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Abstract
Photovoltaic power (PV) is the fastest-growing source of renewable electricity. Making reliable
scenarios of PV deployment requires information on what drives the spatial distribution of PV
facilities. Here we empirically derive the determinants of the distribution of utility-scale PV
facilities across six continents, using a mixed effects logistic regression modelling approach relating
the occurrence of over 10 000 PV facilities to a set of potential determinants as well as accounting
for country and spatially correlated random effects. Our regression models explain the distribution
of PV facilities with high accuracy, with travel times to settlements and irradiation as the main
determinants. In contrast, our results suggest that land cover types are not strong determinants of
the PV distribution, except for Asia and Africa where the PV distribution is related to the presence
of agriculture, short natural vegetation and bare land. For Europe and Asia a considerable part of
the variance in PV distribution is explained by inter-country differences in factors not included in
our fixed determinants. Relevant determinants identified in our study are in line with the main
assumptions made in cost of electricity (COE) maps used in the IMAGE integrated assessment
model (IAM). However, we found correlations (Spearman ρ) of−0.18–0.54 between our PV
probability maps and IMAGE’s COE maps. These may partly be explained by conceptual
differences between our empirically-derived probability maps and the COE maps, but we also
recommend using higher-resolution maps of PV potential and COE computations such as used in
IAMs.

1. Introduction

Renewable electricity sources are expected to play a
vital role in the transition towards a net-zero emis-
sion energy system. Photovoltaic (PV) systems are
the fastest-growing source with the steepest cost
reductions of renewable electricity (IEA 2021, REN21
2021). Capacity additions of more than 100 gigawatts
per year are expected in the next decade (Creutzig
et al 2017, IEA 2020). Reliable scenarios of PV electri-
city supply require knowledge on the spatial distribu-
tion of PV facilities and the underlying determinants.
Besides available solar radiation, studies have iden-
tified a range of factors that determine a location’s

suitability for a PV facility, including biophysical
factors (e.g. land cover, slope), infrastructure (e.g.
distance to roads, urban settlements and transmission
lines), ecological factors (e.g. protected areas), and
economic factors (investments and other costs) (e.g.
Hernandez et al 2015, Köberle et al 2015, AlGarni and
Awasthi 2017, Aly et al 2017, Agyekum et al 2021).

Studies of regional or global PV potential
often use a-priori suitability maps based on these
(bio)physical and economic determinants (e.g.
Köberle et al 2015, Tröndle et al 2019, Dupont et al
2020, Gernaat et al 2021, Ouchani et al 2021).

Typically, maps of physical potential are estab-
lished first, based on irradiation and temperature.
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Then, the geographical PV potential is determined
by excluding areas deemed unsuitable, such as forests
or urban areas. Subsequently, the physical and geo-
graphical potential can be combined with technical
and cost assumptions to calculate technical or eco-
nomic PV potentials and maps for use in energy and
climate scenarios (Hoogwijk 2004, Köberle et al 2015,
Gernaat 2019, Oakleaf et al 2019, Dupont et al 2020).
Studies on PV potential often make a-priori assump-
tions on the importance of the factors influencing
the geographical, technical and economic potential.
Empirical evidence on the actual locations of PV facil-
ities may however differ from these a-priori maps
and can thus be used to update these priors (e.g.
Hernandez et al 2015).

Here, we propose an empirical approach to invest-
igate the determinants of the global distribution of PV
facilities, linking actual locations of ∼10 000 utility-
scale (median capacity 12 MWp) PV facilities across
the globe to physical, geographical, infrastructure and
ecological determinants. By establishing continent-
specific mixed effect logistic regression models, we
investigate what determines the actual distribution
of PV facilities across the globe. Regression model
approaches have been applied to identify the determ-
inants of the distribution of small-scale PV facil-
ities within a country (e.g. Thormeyer et al 2020,
Balta-Ozkan et al 2021), confirming that besides
available solar radiation socio-demographic factors
play an important role in the spatial distribution of
PV facilities. A near-global study revealed that access-
ibility is an important determinant of probability
of occurrence of PV facilities (Dunnett et al 2022).
Kruitwagen et al (2021) show that PV facilities are
often sited on cropland, but indicate that land cover is
not the single driving factor in PV distribution. Here,
we focus on identifying determinants of the global
distribution of large-scale (utility-scale) PV facilities.
Secondly, we create high-resolution probability maps
based on our regressionmodels and compare our res-
ults to existing a priori maps used in the integrated
assessment model (IAM) IMAGE, which are among
the most transparent and spatially detailed estim-
ates (Hoogwijk 2004, Gernaat et al 2021). Our results
provide insights into the global expansion of utility-
scale PV facilities and are thus useful for many applic-
ations such as econometric analyses and IAMs.

