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Abstract: The plasma membrane consists of a diverse mixture of molecules that dynamically assem-
ble into a highly non-random organization. The formation of nanoscale domains in the membrane is
of particular interest as these domains underlie critical cellular functions. Single-molecule tracking
is a powerful method to detect and quantify molecular motion at high temporal and spatial reso-
lution and has therefore been instrumental in understanding mechanisms that underlie membrane
organization. In single-molecule trajectories, regions of temporal confinement can be determined
that might reveal interesting biophysical interactions important for domain formation. However,
analytical methods for the detection of temporal confinement in single-molecule trajectories depend
on a variety of parameters that heavily depend on experimental factors and the influence of these
factors on the performance of confinement detection are not well understood. Here, we present
elaborate confinement analyses on simulated random walks and trajectories that display transient
confined behavior to optimize the parameters for different experimental conditions. Furthermore,
we demonstrate a heatmap visualization tool that allows spatial mapping of confinement hotspots
relative to subcellular markers. Using these optimized tools, we reliably detected subdiffusive behav-
ior of different membrane components and observed differences in the confinement behavior of two
types of glutamate receptors in neurons. This study will help in further understanding the dynamic
behavior of the complex membrane and its role in cellular functioning.

Keywords: single-molecule tracking; confinement; plasma membrane

1. Introduction

The plasma membrane is a highly complex and dynamic environment where a vast
variety of transmembrane proteins are embedded in a mixture of over a hundred differ-
ent types of lipids. Key to understanding membrane organization is determining how
components are organized and move within the lateral plane of the membrane [1]. The
development of single-molecule tracking techniques has been instrumental in quantify-
ing the diffusion of membrane components in living cells and has provided important
new insights into how the dynamic nanoscale organization of membrane components
contributes to cellular functions. In contrast to other techniques, single-molecule tracking
experiments provide trajectories that describe the motion of individual molecules, rather
than the average, ‘ensemble’ behavior of a population of molecules. Careful analysis of
single-molecule trajectories can therefore reveal a wealth of information on the dynamic
behavior of molecules, the biophysical properties of the cellular environment, and the com-
partmentalization of molecules. Single-molecule trajectories can be described as directed,
random (Brownian), or confined motion. Confinement zones, regions where a molecule
remains longer than expected from a Brownian diffusant, are of particular biological in-
terest. Confinement zones could indicate organizational hotspots where proteins undergo
transient binding to intracellular scaffold molecules or are trapped by the underlying
membrane cytoskeleton. Examples of such organizational hotspots that are relevant for
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biological processes are lipid domains [2,3], neurotransmitter receptor nanodomains [4–7],
G-protein-coupled receptor hotspots [8] and ion channel nanoclusters [9,10]. There is thus
a need for analytical tools that reliably detect, measure, and visualize confinement zones.

Several studies have reported on strategies to analyze and detect confined behavior in
single-molecule trajectories [11–18]. In fact, Einstein formulated a theory about Brownian
diffusants already in 1905, where he argued that the displacement of a Brownian particle
is proportional to the square root of the elapsed time [19]. Confinement is defined as the
portion of a trajectory that deviates from what a random walk would look like. Therefore, it
is essential to know how long a Brownian diffusant would stay in a certain region. Saxton
defined the probability that a molecule will stay in a region by the following equation:
log ψ = 0.2048− 2.5117

(
D× t/R2) where D is the diffusion coefficient, t the period of

time, and R the radius of the region [20]. Simson et al. translated this probability into the
confinement index, which is inversely related to the probability that a Brownian molecule
will stay in a certain area [11]. When this probability during the trajectory becomes lower,
the confinement index will increase, indicating a period of transient confinement within
the trajectory. This confinement analysis has been used extensively by many labs to detect
temporal confinement in single-molecule trajectories [21–33].

This confinement analysis depends on different manually defined parameters that
need to be optimized to reliably detect confinement. These parameters include for instance
the window of frames to analyze, threshold for the confinement index, and the minimal
time a molecule should be in this state to be considered confined. Determining the optimal
values for each of these parameters, however, is not trivial and varying individual parame-
ters can have a large impact on the detection power of the analysis. Therefore, in this study,
we set out to understand the influence of individual parameters on the performance of
the confinement analysis and tested the robustness of this analysis on simulated random
walks and trajectories that display transient confined behavior. This allowed us to optimize
parameters and balance the detection of false-negatives and false-positives. Furthermore,
we developed a tool to visualize confinement areas in heatmaps that allows spatial mapping
of confinement hotspots relative to subcellular markers. To test the performance of this
analysis, we applied our analysis on experimental data and reliably detected subdiffusive
behavior for a variety of membrane components. Lastly, we found that two neuronal
glutamate receptors, mGluR5 (metabotropic glutamate receptor 5) and AMPA-type glu-
tamate receptors, reveal different confinement properties. This study will help in further
understanding the dynamic behavior of membrane components and their role in membrane
organization.

2. Materials and Methods
2.1. Simulations

To simulate 2D random walks, we tested two different simulation methods (Figure S1,
see Supplementary Materials). In the first model (model 1), every consecutive coordinate
is drawn from a Gaussian distribution based on the diffusion coefficient and the interval
time between the steps: step =

√
2× D× ∆t× [x y] where x and y are normally distributed

numbers, generated by the MATLAB function randn. In the second model (model 2), every
step has the same step size derived from the set diffusion coefficient and interval time,
however the angle and thus the direction of the step is random: step =

√
4× D× ∆t×

[cos(θ) sin(θ)] where θ is a random angle between 0 and 2π, generated using MATLAB
(MathWorks, Natick, MA, USA, R2021B) function rand (Figure S1A). The MSD curve of
model 2 showed less variation in the curve, however the estimated diffusion coefficient is
for both models highly similar to the set diffusion coefficient for the simulation. We applied
subsampling to the simulated tracks so that every 100 steps the coordinates were saved in
the trajectory. After subsampling, the distributions of the diffusion coefficients were almost
identical for both models (Figure S1B) and for the rest of the simulations, we used model 2.

