of observed values, so
they are realistic. If observations are strictly positive, so will the imputations from
PMM be. When applying PMM, the researcher could avoid data transformations
to accommodate the assumption of the parametric imputation model. For example,
imputed with Bayesian normal linear regression, the missing outcome should be trans-
formed to validate the homoscedastic and normal assumptions. Furthermore, there is
no need to post-processing the imputed values to satisfy intrinsic restrictions in the
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data. However, since PMM is a univariate imputation method, it cannot ensure the
relations among a set of variables.

When there is no definite substantive model, data-based imputation is an ex-
cellent alternative to produce plausible imputations. However,non-parametric impu-
tation methods are not a substitute for sloppy modelling. For example, when the
procedure of drawing imputed values from the observed values is not reasonable, the
derived imputed dataset can yield poor inference. Another potential issue for data-
based imputation methods is that they cannot extrapolate beyond the range of data
and may create implausible imputations if the data is sparsely observed in some space.

In short, PMM and other kinds of data-based imputation methods are a proper
choice if the researchers think the fitted parametric model is flawed, and the validity
of inference will weaken drastically. The methods work better with large samples and
provide imputations that capture many patterns of the complete data.

1.8 Imputation model evaluation

Assessing the fitness of the imputation model is also important in the MI procedure.
Poor specification of the imputation model may lead to inconsistent imputed values
and invalid estimates of target statistics. Nguyen et al. (2017) introduced currently
available approaches for imputation model diagnostics such as comparison between the
imputed value and observed data, cross-validation techniques and posterior predictive
checking of scientific interests. The MICE package contains several graphical functions,
such as bwplot(), stripplot(), densityplot() and xyplot(), to produce stripplot,
box and whiskers plot, density plot and point plot of observed and imputed data
to identify whether distributional discrepancy between observed and imputed data
appears.

1.9 Outline of the dissertation

This dissertation reports the investigations on methodological and practical aspects
of multiple imputation. There are three parts. Part one considers data-based impu-
tation strategies to jointly impute a block of variables so that data restrictions can
be preserved. More specifically, two methods discussed in part one are generalisa-
tions of PMM. Part two considers model-based imputation methods, which assume
a multivariate normal distribution for a block of incomplete variables. The compat-
ibility of the joint model and the corresponding univariate conditional distributions
for informative priors is evaluated. Part three focuses on imputation model checking.
The discussed model diagnostic approach works for both model-based and data-based
imputation methods.





Part I

Non-parametric imputation methods





2

A note on imputing squares via polynomial
combination approach

Summary. The polynomial combination (PC) method, proposed by Vink and Van Buuren,
is a hot-deck multiple imputation method for imputation models containing squared terms.
The method yields unbiased regression estimates and preserves the quadratic relationships
in the imputed data for both MCAR and MAR mechanisms. However, Vink and Van Buuren
never studied the coverage rate of the PC method. This paper investigates the coverage of
the nominal 95% confidence intervals for the polynomial combination method and improves
the algorithm to avoid the perfect prediction issue. We also compare the original and the
improved PC method to the substantive model compatible fully conditional specification
method (SMC-FCS) proposed by Bartlett et al. and elucidate the two imputation methods’
characters.

2.1 Introduction

Squared terms are often included in real-life data models to accommodate some form
of nonlinearity. When the analysis model contains the partially observed covariates
and corresponding squared terms, some challenges arise:

1. The analysis and imputation models should accommodate squared terms, i.e., the
squares themselves should be considered in the imputation procedure of corre-
sponding linear terms.

2. The relation between the square term and its lower-order polynomial should be
preserved.

3. The analysis model parameter estimates should be unbiased.

To obtain unbiased estimates, one could impute the squared term as if it were
another variable. We will refer to this as Transform, then Impute (TTI) (Von Hippel,
2009). However, this approach distorts the relationship between the original variable
and its square. A straightforward process to preserve the quadratic relation during
imputation is calculating the squared term only after imputation (Impute, then Trans-
form, ITT). However, ITT biases estimates of regression coefficients, as its contribu-
tion during imputation is ignored (Von Hippel, 2009; Vink and van Buuren, 2013).
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Moreover, both these partial fixes only work when the missingness is completely ran-
dom (Seaman et al., 2012).

To solve these issues for a more general class of missingness mechanisms, Vink
and van Buuren (2013) propose to impute the combination of the original variable
and its square and decompose it into distinct roots. This polynomial combination
approach (PC) is built around predictive mean matching, a nonparametric imputation
hot-deck technique that does not assume a specific distribution for the data (Rubin,
1986; Little, 1988). Seaman et al. (2012) demonstrated that predictive mean matching
gives biased estimation when the analysis is a linear regression with a quadratic term
and the missingness mechanism is missing at random. However, PC yields unbiased
estimates for MCAR and MAR missingness mechanisms by applying a reasonable
donor selection procedure on the polynomial combination instead.

More recently, Bartlett et al. (2015) proposed a substantive model compatible ap-
proach (SMC-FCS), which generalizes the imputation of nonlinear covariates beyond
the squared term model. The SMC-FCS technique is efficient but needs the correct
data analysis model during imputation to obtain draws of values that conform to this
model. It yields unbiased estimates if 1) the substantive model is correctly specified
and 2) the normality assumption of missing variables with quadratic effects is tenable
because of a restriction of the software (the package smcfcs (Bartlett et al., 2021)
in R (R Core Team, 2021)). When the missing variable with quadratic effects does
not follow the normal distribution, one could apply an appropriate transformation to
make the normality assumption plausible (e.g., log-normal distribution). More inter-
estingly, Bartlett et al. (2015) suggest that the SMC-FCS estimates can yield unbiased
inference, meaning that estimates are both unbiased and properly covered cf. Neyman
(1934). Such an investigation into coverage of multiply imputed parameters was not
part of the study by Vink and van Buuren (2013).

We now have two techniques that seem promising in imputing squared terms:
the polynomial combination method and SMC-FCS. Both approaches have appealing
properties, preserve the relationship between the square and its base, and yield un-
biased estimates. However, both techniques differ fundamentally in their approach.
SMC-FCS is a strictly model-based technique that requires the correct specification
of the complete-data model and the substantive model. On the other hand, PC is a
hot-deck technique with a data-driven estimation procedure that only requires the
specification of the polynomial combination. We highlighted the most used properties
and promising methods in Table 2.1 (Von Hippel, 2009; Vink and van Buuren, 2013;
Bartlett et al., 2015).

The interpretation of Table 2.1, taking the SMC-FCS approach as an example,
should be as follows:

1. SMC-FCS yields unbiased regression estimates β provided that the missing mech-
anism is MAR;

2. SMC-FCS does preserve the quadratic relationship between the original variable
and its square;
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TTI ITT PC SMC-FCS

Unbiased estimates of β MCAR only - MCAR & MAR MCAR & MAR

Quadratic relationship Not preserved Preserved Preserved Preserved

Coverage rate of β Poor Poor Unknown Correct

Violation of normality Robust Somewhat robust

Model specification Non-parametric Parametric

Table 2.1. Summary of properties of four squared term imputation methods.

3. SMC-FCS produces correct coverage rates of corresponding regression estimates
β;

4. SMC-FCS is somewhat robust against the violation of normality assumption of
the covariates with quadratic effects;

5. SMC-FCS is a parametric imputation approach, which means SMC-FCS requires
an explicit specified imputation model.

The “ - ” sign in a cell indicates that the method cannot produce unbiased estimates.
Whether the PC method has a correct coverage rate is not thoroughly studied and
will be investigated in the following section. There are four blank cells left because
the TTI and ITT methods cannot produce unbiased regression estimates or preserve
the quadratic relationships; it is redundant to investigate the violation of normality
and model specification for them.

In this manuscript, we evaluate the performance of imputing squared terms with
SMC-FCS and the PC method to investigate these techniques’ strengths and limita-
tions in different scenarios. In the next section, we briefly discuss the SMC-FCS and
PC methodology and propose a minor adjustment to the PC method.

2.2 Polynomial combination

In this section, we detail both the original polynomial combination (OPC) approach
proposed by Vink and van Buuren (2013), as well as a modification that is robust
against perfect prediction issues. We refer to the modified polynomial combination
approach as MPC.

2.2.1 Original polynomial combination

Suppose the model of scientific interest is

Y = α+Xβ1 +X2β2 + ϵ (2.1)

with ϵ ∼ N(0, σ2). We assume that Y is complete and that X = (Xobs, Xmis) is
partially missing.

The original polynomial combination method first performs predictive mean
matching (PMM) (Little, 1988) on the combined variable Z = Xβ1 + X2β2, and



16 2 Polynomial combination

then decomposes Z into components X and X2. Under the model in equation 2.1,
two roots of variable X are:

X− = − 1
2β2

(
√
4β2Z + β2

1 + β1)

X+ = 1
2β2

(
√

4β2Z + β2
1 − β1)

(2.2)

where the discriminant 4β2Z + β2
1 should be larger than 0. For any imputed Z, we

select either X = X− or X = X+ and square it to derive the square term X2.
The choice between the roots X− and X+is made by random sampling, conditional

on Y , Z, and their interaction Y Z. The binary random variable V is defined as 0 if
X < Xmin and 1 if X > Xmin, where the minimum of the parabola Xmin = −β1/2β2.
We model the probability P (V = 1) by logistic regression as

logitP (V = 1) = Y βY + ZβZ + Y ZβYZ (2.3)

on the observed data, where logitP (V = 1) = log(P (V = 1)/P (V = 0)) is the logistic
function. Under the assumption of ignorability, we apply the same model to calculate
the predicted probability P (V = 1) for Zmis, where Zmis denotes the polynomial
combination ofXmis andX

2
mis. Finally, a random draw from the binomial distribution

is made (V = 0 or 1), and the corresponding (negative or positive) root is selected as
the imputation.

2.2.2 Modification of Polynomial combination

Since we estimate binary variables V in the OPC imputation procedure, it is necessary
to avoid bias due to perfect prediction. When imputers apply the original polynomial
combination method, perfect prediction occurs when all the observed binary variables
Vobs are equal to one (or zero). In this case, the likelihood tends to a limit as one
or some regression coefficients tend to infinity, which leads to seriously implausible
imputations of the binary variable V (White et al., 2010).

Suppose all observed X are located on the parabolic function’s right arm, then
the perfect prediction arises. If no corrections are performed, the coefficients of the
logistic function logitP (V = 1) = Y βY + ZβZ + Y ZβY Z will have extremely wide
and flat posterior distributions, which tends to derive extremely positive or negative
estimates of coefficients. Provided all observed X are located on the right arm of the
parabolic function, some missing values of X would be addressed incorrectly on the
left arm, as shown in Figure 2.1(a).

A computationally convenient approach to avoid perfect prediction is data aug-
mentation (van Buuren, 018a, Section 3.6.2). We augment the data with a few extra
observations and add a small weight to these observations (White et al., 2010, Section
5.2). To improve the polynomial combination method, we calculate any unobserved
dichotomous outcomes (whether to take the positive or negative distinct real root for
Xmis) Vmis by logistic regression of V given Y, Z, and YZ (i.e., equation 3) with the
augmented data instead of the observed data. More specifically, based on the observed
V , Y and Z, the augmented data adds eight subjects shown in Table 2.2, with the
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weight 3/8, to the observed data. When the population estimation of the probabil-
ity P (V = 1) equals one (or zero), we expect the modified polynomial combination
method would provide more plausible imputations, as shown in Figure 2.1(b).

V Y Z

1 1 E(Yobs) + SD(Yobs) E(Zobs)
2 1 E(Yobs) - SD(Yobs) E(Zobs)
3 0 E(Yobs) + SD(Yobs) E(Zobs)
4 0 E(Yobs) - SD(Yobs) E(Zobs)
5 1 E(Yobs) E(Zobs) + SD(Zobs)
6 1 E(Yobs) E(Zobs) - SD(Zobs)
7 0 E(Yobs) E(Zobs) + SD(Zobs)
8 0 E(Yobs) E(Zobs) - SD(Zobs)

Table 2.2. Augmented data

2.2.3 SMC-FCS

The substantive model compatible fully conditional specification (SMC-FCS) is a
parametric imputation method proposed by Bartlett et al. (2015). In general, the
missing predictor is imputed based on other predictors. A rejection sampling (e.g.,
Metropolis-Hastings algorithm) is used where the acceptance ratio is generated based
on the likelihood of the substantive model. Suppose ϕ is a vector containing the coef-
ficients of the model f(Y |X) and θi, i = 1, . . . , p is a vector containing the coefficients
of the model f(Xi|X−i), where X−i are all the other covariates excluding Xi. The
parametric density function of the partially observed variable Xi is proportional to
f(Y |X,ϕ)f(Xi|X−i, θi), rooted in the Bayesian rule:

f(Xi|X−i, Y ) = f(Xi,X−i,Y )
f(Y,X−i)

∝ f(Y |Xi, X−i)f(Xi|X−i).
(2.4)

Since the density generally does not follow a standard parametric family, the rejection
sampling is necessary to draw coefficients from the posterior distributions of ϕ and θi.
With the assumption of independent priors f(ϕ) and f(θi), the posterior distributions
of ϕ and θi would be:

ϕ ∼ f(Y |Xi, X−i, ϕ)f(ϕ)
θi ∼ f(Xi|X−i, θi)f(θi).

(2.5)

The statistical property of this approach is that if the substantive model f(Y |X)
is correctly specified, the imputation model will be congenial to the analysis model
(Meng, 1994). The lack of congeniality can sometimes produce implausible imputa-
tions that result in biased inferences in the downstream analysis (Robins and Wang,
2000).
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2.3 Evaluation

We evaluated the average biases across all simulations, the coverage of nominal 95%
confidence intervals, and the average width of corresponding confidence intervals of
the regression weights β1 and β2.

2.3.1 Simulation setup

The outcome Y was simulated according to the scientific model:

Y = α+Xβ1 +X2β2 + ϵ (2.6)

with α = 0, β1 = 1, β2 = 1 and ϵ ∼ N(0, σ2
ϵ ). The value of σϵ varied according to

different distributions of X so that the coefficient of determination R2 was always
equal to 0.75.

The predictorX was generated from a normal, a skew-normal, or a normal mixture
distribution. The mean of X was either 0 or 1, and the variance was 1 for all three
distributions. The abscissa at the parabolic minimum was X = −1/2. Hence, when
the location of X was 0, there was a strong U-shaped association between Y and X.
If X had location 2, the relationship between Y and X would be somewhat linear. For
the skew-normal distribution, we set the slant parameter to be 6 when the mean of X
equalled 0 and -3 when the mean ofX equalled 2. For the normal mixture distribution,
X was drawn from N(−0.875, 0.234) and N(0.875, 0.234) with equal probability to
have mean 0 and N(1.125, 0.234) and N(2.875, 0.234) with equal probability to have
mean 2.

We generated a sample of size n = 100 and repeated 1000 simulations for each
missingness scenario. For each simulation scenario, 30 percent missingness was induced
jointly in X and X2 for five missingness mechanisms: MCAR, MARleft, MARmid,
MARtail, and MARright. Specifically, MCAR denotes that the probability of X be-
ing missing is the same for all cases. While with a left-tailed (MARleft), centered
(MARmid), both-tailed (MARtail) or right-tailed (MARright) missingness mecha-
nism, a higher probability of X being missing is assigned to the units with low,
centered, extreme and high values of Y respectively. Let R be the response indicator
for X, where R equals 0 if X is missing and 1 otherwise. For MARleft, the missing-
ness probability is defined as logitP (R = 0) = −X + x̄ + γl, where γl was chosen to
make the probability of missing X equal to 0.3. Similarly, the missingness probability
is defined as logitP (R = 0) = −|X − x̄| + γm, logitP (R = 0) = |X − x̄| + γt and
logitP (R = 0) = X − x̄ + γr for MARmid, MARtail and MARright, where γm, γr
and γt were chosen to make corresponding probabilities of missing X equal to 0.3
(van Buuren, 018a, Section 3.2.4). All missingness was generated with the ampute
function (Schouten et al., 2018) from the package MICE (van Buuren and Groothuis-
Oudshoorn, 2011) in R. The mice.impute.quadratic function in the package MICE

was modified by including data augmentation.
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2.3.2 Simulation results

We compared five approaches: TTI, ITT, OPC, MPC and SMC-FCS and focused on
some remarkable findings of OPC, MPC and SMC-FCS. The results of the TTI and
ITT simulations reiterated the corresponding conclusions in Table 2.1. In general, TTI
did not preserve the quadratic relation, even though it gave unbiased and confidence-
valid estimates in some cases (e.g., with MCAR and standard normal distribution X).
Furthermore, ITT had considerable bias under nearly all combinations of missingness
mechanisms and distributions of X.

Table 2.3 shows the average biases, the coverage of the nominal 95% confidence
intervals, and the average width of confidence intervals for β1 and β2 when E(X)
equals 0. The outcome Y follows a U-shape. With MCAR, MARleft and MARmid
and when X is distributed as normal, skewed normal or a mixture of two normals,
OPC and MPC gave unbiased estimates and correct CI coverage. The CI coverage of
SMC-FCS was close to 95%. However, with X skew-normal distributed MCAR and
MARmid, SMC-FCS was slightly biased. With MARtail and MARright, SMC-FCS
outperformed OPC and MPC when X followed a normal distribution or a normal
mixture distribution. OPC and MPC had slight bias and somewhat reduced CI cover-
age (approximately 85%) with X distributed according to a normal, a skewed normal
or a mixture of two normals. SMC-FCS was unbiased and had CI coverage close to
95% with normal and mixture normal. However, with skewed normal X, SMC-FCS
was somewhat biased and the CI had slightly lower than nominal coverage.

Table 2.4 demonstrates the mean biases of β1 and β2, the empirical coverage and
the mean width of the corresponding 95% CIs where X is location 2 and scale 1.
Almost all observed values of Y are on the right arm of the quadratic function. With
normal X, SMC-FCS consistently yielded confidence-valid estimates because of the
congeniality of the analysis model and imputation model. However, with MAR (MAR-
left, MARmid, MARtail and MARright), SMC-FCS gave a slightly biased estimate
for β1. OPC and MPC gave unbiased results and the CI had approximately 95%
coverage under MCAR and MARmid. With MARleft, OPC and MPC were slightly
biased for β1, but the 95% CI for β1 and β2 had the correct coverage. With MARtail
and MARright, OPC and MPC were unbiased. The CI of MPC (around 90%) had
higher nominal coverage than OPC (around 80%). With X distributed according to a
skewed normal, OPC and MPC yielded unbiased estimates under MCAR, MARmid,
MARtail and MARright but slightly biased estimates under MARleft. The CI cov-
erage of OPC and MPC was close to 95% under MCAR, MARleft and MARmid.
Like the case with normal X, the CI of MPC (around 90%) had better coverage than
OPC (around 85%). With X distributed as a mixture of two normals, SMC-FCS gave
biased results under all missingness mechanisms and its CI had somewhat reduced
coverage under MARright. OPC and MPC were unbiased under MCAR, MARmid
and MARtail but biased under MARleft and MARright. MPC had CI coverage close
to 95% under all missingness mechanisms. The CI from OPC had correct coverage un-
der MCAR, MARleft and MARmid, but approximately 85% coverage under MARtail
and MARright.
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We investigated if the biases of SMC-FCS were caused by Monte Carlo error.
Figures 2.2(a) and 2.2(b) demonstrate that the bias is due to simulation error. The
estimates for β1 and β2 show primarily overestimation and underestimation, respec-
tively. This implies that, when applying SMC-FCS, the explicit specification of the
distribution of the incomplete variable with the quadratic effect may need careful
consideration.

2.4 Conclusion

We evaluate the performance of four imputation approaches for incomplete data prob-
lems where the model of scientific interest contains squared terms. We improve the
performance of the polynomial combination method by incorporating a data augmen-
tation step, thus realizing more plausible imputations when the missingness covariate
relates almost exclusively to one arm of the quadratic curve.

In our simulation studies, although ITT preserves the quadratic relations, it gives
biased estimates under almost all combinations of experimental factors. Oppositely,
TTI provides unbiased estimates in some cases but fails to keep the quadratic re-
lations in the imputed data. With normally distributed predictors and right-tailed
missingness mechanisms, the performance of SMC-FCS is superior to that of MPC,
with coverages closer to the nominal level. However, when the normality assumption
is violated, the polynomial combination yields less biased estimates. Overall, both
the SMC-FCS and polynomial combination methods produce plausible imputations
of squared terms and outperform TTI and ITT. Differences between the approaches
only become apparent under intense MARtail and MARright scenarios in simulation.
However, these two mechanisms are more extreme than we are likely to see in practice
since there is a strong relationship between the outcome Y and the probability of the
variable X being unobserved in the tail. All in all, when differences in performance
are found, such differences are small, and it may be challenging to interpret them as
meaningful. This means that, in practice, the choice of an imputation approach could
largely be a choice of preference.