2. Methods

2.1. Global distribution of utility-scale PV
The Wiki-Solar dataset is the only available invent-
ory providing information on the location and tech-
nological characteristics of utility-scale PV facilities
around the globe at the time of our study (Wiki-
Solar). From this dataset, we selected the 10 306
PV facilities currently operating or near completion,
for which latitude and longitude are given, and

which are non-floating4. Capacities range from 0.9
to 9400 MWp with a median value of 12 MWp
(figure 1). The global total capacity in the Wiki-Solar
dataset is 318 GWp. Kruitwagen et al (2021) recently
estimated 350 GWp PV global capacity larger than
1 MWp. IRENA (2021) estimated a global PV capa-
city of 707.5 GWp, of which 55% is utility-scale (IEA
2021), corresponding with 389 GWp.

2.2. Determinants
Based on findings reported in the literature, we iden-
tified a set of possible predictors (covariates, explan-
atory variables) of utility PV locations (Hernandez
et al 2015, Köberle et al 2015, Al Garni and Awasthi
2017, Aly et al 2017, Agyekum et al 2021, Oakleaf
et al 2019), Ouchani et al 2021, Dunnett et al 2022).
See SI table S1 for an overview of the considered pre-
dictors. We refer to the predictors from now on as
determinants. We obtained determinant values from
various publicly accessible sources with global cover-
age. Table 1 includes references as well as a rationale
behind including each predictor.

We computed the 30 year (1988–2017) average
annual irradiation from hourly incoming solar radi-
ation from ERA5 reanalysis data, obtained through
Copernicus’ Climate Data Store (Hersbach et al
2018).

We derived elevation data from the MERIT
Digital Elevation Model (Yamazaki et al 2017), from
whichwe computed slope using the gdaldem function
(GDAL 2020).

We determined distance to roads as the Euclidean
distance to road types I–V in theGRIP dataset (Meijer
et al 2018).We computed distance to the transmission
grid using the gdal proximity function (GDAL) on the
global MV (>10 kV) and HV (>70 kV) transmission
lines from Arderne et al (2020). We then computed
distance in kilometers using the v.distance function
from theGeographic Resources Analysis Support Sys-
tem (GRASS). Travel times to the nearest settlement
with a population >5000 are provided by Nelson et al
(2019)5, representing the year 2015.

We obtained the global distribution of protected
areas (such as nature reserves) from the World Data-
base on Protected Areas (WDPA, UNEP-WCMC and
IUCN 2017).

We include land cover types from the ESA CCI
land cover map from 2000 as indicative of preinstalla-
tion land cover (out of 10 306 current facilities in the
Wiki-Solar dataset, globally, only two facilities were
built in 2000 or earlier).

We resampled or aggregated all data from their
original resolution (see table 1) to a 0.011◦ resolution
(40′′, ∼1.5 km2 at the equator). This gives sufficient
detail at the global scale while keeping the compu-
tational costs relatively low, and the majority of PV

4 Floating PV makes up <0.5% of the dataset.
5 We used layer 12, travel_time_to_cities_12.tif.
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Figure 1. Distribution and capacities of the 10 306 PV facilities currently operating or near-completion available fromWiki-Solar
(Wiki-Solar). The colour bar and histogram show capacity in MWp, the red line in the histogram is the median value (12 MWp).

Table 1. Potential determinants used in the regression modelling, based on literature review detailed in SI table S1. Land cover type
fractions vary between 0 and 1 and are based on aggregating the ESA CCI land cover types into agriculture, forest, short natural, urban,
bare, wetland and water, see SI table S2. Resolution is given in degrees ◦ or arcseconds ′′ with the approximate equivalent distance in
meters at the equator.

Determinant (unit) Rationale Original resolution Database sources

Irradiation (kWh m2 yr−1) Higher irradiation -> higher PV
yield

0.25◦ (∼30 km) ERA5, Hersbach et al
(2018)

Elevation (m) Higher elevation -> less
accessible for construction and
maintenance

3′′ (∼90 m) MERIT, Yamazaki et al
(2017)

Slope (degree) Higher slope -> less suitable for
construction and maintenance

— MERIT, this study

Distance to roads (m) Larger distance -> less accessible
for construction and
maintenance

10′′ (∼300 m) GRIP, Meijer et al
(2018), this study

Distance to transmission
grid (km)

Further away: more cost to
deliver electricity.

— Arderne et al (2020), this
study

Travel times to nearest
settlement of >5000
inhabitants (hours)

Indicative of energy demand
(proximity of settlements)

30′′ (∼1 km) Nelson et al (2019)

Protected status (yes/no) PV facilities less likely in
protected areas

10′′ (∼300 m) WDPA (UNEP-WCMC
and IUCN, 2017)

Land cover fractions PV facilities more likely in
e.g. agriculture or grassland than
forest

10′′ (∼300 m) ESA CCI, this study

facilities are smaller than the grid cells at this resolu-
tion6. We computed land cover fractions by aggregat-
ing the land cover types at 300 m resolution to seven
categories at 0.011◦ resolution (SI table S2).

2.3. Regressionmodelling
We used mixed effects logistic regression model-
ling, fitting a logistic curve to the binary response

6 Based on the 7982 current PV facilities for which we computed
total panel area in Bosmans et al (2021), we find that only 151
(<2%) have a surface area of more than 1.08 km2 (the average land
grid cell area at 0.011◦). At ESA CCI’s 300 m resolution, 3614 facil-
ities (45%) would cover multiple grid cells. Note that we only con-
sider panel area and made no assumption on packing factors/area
of the entire facility.

variable (presence or absence of a PV facility) to study
how the probability of PV occurrence depends on
the determinants mentioned above (as fixed effects)
and country as well as spatially correlated ran-
dom effects. Country names, obtained from mar-
ineboundaries.org (EEZ), are included as random
determinant capturing, among others, policy effects
not included in the list of determinants in table 1.
Previous studies identified policy-related factors such
as policy as critical for PV presence (e.g. Thormeyer
et al 2020). However, in absence of a single global
policy indicator and because most users of PV poten-
tial maps use policy as a separate exogenous variable,
we included it here as part of the ‘country’ determin-
ant. Country is included as a random effect because

3
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as a fixed effect it would take too many degrees of
freedom.

We selected absences randomly from land grid
cells where no PV facility is present yet, and which are
not fully covered by water, permanent snow and ice.
We set the number of absences to 10 times the num-
ber of presences (Barbet-Massin et al 2012). Further-
more, weweighted the selection of absences latitudin-
ally to account for the latitudinal change in grid size.
Figures S1–S6 shows the distribution of presences
and absences, and figures S7–S12 and S13–S18 show
the distribution of the determinants over these loc-
ations. We log-transformed road distance, grid dis-
tance, travel times, elevation and slope to reduce their
positive skew.

We established a regression model for each con-
tinent, which allows us to study whether there are
inter-continental differences in the determinants of
PV facility distribution. We thus create regression
models for North America (2272 facilities), South
America (361), Europe (3432), Asia (3940), Africa
(182) and Oceania (102) (see SI table S3).

Before fitting the models, we checked for multi-
collinearity in the determinants using variance infla-
tion factors (VIFs) and removed determinants with a
VIF > 5 (Menard 2001, Zuur et al 2009), to obtain
a non-redundant predictor set (Čengíc et al 2020).
Based on the VIFs, we removed grid distance for
Europe, and road distance forNorthAmerica.We fur-
ther excluded the fraction of forest land, which was
correlated to the proportion of agricultural land, to
avoid rank deficient fixed-effect model matrices due
to the additive nature of the land cover fractions.