If there is a solid, well-known scientific model, we highly recommend using SMC-
FCS to sharpen results. The substantive model would then be correctly specified,
ensuring that the distribution from which imputations are generated is compatible.
SMC-FCS is a reliable model-based method to impute predictors with quadratic ef-
fects. It is theoretically well-grounded, and procedures are available for substantive
models based on standard regression, discrete outcomes, and proportional hazards
(van Buuren, 018a). However, with an increasing number of variables in the dataset,
it becomes increasingly challenging to infer the correct substantive model based on
the incomplete data a priori. The strategy of applying SMC-FCS in practice is per-
forming model selection once imputed datasets are generated to ensure the accuracy
of substantive model specification, which is not a trivial process (Bartlett et al., 2015).
Usually, the substantive model is specified according to prior studies or assumptions.
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In contrast, we advise using the polynomial combination approach when the sci-
entific model is less specific or when modelling efforts are challenging. It is proven to
be a valid data-driven imputation method that is flexible in applying because we only
need to specify the quadratic term. This makes it straightforward to implement in any
imputation effort. The polynomial combination method is based on predictive mean
matching, and the performance of imputation procedures involving PMM are proven
to work well in a wide range of research problems (Vink et al., 2015; Rubin, 1986;
Little, 1988). Therefore, we expect that the polynomial combination approach could
be of great practical importance in incomplete data analyses with squared terms.
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(a)

(b)

Fig. 2.1. Imputations (triangles) generated by OPC and MPC. We see that in (a) some
imputations fall outside of the range of the observed (circle) and unobserved values (square),
due to the OPC algorithm assigning the donor values to the incorrect distinct real root. In
(b) the MPC approach assigns the imputations to the distinct real root that corresponds to
the observed and unobserved data.
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(a)

(b)

Fig. 2.2. The plot of means and confidence intervals of β1 and β2 from the first 100
simulations. The model of interest is Y = X + X2 + ϵ, where X ∼ 1

2
N(1.125, 0.234) +

1
2
N(2.875, 0.234). The missingness mechanism is MARright and the imputation approach is

SMC-FCS. The imputations seem to primarily overestimate the true parameter estimate of
β1 in (a) and underestimate the true parameter estimate of β2 in (b).
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Missingness Mechanism
MCAR MARleft MARmid MARtail MARright

Bias Cov Ciw Bias Cov Ciw Bias Cov Ciw Bias Cov Ciw Bias Cov Ciw

Normal
TTI

β1 0.01 0.94 0.52 -0.05 0.92 0.47 -0.01 0.96 0.51 0.11 0.88 0.63 0.21 0.78 0.74
β2 0 0.94 0.39 -0.06 0.9 0.34 -0.03 0.93 0.36 0.1 0.86 0.51 0.2 0.73 0.62
ITT

β1 -0.05 0.9 0.9 -0.02 0.98 0.94 -0.09 0.98 0.86 -0.04 0.99 1.09 -0.04 0.98 1.13
β2 -0.25 0.88 0.89 -0.25 0.86 0.86 -0.2 0.9 0.78 -0.34 0.84 1.17 -0.31 0.87 1.16
OPC

β1 0.03 0.94 0.56 0.01 0.95 0.46 0.01 0.95 0.48 0.08 0.87 0.75 0.09 0.88 0.87
β2 0.03 0.92 0.41 0 0.94 0.33 0 0.94 0.34 0.13 0.84 0.6 0.15 0.83 0.72
MPC

β1 0.03 0.94 0.56 0.01 0.95 0.46 0.01 0.95 0.47 0.1 0.86 0.75 0.1 0.88 0.86
β2 0.03 0.92 0.41 0 0.94 0.33 0 0.94 0.34 0.13 0.84 0.6 0.15 0.83 0.72

SMC-FCS

β1 0 0.96 0.53 -0.01 0.95 0.47 0.01 0.94 0.49 0 0.96 0.6 0 0.95 0.67
β2 0 0.95 0.39 0 0.95 0.33 0 0.95 0.34 0.01 0.95 0.51 0.02 0.95 0.57

Skewed-normal
TTI

β1 -0.15 0.95 3.21 -0.25 0.92 2.98 0.15 0.95 2.79 -0.43 0.92 4.93 -0.26 0.94 5.75
β2 0.09 0.94 1.48 0.04 0.93 1.28 -0.09 0.94 1.23 0.35 0.88 2.59 0.39 0.91 3.28
ITT

β1 0.3 0.94 2.55 0.27 0.93 2.24 0.18 0.96 2.39 0.5 0.9 2.91 0.41 0.94 3.18
β2 -0.13 0.96 1.27 -0.12 0.93 1.01 -0.07 0.96 1.07 -0.24 0.9 1.71 -0.15 0.95 1.91
OPC

β1 0 0.93 2.68 -0.02 0.94 2.49 0.03 0.93 2.4 -0.07 0.86 3.64 0.01 0.82 3.79
β2 0.03 0.92 1.27 0.01 0.94 1.11 -0.01 0.94 1.08 0.16 0.85 1.98 0.13 0.82 2.16
MPC

β1 0.01 0.95 2.69 -0.02 0.94 2.47 0.03 0.93 2.39 -0.02 0.92 3.87 0.03 0.88 4
β2 0.03 0.94 1.29 0.01 0.94 1.11 -0.01 0.93 1.08 0.15 0.91 2.09 0.15 0.86 2.26

SMC-FCS

β1 -0.14 0.94 2.59 -0.01 0.95 2.39 -0.15 0.96 2.43 -0.41 0.93 3.51 -0.49 0.91 3.56
β2 0.09 0.95 1.21 0 0.94 1.08 0.07 0.96 1.07 0.28 0.91 1.87 0.39 0.88 1.97

Normal-mixture
TTI

β1 0 0.96 0.4 -0.05 0.93 0.38 0 0.95 0.4 0.02 0.95 0.43 0.1 0.86 0.46
β2 0 0.96 0.46 -0.05 0.94 0.42 -0.04 0.95 0.44 0.02 0.96 0.52 0.09 0.91 0.57
ITT

β1 -0.04 0.98 0.62 0.03 0.98 0.59 -0.02 0.98 0.58 -0.07 0.98 0.65 -0.09 0.98 0.68
β2 -0.42 0.59 0.98 -0.36 0.71 0.96 -0.32 0.72 0.86 -0.55 0.35 0.97 -0.52 0.4 0.96
OPC

β1 0.02 0.94 0.38 0 0.93 0.36 0.01 0.94 0.37 0.06 0.88 0.44 0.08 0.87 0.48
β2 0.01 0.94 0.44 0 0.93 0.41 0 0.94 0.41 0.04 0.92 0.53 0.05 0.92 0.58
MPC

β1 0.02 0.94 0.38 0 0.93 0.36 0.01 0.94 0.36 0.06 0.89 0.44 0.08 0.87 0.48
β2 0.01 0.95 0.44 0 0.94 0.41 0 0.94 0.4 0.04 0.92 0.53 0.05 0.93 0.58

SMC-FCS

β1 -0.01 0.95 0.4 -0.02 0.95 0.38 0.02 0.95 0.38 -0.05 0.93 0.43 -0.05 0.93 0.48
β2 -0.02 0.95 0.46 0.01 0.94 0.41 -0.03 0.94 0.42 -0.03 0.94 0.51 -0.06 0.93 0.57

Table 2.3. Simulation results for five missingness mechanisms when imputing a squared
term regression where the mean of X equals 0. Shown are the absolute bias of the estimate,
coverage of the 95% confidence interval for the estimate and the average confidence interval
width.
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Missingness Mechanism
MCAR MARleft MARmid MARtail MARright

Bias Cov Ciw Bias Cov Ciw Bias Cov Ciw Bias Cov Ciw Bias Cov Ciw

Normal
TTI

β1 -0.58 0.93 7.17 -1 0.92 8 -0.08 0.95 6.04 -1.32 0.91 10.11 -0.89 0.93 9.24
β2 0.11 0.93 1.66 0.15 0.93 1.73 0 0.95 1.39 0.31 0.89 2.43 0.29 0.91 2.4
ITT

β1 0.71 0.94 5.61 0.6 0.94 5.57 0.5 0.96 5.27 0.99 0.92 5.95 1.02 0.93 4.97
β2 -0.19 0.95 1.41 -0.14 0.95 1.31 -0.13 0.96 1.28 -0.28 0.9 1.58 -0.3 0.91 1.63
OPC

β1 -0.05 0.92 5.28 -0.15 0.93 5.56 0.01 0.93 4.98 -0.12 0.87 6.04 0.04 0.8 5.65
β2 0.02 0.93 1.27 0.03 0.94 1.27 0 0.94 1.17 0.05 0.87 1.51 0.03 0.82 1.48
MPC

β1 -0.05 0.93 5.17 -0.15 0.94 5.39 0 0.91 4.77 -0.03 0.93 6.26 0.05 0.89 6.02
β2 0.02 0.93 1.25 0.03 0.94 1.24 0.01 0.92 1.13 0.04 0.91 1.56 0.04 0.88 1.57

SMC-FCS

β1 0.03 0.95 5.44 -0.11 0.95 5.78 -0.06 0.95 5.14 -0.22 0.94 6.02 -0.1 0.97 5.69
β2 0 0.95 1.3 0.03 0.94 1.31 0.01 0.95 1.25 0.06 0.94 1.5 0.04 0.96 1.48

Skewed-normal
TTI

β1 -0.15 0.93 2.95 -0.45 0.92 4.14 -0.06 0.95 2.56 -0.32 0.95 4.07 -0.07 0.94 2.97
β2 0.06 0.93 1.27 0.14 0.92 1.59 0.03 0.95 1.11 0.12 0.94 1.73 0.06 0.93 1.41
ITT

β1 0.46 0.92 2.64 0.29 0.93 2.86 0.35 0.94 2.49 0.62 0.87 2.83 0.73 0.81 2.48
β2 -0.28 0.88 1.26 -0.13 0.94 1.23 -0.21 0.9 1.16 -0.37 0.8 1.37 -0.48 0.64 1.26
OPC

β1 0.01 0.92 2.24 -0.11 0.93 2.74 0.02 0.93 2.19 -0.07 0.88 2.5 0 0.85 2.19
β2 0 0.93 0.99 0.05 0.93 1.14 -0.01 0.94 0.96 0.04 0.89 1.11 0.02 0.86 1.03
MPC

β1 0 0.92 2.18 -0.11 0.93 2.66 0 0.92 2.02 -0.04 0.94 2.59 0.02 0.91 2.28
β2 0.01 0.93 0.96 0.05 0.93 1.11 0 0.93 0.89 0.04 0.95 1.15 0.02 0.9 1.06

SMC-FCS

β1 0.1 0.95 2.46 -0.04 0.95 3.01 0.09 0.95 2.27 0.14 0.95 2.65 0.2 0.93 2.22
β2 -0.05 0.94 1.08 0.03 0.95 1.22 -0.04 0.94 1 -0.08 0.94 1.2 -0.14 0.91 1.04

Normal-mixture
TTI

β1 -1.5 0.9 10.48 -2.15 0.86 11.93 -0.71 0.93 8.8 -2.35 0.87 13.63 -1.73 0.91 12.47
β2 0.33 0.9 2.52 0.43 0.87 2.73 0.16 0.94 2.11 0.51 0.88 3.29 0.43 0.9 3.15
ITT

β1 1.38 0.88 6.4 0.83 0.92 6.13 1.07 0.92 6.33 1.76 0.8 6.08 2.08 0.78 6.35
β2 -0.35 0.88 1.62 -0.19 0.94 1.52 -0.25 0.92 1.58 -0.49 0.76 1.57 -0.57 0.72 1.63
OPC

β1 -0.05 0.92 6.28 -0.24 0.92 6.51 0.02 0.93 6.05 -0.09 0.88 6.61 0.19 0.85 6.43
β2 0.02 0.92 1.53 0.06 0.92 1.57 0 0.94 1.47 0.04 0.87 1.64 -0.03 0.86 1.62
MPC

β1 -0.04 0.93 6.24 -0.23 0.92 6.39 0.02 0.91 5.92 -0.04 0.93 6.77 0.24 0.92 6.69
β2 0.02 0.93 1.53 0.05 0.93 1.54 0 0.92 1.45 0.03 0.92 1.68 -0.03 0.92 1.69

SMC-FCS

β1 0.32 0.95 6.37 -0.32 0.96 6.85 0.25 0.94 6.18 0.5 0.94 6.58 0.95 0.91 6.69
β2 -0.07 0.94 1.57 0.09 0.95 1.65 -0.04 0.94 1.5 -0.14 0.92 1.66 -0.25 0.9 1.71

Table 2.4. Simulation results for five missingness mechanisms when imputing a squared
term regression where the mean of X equals 2. Shown are the absolute bias of the estimate,
coverage of the 95% confidence interval for the estimate and the average confidence interval
width.
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Simultaneous imputation of missing data by
multivariate predictive mean matching

Summary. Predictive mean matching (PMM) is an easy-to-use and versatile univariate
imputation approach. It is robust against transformations of the incomplete variable and
violation of the normal model. However, univariate imputation methods cannot directly pre-
serve multivariate relations in the imputed data. We wish to extend PMM to a multivariate
method to produce imputations that are consistent with the knowledge of derived data (e.g.,
data transformations, interactions, sum restrictions, range restrictions, and polynomials).
This paper proposes multivariate predictive mean matching (MPMM), which can impute
incomplete variables simultaneously. Instead of the normal linear model, we apply canonical
regression analysis to calculate the predicted value used for donor selection. To evaluate the
performance of MPMM, we compared it with other imputation approaches under four sce-
narios: 1) multivariate normal distributed data, 2) linear regression with quadratic terms, 3)
linear regression with interaction terms, 4) incomplete data with inequality restrictions. The
simulation study shows that with moderate missingness patterns, MPMM provides plausible
imputations and preserves relations in the data. This manuscript focuses on the all-or-none
missing data pattern in the block. We also provide an algorithm for the more general case,
and evaluating such an algorithm is subject to future work.

3.1 Introduction

Multiple imputation (MI) is a popular statistical method for the analysis of missing
data problems. To provide valid inferences from the incomplete data, the analysis
procedure of MI consists of three steps. First, in the imputation step, missing val-
ues are drawn from a plausible distribution (e.g., posterior distributions for Bayesian
model-based approaches and a cluster of candidate donors for non-parametric and
semi-parametric approaches) to generate several (m) complete datasets. Historically
the value of m may have varied between 3 to 10 but now more are generally rec-
ommended, see White et al. (2011) for a commonly cited rule of thumb (m ≥ the
percentage of incomplete cases). Second, in the analysis step, complete data analysis
is used to estimate the quantity of scientific interest for each imputed data set. This
step yields m separate analyses because imputed datasets are different. Finally, in the



28 3 Multivariate predictive mean matching

pooling step, m results are aggregated into a single result by Rubin’s rules, accounting
for the uncertainty of estimates due to the missing data (Rubin, 1987, p.76).

Two widely used strategies for imputing multivariate missing data are joint mod-
elling (JM) and fully conditional specification (FCS). Joint modelling was proposed
by Rubin (1987) and especially developed by Schafer (1997). Given that the data are
assumed to follow a multivariate distribution, all incomplete variables are generally
imputed by drawing from the joint posterior predictive distribution conditional on
other variables. Fully conditional specification, which was developed by Van Buuren
et al. (1999), follows an iterative scheme that imputes each incomplete variable based
on a conditionally specified model. Fully conditional specification allows for tremen-
dous flexibility in multivariate model design and flexibility in imputing non-normal
variables, especially discrete variables (Van Buuren, 2007; Goldstein et al., 2014).
However, FCS may suffer from incompatibility problems, and computational short-
cuts like the sweep operator cannot be applied to facilitate computation (van Buuren,
018a). On the other hand, joint modelling possesses more solid theoretical guaran-
tees. For a large number of incomplete variables, JM may lead to unrealistically large
models and a lack of flexibility, which will not occur under FCS.

In practice, there are often extra structures in the missing data which are not
modelled properly. Suppose there are two jointly missing variables X1 and X2. There
may be restrictions on the sum of X1 and X1 (e.g., X1 + X1 = C, where C is a
fixed value) and the rank of X1 and X2 (e.g., X1 >X2), data transformations (e.g.,
X2 = log(X1), X2 = X1

2) or interaction terms included in the data (X1, X2, X3

are jointly missing, where X3 = X1 ∗ X2). In this paper, we focus on the missing
data pattern where a set of variables are jointly observed or missing. This missing
pattern is a simple scenario to illustrate.

The two popular approaches of MI mentioned before may not be appropriate for
modelling the relations among multiple variables in the missing data. Joint mod-
elling may lack the flexibility of modelling the relations explicitly, and FCS imputes
each missing variable separately, which may not ensure that the imputation remains
consistent with the observed relations among multiple variables.

van Buuren (018a, section 4.7.2) suggested block imputation, which combines the
strong points of joint modelling and fully conditional specification. The general idea is
to place incomplete variables into blocks and apply multivariate imputation methods
to the block. Joint modelling can be viewed as a “single block” imputation method,
where all variables are placed into the same block. In contrast, FCS is strictly a
multiple blocks imputation method, where the number of blocks equals the number
of incomplete columns in the data. It is feasible to consider the relations among a set
of missing variables if we specify them as a single block and perform the MI iteratively
over the blocks.

Based on the rationale of block imputation, we extend univariate predictive mean
matching to the multivariate case to allow for the joint imputation of blocks of vari-
ables. The general idea is to match the incomplete case to one of the complete cases by
applying canonical regression analysis and imputing the variables in a block entirely
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from the matched case (Little, 1988). We shall refer to the multivariate extension of
PMM as multivariate predictive mean matching (MPMM).

Predictive mean matching (PMM) is a user-friendly and versatile semi-parametric
imputation method. Multiple imputation by chained equation (MICE), which is a pop-
ular software package in R for imputing incomplete multivariate data by Fully Con-
ditional Specification (FCS), sets the PMM as the default imputation approach for
continuous variables (van Buuren and Groothuis-Oudshoorn, 2011). We tailor PMM
to the block imputation framework, which will widen its application. More computa-
tional details and properties of PMM would be addressed in section 3.2.

For a comprehensive overview of missing data analysis, we refer to Little and Rubin
(2019) for a comparison of approaches to missing data other than multiple imputa-
tion (e.g, ad-hoc methods, maximum likelihood estimation and weighting methods).
Schafer (1999), Sinharay et al. (2001) and Allison (2001) introduced basic concepts
and general methods of MI. Schafer and Graham (2002) discussed practical issues of
application of MI. Various sophisticated missing data analysis were developed on the
fields of multilevel model (Longford, 2001), structural equation modelling (Olinsky
et al., 2003; Allison, 2003), longitudinal data analysis (Twisk and de Vente, 2002;
Demirtas, 2004) and meta-analysis (Pigott, 2001). Schafer (2003) compared Bayesian
MI methods with maximum likelihood estimation. Seaman and White (2013) gave an
overview of the use of inverse probability weighting in missing data problems. Ibrahim
et al. (2005) provided a review of various advanced missing data methods. MI as well
as other approaches are now being applied in many fields (e.g., epidemiology, psychol-
ogy, and sociology) and implemented in many statistical software packages (e.g., mice
and mi in R, IVEWARE in SAS, ice in STATA and module MVA in SPSS) (van Buuren and
Groothuis-Oudshoorn, 2011).

The following section will outline canonical regression analysis, introduce predic-
tive mean matching (PMM), and connect the techniques to propose multivariate pre-
dictive mean matching (MPMM). Section 3.3 provides a simple comparison between
PMM and MPMM. Section 3.4 is a simulation study investigating whether MPMM
yields valid estimates and preserves functional relations between imputed values. The
discussion closes the paper.

3.2 Multivariate Predictive Mean Matching

3.2.1 Canonical regression analysis (CRA)

Canonical regression analysis is a derivation and asymmetric version of canonical
correlation analysis (CCA). It aims to look for a linear combination of covariates
that predicts a linear combination of outcomes optimally in a least-squares sense
(Israels, 1987). The basic idea of canonical regression analysis is quite old and has
been discussed under different names, such as Rank-reduced regression (Izenman,
1975) and partial least squares (Sun et al., 2009).

Let us consider the equation
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α′Y = βX + ϵ. (3.1)

We aim to minimize the variance ϵ with respect to α and β under some restrictions.
CRA can be implemented by maximizing the squared multiple correlation coefficient
for the regression of α′Y on X, which can be written as

R2
α′y.x =

α′ΣyxΣ
−1
xx Σxyα

α′Σyyα
, (3.2)

where R2
α′y.x is the ratio of the amount of variance of α′Y accounted for by the

covariates X to the total variance. According to McDonald (1968), maximization of
the above equation leads to eigenvalue decomposition. The solution is that α is the
right-hand eigenvector of Σ−1

yy ΣyxΣ
−1
xx Σxy corresponding to its greatest eigenvalue.

After reducing the rank of α′Y to 1, we could estimate β by multivariate regression
analysis.

3.2.2 Predictive mean matching (PMM)

PMM was first proposed by Rubin (1986) and formalized by Little (1988). It can
be viewed as an extension of the k nearest neighbour method. PMM calculates the
estimated value of the missing variable through a specified imputation model (e.g.,
linear imputation model). The method selects a set of candidate donors (typically, the
number of candidate donors is 5) from all complete cases whose estimated values are
closest to the estimated value of the missing unit. The unobserved value is imputed
by randomly drawing one of the observed values of the candidate donors (van Buuren,
018a).

Computational details

We elaborate the algorithm of univariate predictive mean matching for the clear
illustration of its merger with canonical regression analysis (Vink et al., 2015). Xobs,
a Nobs × j matrix, denotes the observed part of predictors and Xmis, a Nmis × j
matrix, denotes the missing part of predictors.