Webuilt a generalised linearmixedmodel for each
continent (see SI text 1) using the R implementa-
tion of the Integrated Nested Laplace Approximation
(INLA, Rue et al 2009, Martins et al 2013) of R-INLA
(Lindgren et al 2011, Lindgren and Rue 2015). INLA
is a Bayesianmethod that utilizes the Laplace Approx-
imation to find the optimal values for model coef-
ficients. It takes into account spatial autocorrelation
in the response variable (Mielke et al 2020), as PV
facilities tend to be spatially clustered (see figures 1
and S1–S4). INLA is very efficient in the modelling of
spatially correlated random effects, because it uses an
underlying structure (‘mesh’) that consists of a lim-
ited number of locations. The spatially correlated ran-
domeffects are optimized for these locations only. For
data point locations that are not covered by the mesh
locations, the spatial effect is calculated as an inter-
polation of surroundingmesh locations. This strategy
greatly reduces the computational complexity com-
pared to directly optimizing the spatially correlated
random effects for all data point locations.We use the
default priors given in R-INLA (see SI text 2). Before
model fitting we scaled the determinant values to a
mean of 0 and a standard deviation of 1, as meas-
urement scales varied greatly among the determin-
ants. We performed all subsets modelling, building

models for all possible combinations of determin-
ants, and selected the best-supported model based
on the Widely Applicable Bayesian Information Cri-
terion (Watanabe 2013). We calculated model per-
formancemeasures area under the curve, true positive
rate (sensitivity), true negative rate (specificity) and
true skill statistic (TSS). We tested for residual spa-
tial autocorrelation usingMoran’s I. SI text 3 provides
more detail on these model performance statistics.

Finally, to quantify the relative importance of
each determinant, we predicted the probability of
PV occurrence using the continent-specific best-
supported models and randomized values for the
determinant of concern.We then correlated these pre-
dictions with the predictions of the models using the
original data, and we computed the relative import-
ance as one minus the Spearman rank correlation
coefficient (Thuiller et al 2016). We also created par-
tial dependence plots for important determinants
by predicting the probability of occurrence with all
determinants set to their mean value except for the
determinant of interest. Finally, we used the best-
supported models to create for each continent a
map displaying the ranked probability of occurrence
(PoO) of a PV facility.

2.4. Comparison with PV suitability map in
IMAGE
Integrated assessments models (IAMs) use data on
PV potential as a key input. The Integrated Model to
Assess the Global Environment (IMAGE) is a prime
example of such a model (e.g. Köberle et al 2015,
Gernaat 2019). The key input for IMAGE are maps
of economic potential (i.e. PV potential below a cer-
tain cost) at grid level, identifying potentially attract-
ive areas based on optimisation, which are translated
into regional cost-supply curves used in energy and
climate scenario studies.

(a) First, the theoretical potential is computed per
grid cell, based on the available amount of solar
radiation annually.

(b) Then, the geographic potential equals the the-
oretical potential in areas deemed suitable for
PV facility construction. Excluded areas are, for
instance, protected reserves, high altitudes and
forests (see table S3).

(c) The technical potential is computed using tem-
perature and PV panel efficiency, which determ-
ines how much the geographic potential can be
transformed into electricity (usually, a fixed effi-
ciency is set for all grid cells).

(d) Finally, PV costs are computed based on invest-
ment, transmission and maintenance costs. A
production cost, or cost of electricity (COE),
map is created by dividing the costs by the tech-
nical potential. Economic potential is defined
as the PV generation potential below a certain
cost level, and the grid-cell-specific cost map can
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then be used to create country- or region-specific
cost-supply curves. For more detail see SI text
4, see Gernaat (2019), Gernaat et al (2021) or
Köberle et al (2015).

We compared our maps of PV facility probability
with the IMAGE COE maps at their 0.5◦ resolution.
Upfront, we expected locations with a high PV facil-
ity probability to have low PV production costs (in
$/kWh). To test this, we quantified the Spearman rank
correlation between 1 minus the occurrence probab-
ility and the COE. We looked at the complement of
the occurrence probability (1-PoO) rather than the
probability itself such that a larger positive correlation
denotes a higher degree of agreement. We preferred
the Spearman rank correlation over alternative correl-
ation coefficients because we expected a monotonous
but not necessarily linear relationship. For grid cells
excluded from PV deployment in IMAGE, we set the
COE to the maximum value within the continent+1,
enabling us to include all grid cells in the analysis.

3. Results

3.1. Regressionmodels: determinants of PV
distribution
The continent-specific best-supported models
explain the distribution of PV facilities well, as exem-
plified by high values for model performance meas-
ures (see table 2).When excluding country names, the
model performance drops significantly for Europe
and Asia (see SI table S6). This indicates that inter-
country differences in factors not included in our
fixed determinants play an important role in PV dis-
tribution. In North and South America, Africa and
Oceania the country random effect plays little to no
role.

Furthermore, our best-supported binary logistic
regression models indicate that the importance of
each determinant varies between the continents (see
figure 2). Irradiation and travel times are import-
ant determinants, with probability of PV occurrence
increasingwith irradiation, anddecreasingwith travel
times (which indicate energy demand). In North
America, the presence of agriculture and short natural
vegetation also increases the probability of PV occur-
rence. In South America, grid distance, road distance
and slope are also relevant determinants. Land cover
types appear as important determinants in Asia and
Africa, where the presence of agriculture, bare land
and short natural vegetation are positive determin-
ants of the probability of PV occurrence. This may
partly be related to the global distribution of the land
cover types. For instance, bare land is present large
areas of Asia and Africa, but is hardly present in the
Americas and Europe. Oceania is the only continent
where irradiation does not play a role in PV occur-
rence, which could be related to its relatively latitud-
inal gradient.

Overall, larger travel times to the nearest settle-
ments (a proxy for electricity demand) and larger dis-
tances to infrastructure (roads and electricity grids)
decrease the probability of PV occurrence, as indic-
ated by negative coefficients (figure 2). With increas-
ing distance to infrastructure and demand, the prob-
ability of PV occurrence drops quickly (figure 3). The
probability increases more smoothly with increasing
irradiation. Considering land cover types, PV facil-
ities are more likely found in areas where agricul-
ture, short natural vegetation or bare land prevail, but
in our regression model land cover types are typic-
ally less important for the distribution of PV facilities
than irradiation or travel time.

3.2. Probability maps
Our spatial predictions show how the probability of
PV occurrence varies across the considered contin-
ents. In North America, the probability of PV occur-
rence is high across the south and south-west, where
irradiation is high, travel times are low and short
natural vegetation prevails. In northern U.S.A. and
southern Canada, probabilities are high in regions
where agriculture is abundant and travel times are
low. In the South-East, higher irradiation and low
travel times also result in high predicted probabilit-
ies (figure 4). Northern regions show a low probab-
ility, likely related to low irradiation and large dis-
tances to infrastructure and demand. In Europe, there
are clear inter-country differences in probability of
PV occurrence, and the increased probability towards
the south within countries is explained by irradiation.
In Africa and South America, the predicted probab-
ility of PV occurrence is visibly driven by (distance
to) infrastructure and demand (figure 4). In Africa,
probability of occurrence is slightly higher in certain
countries such as South Africa, Algeria and Egypt.

In Asia, hotspots for PV occurrence are India
and parts of China, as well as Japan, Thailand, and
the Philippines. Hotspots also occur on the Ara-
bian Peninsula, but overall the probability of occur-
rence (PoO) there is lower than one might expect
given its high irradiation. Hence, in Asia, the inter-
country differences stand out (see also table 2). Fur-
thermore, PoO is high in the region east and north
of the Caspian Sea, where agriculture and short
natural vegetation prevail. In Oceania, PoO is high
where demand is high and infrastructure is near. The
importance of travel times, grid and road distance res-
ult in high PoO in New Zealand despite no PV facil-
ities there in our data.