1. Use linear regression of Yobs given Xobs to estimate β̂ and ϵ̂ through ordinary
least squares

2. Draw σ2∗ = ϵ̂Tϵ̂/A, where A is a χ2 variate with Nobs − j degrees of freedom
3. Draw β∗ from a multivariate normal distribution with mean vector β̂ and covari-

ance matrix σ2∗(XT
obsXobs)

−1

4. Calculate V̂obs = Xobsβ̂ and V̂mis = Xmisβ
∗

5. For each missing cell ymis,n, where n = 1, · · · , Nmis

a) Find ∆ = |v̂mis,n − v̂obs,k| for all k = 1, · · · , Nobs

b) Pick several observed entries yobs, 5 as default in mice.impute.pmm, with the
smallest distance defined in step 5(a)
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c) Randomly draw one of the yobs which are picked in the previous step to impute
ymis,n

6. Repeat steps 1-5 m times and save m completed datasets.

Predictive mean matching has been proven to perform well in a wide range of
simulation studies and is an attractive way to impute missing data (van Buuren and
Groothuis-Oudshoorn, 2011; Vink et al., 2015; Heitjan and Little, 1991; Morris et al.,
2014; Vink et al., 2014). More precisely, PMM has the appealing feature that the
imputed values are always within the range of observed data because imputed values
are replaced by real observed values (van Buuren, 018a). For the same reason, PMM
yields acceptable imputations even when normality assumptions are violated (Vink
et al., 2014). PMM is good at preserving the distributional shape. If observations
are strictly positive, so will the imputations from PMM. Furthermore, since PMM is
a semi-parametric technique, it alleviates the adverse impact when the imputation
model is misspecified (James R. Carpenter, 2013).

Although PMM was developed for situations with only a single incomplete vari-
able, it is easy to implement it under a fully conditionally specification framework
for imputing multivariate missing data. However, the application of PMM under the
FCS framework is only limited to univariate imputation. Therefore, it may distort the
multivariate relations in the imputations and narrow the application of the method
to more complex data structures. For example, Seaman et al. (2012) concluded that
a univariate implementation of predictive mean matching is not advised to produce
plausible estimates when the analysis model contains non-linear terms. As a multivari-
ate extension to PMM, we expect that MPMM could yield plausible and consistent
imputations when the missing covariates include polynomial or interaction terms.

3.2.3 Multivariate predictive mean matching (MPMM)

For illustration, we present the algorithm with one missing data pattern. The appendix
discusses the extension to cases with multiple missing patterns. Let Y = (Y1, · · · , YI)
and X = (X1, · · · , XJ) be two sets of I jointly incomplete variables and J complete
quantitative variables, respectively. Let V = αY denotes the linear combination of
multiple response variables and X denotes predictors with j dimensions.

1. Use the observed data to estimate the (I + J)× (I + J) covariance matrix(
Σyobsyobs Σyobsxobs

Σxobsyobs Σxobsxobs

)
2. Find the largest eigenvalue λ2 of Σ−1

yobsyobs
ΣyobsxobsΣ

−1
xobsxobs

Σxobsyobs and its
corresponding right-hand eigenvector α

3. Calculate the linear combination α′Y for all completely observed individuals in
the sample: Vobs = α′Yobs

4. Use linear regression of Vobs given Xobs to estimate β̂ and ϵ̂ through ordinary
least squares
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5. Draw σ2∗ = ϵ̂Tϵ̂/A, where A is a χ2 variate with Nobs − j degrees of freedom
6. Draw β∗ from a multivariate normal distribution with mean vector β̂and covari-

ance matrix σ2∗(XT
obsXobs)

−1

7. Calculate V̂obs = Xobsβ̂ and V̂mis = Xmisβ
∗

8. For each missing vector ymis,n, where n = 1, · · · , Nmis

a) Find ∆ = |v̂mis,n − v̂obs,k| for all k = 1, · · · , Nobs

b) Pick several observed components yobs = {y1,obs, · · · , yI,obs}, 5 as default,
with the smallest distance defined in step 8(a)

c) Randomly draw one of the yobs which are picked in the previous step to impute
ymis,n

9. Repeat steps 5-8 m times and save m completed datasets.

We also tried other methods of multivariate analysis, such as multivariate regres-
sion analysis (MRA) (Rencher, 2003, chapter 10) and redundancy analysis (RA) (Van
Den Wollenberg, 1977). However, imputation models specified by MRA or RA are not
appropriate because of the assumed independence between missing variables. The vi-
olation of this assumption leads to less sensible imputations when there are extra
relations among missing covariates.

3.3 Comparison between PMM and MPMM

We shall illustrate that although MPMM is a multivariate imputation method, where
the whole missing component is assigned entirely from the matching donor, the derived
imputed datasets are also plausible when targets of interest only involve a subset of
variables (E(Y1), ρ(Y1,Y2)) in the block.

3.3.1 Simulation conditions

The predictors were generated by a multivariate distributionX1

X2

X3

 ∼ N

 2
2
2

 ,

 12 0 0
0 12 0
0 0 12

 .
The responses were generated based on the multivariate linear modelY1

Y2

Y3

 ∼ N

 3X1 +X2 + 2X3

X1 + 5X2 + 2X3

5X1 + 3X2 +X3

 ,

 4 4ρ 4ρ
4ρ 4 4ρ
4ρ 4ρ 4

 ,
where ρ denotes the correlation between the predictors X. Let R be the vector of
observation indicators whose values are zero if the corresponding variable is missing
and one if observed. We simulated missingness such that rows in the set (Y1, Y2, Y3)
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were always either observed or completely missing. This joint missingness was either
completely at random (MCAR) with P (R = 0|X,Y) = 0.4 or right-tailed missing
at random (MARright) with P (R = 0|X,Y) = ea

1+ea , where a = α0 + X1/SD(X1)
and α0 was chosen to make the probability of jointly missing Y equal to 0.4. Missing
values were induced with the ampute function (Schouten et al., 2018) from the pack-
age MICE (van Buuren and Groothuis-Oudshoorn, 2011) in R (R Core Team, 2021).
The correlation ρ was simulated from 0.2, 0.5, or 0.8 corresponding to a weak, mod-
erate and strong dependence between predictors. The sample size was 2000, and 1000
simulations were repeated for different setups.

For reasons of brevity, we focused our evaluation on the expectation of Y1 and the
correlation between Y1 and Y2. We studied the average bias over 1000 simulations
(nsim = 1000) with respect to the designed population value and the coverage rate of
nominal 95% confidence interval. The large number of simulation replicates reduces
Monte Carlo errors. Thus estimates are guaranteed to be precise (Morris et al., 2019).
To verify this claim, we reported the maximum Monte Carlo standard error for each
simulation study. Within each simulation, we generated five imputed datasets and
combined the statistics into a single inference by using Rubin’s combination rules
(Rubin, 1987, p.76).

3.3.2 Results

E(Y1) ρ(Y1, Y2)
PMM MPMM PMM MPMM

ρ scenario bias cov bias cov bias cov bias cov

0
MCAR 0 0.94 0 0.95 0 0.95 0 0.94
MAR 0 0.93 0 0.94 0 0.96 0 0.94

0.5
MCAR 0 0.95 0 0.93 0 0.95 0 0.95
MAR 0 0.94 0 0.94 0 0.94 0 0.94

0.8
MCAR 0 0.93 0 0.94 0.01 0.91 0 0.95
MAR 0 0.93 0 0.93 0.01 0.93 0 0.94

Table 3.1. Simulation results for evaluating whether MPMM provides valid imputations
when targets of interest only involve a subset of variables in the block. Monte Carlo standard
errors for bias are all less than 0.002. Monte Carlo standard errors for confidence interval
coverage are less than 0.81%.
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Table 3.1 shows the simulation results. In general, MPMM yielded no discernible
difference with PMM when focusing on the correlation coefficient ρ(Y1,Y2). Under
the MCAR missingness mechanism, both methods yielded unbiased estimates and
displayed coverage rates close to the nominal 95%, and even there was 40% missing-
ness in the joint set (Y1, Y2, Y3). It is notable to see that with MARright and high
correlation between Y1 and Y2, PMM had a somewhat reduced coverage rate, which
suggests that MPMM yielded more robust results against various correlation coeffi-
cients. For estimation of the mean value E(Y1), MPMM performed similarly to PMM.
Both methods yielded plausible imputations with various missingness scenarios and
different pre-assumed correlation coefficients.

These initial results suggested that multivariate predictive mean matching could
be an alternative to predictive mean matching. If PMM yields sensible imputations,
so will MPMM.

3.4 Evaluation

To investigate the performance of MPMM when there are relations in the incomplete
data, we performed the following simulation studies.

3.4.1 Linear regression with squared term

We first simulated from a linear regression substantive model with a squared term.

Simulation conditions

The dependent variable Y was generated according to the analysis model

Y = α+ β1X + β2X
2 + ϵ (3.3)

where α = 0, β1 = 1, β2 = 1, both predictor X and error term ϵ were assumed as
standard normal distributions. These coefficients lead to a strong quadratic associa-
tion between Y and X. A large sample size (n = 5000) was created. Simulations were
repeated 1000 times so that we could achieve more robust and stable analyses. Forty
percent of X and X2 were designed to be jointly missing under five various miss-
ingness mechanisms: MCAR, MARleft, MARmid, MARtail, and MARright 1, which
means no cases with missing values on either X or X2 for each mechanism. Missing
values were again created with the ampute function from the package MICE in R.

1 With left-tailed (MARleft), centered (MARmid), both tailed (MARtail) or right-tailed
(MARright) missingness mechanism, a higher probability of X being missing are assigned
to the units with low, centered, extreme and high values of Y respectively.
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Estimation methods

We compared the performance of MPMM to four other approaches: ‘transform, then
impute’ (TTI), ‘impute, then transform’ (ITT), polynomial combination method (PC)
and substantive model compatible FCS (SMC-FCS). ‘Impute, then transform’, also
named as passive imputation, excludes X2 during imputation and appends it with
the square of X afterwards. ‘Transform, then impute’, also known as just another
variable (JAV), treats the squared term as another variable to be imputed. Both
aforementioned methods are proposed by Von Hippel (2009). We also apply the poly-
nomial combination method proposed by Vink and van Buuren (2013). PC imputes
the combination of X and X2 by predicted mean matching and then decomposes
it by solving a quadratic equation for X. The polynomial combination method is
implemented by mice.impute.quadratic function in the R MICE package. Finally,
SMC-FCS is proposed by Bartlett et al. (2015). In general, it imputes the missing
variable based on the formula:

f(Xi|X−i,Y ) =
f(Xi,X−i,Y )

f(Y ,X−i)

∝ f(Y |Xi,X−i)f(Xi|X−i).
(3.4)

Provided the scientific model is known and the imputation model is specified precisely
(i.e., f(Y |Xi fits the substantive model), SMC-FCS derives imputations that are
compatible with the substantive model. SMC-FCS is implemented by smcfcs function
in the R smcfcs package and a range of common models (e.g., linear regression, logistic
regression, poisson regression, Weibull regression and Cox regression) are available.

Results

Table 3.2 displays the results of the simulation, including estimates of α, β1, β2, σϵ, R
2

and the coverage of nominal 95% confidence intervals of β1 and β2. In general, MPMM
performed similarly to the polynomial combination method. There were no discernible
biases for both approaches with five types of missingness mechanisms (MCAR, MAR-
left, MARmid, MARtail, and MARright). The coverage of the CIs for β1 and β2 from
MPMM and PC was close to 95% with MCAR, MARleft, and MARmid. However,
MPMM and PC had low CI coverage with MARtail and MARright. The undercover-
age issue is due to the data-driven nature of predictive mean matching. PMM might
result in implausible imputations when sub-regions of the sample space are sparsely
observed or even truncated, possibly because of the extreme missing data mechanism
and the small sample size. In such a case, two possible results may occur. First, the
same donors are repeatedly selected for the missing unit in the sparsely populated
sample space, which may lead to an underestimation of the variance of the considered
statistic (de Jong et al., 2014). Second, more severely, the selected donors are far away
from the missing unit in the sparsely populated sample space, which may lead to a
biased estimate of the considered statistic.

Although ‘impute, then transform’ method preserved the squared relationship, it
resulted in severely biased estimates, even with MCAR. The CI coverage of β2 was
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considerably poor, with all cases of missingness mechanisms. With MCAR, ‘transform,
then impute’ method yielded unbiased regression estimates and correct CI coverage
for β1 and β2. However, TTI distorted the quadratic relation between X and X2.
It also gave severely biased results, and the CIs for β1 and β2 had 0% coverage with
MARleft, MARtail, and MARright. Since we knew the scientific model in the simu-
lation study and specified a correct imputation model, SMC-FCS provided unbiased
estimates and closed to 95% CI coverage with all five missingness mechanisms. Fur-
thermore, It was noteworthy that with MARtail and MARright, MPMM and PC
yielded relatively accurate estimations for σϵ and R

2 compared with the model-based
imputation method.

Overall, the multivariate predictive mean matching yielded unbiased estimates of
regression parameters and preserved the quadratic structure between X and X2.
Figure 3.1 shows an example of the observed data and imputed data relationships
between X and X2, generated by the multivariate predictive mean matching method.

3.4.2 Linear regression with interaction term

This section considers a linear regression substantive model, which includes two pre-
dictors and their interaction effect.

Simulation conditions

The dependent variable Y was generated according to the analysis model

Y = α+ β1X1 + β2X2 + β3X1X2 + ϵ (3.5)

where α = 0, β1 = 1, β2 = 1, β3 = 1, two predictors X1, X2 and error term
ϵ were assumed as standard normal distributions. Under five types of missingness
mechanisms: MCAR, MARleft, MARmid, MARtail, and MARright, the probability
of jointly missing X1 and X2 was set to 0.4. There were no units with missing values
on either X1 or X2. Missing values were amputed with the ampute function from the
package MICE in R. For each simulation scenario, n = 5000 units were generated and
1000 simulations were repeated.

Estimation methods

We evaluated and compared the same methods as under section 3.4.1, except the
polynomial combination method. The model-based imputation method ensures a com-
patible imputation model by accommodating the designed model Y = X1 + X2 +
X1X2 + ϵ.
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Results

Table 3.3 shows the estimates of α, β1, β2, β3, σϵ, R
2 and the coverage of the 95%

confidence intervals for β1, β2 and β3. With MCAR, MARleft, and MARmid, MPMM
was unbiased, and the CI coverage for regression weights was at the nominal level.
While similar to the linear regression with quadratic term situation, with MARtail and
MARright, MPMM yielded unbiased estimates but had relatively reduced confidence
interval coverage. The reason is explained in section 3.4.1. ‘Transform, then impute’
method did not preserve the relations even though it resulted in plausible inferences
in cases of MCAR and MARmid. The imputations were not plausible. Moreover, with
MARleft, MARtial, and MARright, ‘transform, then impute’ method gave severely
biased estimates and extremely poor CI coverage. ‘Impute, then transform’ method
generally yielded biased estimates, and the CI for coefficients β1, β2 and β3 had lower
than nominal coverage with all five types of missingness. SMC-FCS yielded unbiased
estimates of regression weights and had correct CI coverage in all simulation scenarios.
The only potential shortcoming of the model-based imputation method was that the
estimates of σϵ and R2 showed slight deviations from true values with MARtail and
MARright.

3.4.3 Incomplete dataset with inequality restriction X1 + X2 ≧ C

Multiple predictive mean matching is flexible to model relations among missing vari-
ables other than linear regression with polynomial terms or interaction terms. Lastly,
we would evaluate the inequality restriction X1 + X2 ≧ C, which is relatively dif-
ficult for the model-based imputation approach to specify. One application of such
inequality restriction would be the analysis of the academic performance of qualified
students. For example, the sum score of mid-term and final exams should exceed a
fixed value.

Simulation conditions

The data was generated from:(
X1

X3

)
∼ N

[(
0
1

)
,

(
4 3.2
3.2 4

)]
,

X2 = 3 − X1 + ϵ, where ϵ followed a standard uniform distribution. The sum of
X1+X2 ≧ 3 was the restriction in the generated data. We simulated missingness such
that rows in the block (X1, X2,) were always either observed or completely missing.
We considered 30% joint missingness of X1 and X2. 2000 subjects were generated
and 1000 simulations were performed for two missingness mechanisms: MCAR and
MARright. We evaluated the mean of X1 and X2 and the coverage of nominal 95%
CIs.
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Estimation methods

We compared MPMM with PMM to illustrate the limited performance of univari-
ate imputation approaches when there are relations connected to multiple missing
variables. We did not apply joint modelling and univariate model-based imputation
methods because it is hard to specify the designed inequality restriction.

Results

Table 3.4 shows the mean estimates of X1 and X2 and coverage of the corresponding
95% CIs. The true values for E(X1) and E(X2) are 0 and 3.5. MPMM yielded
unbiased estimates with MCAR and MARright and had the correct CI coverage.
However, PMM was unbiased with close to 95% when the missingness mechanism is
MCAR. It had considerable bias and extremely poor coverage with MARright. The
reason is that the relations between X1 and X2 are not modelled (Morris et al., 2014).

3.5 Conclusion

Predictive mean matching is an attractive method for missing data imputation. How-
ever, because of its univariate nature, PMM may not keep relations between variables
with missing units. Our proposed modification of predictive mean matching, MPMM,
is a multivariate extension of PMM that imputes a block of variables. We combine
canonical regression analysis with predictive mean matching so that the models for
donors selection are appropriate when there are restrictions involving more than one
variable. MPMM could be valuable because it inherits the advantages of predictive
mean matching and preserves relations between partially observed variables. More-
over, since predictive mean matching performs well in a wide range of simulation
studies, so can the multivariate predictive mean matching.

We assess the performance of the multivariate predictive mean matching under
three different substantive models with restrictions. In the first two simulation stud-
ies, MPMM provides unbiased estimates where the scientific model includes squared
terms and interaction terms under both MCAR and MAR missingness mechanisms.
However, with MARtail and MARright, MPMM suffers the undercoverage issue be-
cause the density of the response indicator is heavy-tailed with our simulation setup.
It makes units with large Y almost unobserved and more missing than observed data
in the tail region. The missingness mechanism is commonly moderate in practice,
unlike MARtial and MARright in simulation studies. Overall, when no sub-regions
of the sample space are sparsely observed, the multiple predictive mean matching
analysis will provide unbiased estimates and correct CI coverage.

SMC-FCS yields better estimates and CI coverage of regression weights, but
MPMM provides relatively accurate σϵ and R

2. The comparison is not entirely fair be-
cause SMC-FCS, as used here, requires the correct substantive model for the data. In
practice, we often do not know the model, and MPMM becomes attractive. MPMM is



3.5 Conclusion 39

an easy-to-use method when there is unit non-response in the survey or the efficiency
of estimators is not of great interest.

The third simulation shows the appealing properties of MPMM. When relations
of missing variables are challenging to model, MPMM becomes the most effective
approach to imputation. We expect that MPMM could be applied to other relations
not yet discussed in section 3.4.

We limited our calculations and analyses to normal distributed X. However, since
Vink (2014) concluded that PMM yields plausible imputations with non-normal dis-
tributed predictors, we argue that distributions of predictors will not significantly
impact the imputations. We focus on the simple case with one missing data pattern.
One possible way to generalize MPMM to more complicated missing data patterns is
proposed in the appendix. The general idea is to partition the cases into groups of
identical missing data patterns in the block imputed with MPMM. We then perform
the imputation in ascending order of the fraction of missing information, i.e., we first
impute cases with relatively small missing data problems. Considering to impute par-
tially observed covariates for linear regression with a quadratic term Y = X+X2, we
first impute cases with only missing value in X2 by squaring the observed X. Then
cases with only missing value in X are imputed with one square root of Y = X +X2.
However, the selection of roots should be modelled with logistic regression. Finally,
we impute cases with jointly missing X and X2 with MPMM. The comprehensive
understanding of MPMM with multiple missing data patterns is an area for further
research.

Appendix

The MPMM algorithm with multiple missing patterns:

1. Sort the rows of Y into S missing data patterns Y[s], S = 1, · · · , s.
2. Initialize Ymis by a reasonable starting value.
3. Repeat for M = 1, · · · ,m.
4. Repeat for S = 1, · · · , s.
5. Impute missing values by steps 1-8 of MPMM algorithm proposed in section 2.3.
6. End repeat S.
7. End repeat M.
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Missingness Mechanism
MCAR MARleft MARmid MARtail MARright

Transform, then impute
Intercept (α) 0 0.15 -0.04 0 -0.11
Slope of X (β1) 1(0.93) 0.93(0.02) 0.97(0.68) 1.13(0) 1.27(0)
Slope of X2 (β2) 1(0.92) 0.93(0) 0.96(0.13) 1.13(0) 1.27(0)
Residual SD (σϵ) 1 0.96 1 1.06 1.13
R2 0.75 0.77 0.75 0.72 0.68

Impute, then transform
Intercept (α) 0.32 0.22 0.2 0.45 0.49
Slope of X (β1) 0.94(0.62) 0.97(0.91) 0.89(0.08) 1(0.99) 1.04(0.92)
Slope of X2 (β2) 0.68(0) 0.68(0) 0.74(0) 0.62(0) 0.7(0)
Residual SD (σϵ) 1.41 1.36 1.35 1.52 1.57
R2 0.5 0.54 0.55 0.42 0.38

PC
Intercept (α) 0 0 0 -0.05 -0.06
Slope of X (β1) 1(0.93) 1(0.93) 1(0.93) 1(0.85) 1(0.82)
Slope of X2 (β2) 1.01(0.9) 1(0.94) 1(0.93) 1.07(0.12) 1.09(0.09)
Residual SD (σϵ) 1 1 1 1.05 1.07
R2 0.75 0.75 0.75 0.72 0.71

MPMM
Intercept (α) 0 0 0 -0.03 -0.03
Slope of X (β1) 1(0.93) 1(0.93) 1(0.91) 1.04(0.47) 1.06(0.4)
Slope of X2 (β2) 1(0.91) 1(0.95) 1(0.93) 1.05(0.25) 1.07(0.23)
Residual SD (σϵ) 1 1 1 1.05 1.07
R2 0.75 0.75 0.75 0.72 0.71

SMC-FCS
Intercept (α) 0.01 0 0 0.03 0.05
Slope of X (β1) 1(0.96) 1(0.95) 1(0.95) 1(0.97) 1.01(0.97)
Slope of X2 (β2) 1(0.95) 1(0.96) 1(0.94) 1(0.96) 1.01(0.93)
Residual SD (σϵ) 1.04 1 1 1.11 1.12
R2 0.73 0.75 0.75 0.69 0.68

Table 3.2. Average parameter estimates for different imputation methods under five differ-
ent missingness mechanisms over 1000 imputed datasets (n = 5000) with 40% missing data.
The designed model is Y = α+β1X+β2X

2+ϵ, where α = 0, β1 = 1, β2 = 1 and ϵ ∼ N(0, 1).
The population coefficient of determination R2 = .75. The confidence interval coverages for
β1 and β2 are in parentheses. Monte Carlo standard errors for bias are all less than 0.002.
Monte Carlo standard errors for confidence interval coverage are less than 1.58%.
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Fig. 3.1. Predictive mean matching based on canonical regression analysis. Observed (blue)
and imputed values (red) for X and X2.
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Missingness Mechanism
MCAR MARleft MARmid MARtail MARright

Transform, then impute
Intercept (α) 0 0.05 -0.05 0.06 0.05
Slope of X1 (β1) 1(0.93) 0.96(0.4) 1(0.94) 1.05(0.42) 1.08(0.05)
Slope of X2 (β2) 1(0.94) 0.96(0.4) 1(0.96) 1.05(0.38) 1.09(0.02)
Slope of X1X2(β3) 1(0.94) 0.96(0.53) 0.95(0.25) 1.06(0.31) 1.09(0.02)
Residual SD (σϵ) 1 0.97 1 1.02 1.04
R2 0.75 0.76 0.75 0.74 0.73

Impute, then transform
Intercept (α) 0 -0.04 -0.01 0.01 0.11
Slope of X1 (β1) 0.98(0.88) 1.05(0.51) 0.96(0.71) 0.98(0.9) 0.95(0.69)
Slope of X2 (β2) 0.98(0.88) 1.05(0.48) 0.96(0.73) 0.98(0.92) 0.95(0.69)
Slope of X1X2(β3) 0.64(0) 0.64(0) 0.7(0) 0.54(0) 0.61(0)
Residual SD (σϵ) 1.25 1.18 1.22 1.28 1.37
R2 0.61 0.65 0.63 0.59 0.53

MPMM
Intercept (α) 0 0 0 0.01 0.02
Slope of X1 (β1) 1(0.93) 1(0.86) 1(0.92) 1.02(0.8) 1.02(0.73)
Slope of X2 (β2) 1(0.93) 1(0.84) 1(0.93) 1.02(0.8) 1.02(0.77)
Slope of X1X2(β3) 1(0.94) 1.01(0.86) 1(0.93) 1.02(0.71) 1.03(0.68)
Residual SD (σϵ) 1 1.01 1 1.03 1.03
R2 0.75 0.74 0.75 0.74 0.74

SMC-FCS
Intercept (α) 0 -0.01 0 0.01 0.03
Slope of X1 (β1) 1(0.95) 1.01(0.95) 1(0.95) 1(0.96) 0.99(0.95)
Slope of X2 (β2) 0.99(0.94) 0.99(0.93) 1(0.97) 1(0.96) 0.99(0.96)
Slope of X1X2(β3) 1(0.95) 1(0.96) 1(0.95) 1(0.97) 1.01(0.93)
Residual SD (σϵ) 1.02 1.02 1 1.07 1.06
R2 0.74 0.74 0.75 0.71 0.72

Table 3.3. Average parameter estimates for different imputation methods under five dif-
ferent missingness mechanisms over 1000 imputed datasets (n = 5000) with 40% missing
data. The designed model is Y = α + β1X1 + β2X2 + β3X1X2 + ϵ, where α = 0, β1 = 1,
β2 = 1, β3 = 1 and ϵ ∼ N(0, 1). The population coefficient of determination R2 = .75. The
confidence interval coverages for β1, β2 and β3 are in parentheses. Monte Carlo standard
errors for bias are all less than 0.001. Monte Carlo standard errors for confidence interval
coverage are less than 1.58%.
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MPMM PMM

MCAR MARright MCAR MARright

MEAN COVERAGE MEAN COVERAGE MEAN COVERAGE MEAN COVERAGE

E(X1) 0 0.95 0.01 0.94 0 0.92 -0.3 0

E(X2) 3.5 0.95 3.51 0.95 3.5 0.92 3.8 0

Table 3.4. Average parameter estimates for MPMM and PMM under MCAR and MARright
over 1000 imputed datasets (n = 2000) with 30% missing data. The designed model is
introduced in section 3.4.3. The true values of E(X1) and E(X2) are 0 and 3.5. Monte Carlo
standard errors for means are all less than 0.002. Monte Carlo standard errors for confidence
interval coverage are less than 0.86%.
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Estimating individual treatment effects under a
given specified partial correlation

Summary. In most medical research, the average treatment effect is used to evaluate a treat-
ment’s performance. However, precision medicine requires knowledge of individual treatment
effects: What is the difference between a unit’s measurement under treatment and control
conditions? In most treatment effect studies, such answers are not possible because the out-
comes under both experimental conditions are not jointly observed. This makes the problem
of causal inference a missing data problem. We propose to solve this problem by imputing
the individual potential outcomes under a specified partial correlation (SPC), thereby al-
lowing for heterogeneous treatment effects. We demonstrate in simulation that our proposed
methodology yields valid inferences for the marginal distribution of potential outcomes. We
highlight that the posterior distribution of individual treatment effects varies with different
specified partial correlations. This property can be used to study the sensitivity of opti-
mal treatment outcomes under different correlation specifications. In a practical example on
HIV-1 treatment data, we demonstrate that the proposed methodology generalises to real-
world data. Imputing under the SPC therefore opens up a wealth of possibilities for studying
heterogeneous treatment effects on incomplete data and the further adaptation of individual
treatment effects.

4.1 Introduction

Heterogeneity of treatment effects across individuals is a significant complication in
precision treatment assignment to different persons. The difficulty of evaluating in-
dividual treatment effects (ITE) from the observed data is that only one of the po-
tential outcomes is observed for each individual (Rubin, 1974; Hernan and Robins,
2010). This fundamental problem of causal inference implies that causal inference is
essentially a missing data problem (Rubin, 2005; Ding et al., 2018). Simply believing
that all factors are collected would only allow for average treatment effects in a pop-
ulation or homogeneous treatment effects between subpopulations. To allow for the
estimation of unobserved heterogeneous treatment effects, we need to solve for the
individual missing potential outcomes through multiple imputation.
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Multiple imputation is a popular approach for analysing incomplete datasets but
is not yet widely used in causal inference. In multiple imputation the missingness is
solved before the data is analysed as if it were completely observed. Imputations for
missing values are therein drawn from the corresponding posterior predictive distribu-
tions in parallel, resulting in multiple imputed datasets. Then, the statistical inference
is obtained for each imputed dataset separately by complete-data analyses. Finally,
the multiple analyses are aggregated into a single inference using Rubin’s rules (Rubin,
1987, pp. 76), which account for within and across imputation uncertainty. Because
multiple imputation imputes the individual potential outcomes, we can evaluate both
the difference between outcomes and the individual treatment effects.

Studying individual treatment effects receives increasing attention. For example,
Lamont et al. (2018), andWestreich et al. (2015) discussed the performance of multiple
imputation for potential outcomes. Lamont et al. (2018) applied multiple imputation
to evaluate the effectiveness of various programs designed to prevent depression among
sampled women and provide program recommendations for women out of the sample.
However, Lamont et al. (2018) and Westreich et al. (2015) fitted separate imputa-
tion models for potential outcomes based on observed covariates, thereby implicitly
assuming conditional independence between potential outcomes. This conditional in-
dependence assumption is not always valid and cannot be verified from the observed
data (Rässler, 2012). Imbens and Rubin (2015) and Gadbury et al. (2001) studied
the sensitivity of the average treatment effect estimates under violations of the as-
sumption of conditional independence between potential outcomes. They found that
distributions of average causal effect under various partial correlations are different.
An alternative imputation strategy fits a fully conditional model for the incomplete
outcome. However, van Buuren (018a) demonstrated that without the specification
of the partial correlation, the derived imputations for such models are unstable and
can be implausible.

Specification of the partial correlation in applications of multiple imputation for
potential outcomes has received little attention to date. We know that the partial
correlation could be an arbitrary value between -1 and 1 in each imputed dataset.
However, the imputations become poor when the partial correlation in the imputed
dataset is negative (van Buuren, 018a, Section 8.4.1). We therefore assume that this
correlation is non-negative. Smink (2016) proposed a data augmentation approach,
where rows are added to the data that hold prior information for the partial correla-
tion. This procedure is also outlined in (van Buuren, 018a, Section 8.4.2). In Smink’s
scenario, the imputations are guided by the specified correlation in the augmented
cases, but the data does not hold any covariates. One could imagine that augmenting
the data with a joint prior set becomes increasingly challenging when the number of
covariates increases.

We propose a new hybrid imputation approach for imputing potential outcomes
under a given partial correlation that allows for the collection of incomplete covariates.
The procedure is hybrid in the sense that it combines properties of joint modelling
imputation (the potential outcomes form a joint and are imputed as such) and fully
conditional specification, wherein the covariates are imputed on a fully conditional
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variable-by-variable basis. In this manuscript, we first outline the role of the par-
tial correlation in causal inference, then give a brief overview of multiple imputation
and introduce our new hybrid imputation approach. We evaluate the validity of the
methodology in simulation and demonstrate the real-world applicability on a clinical
trial aimed to evaluate the individual treatment effects of two different therapies on
slowing the progression of HIV disease.

4.2 The role of the partial correlation

4.2.1 Notation

Let Y (j), j = 0, . . . , p denote one of p incomplete variables and Y (−j) = (Y (0), . . . , Y (j−
1), Y (j+1), . . . , Y (p)) denote the collection of the p−1 variables in Y except Y (j). In
this paper, Y (j) usually represents the potential outcomes. Let X = (X(1), . . . , X(k))
be a set of k completely observed variables. Let ρ(Y (0), Y (1)) be the correlation be-
tween two potential outcomes and ρY (0),Y (1) | X be the partial correlation between
two potential outcomes.

4.2.2 Setup

We focus on the case of a binary treatment Wi and a continuous outcome Yi and
assume the data come from a random sample of individuals, indexed by i ∈ 1, . . . , N .
Each individual i has a nonzero probability to be assigned to both treatments, with
Wi = 1 for the active treatment and Wi = 0 for the control treatment. The num-
ber of units under treatment and control are N1 and N0 respectively. We assume
that the treatment assignment mechanism is unconfounded by the unobserved out-
comes Ymis, i.e., an ignorable assignment mechanism. We also assume that the po-
tential outcomes for any individual are independent of the treatments assigned to
others, which is known as the stable unit treatment value assumption (Imbens and
Rubin, 2015). Here the ignorable or unconfounded assignment mechanism implies
that P (W |Y (0), Y (1), X) = P (W |Yobs, X), where X are observed covariates not
influenced by treatment assignment. The individual treatment effect is defined as
τi = Yi(1) − Yi(0), where Yi(1) is the outcome value of person i corresponding to
the control level, and Yi(0) is the outcome value of person i corresponding to the
treatment level. We assume a joint distribution for the potential outcomes Y1 and Y0
and that the correlation between the potential outcomes ρ(Y1, Y0) can be quantified
by one or more parameters. The imputation models for missing outcomes Y (1) and
Y (0) are:

Ẏ (1) ∼ P (Y mis(1)|Y obs(1), Y (0), X, ϕ̇1) (4.1)

Ẏ (0) ∼ P (Y mis(0)|Y obs(0), Y (1), X, ϕ̇0), (4.2)

where parameters of the imputation model ϕ̇1 and ϕ̇0 are draws from their respective
posterior distributions.
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4.2.3 Partial correlation between potential outcomes

The necessity of specifying the partial correlation in the process of multiple imputation
has been discussed hereinbefore. This section illustrates the causality meaning of the
partial correlation. We decompose the individual treatment effect τi ∈ T, i = 1, . . . , N
via

τi = Yi(1)− Yi(0) = XT
i β + εi, (4.3)

where Xi are observed pre-treatment covariates for individual i. Under random treat-
ment assignment, the regression weight β could be the ordinary least-square (OLS)
estimation of τi on Xi. The quantity XT

i β is known as systematic treatment effect
variation and the residual εi is the idiosyncratic treatment effect variation not ex-
plained by Xi (Ding et al., 2019; Heckman et al., 1997; Djebbari and Smith, 2008).
The idiosyncratic variation accounts for treatment effect variation not attributable
to differences in observed covariates. Based on the formula of OLS estimation, the
coefficient

β = (XTX)−1XTT
= (XTX)−1XTY (1)− (XTX)−1XTY (0)
= β1 − β0,

(4.4)

where β1 and β0 are the corresponding regression weights of the potential outcomes
Y1 and Y0 on the observed covariates X. Similarly, the idiosyncratic treatment effect
variation εi

εi = τi −XT
i β

= (Yi(1)−XT
i β1)− (Yi(0)−XT

i β0)
= εi(1)− εi(0),

(4.5)

where ε(1) and ε(0) are the residuals from the regression of the potential outcomes Y1
and Y0 on the observed covariates X. Applying the theory of variance decomposition
for linear regression, we could decompose the variance of individual treatment effect
into two components:

Var(τi) = Var(XT
i β) + Var(εi). (4.6)

Based on the idiosyncratic treatment effect variation formula (5), the idiosyncratic
component of individual treatment variance becomes

Var(εi) = Var[εi(1)− εi(0)]
= Var[εi(1)] + Var[εi(0)]− 2Cov[εi(1), εi(0)],

(4.7)

which demonstrate that partial correlation ρY (0)Y (1) | X between the potential out-
comes does impact the idiosyncratic variation, which is unidentifiable from the ob-
served data.

Although the relation between potential outcomes cannot be determined solely
from the observed data, there are still some approaches to identifying the partial
correlation, such as the model-based approach, the experiment-based approach, and
sensitivity analysis. The model-based approach explicitly models the relationship be-
tween the idiosyncratic variation and the assignment mechanisms such that the partial
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correlation would be close or equal to zero (Heckman, 2005). Economists usually deal
with ex-post causal inference. The agents select the treatment according to their ex-
ante evaluation. In this case, economists could infer the information only available
to agents from the assignment mechanism. For instance, Heckman et al. (2010) in-
vestigated the causal effect of educational decisions on the labour market and health
outcomes. He modelled latent cognitive and social-emotional endowments and in-
cluded these latent variables into the outcome equations. As indicated earlier, the
partial correlation between potential outcomes is the only unknown parameter in the
formula of idiosyncratic variation. Therefore, the model for idiosyncratic variation
could be tailored to the model for the partial correlation between potential outcomes.
Generally, the model-based approach attempts to figure out latent variables affecting
the partial correlation between potential outcomes.

The experiment-based approach intends to design sophisticated experiments to
collect additional data where analysts could evaluate the partial correlation between
potential outcomes. For instance, the experiment-based approach collects repeated
measurements under more than one treatment level for the same individual from which
some relevant information about the partial correlation between potential outcomes
is available. The experiment designed for repeated measurements is known as N-1
trails (Shamseer et al., 2015; Araujo et al., 2016). Researchers could also design an
auxiliary treatment (Wi = 2) and assign the extensive treatment to all individuals in
the sample. Then the individual treatment effect Yi(1) − Yi(0) can be evaluated by
[Yi(2)− Yi(0)− (Yi(2)− Yi(1))].

Both model-based and experiment-based approaches search for extra information
to determine the partial correlation between potential outcomes. If such additional
information is not available, the alternative is sensitivity analysis. After imputing
the missing potential outcomes, one could evaluate individual treatment effects with
various valid partial correlations and study the effect of partial correlations on the
conclusions (Gadbury et al., 2001).

4.3 Multiple imputation of multivariate incomplete variables

Datasets used for evaluating individual treatment effects by multiple imputation of-
ten have incomplete covariates and potential outcomes. We impute potential outcomes
with joint modelling (JM) and covariates with fully conditional specification (FCS).
Usually, one framework is used to generate all imputations, but van Buuren (018a)
highlighted that a blocked approach could be adopted to accommodate for hybrid
versions of JM within FCS. We will now briefly introduce joint modelling, fully con-
ditional specification, and so-called hybrid imputation.

4.3.1 Joint modelling imputation (JM)

Joint modelling imputation assumes a model p(Y mis, Y obs | θ) for the complete data
and a prior distribution p(θ) for the parameter θ. Joint modelling partitions the ob-
served data into groups based on the missing pattern and imputes the missing data
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within each missing pattern according to corresponding predictive distribution. Under
the assumption of ignorability, the parameters of the predictive distribution for differ-
ent missing patterns are generated from the posterior joint distribution. Schafer (1997)
proposed joint modelling methods for multivariate normal data, categorical data and
mixed normal-categorical data. The joint modelling approach has solid theoretical
properties (i.e., compatibility between the imputation and substantive models) while
it lacks the flexibility of model specification.

4.3.2 Fully Conditional Specification (FCS)

In Fully Conditional Specification, we specify the distribution for each partially ob-
served variable conditional on all other variables P (Y (j)|Y (−j), X, θj) and impute
each missing variable iteratively. The FCS starts with naive imputations such as a
random draw from the observed values. The tth iteration for the incomplete variable
Y (j) consists of the following draws:

θtj ∼ f(θj)f(Y
obs(j)|Y t−1(−j), X, θj)

Y mis(t)(j) ∼ f(Y mis(j)|Y t(−j), X, θtj),

where f(θj) is generally specified as a noninformative prior. After a sufficient number
of iterations, typically with 5 to 10 iterations (van Buuren, 018a), the stationary
distribution is achieved. The final iteration generates a single imputed dataset and
the multiple imputations are created by applying FCS in parallel m times. Since
FCS provides tremendous flexibility in specifying imputation models for multivariate
partially observed data, FCS is now a widely accepted and popular MI approach
(Van Buuren, 2007). Even while, FCS lacks a satisfactory theory and has a potential
risk of incompatibility.

4.3.3 Block imputation

Block imputation combines the flexibility of FCS with the attractive theoretical prop-
erties of JM. A block consists of one or more variables. If the block has multiple vari-
ables, then we use multivariate imputation methods to impute those variables jointly.
A simple example would be multiple imputation of missing variables with quadratic
effects Y = α + β1X + β2X

2 + ε. In such a case, grouping the missing variable X
and its corresponding square term X2 within one block is of benefit to preserve the
quadratic relationship (Vink and van Buuren, 2019). The joint modelling approach
is the special case where all variables form one block, while the FCS approach treats
each variable as a separate block.

When the imputation model of one variable is potentially incompatible, or its
theoretical properties are not fully studied (i.e., whether the imputations based on
the FCS correspond to drawing from a joint distribution), block imputation would
merge that variable with other variables and apply the joint modelling imputation
approach to that block. On the other hand, when the joint distribution of several
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missing variables is ambiguous, block imputation could use the FCS approach to
impute each variable. In general, the apparent advantage of block imputation is the
flexibility of model specification. However, block methods are hardly known or studied.
While available in the mice software, the properties of block imputation have yet to
be studied.

4.4 Specified partial correlation imputation

Fig. 4.1. Missingness mechanism of potential outcomes. The white represents the observed
value and the grey represents the missing value. Without loss of generality, we assume co-
variates are completely observed.

In this section, we detail how blocked imputation can be used to impute missing
outcomes with a given partial correlation between potential outcomes. We term the
algorithm the imputation algorithm with specified partial correlation (SPC). Since
the missing pattern of potential outcomes is somehow restrictive (see Figure 4.1) that
is, no cases with completely observed potential outcomes, the imputation procedure
follows three steps:
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1. Estimating the marginal distribution of potential outcomes conditioning on pre-
treatment variables.

2. Derive the multivariate density of potential outcomes by combining the marginal
distribution of potential outcomes and the specified correlation between potential
outcomes.

3. Impute the missing outcomes with the corresponding submodel obtained from the
multivariate distribution.

Based on Rubin causal model (Imbens and Rubin, 2015, Ch 8), it is plausible to
assume a multivariate normal distribution for continuous potential outcomes. How-
ever, it is usually not valid to assume a joint distribution for the incomplete dataset.
Applying fully conditional specification to impute covariates allows flexibility of im-
putation model specification. It is noticeable that SPC could also predict the posterior
distribution of the individual treatment effect for units not in the experiment.

Our approach shares some similarities with statistical matching discussed by (Mo-
riarity and Scheuren, 2003). For example, suppose there are two sample files, A and
B. File A collects variables X and Y and file B collects variables X and Z. The pur-
pose of statistical matching is to combine two files, A and B, into one file containing
variables X, Y and Z. Rubin (1986) proposed a procedure of statistical matching with
three steps: regression step, matching step, and concatenation step. In the regression
step, Rubin specified the correlation between variable X and Y to derive the joint
distribution of (X, Y , Z) in two sample files. We develop this idea to evaluate the
individual treatment effects and extend to multiple treatments condition.

For illustrative purposes, let us assume that potential outcomes follow a multivari-
ate normal distribution. We specify Bayesian linear models for two potential outcomes
based on observed covariates.