3.3. Comparison to integrated assessment model
COEmaps
We found mostly positive correlations between the
complement of PV occurrence probability and the
COE, i.e. COE increases with decreasing probability
of occurrence (PoO), except for Oceania (figure 5).
Correlations range from−0.18 forOceania to 0.54 for
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Table 2.Model performance based on AUC: area under the curve, TPR: sensitivity (true positive rate), TNR: specificity (true negative
rate), TSS: true skill statistic, Moran’s I: a measure of residual spatial autocorrelation. Please see SI text 3 for more details on these model
performance measures. SI table S6 shows the model performance without country included.

North America South America Europe Asia Africa Oceania

AUC 0.97 0.98 0.93 0.95 0.98 0.98
TPR 0.93 0.92 0.90 0.95 0.95 0.98
TNR 0.89 0.94 0.81 0.85 0.94 0.92
TSS 0.82 0.86 0.71 0.80 0.89 0.90
Moran’s I 0.025 0.054 0.015 0.039 0.049 0.024

Asia. The relatively low value for South-America com-
pared to North America, Europe and Asia may reflect
mismatches in the Amazon, where forest is excluded
from PV deployment in IMAGE (table S4, figure
S19), while our predicted PoO is high in gridcells
near infrastructure and demand. Also, PoO is high
in northern Chile and the altiplano, where IMAGE
assumes high COE. Also in Europe certain areas are
excluded by IMAGE due to land cover constraints
(table S4) while we predict high probability of occur-
rence, for instance in the United Kingdom, Germany
or southern France. In Asia, there is a better match
between COE and (the complement of) PoO. For
instance, over the Arabian Peninsula, COE is low, but
PoO is low as well due to low numbers of PV facilities
in the region. In Africa the correlation is low, indicat-
ingmismatches between our PoO and IMAGE’s COE.
This could be related to high PoO in parts of western
and eastern Africa, where COE is high. In Oceania
we found a small, but negative correlation, indicat-
ing COE increases with increasing PoO. This could
reflect that IMAGE excludes regions along the for-
ested southeastern coast of Australia (SI figure S19),
where PV facilities are present (SI figure S6) and our
model predicts high PoO due to the proximity to set-
tlements and infrastructure.

4. Discussion

4.1. Determinants of utility-scale PV distribution
We built regression models of the probability of
PV occurrence using potential determinants derived
from literature. We found that irradiation and travel
times to the nearest settlement are the most import-
ant determinants, with probability of PV occurrence
decreasing with longer travel times and increasing
with higher irradiation. To a lesser degree, distance to
the electricity grid and roads negatively affect prob-
ability of PV occurrence. This confirms the findings
of other studies (e.g. Hernandez et al 2015, Al Garni
and Awasthi 2017, Aly et al 2017, Oakleaf et al 2019,
Tröndle et al 2019, Dupont et al 2020, Thormeyer
et al 2020, Agyekum et al 2021, Balta-Ozkan et al
2021, Dunnett et al 2022). Other determinants such
as elevation, protected status and slope show a neg-
ative impact on probability of PV occurrence, as also
shown or assumed by others (Hernandez et al 2015,
Al Garni and Awasthi 2017, Aly et al 2017, Oakleaf

et al 2019, Tröndle et al 2019, Dupont et al 2020,
Ouchani et al 2021), Agyekum et al 2021, Dunnett
et al 2022), but they do not explain a large part of the
distribution according to our regression models. We
note, however, that at the smaller scales considered in
most of the referenced literature, the relative import-
ance of the determinants may shift. Compared to the
sub-continental random-forest empirical approach of
Dunnett et al (2022), we draw similar conclusions
regarding the importance of travel times (access-
ibility), with irradiation and road distance coming
second in their study.