Y (0) = β0X + ε0, ε0 ∼ N (0, σ2
0) (4.8)

Y (1) = β1X + ε1, ε1 ∼ N (0, σ2
1). (4.9)

Bayesian sampling draws β∗
0 , β

∗
1 , σ

∗2
0 , σ∗2

1 from their respective posterior distribution.
The Jeffrey’s prior used and hence, the posterior distributions of σ∗2

0 and σ∗2
1 would

be inverse χ2 distribution:

σ∗2
0 ∼

N0∑
i=1

(Yi(0)− β̂0Xi)
2χ−2

N0−k (4.10)

σ∗2
1 ∼

N1∑
i=1

(Yi(1)− β̂1Xi)
2χ−2

N1−k, (4.11)

where β̂0 = (X ′
0X0)

−1X ′
0Y (0), β̂1 = (X ′

1X1)
−1X ′

1Y (1) and k is the number of covari-
ates. The conditional distributions of β∗

0 and β∗
1 are multivariate normal:

β∗
0 |σ∗2

0 ∼ N (β̂0, σ
∗2
0 ((X ′

0X0)
−1)) (4.12)

β∗
1 |σ∗2

1 ∼ N (β̂1, σ
∗2
1 ((X ′

1X1)
−1)). (4.13)
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Since there is no information relevant to the partial correlation between potential
outcomes in the observed data, the posterior distribution of the partial correlation
ρY (0)Y (1)|X equals the prior distribution specified by the user, who can select sev-
eral numbers in the interval [−1, 1] to investigate the sensitivity to ρY (0)Y (1)|X . Fi-
nally, combined the marginal distribution of Y (0) and Y (1) with the specification of
ρY (0)Y (1)|X , the joint distribution of Y mis(0) and Y mis(1) is:[

Y mis(0)
Y mis(1)

]
∼ N

[(
β∗
0x
β∗
1x

)
,

(
σ∗2
0 ρY (0)Y (1)|Xσ

∗
0σ

∗
1

ρY (0)Y (1)|Xσ
∗
0σ

∗
1 σ∗2

1

)]
, (4.14)

and the distributions of Y mis(0) and Y mis(1) are:

Y mis(0) ∼ N (β∗
0x+ (Y (1)− β∗

1x)ρY (0)Y (1)|Xσ0/σ1, (1− ρ2Y (0)Y (1)|X)σ∗2
0 ) (4.15)

Y mis(1) ∼ N (β∗
1x+ (Y (0)− β∗

0x)ρY (0)Y (1)|Xσ1/σ0, (1− ρ2Y (0)Y (1)|X)σ∗2
1 ). (4.16)

Comparing equations (15) and (16) to equations (8) and (9), it is evident that inclusion
of the observed outcome may change the location of missing outcomes shifts slightly
and the uncertainty is reduced when imputing missing outcomes under the specified
correlation between potential outcomes. For the prediction of units out of trials, the
reasonable values for outcomes under two treatments could be drawn from the joint
distribution (14).

When generalising to the multiple treatments condition W = 0, 1, . . . , w, the
marginal posterior distribution for potential outcomes would be:

Y (0)∗ = β∗
0X + ε∗0, ε

∗
0 ∼ N (0, σ∗2

0 )

Y (1)∗ = β∗
1X + ε∗1, ε

∗
1 ∼ N (0, σ∗2

1 )

. . .

Y (w)∗ = β∗
wX + ε∗w, ε

∗
w ∼ N (0, σ∗2

w ),

where the values of β∗
0 , β

∗
1 , . . . , β

∗
w, σ

∗2
0 , σ∗2

1 , . . . , σ∗2
w draw from their respective

Bayesian posterior distribution. If σ∗2
0 , . . . , σ

∗2
w are unrestricted, with pairwise spec-

ification of partial correlation between potential outcomes, the joint distribution of
Y mis(0), Y mis(1), . . . , Y mis(w) is:

Y mis(0)
Y mis(1)
. . .

Y mis(w).

 ∼ N (M, Σ), (4.17)

where M = (β∗
0x, β

∗
1x, . . . , β

∗
wx)

T. The covariance matrix Σ must be positive semi-
definite:

Σ =


σ∗2
0 ρY (0)Y (1)|Xσ

∗
0σ

∗
1 . . . ρY (0)Y (w)|Xσ

∗
0σ

∗
w

ρY (1)Y (0)|Xσ
∗
1σ

∗
0 σ∗2

1 . . . ρY (1)Y (w)|Xσ
∗
1σ

∗
w

...
...

. . .
...

ρY (w)Y (0)|Xσ
∗
wσ

∗
0 ρY (w)Y (1)|Xσ

∗
wσ

∗
1 . . . σ∗2

w

 . (4.18)
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Draws of missing outcomes for units under different treatments could be derived from
the joint distribution based on the property of conditional distribution for the multi-
variate normal distribution. For instance, with units under control treatment W = 0,
the distribution of missing outcomes Y mis(−0) = (Y mis(1), . . . , Y mis(w)) would be
Y mis(−0) ∼ N ((β∗

1x, . . . , β
∗
wx)

T + Σ0−0Σ
−1
−0−0(Y0 − β∗

0x), Σ00 − Σ0−0Σ
−1
−0−0Σ−00),

where [
Σ00 Σ0−0

Σ−00 Σ−0−0

]
, (4.19)

is the partition ofΣ:Σ00 = σ∗2
0 ,Σ0−0 = ΣT

−00 = (ρY (0)Y (1)|Xσ
∗
0σ

∗
1 , . . . , ρY (0)Y (w)|Xσ

∗
0σ

∗
w)

and

Σ−0−0 =

 σ∗2
1 . . . ρY (1)Y (w)|Xσ

∗
1σ

∗
w

...
...

. . .
...

ρY (w)Y (1)|Xσ
∗
wσ

∗
1 . . . σ∗2

w

 . (4.20)

One could use the sweep operator for rapid calculation of the parameters for imputa-
tion models of missing outcomes (Goodnight, 1979).

4.5 Simulation study

We evaluate the performance of SPC at both the individual level (i.e. the individual
treatment effect) and the aggregate level (i.e. the average treatment effect). For in-
dividual causal inference, we study the mean and mean absolute differences between
the ‘true’ and imputed individual treatment effects, together with posterior distribu-
tions of individual treatment effects. For average causal inference, we analyse biases
and confidence interval coverages of the estimated parameters in the distribution of
the potential outcomes. We perform a sensitivity analysis to the multiple imputation
approach with three different values for the partial correlation between potential out-
comes: ρ = 0, 0.73 or 0.99, which correspond to, respectively, a conditional indepen-
dent correlation assumption, the correct partial correlation and a constant treatment
effect condition.

We compare the performance of SPC to the targeted learning approach by Van der
Laan and Rose (2011). Targeted learning is an alternative for estimating individual
treatment effects. The idea is to estimate the data-generating distribution P0 and then
update the initial estimation to make an optimal bias-variance tradeoff for the scien-
tific interest Ψ(P0). To estimate individual treatment effects, we define the average
treatment effect as the scientific interest:

Ψ(P0) = E[E(Yi(1) |X)− E(Yi(0) |X)]. (4.21)

The targeted learning consists of three steps of analysis: 1) definition of the data-
generating model and the scientific interest Ψ(P0), 2) super learning for initial pre-
diction of Ψ(P0) and 3) targeted maximum likelihood estimation for Ψ(P0) (Van der
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Laan and Rose, 2011). Specifically, before estimation, it is necessary to define a set of
possible probability distributions of observed data and identify a collection of causal
assumptions (i.e., the ignorable assignment mechanism and the stable unit treatment
value assumption) to the identification of the correct model. With the definition of
the model, one could apply the super learner to derive an initial estimation for the
distribution of potential outcomes P̂0. The super learner first selects a library of can-
didate algorithms and a risk function and then applies the validation set approach
to calculate the average risk for each algorithm. The optimal algorithm with the
smallest average risk is used to produce the initial predicted distribution of potential
outcomes. The candidate algorithms could be parametric(i.e., general linear model),
non-parametric (i.e., random forest), or even a weighted combination of statistical
algorithms.

After the initial estimation of predicted potential outcomes, one could define the
targeted maximum likelihood estimation (TMLE) for scientific interest Ψ(P0). The
TMLE step reduces the bias in the estimation of Ψ(P0) if the initial estimation Ψ(P̂0)
is inconsistent. This is accomplished by exploiting information in the treatment as-
signment mechanisms to adjust the initial estimations. Generally, the adjustment is
an iterative procedure. However, when the scientific interest is the average treatment
effect, convergence is achieved in one step. More details are provided in Gruber and
Van der Laan (2011).

While targeted learning is a machine learning approach aimed at estimating the
average treatment effect, it involves calculating the missing potential outcomes and
can therefore also be used to identify individual treatment effects. However, unlike
SPC, the targeted learning fits the distribution of the missing outcome only based on
the covariates, which assumes conditional independence between potential outcomes.
In the simulation study, we aim to show the relevance of specifying the correlation
between potential outcomes when specifying the analysis model of potential outcomes.

4.5.1 Simulation conditions

We design two potential outcomes Y (0) and Y (1) as well as one baseline covariate X.
The data is generated with a multivariate normal distribution:Y0Y1

X

 ∼ N

 0
1
2

 ,

 1 0.8 0.5
0.8 1 0.5
0.5 0.5 1


Because the marginal correlation between potential outcomes is 0.8, the corresponding
partial correlation is 0.73.

ρy0y1|x =
ρy0y1

−ρy0xρy1x√
1−ρ2

y0x

√
1−ρ2

y1x

= 0.8−0.25
0.75

≈ 0.73,

(4.22)
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A total of N = 5000 independent and identically distributed cases are generated. The
first 2500 cases have only information for Y0 and the remaining cases have only infor-
mation on Y1. One thousand repetitions of the simulation are produced for average
causal inference. While, for individual causal inference, we derive the posterior distri-
butions of imputed outcomes from twenty imputed datasets. For reasons of brevity,
we only include one pre-treatment covariate. However, it is straightforward to extend
the methodology to situations with more covariates and even mixtures of continuous
and categorical predictors.

4.5.2 Results

Individual causal inference

We define bias as the mean difference between true and estimated values over twenty
imputed datasets. Figure 4.2 shows the distribution of the bias for all four strategies,
and the corresponding location and scale are displayed in Table 4.1.

ρY (0)Y (1) | X Mean Variance

BLI-SPC ρpartial = 0 -0.012 0.791
BLI-SPC ρpartial = 0.73 -0.007 0.363
BLI-SPC ρpartial = 0.99 -0.013 0.398
The targeted learning -0.006 0.401

Table 4.1. The location and the scale of the bias of estimated individual treatment effects
for all four strategies.

Overall, SPC with three different partial correlations and the targeted learning
all yield unbiased estimates of the average treatment effect. However, in terms of the
scale, The SPC with the correct partial correlation has a minor variance. The closer the
specified partial correlation is to the partial correlation in the true data generating
model, the smaller bias and variance can be expected. Although it is difficult to
produce accurate estimates of the individual treatment effect for units at the tail in
Fig 4.3, we still have a large proportion of the estimated individual treatment effect
with negligible biases. Since the variance of the bias equals the partial variance of
the potential outcomes, we could include more explanatory variables to increase the
accuracy of the imputation of missing outcomes and hence the prediction of individual
treatment effect. On the other hand, when the specified partial correlation deviates
from the true value, more variance would appear because of the differences between
the true distribution and the estimated distribution for each missing outcome.

Figure 4.4 shows posterior distributions of individual treatment effects for selected
cases(i = 100, 200, . . . , 5000). When the partial correlation is specified correctly, the
imputations look plausible: imputed ITE covers the true ITE for almost every case,
and the variance of ITE for each individual is smaller than the case under the in-
dependent conditional correlation assumption. With homogeneous treatment effect
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(a) BLI-SPC ρpartial = 0 (b) BLI-SPC ρpartial = 0.73

(c) BLI-SPC ρpartial = 0.99 (d) The targeted learning

Fig. 4.2. Histrogram plots of the bias of estimate the individual treatment effects for all
four strategies.

assumption, i.e., ρY (0)Y (1) | X = 0.99, the imputed individual treatment effects are
biased towards the average treatment effect. For targeted learning, uncertainty about
the missing outcomes is not estimated.

Furthermore, we evaluate the imputations with all possible positive partial cor-
relation (range from 0 to 1) by the mean distance between the true and the mean
estimated individual treatment effects and the rate of the posterior distribution of
imputed outcome cover the true value. Fig 4.5 shows that the violation of the homo-
geneous treatment effect assumption leads to extremely poor coverage. If we specified
the partial correlation close to the true value, the imputed outcomes would be more
accurate (see Fig 4.6). Fig 4.6 also highlight the mean distance calculated by the
targeted learning, which implies the implicit assumption of conditional independence
between potential outcomes.
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Fig. 4.3. The plot shows mean individual treatment effects (Y (1)−Y (0)) in both treatment
and control group when partial correlation is defined as 0.73. The outcome Y (0) is observed
in the control group and the outcome Y (1) is observed in the treatment group. The dashed
line represents the average treatment effect.

The SPC approach derives the distribution of individual treatment effects, which
provides more information on treatment recommendations. For instance, with a small
individual treatment effect, it is possible to estimate the probability of a positive
treatment effect from the distribution of individual treatment effects.

Average causal inference

In this section, we investigate whether we could provide valid inferences for the distri-
bution of the potential outcomes. In addition, we are interested in the biases and the
coverage of nominal 95% confidence intervals of all parameters related to the potential
outcomes. Table 4.2 shows all statistics relevant to the potential outcomes. Statistics
involving only one potential outcome are unbiased and have valid coverage rates,
which means that even with incorrect specified partial correlation, we could derive
plausible marginal distributions of potential outcomes. Since the partial correlation
is set before imputation and there is no information about the correlation between
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(a) BLI-SPC ρpartial = 0 (b) BLI-SPC ρpartial = 0.73

(c) BLI-SPC ρpartial = 0.99 (d) The targeted learning

Fig. 4.4. Stripplot of m = 5 of observed (blue) and imputed (red) data for individual
treatment effects with selected cases.

potential outcomes in the data, we get a valid inference for the marginal correlation
between potential outcomes only when we specify the partial correlation correctly.

4.6 Application

We apply the SPC algorithm to evaluate the effects of two different therapies on slow-
ing the progression of HIV disease. The data comes from a study comparing the effects
of four therapies (zidovudine alone, didanosine alone, zidovudine plus didanosine and
zidovudine and zalcitabine) on preventing the deterioration of disease in adults with
HIV-1 infected patients (Hammer et al., 1996). For simplicity, we name them treat-
ment A(zidovudine alone), B(didanosine alone), C(zidovudine plus didanosine) and
D(zidovudine and zalcitabine). The data named ACTG175 is accessible in package
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Fig. 4.5. Coverage rate of the posterior distribution of estimated individual treatment effects

speff2trial in R. We restrict our analyses to treatments A and B and perform out-
of-sample prediction of hypothetical effects of treatments A and B for the remaining
patients that were allocated to treatments C and D. Hammer et al. concluded that
treatment with didanosine is superior to treatment with zidovudine. However, the
overall treatment effect was found to be insufficient to recommend the therapy to a
patient, a situation that is common in many medical interventions.

A total of 693 HIV-1 infected adults with CD4 cell counts in the range of 200 to
500 per cubic millimetre were randomised into the control (N = 316) and treatment
(N = 377) group, while 670 patients were treated as out-of-sample. Fifteen baseline
covariates are included which assess gender, age, weight, Karnofsky score, risk factors,
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Fig. 4.6. Mean distance between the true and the mean estimated individual treatment
effects. The red dashed line represents the mean distance calculated by the targeted learning
approach.

prior antiretroviral therapy, CD4 cell count, and CD8 T cell count. We are interested
in the number of days until the first occurrence of: 1) a decline in CD4 cell count of at
least 50 2) an event indicating progression to AIDS, or 3) death. The larger number
of days yields a more beneficial treatment effect. The individual treatment effect is
defined as the number of days under treatment B minus the number of days under
treatment A. We select the value of partial correlation as 0 and 0.7 to perform the
sensitivity analysis so that the result yields distinct differences.
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Method Truth Est Cover

SPC ρpartial = 0

E(y0) 0.0 0.00 0.95
E(y1) 1.0 1.00 0.94
Var(y0) 1.0 1.00 0.94
Var(y1) 1.0 1.00 0.94
Cov(y0, y1) 0.8 0.25 0.00
Cov(y0, x) 0.5 0.50 0.94
Cov(y1, x) 0.5 0.50 0.95

SPC ρpartial = 0.73

E(y0) 0.0 0.00 0.97
E(y1) 1.0 1.00 0.95
Var(y0) 1.0 1.00 0.94
Var(y1) 1.0 1.00 0.95
Cov(y0, y1) 0.8 0.80 1.00
Cov(y0, x) 0.5 0.50 0.95
Cov(y1, x) 0.5 0.50 0.94

SPC ρpartial = 0.99

E(y0) 0.0 0.00 0.95
E(y1) 1.0 1.00 0.95
Var(y0) 1.0 1.00 0.95
Var(y1) 1.0 1.00 0.94
Cov(y0, y1) 0.8 0.99 0.00
Cov(y0, x) 0.5 0.50 0.95
Cov(y1, x) 0.5 0.50 0.95

Table 4.2. Parameter estimates for SPC with different partial correlations

(a) BLI-SPC ρpartial = 0 (b) BLI-SPC ρpartial = 0.7

Fig. 4.7. Means of individual treatment effects for patients under treatments A and treat-
ment B, which are arranged into ascending order.
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(a) BLI-SPC ρpartial = 0 (b) BLI-SPC ρpartial = 0.7

Fig. 4.8. Means of individual treatment effects for out-of-sample patients under treatments
C and D, which are arranged into ascending order.

Figure 4.7 shows the results of individual treatment effects under treatment A and
treatment B groups with partial correlation specifications 0 and 0.7. As expected, this
approach could detect the heterogeneity of treatment effects. A large proportion of
patients in the sample, whose individual treatment effects are larger than 0, are rec-
ommended to receive a treatment regimen with didanosine. However, treatment with
zidovudine still yields greater clinical benefit for a fraction of units, whose individ-
ual treatment effects are smaller than 0. Since all covariates are balanced under two
groups, the distributions of expected individual treatment effects under two treat-
ments (A and B) are more similar when specifying a 0.7 partial correlation. Further-
more, the range of expected value of individual treatment effects is smaller, with a
partial correlation of 0.7. The larger the partial correlation we set, the more convinced
that all effect modifiers are included, and effects are identical across persons. Figure
4.8 shows variability in individual effects in out-of-sample patients, which implies that
our method could also be applied to a prediction scenario.

Figure 4.9 and 4.10 display imputations by selected patients for two different
values of partial correlation, 0 and 0.7. Each panel contains the observed outcome
for the patient and m = 20 imputed values for the missing outcome. The imputed
outcomes are sensitive to different values of partial correlation. Patient 5 benefits
from treatment A when the partial correlation equals 0, while we derive the opposite
conclusion when specifying the partial correlation as 0.7. The location of imputed
outcomes is different under various partial correlations, and the scale shrinks when
the partial correlation tends to 1.
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(a) (b) (c) (d) (e) (f) (g)

Fig. 4.9. Fan plot of Observed and imputed (m = 20) outcomes under treatments A and
B. The partial correlation is 0.

(a) (b) (c) (d) (e) (f) (g)

Fig. 4.10. Fan plot of Observed and imputed (m = 20) outcomes under treatments A and
B. The partial correlation is 0.7.

4.7 Discussion

We propose a multiple imputation approach to replace missing outcomes with plau-
sible values to estimate the individual treatment effect. Treatment assignment is cur-
rently steered by the average treatment effect. This may lead to suboptimal individual
treatment decisions because the treatment effects are assumed to be homogeneous.
We have demonstrated that the proposed SPC algorithm allows for the imputation
of heterogeneous treatment effects under a given partial correlation.
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The sensitivity analysis of the partial correlation between potential outcomes in
section 4.5.2 demonstrates that different values of the partial correlation yield simi-
lar results in terms of marginal distributions of potential outcomes and the average
treatment effect. However, the closer the specified partial correlation is to the true
value, the less biased the estimated individual treatment effect will be. Since one
cannot obtain information about the partial correlation from the observed data, the
determination of the partial correlation should be set to a plausible range based on
previous investigations or expert knowledge. In addition, it may be useful to per-
form a sensitivity analysis to see how imputed outcomes differ with different partial
correlations.

An advantage of our multiple imputation approach to individual treatment effects
is that it provides an estimate of the uncertainty of the imputed outcomes and hence,
of the individual treatment effects. One could obtain the posterior distribution of the
individual treatment effects for a unit from multiple imputed datasets, from which we
can learn the probability of benefit from the treatment at the individual level. Since we
incorporate the partial correlation when imputing, researchers could apply complete-
data analyses to explore potential variables. This accounts for residual heterogeneity
of treatment effects or additional effect modifiers.

In our illustration of the SPC algorithm, we applied Bayesian imputation under
the normal linear model. It is possible to use other imputation techniques (parametric
or non-parametric imputation methods). The behaviour of such methods has not yet
been studied. Since SPC is a hybrid of FCS and JM, it will provide valid inferences on
data that are missing at random. Another useful property of SPC is that under the
assumption of ignorable treatment assignment, researchers can skip explicit modelling
of the probability of assignment.

In the application study, we focus on the comparison of treatments A and B.
It is possible to generalise the multiple treatment comparison (treatments A, B, C,
and D). By imputing unobserved outcomes, we could then recommend the optimal
treatment to each unit among four treatments. One could benefit from our method
when performing an experiment that has been investigated on a different population.
Some proven effect modifiers may be difficult to collect when performing the same
experiment in other regions or countries. In such a case, the inference would include the
heterogeneity of treatment effects explained by the uncollected factors by specifying
a reasonable partial correlation.

This is an initial study on MI to the individual treatment effect. The simulation
study used a basic randomised trial with a correctly specified imputation model. Fur-
ther work should be done to extend discrete and semi-continuous outcomes. Another
challenge is to develop imputation techniques for studies that collect post-treatment
variables. All in all, we believe that our methodology for incorporating the partial cor-
relation represents an important advance in estimating individual treatment effects.
We hope that our method may attribute to the growing body of work on personalised
statistics and individual treatment effects.
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Joint distribution properties of Fully Conditional
Specification under the normal linear model with
normal inverse-gamma priors

Summary. Fully conditional specification (FCS) is a convenient and flexible multiple im-
putation approach. It specifies a sequence of simple regression models instead of a potential
complex joint density for missing variables. However, FCS may not converge to a stationary
distribution. Many authors have studied the convergence properties of FCS when the priors
of conditional models are non-informative. We extend to the case of informative priors. This
paper evaluates the convergence properties of the normal linear model with normal inverse-
gamma prior. The theoretical and simulation results prove the convergence of FCS and show
the equivalence of prior specification under the joint model and a set of conditional models
when the analysis model is a linear regression with normal inverse-gamma priors.

5.1 Introduction

Multiple imputation (Rubin, 1987) is a widely applied approach for the analysis of
incomplete datasets. It involves replacing each missing cell with several plausible im-
puted values that are drawn from the corresponding posterior predictive distributions.
The most popular way to derive posterior predictive distributions’ parameters is to
draw randomly from the Bayesian posterior distribution of the parameters based on
the observed data. In the Bayesian analysis of complete data, the researcher usually
integrates their beliefs or assumptions about unknown quantities(e.g., scientific in-
terests and parameters of the scientific models) with collected data to sharpen the
conclusions. For instance, Jackman (2004) explained how to merge historical informa-
tion with current data in an analysis of election outcomes. McCARTHY and Masters
(2005) analyzed the effect of removing spinifex on the capture rates of mulgara by
incorporating results of a previous observational study. Laptook et al. (2017) spec-
ified prior distributions on the overall treatment effects to investigate the effect of
hypothermia administered between 6 and 24 hours after birth on death and disability
from hypoxic-ischemic encephalopathy (HIE) because of a small sample size. However,
prior information is rarely applied when drawing the parameters of the imputation
model from the Bayesian posterior distribution. Non-informative priors dominate the
prior specifications when conducting multiple imputation. Multiple imputation with
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priors beyond non-informative specification is a vast and yet unexplored field. In
general, prior beliefs or assumptions about the scientific model should also be incor-
porated into imputation models. Potential applications could be multiple imputation
of incomplete data with limited rows and multiple imputation of streaming data.

Fully conditional specification is a popular approach to arrive at those posterior
distributions under multivariate missing data. It offers a solution to this challenge by
allowing a flexible specification of the imputation model for each partially observed
variable. The imputation procedure then starts by imputing missing values with a ran-
dom draw from the marginal distribution. Each incomplete variable is then iteratively
imputed with a specified univariate imputation model.

Although many simulation studies demonstrated that fully conditional specifica-
tion yields plausible imputations in various cases, the theoretical properties of fully
conditional specification are not thoroughly understood (Van Buuren, 2007). A se-
quence of conditional models may not imply a joint distribution to which the algorithm
converges. In such a case, the imputation results may systematically differ according
to different visit sequences, which is named as “order effects” (Hughes et al., 2014).

Van Buuren [2018a, Section 4.6.1] stated two cases in which FCS converges to a
joint distribution. First, if all imputation models are linear with a homogenous nor-
mal distributed response, the implicit joint model would be the multivariate normal
distribution. Second, if three incomplete binary variables are imputed with a two-way
interaction logistic regression model, FCS would be equivalent to the joint modelling
(JM) under a zero three-way interaction log-linear model. Liu et al. (2014) illustrated
a series of sufficient conditions under which the imputation distribution for FCS con-
verges in total variation to the posterior distribution of a joint Bayesian model when
the sample size moves to infinity. Complementing the work of Liu et al. (2014), Hughes
et al. (2014) pointed out that, in addition to the compatibility, a “non-informative
margins” condition is another sufficient condition for the equivalency of FCS and
joint modelling for finite samples. Hughes et al. (2014) also showed that with multi-
variate normal distributed data and a non-informative prior, both compatibility and
the non-informative margins conditions are satisfied. In that case, fully conditional
specification and joint modelling provide imputations from the same posterior distri-
bution. Zhu and Raghunathan (2015) discussed conditions for convergence and assess
properties of FCS. All these authors illustrated the convergence properties of FCS
when the prior for conditional models is non-informative. However, the convergence
property in the case of informative priors has not received much attention.

In this paper, we focus on the question-whether the fully conditional specification
(FCS) under the normal linear model with an informative inverse-gamma prior con-
verges to a joint distribution. For the initial step to evaluating convergence properties
of FCS with informative priors, it is sensible to focus on the Bayesian normal lin-
ear models and the typical informative prior: normal inverse-gamma prior. The main
contributions of this paper are that we prove FCS under the normal linear model
with an informative inverse-gamma prior converges to a joint distribution and pro-
vide the explicit form of the joint distribution. We hope our limited contribution could
inspire others to develop more valuable research and applications about multiple im-
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putation with informative priors. The following section will briefly overview the joint
modelling, fully conditional specification, compatibility, and non-informative margins.
Then, we derive a theoretical result and perform a simulation study to evaluate the
non-informative margins condition. We also consider the prior for the target joint den-
sity of a sequence of normal linear models with normal inverse-gamma priors. Finally,
some remarks are concluded.

5.2 Background

5.2.1 Joint modelling

Let Y obs and Y mis denote the observed and missing data in the dataset Y . Joint mod-
elling involves specifying a parametric joint model p(Y obs, Y mis|θ) for the complete
data and an appropriate prior distribution p(θ) for the parameter θ. Incomplete cases
are partitioned into groups according to various missing patterns and then imputed
with different submodels. Under the assumption of ignorability, the imputation model
for each group is the corresponding conditional distribution derived from the assumed
joint model

p(Y mis|Y obs) =

∫
p(Y mis|Y obs, θ)p(θ|Y obs)dθ.

Since the joint modelling algorithm converges to the specified multivariate distribu-
tion, once the joint imputation model is correctly specified, the results will be valid
and the theoretical properties will be satisfactory.

5.2.2 Fully conditional specification

Fully conditional specification attempts to define the joint distribution
p(Y obs, Y mis|θ) by positing a univariate imputation model for each partially observed
variable. The imputation model is typically a generalized linear model selected based
on the nature of the missing variable (e.g., continuous, semi-continuous, categorical,
and count). Starting from some simple imputation methods, such as mean imputation
or a random draw from the sampled values, FCS algorithms iteratively repeat impu-

tations over all missing variables. Let Y t
j = (Y obs

j , Y
mis(t)
j ) denote the observed and

imputed values of variable Yj at iteration t and Y
t
−j = (Y t

1 , . . . , Y
t
j−1, Y

t−1
j+1 , . . . , Y

t−1
p ).

The tth iteration for the incomplete variable Y mis
j consists of the following draws:

θtj ∼ f(θj)f(Y
obs
j |Y t

−j , θj)

Y
mis(t)
j ∼ f(Y mis

j |Y t
−j , θ

t
j),

where f(θj) is generally specified with a noninformative prior. After a sufficient num-
ber of iterations, typically ranging from 5 to 10 iterations (van Buuren, 018a; Oberman
et al., 2020), the stationary distribution is achieved. The final iteration generates a
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single imputed dataset and multiple imputations are created by applying FCS in
parallel m times with different seeds. If the underlying joint distribution defined by
separate conditional models exists, the algorithm is equivalent to a Gibbs sampler.

The attractive feature of fully conditional specification is the flexibility of model
specification, which allows models to preserve features in the data, such as skip
patterns, incorporating constraints, logistical and consistency bounds (Van Buuren,
2007). Such restrictions would be difficult to formulate when applying joint modelling.
One could conveniently construct a sequence of conditional models and avoid the spec-
ification of a parametric multivariate distribution, which may not be appropriate for
the data in practice.

Fully conditional specification has been proposed under a variety of names: chained
equations stochastic relaxation, variable-by-variable imputation, switching regression,
sequential regressions, ordered pseudo-Gibbs sampler, partially incompatible MCMC
and iterated univariate imputation (van Buuren, 018a, Section 4.5.1). Fully condi-
tional specification can be of great value in practice because of its flexibility in model
specification. FCS has become a standard in practice and has been widely imple-
mented in software (e.g. mice and mi in R, IVEWARE in SAS, ice in STATA and module
MVA in SPSS) (van Buuren and Groothuis-Oudshoorn, 2011).

5.2.3 Compatibility

The definition of compatibility is given by Liu et al. (2014): let Y = (Y1, Y2, . . . , Yp)
be a vector of random variables and Y−j = (Y1, Y2, . . . , Yj−1, Yj+1, . . . , Yp). A set of
conditional models {fj(Yj |Y−j , θj) : θj ∈ Θj , j = 1, 2, . . . , p} is said to be compatible
if there exists a joint model {f(Y |θ) : θ ∈ Θ} and a collection of surjective maps
{tj : Θ → Θj} such that for each j, θj ∈ Θj and θ ∈ t−1

j (θj) = {θ : tj(θ) = θj}. In
that case

fj(Yj |Y−j , θj) = f(Yj |Y−j , θ).

Otherwise, {fj , j = 1, 2, . . . , p} is said to be incompatible. A simple example of com-
patible models is a set of normal linear models for a vector of continuous data:

Yj = N((1, Y−j)βj , σ
2
j ),

where βj is the vector of coefficients and 1 is a vector of ones. In such a case, the
joint model of (Y1, Y2, . . . , Yp) would be a multivariate normal distribution and the
map tj is derived by conditional multivariate normal formula. On the other hand, the
classic example for an incompatible model would be the linear model with squared
terms (Liu et al., 2014; Bartlett et al., 2015).

Incompatibility is a theoretical weakness of fully conditional specification since, in
some cases, it is unclear whether the algorithm indeed converges to the desired mul-
tivariate distribution (Arnold and Press, 1989; Arnold et al., 2004; Heckerman et al.,
2000; Van Buuren et al., 2006). Consideration of compatibility is significant when the
multivariate density is of scientific interest. Both Hughes et al. (2014) and Liu et al.
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(2014) stated the necessity of model compatibility for the algorithm to converge to
a joint distribution. Several papers introduced some cases in which FCS models are
compatible with joint distributions (van Buuren, 018a; Raghunathan et al., 2001).
Van Buuren et al. (2006) also performed some simulation studies of fully conditional
specification with strongly incompatible models and concluded the effects of incom-
patibility are negligible. However, further work is necessary to investigate the adverse
effects of incompatibility in more general scenarios.

5.2.4 Non-informative margins

Hughes et al. (2014) showed that the non-informative margins condition is sufficient
for fully conditional specification to converge to a multivariate distribution. Suppose
π(θj) is the prior distribution of the conditional model p(Yj |Y−j , θj) and π(θ−j) is
the prior distribution of the marginal model p(Y−j |θ−j), then the non-informative
margins condition is satisfied if the joint prior could be factorized into independent
priors π(θj , θ−j) = π(θj)π(θ−j). It is worthwhile to note that the non-informative
margin condition does not hold if p(Yj |Y−j , θj) and p(Y−j |θ−j) have the same param-
eter space. When the non-informative margins condition is violated, an order effect
appears. In such a case, the inference of parameters would have systematic differences
depending on the sequence of the variables in FCS algorithm. Simulations performed
by Hughes et al. (2014) demonstrated that such an order effect is subtle. However,
more research is needed to verify such claims, and it is necessary to be aware of the
existence of the order effect.

5.3 Theoretical results

Under weak regularity conditions, FCS under the normal linear model with an infor-
mative inverse-gamma prior converges to a joint distribution. This section provides
the proof of that claim. Since the compatibility of the normal linear model is well
understood, we will check the satisfaction of the non-informative margins condition.

Starting with the problem of Bayesian inference for θ = (µ,Σ) under a multivariate
normal model, let us apply the following prior distribution. Suppose that, given Σ,
the prior distribution of µ is assumed to be the conditionally multivariate normal,

µ|Σ ∼ N(µ0, τ
−1Σ), (5.1)

where the hyperparameters µ0 ∈ Rp and τ > 0 are fixed and known and where p
denotes the number of variables. Moreover, suppose that the prior distribution of Σ
is an inverse-Wishart,

Σ ∼W−1(m,Λ), (5.2)

for fixed hyperparameters m ≥ p and Λ. The prior density for θ can then be written
as
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π(θ) ∝ |Σ|−(m+p+2
2 ) exp {− 1

2 tr(Λ
−1Σ−1)}

× exp {− τ
2 (µ− µ0)

TΣ−1(µ− µ0)}.
(5.3)

For each variable Yj , we partition the mean vector µ as (µj , µ−j)
T and the covariance

matrix Σ as (
ωj ξTj
ξj Σ−j

)
,

such that Yj ∼ N (µj , ωj) and Y−j ∼ N (µ−j , Σ−j). Similarly, we partition the scale
parameter µ0 as (µ0j , µ0−j)

T and Λ as(
Λj ψT

j

ψj Λ−j

)
.

The conditional model of Yj given Y−j is the normal linear regression Yj = αj +
βT
j Y−j + σj , where β

T
j = ξTj Σ

−1
−j , αj = µj − ξTj Σ

−1
−jµ−j and σj = ωj − ξTj Σ

−1
−j ξj . The

corresponding vectors of parameters θj and θ−j would be

θj = (αj , βj , σj)
θ−j = (µ−j , Σ−j).

(5.4)

By applying the partition function illustrated by Eaton (2007, p. 165) and by block
diagonalization of a partitioned matrix, the joint prior for θj and θ−j can be derived
from π(θ) as :

π(θj , θ−j) = p(σj)p(βj |σj)p(Σ−j)
× exp {− τ

2 (αj + βjµ0−j − µ0j)
T (σj)

−1(αj + βjµ0−j − µ0j)}
× exp{− τ

2 (µ−j − µ0−j)
TΣ−1

−j (µ−j − µ0−j)} × |Σ−j |
= π(θj)π(θ−j),

(5.5)

where

π(θj) = p(σj)p(βj |σj)

× exp {−τ
2
(αj + βjµ0−j − µ0j)

T (σj)
−1(αj + βjµ0−j − µ0j)}, (5.6)

π(θ−j) = p(Σ−j)× exp{−τ
2
(µ−j − µ0−j)

TΣ−1
−j (µ−j − µ0−j)} × |Σ−j |, (5.7)

and
p(σj) ∼W−1(m,λj), p(βj |σj) ∼ N (ψT

j Λ
−1
−j , λjΛ

−1
−j ), p(Σ−j) ∼W−1(m− 1, Λ−j),

λj = Λj − ψT
j Λ

−1
−jψj (Eaton, 2007, Section 8.2). Since the joint prior distribution

factorizes into independent priors, the “non-informative” margins condition is satis-
fied and the validity of our claim that FCS under the normal linear model with an
informative inverse-gamma prior converges to a joint distribution is demonstrated.

Based on equations (6) and (7), we could also derive the connection between
the prior for the conditional linear model and the prior for the corresponding joint
distribution:
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p(σj) ∼W−1(m,λj)
p(βj |σj) ∼ N (ψT

j Λ−j , λjΛ−j)

p(αj |σj) ∼ N (µ0j − ψT
j Λ−jµ02, τ

−1σj − (µ−0j)
2λjΛ

−1
−j ).

(5.8)

Since the conditional βj |σj follows a normal distribution, the marginal distribution
βj would be a student’s t-distribution βj ∼ t(ψT

j Λ
−1
−j ,

mΛ−1
−jλ

−1
j , 2m − p + 1). When the sample size increases, βj tends to the normal

distribution N(ψT
j Λ

−1
−j ,

λjΛ−j

m−1 ). Similarly, the marginal distribution αj would be

t(µ0j − ψT
j Λ−jµ02,m(τ−1 − (µ0−j)

2Λ−1
−j )Λ

−1
j , 2m − p + 1). When the sample size

increases, αj tends to the normal distribution N(µ0j − ψT
j Λ−jµ02,

1
(τ−1−(µ−0j)2Λ

−1
−j )(m−1)

Λj). Usually, when the sample size is over 30, the difference

between student’s t-distribution and the corresponding normally distributed approxi-
mation is negligible. With the prior transformation formula, one could apply Bayesian
imputation under the normal linear model even with prior information of the mean
vector and the covariance matrix of the incomplete data.

5.4 Simulation

We perform a simulation study to demonstrate the validity and convergence of fully
conditional specification when the conditional models are simple linear regressions
with an inverse-gamma prior for the error term and a multivariate normal prior for
regression weights. In addition, we look for the disappearance of order effects, which
is evident in the convergence of fully conditional specification to a multivariate dis-
tribution.

We repeat the simulation 500 times and generate a dataset with 200 cases for
every simulation according to the following multivariate distribution :xy

z

 ∼ N

 1
4
9

 ,

 4 2 2
2 4 2
2 2 9

 .
Fifty percent missingness is induced on either variable x, y or z. The proportion of the
three missing patterns is equal. When evaluating whether it is appropriate to specify a
normal inverse-gamma prior, we consider both missing completely at random (MCAR)
mechanisms and right-tailed missing at random (MARr) mechanisms where higher
values have a larger probability of being unobserved. When investigating the existence
of order effects, we only conduct the simulation under MCAR missingness mechanism
to ensure that the missingness does not attribute to any order effects. We specify
a weakly informative prior for two reasons. First, with a weakly informative prior,
the frequentist inference is still plausible by applying Rubin’s rules (Rubin, 1987, p.
76). Second, Goodrich et al. (2019) suggested that compared with flat non-informative
priors, weakly informative priors place warranted weight to extreme parameter values.
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In such a case, the prior under the joint model is specified as: µ0 = (0, 0, 0)T , τ = 1,
m = 3 and

Λ =

60 0 0
0 60 0
0 0 60

 ,

and the corresponding prior for separated linear regression model would be the same,
with π(σ) ∼W−1(3, 60) and

(α, β)T ∼ N

0
0
0

 ,

60 0 0
0 3600 0
0 0 3600

 .

5.4.1 Scalar inference for the mean of variable Y

The aim is to assess whether Bayesian imputation under a normal linear model with
normal inverse-gamma priors would yield unbiased estimates and exact coverage of
the nominal 95% confidence intervals. Table 5.1 shows that with weakly informative
prior, fully conditional specification also provides valid imputations. The estimates
are unbiased, and the coverage of the nominal 95% confidence intervals is correct
under both MCAR and MARr. Without the validity of a normal inverse-gamma prior
specification, further investigations into the convergence would be redundant.

Bias Cov Ciw
MCAR 0 0.95 0.74
MARr -0.01 0.97 0.73

Table 5.1. Bias of the estimates (E(Y )) and coverage of nominal 95% confidence intervals
under MCAR and MARr

5.4.2 Order effect evaluation

The visit sequence laid upon the simulation is z, x and y. To identify the presence
of any systematic order effect, we estimate the regression coefficient directly after
updating variable z and after updating variable x. Specifically, the ith iteration of
fully conditional specification would be augmented as:

1. impute z given xi−1 and yi−1.
2. build the linear regression y = α + β1x + β2z + ϵ and collect the coefficient β1,

denoted as β̂z
1 .
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3. impute x given zi and yi−1.
4. build the linear regression y = α + β1x + β2z + ϵ and collect the coefficient β1,

denoted as β̂x
1 .

5. impute y given zi and xi.

After a burn-in period with 10 iterations, the fully conditional specification algorithm
was performed with an additional 1000 iterations, in which differences between the
estimates β̂z

1 − β̂x
1 are recorded. The estimates from the first 10 iterations are omit-

ted since the FCS algorithms commonly reach convergence around 5 to 10 iterations.
Estimates from the additional 1000 iterations would be partitioned into subsequences
with equal size, which are used for variance calculation. We calculate the nominal 95%
confidence interval of the difference. The standard error of the difference is estimated
with batch-means methods (Albert, 2009, p. 124). The mean of β̂z

1 − β̂x
1 is set to zero.

Since only three 95% confidence intervals derived from 500 repetitions do not include
the zero, there is no indication of any order effects. We also monitor the posterior
distribution of the coefficient under both joint modelling and fully conditional speci-
fication. Figure 5.1 shows a quantile-quantile plot demonstrating the closeness of the
posterior distribution for β1 derived from both joint modelling and fully conditional
specification. Since the posterior distributions for β1 under joint modelling and FCS
are very similar, any differences may be considered negligible in practice.

Fig. 5.1. qqplot demonstrating the closeness of the posterior distribution of JM and FCS
for β1

All these results confirm that under the normal inverse-gamma prior, Bayesian
imputation under normal linear model converges to the corresponding multivariate
normal distribution.
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5.5 Conclusion

In this paper, we study the problem of whether fully conditional specification under
the normal linear model with normal inverse-gamma prior converges to a joint dis-
tribution. Based on the theory of the non-informative margins condition proposed by
Hughes et al. (2014), we demonstrate the validity of the convergence. We also provide
the equivalence relation between a sequence of normal inverse-gamma priors for fully
conditional specification and a normal inverse-Wishart for joint modelling. It allows
the imputer to merge prior beliefs about the mean vector and the covariance matrix
of the incomplete data when applying FCS to impute.

Fully conditional specification is an appealing imputation method because it al-
lows one to specify a sequence of flexible and simple conditional models and bypass
the difficulty of multivariate modelling in practice. The default prior for normal lin-
ear regression is Jeffreys prior, which satisfies the non-informative margin condition.
However, it is worth developing other types of priors for fully conditional specification
such that one could select the prior, which suits the description of prior knowledge
best. Many researchers have discussed the convergence condition of FCS. However,
there is no conclusion for the family of posterior distributions that satisfies the con-
dition of convergence. In such a case, when including new kinds of priors in fully
conditional specification algorithms, it is necessary to investigate the convergence of
the algorithm with new posterior distributions. Specifically, one should study the non-
informative margin conditions for new priors. Compatibility should also be considered
if the imputation model is novel. Our work takes steps in this direction.