Studies on the distribution of PV facilities or PV
potential furthermore often include land cover, but
our study suggests that land cover type is not an
important determinant of the current PV distribu-
tion, in line with Dunnett et al (2022). Kruitwagen
et al (2021) also indicate that land cover is not the
single driving factor of PV siting decisions. For Africa
and Asia, however, we found that higher fractions
of agriculture, bare land or short natural vegeta-
tion are associated with a higher probability of PV
occurrence compared to other land cover types, such
as urban areas and water, which is in agreement
with e.g. Hernandez et al (2015) and Dupont et al
(2020). Other studies, however, often exclude agricul-
tural areas in their a-priori PV potential assessment
(Aly et al 2017, Tröndle et al 2019, Agyekum et al
2021) because of potential land-use conflicts. In their
empirical regression of small-scale PV occurrence in
Switzerland, Thormeyer et al (2020) show a positive
correlation between agriculture and the number of
PV projects, thus showing that, in reality, the pres-
ence of agriculture is a positive indicator of PV occur-
rence. Hernandez et al (2015) and Kruitwagen et al
(2021) also show that PV facilities do occur in agricul-
tural areas. Kruitwagen et al (2021) suggest that the
presence of PV facilities in agricultural areas might
be driven by the proximity to settlements and thus
infrastructure, rather than the suitability of agricul-
tural land itself. We note that our conclusions could
be affected by the use of aggregated land cover frac-
tions, we did not determine exactly what land cover or
land use is displaced by PV facilities. The latter could
be included in future studies by using inventories such
as that of Kruitwagen et al (2021) and land cover
products of higher resolution (∼10 m, such as Brown
et al 2022). This would also allow to differentiate
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Figure 2. Relative determinant importance for each continent, computed as 1—Spearman rank correlation coefficient of the
original model prediction with one where the relevant determinant is randomized (see section 2.3). Higher values indicate larger
importance. Some determinants are not present in the best model and are thus not given a relative importance. The colours
indicate the sign of the model coefficient of each determinant, i.e. a positive (blue) or negative (red) relation with the response
variable (probability of PV occurrence). For land cover, the coefficients are relative to forest (which is in the intercept of the
models). Note that for Oceania the x-axis is on a different scale.

land cover preferences of different sizes of PV facil-
ities (Kruitwagen et al 2021), which we did not
consider.

In Europe and Asia, stronger differences between
countries appear, possibly related to inter-country
differences in e.g. climate policies. In the Americas
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Figure 3. Partial dependency plots of important determinants (irradiation, travel times, grid distance and fraction of short
natural vegetation,) for all considered continents. Partial dependence is computed by predicting the probability of occurrence
(y-axis) with all determinants set to their mean value except for the determinant of interest (units of which are on the x-axis). For
the purpose of this figure we ignore the spatial random effects when making predictions.

and Oceania, inter-country differences are not appar-
ent, which could be related to the smaller number
of countries in these continents compared to Europe
and Asia. Studies on smaller scales have indicated the
importance of socio-economic and political aspects
for the distribution of PV (e.g. Thormeyer et al 2020,
Balta-Ozkan et al 2021). Here, we assumed that these
aspects were covered by the random country and spa-
tial effects in absence of indicators available at the
global scale.

4.2. Theory vs practice: suggestions for integrated
assessment models
Our regression model provides insights into the
global expansion of PV facilities, which is relevant
for tools exploring long-term energy scenarios, such
as econometric analyses or IAMs. The comparison
of our empirically-derived probability of occurrence
maps to the production cost (COE) maps of the
IMAGE IAM reveal correlations between −0.18 and
0.54.
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Figure 4. Ranked probability of PV occurrence based on our full mixed effect regression models at 0.011◦ resolution. Per
continent the grid cell with the highest probability is given a value of 1, the grid cell with the lowest probability a value of 0.

It is, however, critically important to realize
the conceptual differences between the empirically-
derived probability maps based on the current situ-
ation, and the PV potential calculations as done by
IMAGE. IMAGE identifies potentially attractive areas
for PV deployment rather than predict where PV will

be deployed in the short term. This means that for
instance current national barriers or support for PV
deployment are not taken into account, as this would
prevent IAMs from identifying potentially attractive
sites in case of changes in policy. The same argument
could apply to the exclusion of land-use categories,

9



Environ. Res. Lett. 17 (2022) 114006 J Bosmans et al

Figure 5. 1-PoO (probability of occurrence, bilinearly resampled to 0.5◦, x-axes) versus COE (cost of electricity, $/kWh, y-axis)
per continent. The Spearman rank correlation is given by ρ. For plotting purposes, the y-axis limit is set to 0.35 $/kWh but the full
range of COE is included in the computation of ρ. SI figure S13 shows the spatial distribution of COE. Grid cells excluded from
PV deployment in IMAGE are assigned the maximum COE within the continent+1 $/kWh.

such as (themajority of) agricultural areas, as PV loc-
ations, as in IAMs that would automatically lead to a
reallocation of current land use.