Although a series of investigations have shown that the adverse effects of violat-
ing compatibility and non-informative margin conditions may be small, all of these
investigations rely on predefined simulation settings. More research is needed to ver-
ify the conditions under which the fully conditional specification algorithm converges
to a multivariate distribution and cases in which the violation of compatibility and
non-informative margin has negligible adverse impacts on the result.

There are several directions for future research. From one direction, it is possi-
ble to develop a prior setting to eliminate the order effects of the fully conditional
specification algorithm under the general location model since the compatibility and
non-informative margins conditions are satisfied under the saturated multinomial dis-
tribution. Moreover, various types of priors of the generalized linear model for the fully
conditional specification and corresponding joint modelling rationales could be devel-
oped. Another open problem is the convergence condition and properties of block
imputation, which partitions missing variables into several blocks and iteratively im-
putes blocks (van Buuren, 018a, Section 4.7.2). Block imputation is a more flexible
and user-friendly method. However, its properties have yet to be studied. Finally, it
is necessary to investigate the implementation of prior specifications in software.
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Graphical and numerical diagnostic tools to assess
multiple imputation models by posterior predictive
checking

Summary. We propose a method to diagnose imputation models based on posterior predic-
tive checking. To assess the congeniality of imputation models, we compare the observed data
with their replicates generated under corresponding posterior predictive distributions. The
idea is that if the imputation model is congenial with the substantive model, the observed
data is expected to locate in the centre of corresponding predictive posterior distributions.
We investigate the proposed diagnostic method for parametric and non-parametric imputa-
tion approaches, continuous and discrete incomplete variables, univariate and multivariate
missingness patterns. The results show the validity of the proposed diagnostic method.

6.1 Introduction

Multiple imputation (MI) is a popular approach for the analysis of incomplete
datasets. It involves generating several plausible imputed datasets and aggregating dif-
ferent results into a single inference. Missing cells are filled with synthetic data drawn
from corresponding posterior predictive distributions. This procedure is repeated mul-
tiple times, resulting in several imputed datasets. The parameters of scientific interest
are then estimated for each imputed dataset by complete-data analyses. Finally, dif-
ferent estimates are pooled into one inference using Rubin’s rule, which accounts for
within and across imputation uncertainty (Rubin, 1987).

A crucial part of the multiple imputation process is selecting sensible models
to generate plausible values for the missing data. The validity of post-imputation
analyses relies on the congeniality of the imputation model and the substantive model
of interest (Meng, 1994). However, model selection is not a trivial process in practice
since there can be a wide array of candidate models to check. Therefore, researchers
should consider which variables, interaction terms, and nonlinear terms are included
based on the scientific interest and data features.

Despite the popularity of multiple imputation, there are only a few imputation
model diagnostic methodologies. One standard diagnostic method is to compare dis-
tributions of the observed with imputed data (van Buuren, 018a; Abayomi et al.,
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2008). Plausible imputation models would generate imputed values that have a similar
distribution to the observed data. Although missing at random (MAR) mechanisms
would also induce the discrepancies between the observed and imputed data, any
dramatic departures that the observed data features cannot explain are evidence of
potential imputation model misspecification. Reliable interpretation of the observed
and imputed data’s discrepancies could be derived from external knowledge about the
incomplete variables and the missingness mechanisms (Abayomi et al., 2008).

The idea of evaluating the validity of scientific models with multiple imputed data
is not new. Bondarenko and Raghunathan (2016) proposed an advanced diagnostic
method to compare the distributions of the observed with imputed data conditional
on the probability of missingness. Gelman et al. (1998) applied cross-validation to
check the fit of a hierarchical Bayesian model in the study of 51 public opinion polls
preceding the 1988 U.S. Presidential election. Gelman et al. (2005) also proposed to
apply graphical posterior predictive inference on the test statistics for model checking
with missing and latent data. If regression-based imputation approaches are involved,
the conventional regression diagnostics, such as plots of residuals and outliers, are
helpful (White et al., 2011). A comprehensive overview of model diagnostic in multiple
imputation is available in Nguyen et al. (2017).

Posterior predictive checking (PPC) has been proposed as an alternative method
for the imputation model diagnostic (Gelman et al., 2005; He and Zaslavsky, 2012;
Nguyen et al., 2015). PPC is a Bayesian model checking approach that compares
the replicated data drawn from the corresponding posterior predictive distribution to
the observed data. If the model lacks fit, there could be a discrepancy between the
replicated and observed data.

He and Zaslavsky (2012) and Nguyen et al. (2015) applied posterior predictive
checking to assess the inadequacies of the joint imputation model with one or more test
quantities relative to the scientific interest. To evaluate the ‘usability’ of imputation
models with respect to the test statistics, analysts compare the estimates for the
complete data to their replicates. Comparisons of the complete data and its replicates
ensure the calculation of test quantities with general missingness patterns. However,
it also results in sensitivity to the amount of missingness.

This manuscript proposes and evaluates the implementation of posterior predic-
tive checking for imputation techniques. The general idea is that if the imputation
model is congenial to the substantive model, the expected value of the data (whether
observed or missing) is in the centre of corresponding predictive posterior distribu-
tions. We compare the observed data to their posterior replicates generated under the
imputation model and evaluate the posterior distributions of all observed data points.
This distinguishes our approach from the posterior predictive checking of imputation
models by applying target analyses. We demonstrate:

1. that PPC can be generalised to variable-by-variable imputation techniques;
2. that PPC can be used to identify the imputation model that conforms most to

the true data generating model;
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3. that PPC can be used as a model evaluation technique to identify the better
substantive analysis model;

4. how to perform PPC with MICE in R on a real-life data set (van Buuren and
Groothuis-Oudshoorn, 2011);

5. that this PPC approach is not sensitive to the amount of missing data.

The remainder of this manuscript is organised as follows. In section 6.2, we review the
posterior predictive checking of the imputation model by applying the target analysis
proposed by He and Zaslavsky (2012). In section 6.3, we provide an overview of the
MICE package and the underlying imputation algorithm: fully conditional specification
(FCS). We also further point out the necessity of extending the posterior predictive
checking of the imputation model so that the diagnostics would apply to the MICE

algorithm. In section 6.4, we evaluate the performance of the proposed diagnostic
approach with simulation studies. In section 6.5, we show the results of simulation
studies. In section 6.6, we apply the proposed diagnostic approach to the body mass
index (BMI) data in Dutch. In section 6.7, we conclude with a discussion of our
findings.

6.2 Posterior predictive checking (PPC)

6.2.1 Posterior predictive checking

Without incomplete variables, PPC compares the observed data y with the repli-
cated data yrep which are simulated from the posterior predictive distribution, with
parameter θ:

p(yrep|y) =
∫
p(yrep|θ)p(θ|y)dθ (6.1)

To detect the discrepancy between the model and the data, we define test quantities
that reflect the scientific interest and estimate them for both observed and replicated
data. Misfits of the model with respect to the data could be summarised by the
posterior predictive p-value, which is the probability that the replicated data are
more extreme than the observed data, with respect to the selected test quantities
(Gelman et al., 2013):

pB = Pr(T (yrep, θ) ≥ T (y, θ)|y)
=

∫ ∫
IT (yrep,θ)≥T (y,θ)p(y

rep|θ)p(θ|y)dyrepdθ, (6.2)

where I is the indicator function. An extreme p-value (close to 0 or 1) implies the
suspicion on the fit of the model since a consistent discrepancy between test quantities
T (yrep, θ) and T (y, θ) cannot be explained by the simulation variance.

Posterior predictive checking has been widely used for model diagnostic in applied
Bayesian analysis (Gelman et al., 2013, chapter 6), and the posterior predictive distri-
bution is usually calculated by simulation. Suppose we haveN draws of model parame-
ters from its posterior distribution θj , j = 1, . . . , N , we then generate a replicated data
for every theta θj . The PPC compares test quantities based on observed data with the
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empirical predictive distribution of test quantities. The estimated posterior predictive
p-value is the proportion of these N simulations for which Tj(y

rep, θ) > Tj(y, θ). It is
noticeable that PPC’s application for the imputation model diagnostic is not based
on the hypothesis test perspective. Hence, there is no underlying assumed distribu-
tion for the posterior predictive p-value in this case. The posterior predictive p-value
indicates whether the model would provide plausible inference based on the data with
respect to the selected test quantities.

To perform multiple imputation model checking with PPC, we compare the com-
pleted data, the combination of the observed and imputed data, with its replications.
Gelman et al. (2005) applied graphical PPC to visualise test quantities comparisons
based on completed and replicated data. He and Zaslavsky (2012) and Nguyen et al.
(2015) developed numerical posterior predictive checks as target analyses to the joint
imputation model. He and Zaslavsky (2012) proposed two kinds of discrepancies,
completed data discrepancy and expected completed-data discrepancy, and the ap-
proaches to calculate corresponding posterior predictive p-values. We briefly introduce
these discrepancies and p-values for the completeness of PPC for MI models.

6.2.2 Completed-data discrepancy

To assess the completed-data discrepancy T (yrepcom, θ) − T (ycom, θ), we draw imputed
values for incomplete variables ymis and the replication of the complete data yrepcom

from their posterior predictive distribution:

p(yrepcom, ymis|yobs) =
∫
p(yrepcom|θ)p(ymis|yobs, θ)p(θ|yobs)dθ, (6.3)

where yobs is the observed data and ycom = (yobs, ymis). To assess the model fit, we
calculate the posterior predictive p-value as :

pB,com = Pr(T (yrepcom) ≥ T (ycom)|yobs)
=

∫ ∫
IT (yrep

com)≥T (ycom)p(y
rep
com, ymis|yobs)dyrepcomdymis

(6.4)

The simulation process to estimate p-value proposed by He and Zaslavsky (2012) is:

1. Simulate N draws of θ from the corresponding posterior distribution p(θ|yobs)
2. For each θj , j = 1, . . . , N , impute yjmis from p(ymis|yobs, θj) and simulate the

replicated data yrep,jcom from p(yrepcom|θj)

A pB,com, which is close to 0 or 1, implies the discrepancy between the model and the
data with respect to the selected test quantities.

6.2.3 Expected completed-data discrepancy

He and Zaslavsky (2012) noticed that the power of completed-data discrepancy is
weakened because the variance of imputed data across complete data yimp and repli-
cated data yrepimp increase the variance of the test quantities. He and Zaslavsky (2012)
reduced the variance of completed-data discrepancy by calculating the expectation
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value of missing data for each model parameter draw. The modification of p-value
pB,ecom would be:

pB,ecom = Pr(E[T (yrepcom)|yrepobs , yobs] ≥ E[T (ycom)|yrepobs , yobs]|yobs)
=

∫ ∫
IE[T (yrep

com)|yrep
obs ,yobs]≥E[T (ycom)|yrep

obs ,yobs]p(y
rep
obs , yobs)dy

rep
obs

(6.5)

Again, the nested simulation process to calculate the p-value pB,ecom is:

1. Simulate N1 draws of θ from the corresponding posterior distribution p(θ|yobs)
2. For each θj , j = 1, . . . , N1, impute yjmis from p(ymis|yobs, θj) and simulate the

replicated data yrep,jcom from p(yrepcom|θj)
3. For each j-th replicate, calculate the mean discrepancy by setting yjmis and yrep,jcom

to missing and overimputing them with the same paramters θj over N2 draws y
j,k
mis

and yrep,j,kcom , k = 1, . . . , N2. Calculate the difference : Dj,k = T (yrep,jobs , yrep,j,kmis ) −
T (yobs, y

rep,j,k
mis ) overN2 draws and then average the difference for the j-th replicate

: D̄j. =
∑k

1 Dj,k/k
4. Calculate pB,ecom as the proportion of these N1 estimates that are positive, D̄j. ≥

0

He and Zaslavsky (2012) evaluated whether the PPC could detect the unconge-
niality of the imputation model. Nguyen et al. (2015) investigated the performance
of PPC in other imputation model misspecification scenarios, such as ignoring the re-
sponse variable and auxiliary variables or failing to transform skewed variables. The
PPC approach proposed by He and Zaslavsky (2012) is based on the joint imputation
model. The imputation model for diagnostic is a joint distribution for the observed
data, and the test quantities depend on multiple variables and parameters.

6.3 MICE package

Fully conditional specification (FCS) is a popular approach for multiple imputation.
It attempts to specify an imputation model for each missing variable Yj , j = 1, . . . , p
conditional on all the other variables P (Yj |Y−j , θj), with parameter θj . It generates
imputations iteratively over all missing variables after an initial imputation, such as

mean imputation or random draw from observed values. Let Y t
j = (Y obs

j , Y
mis(t)
j )

denote the observed and imputed values of variable Yj at iteration t and Y t
−j =

(Y t
1 , . . . , Y

t
j−1, Y

t−1
j+1 , . . . , Y

t−1
p ). Given the most recent imputations of the other miss-

ing variables Y t
j at iteration t, the algorithm of generating imputations for the missing

variable Yj consists of the following draws:

θtj ∼ f(θj)f(Y
obs
j |Y t

−j , θj)

Y
mis(t)
j ∼ f(Y mis

j |Y t
−j , θ

t
j),

where f(θj) is the prior distribution for the parameter of the imputation model θj .
The FCS is an attractive imputation approach because of its flexibility in imputation
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model specification. It is known under different names: chained equations stochastic
relaxation, variable-by-variable imputation, switching regression, sequential regres-
sions, ordered pseudo-Gibbs sampler, partially incompatible MCMC, and iterated
univariate imputation (Van Buuren, 2007).

Multivariate Imputation by Chained Equations (MICE) is the name of software
for imputing incomplete multivariate data by Fully Conditional Specification. It has
developed into the de facto standard for imputation in R and is increasingly being
adopted in Python (e.g., statsmodels (imputer function) & miceforest). The MICE

package creates functions for three components of FCS: imputation, analysis, and
pooling. Figure 6.1 illustrates how MICE solves a missing data problem by generating

Fig. 6.1. Main steps used in MICE (van Buuren and Groothuis-Oudshoorn, 2011)

3 imputed datasets. Three imputed datasets are generated with function mice().
Analysis are performed on every imputed dataset by with() function and combined
into a single inference with function pool(). The software stores the output of each
step in a particular class: mids, mira and mipo. More details about MICE package
can be found in van Buuren and Groothuis-Oudshoorn (2011).

Two features of the software motivate our research. First, the default imputation
method for numerical missing data is predictive mean matching (PMM) (Little, 1988).

library(mice , warn.conflicts = FALSE)

imp <- mice(nhanes , print = FALSE)

imp$method

## age bmi hyp chl

## "" "pmm" "pmm" "pmm"

It generates imputations for a missing cell from its p nearest points. The distance
function applied to selection nearest points in MICE is:
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dmice(x
obs
i , xmis

j ) = |xobsi β∗ − xmis
j β̂|, (6.6)

where β̂ is the mean of the posterior distribution of models’ parameters and β∗ is a
random draw from the corresponding posterior distribution. Predictive mean match-
ing is a non-parametric imputation approach that is proven to perform well in a wide
range of scenarios (De Waal et al., 2011; Siddique and Belin, 2008; Su et al., 2011;
van Buuren, 018a; van Buuren and Groothuis-Oudshoorn, 2011; Vink et al., 2014;
White et al., 2011; Vink et al., 2015; Yu et al., 2007). The attractive advantage of
PMM is that the imputed data is consistently within the range of the sample space
(Heeringa, 2001; van Buuren, 018a; Vink et al., 2014, 2015; White et al., 2011; Yu
et al., 2007). For instance, PMM prevents imputing negative values for data that are
strictly non-negative. Second, mids only stores imputed datasets not the estimated
parameters of the imputation models (Hoogland et al., 2020).

Based on the features of MICE package discussed above, it is necessary to inves-
tigate whether PPC could check the donor selection procedure of PMM and per-
form PPC based on the observed data itself instead of the target statistics. He and
Zaslavsky (2012) briefly discussed the approach to checking imputation models for
subsets of missing variables. However, they assumed that the imputations of the re-
maining variables (excluding the incomplete variables of interest in an assessment)
are adequate. Therefore, we also evaluate the performance of PPC when relaxing this
assumption in the application section 6.6.

The implement of PPC in MICE (version 3.13.15) is straightforward. A new argu-
ment where is included in mice function which allows us to replace the observed data
by randomly drawing values from the predictive posterior distribution (Volker and
Vink, 2021). Here is an example of generating replications of the observed data.

to_imp <- as.data.frame (!is.na(nhanes ))

imp <- mice(nhanes , where = to_imp , print = FALSE)

6.4 Simulation Study

We carried out a simulation study to investigate the performance of the proposed
diagnostic approach, varying several factors including missingness proportion (30%,
50%, 80%), missingness mechanisms (MCAR and MARr), nominal levels of the con-
fidence interval (75%, 95%) and different imputation models. The simulation study
consisted of diagnostics under three scenarios: 1) quadratic equation with an incom-
plete outcome 2) quadratic equation with missing covariates 3) generalised linear
model with an incomplete binary outcome. We evaluated whether the proposed di-
agnostic method could identify the congenial imputation model for continuous and
discrete missing variables under the first and the third scenarios. We also investigated
the performance of the proposed diagnostic method on the donor selection procedure
of predictive mean matching under the second scenario. The sample size and the
number of iterations were set to be 1000 and 50 separately in all simulations.
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We induced missingness with the ampute() function in the simulation study. Gen-
erally, ampute() is a convenient function in MICE package to generate missing data
for simulation purposes (Schouten et al., 2018). We considered missing completely
at random (MCAR) mechanism where the probability of missingness is equal for ev-
ery cell as well as right-tailed missing at random (MARr) mechanism where higher
values of covariates have a higher probability of being unobserved. In the algorithm
of ampute() function, the probability of missingness is allocated with different logis-
tic functions of the weighted sum score, which is a linear combination of covariates
correlated with the probability of missingness:

wssi = wix1i + wix2i + · · ·+ wixmi (6.7)

The weight wi is pre-specified to reflect the influence of the variable xi on the prob-
ability of missingness. For instance, if the formation of a weighted sum score is:
wss = x1 + x2, the probability of missingness is determined by both x1 and x2
with the equal effects. More specifically, under MARr mechanism, candidates with
higher values of weighted sum score have a higher probability of being unobserved
when applying the ampute() function to generate missing data.

6.4.1 Quadratic equation with an incomplete outcome

In the first simulation study, we considered a partially observed variable Y and a
fully observed variable X. The data was generated from : X ∼ unif(−3, 3), Y |X ∼
N (X+X2, 1). The scientific model was indeed a quadratic model. We considered two
imputation models for the missing response Y : one is a linear regression of Y on X,
and the other is a quadratic regression of Y on X.

6.4.2 Quadratic equation with incomplete covariates

In the second simulation study, the response variable Y was generated from a nor-
mal distribution: Y |X ∼ N (X + X2, 1), where the covariate X followed a standard
normal distribution. In this simulation study, the response variable Y was completely
observed while the covariate X and the corresponding quadratic term X2 were jointly
missing for a part of the cases. There were no cases with missing cells on either X or
X2. We compared two non-parametric methods, predictive mean matching (PMM)
and polynomial combination (PC) with a parametric method, the substantive model
compatible fully conditional specification (SMC-FCS) (Vink and van Buuren, 2013;
Bartlett et al., 2015). The PC and SMC-FCS methods are two accepted methods to
impute linear regression with quadratic terms. The PC method is an extension of
PMM but applies a different donor selection procedure.

6.4.3 Generalised linear model for discrete variables

The final simulation study considered a partially observed binary Y and two complete
covariates X and Z. The model of scientific interest was : Pr(Y = 1|X,Z) = exp(X+
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Z)/1+exp(X+Z), where x ∼ unif(−3, 3) and Z ∼ N (1, 1). Under MARr mechanism,
the weights of variables X and Z in determining the probability of missingness for Y
were set to be equal. Since the logistic regression actually models the probability of
assignment, we investigated the plot of deviance and calculated the sum of squared
deviance divided by the sample size. There were two candidate models: a logistic
regression of Y on X and Z and a logistic regression of Y on Z only.

6.5 Simulation results

In this section, we present the simulation results of the proposed diagnostic method
under three different scenarios. For numerical assessment, we estimated the rate by
which the confidence interval covers the observed data (COV), the mean of the dis-
tance between the observed data and the mean of corresponding predictive posterior
distributions (Distance), and the average width of the confidence intervals (CIW).
We also provided graphical analyses with scatterplots, density plots, and distribution
plots, which show observed values, upper and lower bounds of confidence intervals for
each observed data point. Sometimes a single plot or summarised statistic is inade-
quate to arrive at a conclusion. Conducting PPC with various tools would provide a
more comprehensive evaluation of the imputation model.

6.5.1 Quadratic equation with an incomplete outcome

Table 6.1 shows the results of the simulation study when the substantive model is a
quadratic equation with an incomplete outcome. Since we only generated one incom-
plete dataset and repeated imputing it 50 times, all coverage rates were close to the
pre-specified nominal level. However, when the imputation model was misspecified
as a linear regression model, the average distance was larger than the average dis-
tance under the correct specification of the imputation model (linear regression with
a quadratic term). It conforms to our intuitive idea that the data would be close to
the centre of predictive posterior distributions if the model fits. The variance of the
missing variable Y was set as 1, which implied that the width of 95% nominal confi-
dence interval is approximate 3.92 (1.96×2) and the width of 75% nominal confidence
interval is approximate 2.3 (1.15×2). When the imputation model was correctly spec-
ified, the estimated average width of the confidence interval was unbiased. However,
the variance of Y was overestimated when the imputation model was linear.

The same result could also be derived from the graphical analysis. Figure 6.2
shows distribution plots under the scenario of 30% missing cases and MARr missing
mechanism. This plot provides upper and lower bounds of the posterior predictive
distribution for all observed Y in ascending order of the mean of the posterior dis-
tribution. Green points imply the corresponding observed value falls in the interval,
while red points imply the corresponding observed value falls out the interval.

When the imputation model was correctly specified, the points out of the 95% con-
fidence interval were randomly spread over the sample space without any patterns.
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However, when the imputation model was incorrectly specified as the linear regres-
sion model, the points out of the confidence interval clustered in the regions with
extreme values of X. Moreover, the width of the intervals was generally narrower
when the model was correct. The density plot and the scatter plot of the observed
and replicated data generated with function densityplot() and xyplot() in MICE

also show the evidence that the quadratic regression is preferable than the linear
model (see figure 6.3). The scatter plot of the quadratic regression imputation model
shows that replicated data overlapped the observed data. The density plot shows that
the replicated data shared the same distribution as the observed data. This evidence
illustrates the congeniality of the quadratic regression imputation model. However,
the linear regression model performed worse than the quadratic regression model.
First, the replicated data did not cover the observed data in two extreme regions in
the scatter plot. Second, the empirical density of the replicated data and observed
data were different.

These three plots do not merely illustrate the misspecification of the imputation
model as the linear regression model. They also provide information to identify the
regions of sample space in which the sub-optimal imputation model could still generate
acceptable imputed values. Based on the distribution plot for the linear regression
imputation model, we could also develop the piecewise linear regression model for the
observed data.

When we cannot figure out the imputation model under which the observed data
fit the predictive posterior distribution perfectly, these plots based on observed data
provide the evidence of rebuilding a piecewise imputation model, which would improve
the validity of imputation values. When the missing cases are not in the regions where
outliers crowd, we could even apply the uncongenial imputation model. For example,
in our simulation scenario, suppose we only consider the linear regression imputation
model and missing cases with near parabolic minimum X values. The imputed value
will not show significant deviations from the true value. Finally, our proposed PPC
approach for imputation models is robust against the different percentages of miss-
ing cases, missingness mechanisms, and the confidence interval’s nominal levels. The
nominal level of the confidence interval is determined by the extent to which we could
undertake the outliers when the imputation model is not congenial with the data
generating process. For instance, there were more outliers in the plot of means and
75% confidence intervals than the plot of mean and 95% confidence intervals. When
we would like to replace the linear regression model with a piecewise linear model to
improve the imputation, the selection knots based on the 75% confidence intervals are
more closed to the parabolic minimum than the 95% confidence intervals (See figure
6.4).

6.5.2 Quadratic equation with incomplete covariates

Table 6.2 and 6.3 show the result of the simulation for the quadratic equation with
incomplete covariates. Based on the numerical results, the performance of these three
methods, PC, SMC-FCS, and PMM, was the same, despite the slightly reduced cov-
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erage rate of PMM. In fact, when the missingness mechanism is MCAR (to bypass
the problem of the sparse observed region for PMM), PMM would also provide a valid
inference of the regression parameters (see Table 6.4) (Vink and van Buuren, 2013).

However, when it comes to graphical diagnostics, the misfit of PMM appears. The
distribution plot (figure 6.5 and 6.6) show that PC and SMC-FCS generated the same
posterior predictive distribution of the observed data. There were more outliers with
a larger value of Y . It is sensible since the density function of X based on Y is not
monotone. Thus, it is unavoidable to impute the missing cell on the opposite arm
of the parabolic function. Although in such a case, the imputed value was not the
same as the true value, the replicated data still overlapped the observed data in the
scatter plot (see Figures 6.7). The distribution plot of PMM with a 95% nominal level
in Figure 6.5 did not show more outliers than these of PC and SMF-FCS. However,
when the nominal level was set to 75%, more outliers appeared in the sub-plot of PMM
(Figure 6.6). The reason is that there are more observed data close to the centre in the
plots of PC and SMC-FCS, which implies the superiority of PC and SMC-FCS. The
scatter plot also shows the discrepancy between the distribution of the replicated and
the observed data with respect to PMM (Figures 6.7). The result is robust against
various percentages of missing cases and over the studied missing mechanisms. The
proposed PPC for the imputation model could check the donor selection process of
hot-deck approaches. In our simulation scenarios, selecting donors for the composition
X+X2 performed better than only solving for the missing variable X. SMC-FCS was
treated as the baseline in our simulation since it is proven as a reliable imputation
method when the substantive model is known (Bartlett et al., 2015). The PC performs
as well as the SMC-FCS which implies the donor selection process of PC reflects the
data generating process in our simulation scenarios. However, when applying hot-deck
approaches to implement imputation, the success in model checking is not sufficient
to define valid imputations. In order to determine whether we could derive plausible
imputations, additional diagnoses of distribution of the complete variable for observed
and missing cases are necessary. For example, in our simulation scenario, if the variable
Y ’s range of missing cases is out of the range of observed cases, the PC may still derive
implausible imputations.

6.5.3 Generalised linear model for discrete variables

Table 6.5 shows the average sum of squared deviance for two different logistic regres-
sion models. The value of the average sum of squared deviance was smaller when the
imputation model was correctly specified with logistic regression on both X and Z.
The result is robust against the percentage of missing cases and missingness mecha-
nisms. Figure 6.8 shows that the residuals tend to zero when the imputation model
fits the observed data better. The distribution of the observed data was more ex-
treme than the empirical posterior distributions of replicated data generated under
the logistic model with only variable Z.
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6.6 Application

6.6.1 Background

We illustrate the application of the proposed PPC for multiple missing variables
with the data from the body mass index (BMI) of the Dutch. This application is to
study whether the proposed PPC works for a sequence of imputation models. More
specifically, we aim to investigate whether the incorrect imputation model for one
missing variable would disturb the proposed PPC for other variables. BMI is defined as
the body weight divided by the square of the body height, which is broadly applied to
categorise a person into underweight, normal, overweight, and obese. Since measuring
a person’s weight and height is costly, an alternative is to ask people to report their
weight and height. However, such self-report data is systematically biased. People are
used to overestimating their height and underestimating their weight, leading to a
lower self-report BMI compared with measured BMI (van Buuren, 018a, Section 9.3).
The goal of the study is to estimate unbiased BMI from the self-report data. We apply
the multiple imputation approach to fill the unobserved measured weight and height.

The data we analyze is named selfreport in MICE package. The data consists of
two components. One is the calibration dataset that contains 1257 Dutch individuals
with both self-report and measured height and weight and was taken from Krul et al.
(2011). The original survey measured 4459 adults in either Italy, Netherlands, or
North America aged 18-65 years in 1999 or 2000. The second part is the survey
dataset containing 803 Dutch adults aged 18-75 years with only self-reported data.
The survey data were collected in November 2007, either online or using paper-and-
pencil methods (van Buuren, 018a, Section 9.3). Six variables are included in the
application: age (years), sex (male or female), hm denoting measured height (cm),
hr denoting self-reported height (cm), wm denoting measured weight (kg), and wr

denoting self-reported weight (kg).
To fit the aim of this application study, we design two linear regression imputation

models for hm: one includes all the other variables, and the other includes all the other
variables except the variable hr. Similarly, there are two linear regression imputation
models for wm: one includes all the other variables, and the other includes all the other
variables except the variable wr. In such a case, we have four imputation strategies
to evaluate:

1. Case 1: include hr in the imputation model of hm and wr in the imputation model
of wm.

2. Case 2: include hr in the imputation model of hm and exclude wr from the impu-
tation model of wm.

3. Case 3: exclude hr from the imputation model of hm and include wr in the impu-
tation model of wm.

4. Case 4: exclude hr from the imputation model of hm and wr from the imputation
model of wm.
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Although it is evident that hr and wr are significant covariates for the imputation
of hm and wm, we deliberately ignore these two variables in some cases to evaluate
whether incorrect imputation model for hm (wm) influences PPC for wm (hm).

6.6.2 Results

Table 6.6 shows that the best imputation model among these four is the one that
includes both wr and hr. The average distance and the width of confidence intervals
for the observed data were the smallest for both hm and wm. No matter whether the
imputation model of hm was correctly specified, the linear regression imputation model
for wm should be based on all the other variables. When fixing the imputation model
for the hm (no matter including hr or not), the average distance and the average
width of the confidence interval of hm derived under the linear model included hr was
remarkably less than the result taken under the linear model excluded the covariate
hr. The graphical results (Figure 6.9-6.12) show the same conclusion. When the linear
regression imputation model for wm or hm was correctly specified, the imputed data
overlapped the observed data in the scatter plot. The observed data would be closer
to the centre of the confidence interval, and the width of confidence intervals was
relatively small. However, the result of wr in case 3 was slightly larger than that in
case 1. Similarly, the result of wr in case 4 was slightly larger than that in case 2. A
similar result could be found in fixing the imputation model for the wm (no matter
the imputation model includes wr or not). The average distance and the average
confidence interval of wm derived under the linear model had wr was remarkably less
than the result taken under the linear model excluded the covariate wr.

The findings imply that incorrect specification of the imputation models for other
missing variables Y−j would influence the target variable Yj for which we perform the
PPC because densities of the imputed variables Y−j are different from the ‘true’ den-
sities. However, we can still select the correct model for Yj . Our application scenario is
relatively simple: the linear model is sufficient to reflect the data generating process of
missing variables. However, we do not rule out the possibility that under extreme and
complicated cases, incorrect specification of the imputation models for other missing
variables Y−j would prevent us from selecting the most suitable imputation model for
the missing variable Yj .

6.7 Discussion

The proposed imputation model diagnostic procedure based on PPC involves nu-
merical assessment and graphical analysis. For numerical assessment, the evidence
of a fitted imputation model is less deviation between the observed value and the
expectation of corresponding predictive posterior distribution and narrower width of
confidence intervals of predictive posterior distributions for the observed data. For
graphical analysis, we provide the distribution plot, the scatter plot and the density
plot. The more suitable imputation models are, the more similar the replicated data
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to the observed data in the density and scatter plots. The distribution plot shows pos-
terior distributions of all observed data. It allows the researcher to identify the regions
where the imputation model misfits. It is noteworthy that applying both numerical
and graphical tools benefits a thorough understanding of model selection.

The simulation study demonstrates that the proposed imputation model diagnostic
procedure works on continuous and discrete variables under parametric and hot-deck
multiple imputation approaches. We could derive more information for a continuous
variable, such as the way to improve the imputation model, because of the distribution
plot. For example, although the imputation model is incorrect in general, it provides
valid imputations in the focused regions. In such a case, we could still apply the
suboptimal imputation model. Moreover, we could only adjust the imputation model
in the misfitted regions and develop a piecewise imputation model. The PPC for
categorical data or ordered categorical data is limited, since the predictor of the
imputation model is the probability of assignment rather than the observed data
itself. We currently investigate residual deviance as the indicator to select the model
for categorical data and ordered categorical data. For hot-deck imputation approaches,
what PPC diagnoses is the donor-selection procedure. However, based on the features
of predictive mean matching, the appropriate donor selection does not ensure plausible
imputations. Extra analysis of the observed data and the imputed data is necessary.

The application example shows that the PPC works on the multivariate missing
datasets. When the imputed covariate deviates from the actual distribution because
of the mis-specified imputation models, the imputation model for the predictor could
also be selected by PPC. In our case study, the misspecification of one missing vari-
able slightly influences the other missing variable’s numerical results. However, in
more extreme situations, such as a large number of missing variables and more ridicu-
lous imputation models for covariates, the result may be influenced seriously, so as
to result in a sub-optimal model selection. Therefore, it is more reasonable to per-
form the numerical analysis of all missing variables and make the model selection for
those variables with remarkably different results under different candidate imputation
approaches first.

Existing PPC proposed by He and Zaslavsky (2012) and Gelman et al. (2005)
measured the posterior predictive p-value to indicate the discrepancies of summarised
statistics between the observed and replicated data. The close to 0 or 1 p-value implies
the inadequacy of the imputation model with respect to the target quantities. The
target quantities should be calculated with the completed data, which consists of
the observed and the imputed data because it allows the researcher to calculate the
target quantities requiring a complete data matrix. Both He and Zaslavsky (2012)
and Nguyen et al. (2015) found that the existing PPC for multiple imputation model
is sensitive to the percentage of missing cases. Since the imputed and replicated data
are generated from the same posterior predictive distribution, the diagnostic becomes
more difficult with an increasing proportion of missing data.

Unlike the existing PPC approach, the PPC discussed in the paper checks the
imputation model for each missing variable under the FCS framework. We diagnose
the distribution of the observed data so that the result would also be reliable with a
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large proportion of missing cases. The simulation study also shows that the proposed
PPC works for different missingness mechanisms. The PPC for multiple imputation
models based on target analysis would be more informative when the imputer is also
the researcher. The issue would be whether a valid inference for the scientific interest
could be derived from the imputed data. However, the PPC for multiple imputation
models based on the observed data addresses another issue: whether the imputation
model is congenial to the substantive model. The imputed data generated after the
proposed PPC could be used for more general downstream analysis and different
scientific interests.

When the sample size is tremendous, it is better to choose some representative
data to check the imputation model so that the scatter plot or the distribution plot
would not be too crowded. A clustered procedure could be applied to gather the
observed data with closed values and choose one subset in each cluster to check the
model. Further investigation is necessary to set the rule to select the observed data
when the sample size is too large.
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(a) quadratic imputation model (b) linear imputation model

Fig. 6.2. Distribution plots for the first simulation study (quadratic equation with an in-
complete outcome) generated under 30% missing cases and MARr missingness mechanism.
The confidence interval is 95% nominal.
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True value Estimates value Coverage rate
β1 1 1.008 0.934
β2 1 1 0.958

Table 6.4. The PMM performs under the scientific model : Y = α + Xβ1 + X2β2 + ϵ,
where α = 0, β1 = 1 and β2 = 1. The error term and variable X follow standard normal
distributions. 30% cases of X and X2 are designed to be jointly missing. The missingness
mechanism is MCAR.

mean of residual deviance
missingness with x without x

30 0.83 1.25
MCAR 50 0.85 1.27

80 0.95 1.3

30 0.9 1.34
MARr 50 0.94 1.35

80 0.98 1.28

Table 6.5. The average sum of squared deviance for two imputation models: 1) logistic
regression with two predictors x and z 2) logistic regression with one predictor x under
different combinations of experimental factors. The outcome is a dichotomous variable y and
the binary regression is based on x and z.

hm wm
cov average distance average CIW cov average distance average CIW

strategy 1 0.95 1.57 8.27 0.95 2.28 12.46
strategy 2 0.95 1.65 8.89 0.94 10.9 54.38
strategy 3 0.95 5.58 26.89 0.94 2.35 12.83
strategy 4 0.95 5.56 27.88 0.97 9.84 59.57

Table 6.6. The performance of 4 imputation strategies is summarised by the coverage rate,
the average distance and the average width of confidence intervals with respect to missing
variables hm and wm
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(a) quadratic imputation model (b) linear imputation model

(c) quadratic imputation model (d) linear imputation model

Fig. 6.3. Scatterplots and densityplots for the first simulation study (quadratic equation
with an incomplete outcome) generated under 30% missing cases and MARr missingness
mechanism.
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(a) quadratic imputation model (b) linear imputation model

Fig. 6.4. Distribution plots for the first simulation study (quadratic equation with an in-
complete outcome) generated under 30% missing cases and MARr missingness mechanism.
The confidence interval is 75% nominal.
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(a) logistic model based on X and Z (b) logistic model based on Z

Fig. 6.8. The plot of deviance residuals for the third simulation study (generalised linear
model for discrete variables) generated under two logistic regression imputation models. The
percentage of missing is 30%, and the missingness mechanism is MARr.
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(a) (b) (c)

(d) (e)

Fig. 6.9. Graphical analysis of the BMI data with imputation strategy case 1. (a) density
plots, (b) scatter plot of hm, (c) scatter plot of wm, (d) distribution plot of hm and (e)
distribution plot of wm.
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(a) (b) (c)

(d) (e)

Fig. 6.10. Graphical analysis of the BMI data with imputation strategy case 2. (a) density
plots, (b) scatter plot of hm, (c) scatter plot of wm, (d) distribution plot of hm and (e)
distribution plot of wm.
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(a) (b) (c)

(d) (e)

Fig. 6.11. Graphical analysis of the BMI data with imputation strategy case 3. (a) density
plots, (b) scatter plot of hm, (c) scatter plot of wm, (d) distribution plot of hm and (e)
distribution plot of wm.
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(a) (b) (c)

(d) (e)

Fig. 6.12. Graphical analysis of the BMI data with imputation strategy case 4. (a) density
plots, (b) scatter plot of hm, (c) scatter plot of wm, (d) distribution plot of hm and (e)
distribution plot of wm.
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Samenvatting

Joint modeling (JM) en fully conditional specification (FCS) zijn twee veelgebruikte
strategieën om multivariate incomplete data te imputeren. JM bestaat uit het speci-
ficeren van een multivariate verdeling voor de ontbrekende data om vervolgens impu-
taties uit de betreffende conditionele verdelingen te trekken. Bij FCS specificeert men
de verdeling van iedere gedeeltelijk geobserveerde variabele conditioneel op alle an-
dere variabelen. FCS heeft als voordeel boven JM dat het modeleren van multivariate
data zeer flexibel kan worden vormgegeven. Het komt echter in de praktijk met regel-
maat voor dat bepaalde structuren in de ontbrekende gegevens niet adequaat gemod-
elleerd kunnen worden. Daarnaast is het vaak lastig om de relaties tussen meerdere
variabelen te bewaren wanneer een stapsgewijze imputatietechniek als FCS wordt ge-
bruikt. Deze dissertatie heeft als doel om hybride imputatiestrategieën te ontwikkelen
waarin aantrekkelijke eigenschappen van JM en FCS worden samengenomen. In dit
proefschrift draag ik oplossingen aan voor ontbrekende dataproblemen waarin het
toepassen van enkel JM of FCS tot suboptimale oplossingen leidt.

In Hoofdstuk 2 beschouw ik algemene methoden om gekwadarateerde relaties te
imputeren. Ik verbeter de polynomial combination (PC) methode en evalueer deze
verbetering tegen oplossingen verkregen middels het Substantive Model Compatible
Fully Conditional Specification (SMCFCS) framework. De uitkomst van deze evaluatie
is als volgt: Als de ware verdeling en model bekend zijn, dan levert SMCFCS de
scherpste inferentie. Dit gaat wel ten koste van de flexibiliteit in modelleren. Met de
aangepaste PC methode blijft deze flexibiliteit wél behouden, maar kan de inferentie
wat minder scherp zijn in situaties waar de verdeling van de geobserveerde data soms
spaars is.

In Hoofdstuk 3 ontwikkel ik Multivariate Predictive Mean Matching (MPMM).
Met MPMM kan men meer dan één incomplete variabele tegelijk imputeren. Ik com-
bineer de methodologie van univariate PMM (REF LITTLE REF RUBIN) en canoni-
cal regression analysis (REF) om de ruimtes van de voorspellers en uitkomsten samen
te vatten. Het voordeel van deze imputatiemethode is dat de relaties tussen incom-
plete variabelen behouden kunnen worden. Ik behandel een aantal scenario’s waarin
MPMM gebruikt kan worden en beschouw de beperkingen van deze nieuwe methode.
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In Hoofdstuk 4 ontwikkel ik een hybride imputatietechniek om individuele be-
handeleffecten te kunnen schatten. Het imputeren van niet-geobserveerde uitkomsten
maakt het mogelijk om verschillen tussen potentiele uitkomsten te berekenen voor ver-
schillende behandelcondities. Het fundamentele probleem hierbij is dat beide uitkom-
sten nooit tegelijk geobserveerd kunnen worden. Men moet dus aannames doen over de
correlatie tussen de potentiele uitkomsten. De voorgestelde hybride imputatiemethode
stelt ons in staat om de partiële correlatie te specificeren en een sensitiviteitsanalyse
uit te voeren. Ik demonstreer de validiteit van de voorgestelde hybride imputatiemeth-
ode en laat zien hoe men deze techniek in de praktijk kan toepassen.

In Hoofdstuk 5 onderzoek ik de compatibiliteit van FCS onder informatieve prior
verdelingen. Dergelijke vergelijkingen zijn al door meerdere auteurs beschreven voor
scenarios waarin de prior voor de conditionele modellen niet informatief is. Compat-
ibiliteit eigenschappen voor informatieve priors zijn echter onderbelicht gebleven. Ik
toon aan dat FCS onder het normale lineaire model met een informatieve inverse-
gamma prior compatibel is met een gezamenlijke verdeling en lever de bijbehorende
normale inverse-Wishart prior verdeling voor de gezamenlijke verdeling.

In Hoofdstuk 6 ontwikkel ik een nieuwe strategie voor het diagnosticeren en eval-
ueren van multiple imputation modellen door middel van posterior predictive check-
ing. Het idee hierbij is dat, wanneer het imputatiemodel congenial (REF MENG) is
met betrekking tot het inhoudelijke analysemodel, de verwachte waarde van de geob-
serveerde data zich in het midden van de bijbehorende posterior predictive verdeling
bevindt. Door de voorgestelde diagnostische methode te gebruiken, kunnen onder-
zoekers de geobserveerde data vergelijken met de ‘overgëımputeerde’ data om de fit
van het imputatiemodel te evalueren.
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