For instance, in IMAGE, a large number of grid
cells is excluded when computing the geographical
potential based on land cover and topography (see

table S3, figure S19). However, some excluded regions
have a high probability of PV occurrence according
to our regression models, resulting in a mismatch
between COE and probability of occurrence. This
could partly be due to country-scale policies, such
as in Germany or the UK, where the number of PV
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facilities is high and, therefore, our results show a high
probability of occurrence.

Overall, our regression models do support the
underlying assumptions for the geographical poten-
tial made in IMAGE and PV potential studies (e.g.
Dupont et al 2020, Gernaat et al 2021, see also
section 4.1): land cover types such as agriculture,
short natural vegetation and bare areas (incl. deserts)
are positive determinants of PV occurrence compared
to forests, and IMAGE assumes that grid cells with
such land cover types are (partly) available for PV
deployment. IMAGE excludes urban areas, high alti-
tudes and protected areas, for which we find negat-
ive coefficients in our regression models. We cannot
assess whether the exact suitability factors assigned
in IMAGE (SI table S4) match the actual distribution
of PV facilities because we aggregated the land cover
types to fractions. So, for instance, in North America,
40% of PV facilities are in grid cells where >50% of
the land cover is agriculture, but we cannot confirm
whether those are positioned upon agricultural land,
or near.

Furthermore, we find that proximity to demand
(travel times) is an important determinant, with
probability of PV occurrence decreasing with increas-
ing travel times (accessibility) and to a lesser extent
with increasing distance to roads and electricity
grids. In the IMAGE COE maps, the proximity to
infrastructure and demand is included indirectly
by including transmission costs per km of distance
to load centres (SI text 4). Previous assessments
with IMAGE did not include transmission costs and
excluded agricultural land from PV deployment (e.g.
Köberle et al 2015); according to our regression
model, it is thus an improvement that these are now
included (e.g. Gernaat et al 2021).

It should also be noted that we computed the
probability of occurrence at a much higher resolu-
tion than that of the PV cost and potential maps in
IMAGE (0.011◦ vs 0.5◦) and IMAGE assigns one land
cover type to each 0.5◦ grid cell. Using land cover frac-
tions (as in our determinants) or moving to higher-
resolution maps would make the IAM’s potential and
production cost maps, and therefore also the energy
scenarios at aggregated scales, more realistic. Higher-
resolution maps would also better represent topo-
graphic determinants (slope and elevation), and thus
in the end create more realistic cost-supply curves.
This could improve scenarios of PV deployment on
which policymakers can act (Creutzig et al 2017).

5. Conclusions

We were able to explain the distribution of utility-
scale PV facilities across the globe with relatively
high accuracy, using a suite of relevant determin-
ants (distance to roads and electricity grid, travel
time, slope, elevation, protected status, irradiation,

and land cover types). Travel time as well as irradi-
ation are the most important determinants overall.
Especially, especially in Europe andAsia, other factors
play a role as well, possibly related to inter-country
differences in socio-economic and political factors.

These insights into the global expansion of PV
facilities are useful for tools exploring energy scen-
arios, such as econometric analyses and IAMs. The
correlation of our probability of occurrence maps to
PV production cost in the IMAGE IAM reveals that as
probability of occurrence increases, costs (per kWh)
decrease, except for Oceania. However, the correl-
ation is not strong, which could be related to the
conceptual differences between probability maps and
production cost maps. Our regression model results
do support the underlying assumptions used when
creating the IAM PV geopotential. Lastly, we suggest
that using higher-resolution maps in IAM potential
and production cost computations may improve PV
deployment scenarios upon which policymakers act.
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