We also tested two different approaches for simulating transient confined trajectories.
The principal idea behind the simulations is that the molecule cannot escape a simulated
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circle for as long as it is simulated to be confined. The first approach is the ‘reflect’ model,
where the molecule bounces back from the simulated, circular confinement zone if the
next step would be outside the circle (Figure S1C, left panel). The second approach is the
‘stick’ model, where the molecule sticks at the border at the place where it would otherwise
escape the circle (Figure S1C, right panel). The ‘reflective’ model appeared to be more
stable when varying the step sizes in comparison to the ‘stick’ model. When increasing the
step size in the simulations, the plateau in the MSD curve reached higher values for the
‘stick’ model, while it remained the same for the ‘reflect’ model (Figure S1D). Therefore, we
used the reflective model for the rest of the confinement simulations.

2.2. Measure Power of Detection

The power of detection was measured as the percentage of confined displacements,
meaning all steps in all trajectories simulated that are in a period of detected confinement,
i.e., above threshold Lc for period of time longer than Tc.

2.3. Parameters Used in Simulations

Simulations were performed to generate trajectories of 100 frames and confinement
periods of 0, 15, or 50 frames, with diffusion coefficient of 0.05 µm2/s and interval time of
0.02 s unless reported otherwise. Basic simulation settings: D = 0.05 µm2/s, Nsteps = 10,000,
subsampling = 100, dt = 0.02 s, dt_sim = 0.0002 s. Basic confinement parameters: Lcm = 5.5,
Sm = 15, Smin = 4, Tc = 0.2 s, α = 0.5, npointsMSDset = 10, Rconf = 0.04 µm (Table S1).

2.4. Animals

All animal experiments were performed in compliance with the guidelines for the
welfare of experimental animals issued by the Government of the Netherlands (Wet op
de Dierproeven, 1996) and European regulations (Guideline 86/609/EEC). All animal
experiments were approved by the Dutch Animal Experiments Review Committee (Dier
Experimenten Commissie; DEC), performed in line with the institutional guidelines of
Utrecht University.

2.5. Primary Neuron Cultures and Transfections

Dissociated hippocampal cultures were prepared from embryonic day 18 (E18) Janvier
Wistar rat brains of both genders [34]. Dissociated neurons were plated on Ø18-mm cov-
erslips coated with poly-L-lysine (37.5 µg/mL, Sigma-Aldrich, St. Louis, MO, USA) and
laminin (1.25 µg/mL, Roche Diagnostics, Mannheim, Germany) at a density of 100,000 neu-
rons per well. Neurons were grown in Neurobasal medium (NB) supplemented with 1%
penicillin/streptomycin (Gibco), 2% B27 (Gibco), and 0.5 mM L-glutamine (Gibco, Grand
Island, NY, USA) at 37 ◦C in 5% CO2. From days in vitro (DIV) 1 onward, medium was
refreshed weekly by replacing half of the medium with BrainPhys Neuronal Medium (BP,
STEMCELL Technologies, Vancouver, Canada) supplemented with 2% NeuroCult SM1
(STEMCELL Technologies, Vancouver, Canada) and 1% penicillin/streptomycin. At DIV14,
neurons were transfected with indicated constructs using Lipofectamine 2000 (Invitrogen,
Carlsbad, CA, USA). For each well, 1.8 µg DNA was mixed with 3.3 µL Lipofectamine 2000
in 200 µL BP, incubated for 30 min at room temperature (RT). Then, 400 µL conditioned
medium was transferred to a new culture plate and replaced by 260 µL BP supplemented
with 0.5 mM L-glutamine. The DNA mix was added to the neurons and incubated at 37 ◦C
in 5% CO2. After 1 to 2 h, neurons were briefly washed with BP and transferred to the
new culture plate with conditioned medium supplemented with an additional 400 µL BP
with SM1 and penicillin/streptomycin and kept at 37 ◦C in 5% CO2. All experiments were
performed using neurons at DIV18-22.

2.6. DNA Plasmids

All plasmids have been described before in previous studies: Homer1c-mCherry [35],
SEP-GluA2 [4], SEP-mGluR5 [35]. The GFP-GPI and mHD-GT46 constructs are kind
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gifts from Dr. Ewers (Institute for Chemistry and Biochemistry, Free University Berlin,
Germany; [36]).

2.7. Single-Molecule Tracking

Single-molecule tracking was performed on the Nanoimager S from ONI (Oxford
Nanoimaging; ONI, Oxford, UK), equipped with a 100×/NA 1.4 oil immersion objective
(Olympus Plan Apo, Hamburg, Germany), an XYZ closed-loop piezo stage, and with
471-, 561-, and 640-nm wavelength excitation lasers. Fluorescence emission was detected
using a sCMOS camera (ORCA Flash 4, Hamamatsu, Hamamatsu City, Japan). Stacks of
5000 frames were acquired at 50 or 100 Hz with oblique illumination using the 640-nm laser.
NimOS software (version 1.18.3) from ONI was used for localization and drift correction
was performed. Neurons were imaged in extracellular imaging buffer containing 120 mM
NaCl, 3 mM KCl, 10 mM HEPES, 2 mM CaCl2, 2 mM MgCl2, and 10 mM glucose, pH
adjusted to 7.35 with NaOH. The GFP/RFP-booster Atto647N (Chromotek, Martinsried,
Germany) was added before image acquisition in a concentration of 1:200,000 in extracel-
lular imaging buffer while blocking with 1% BSA. For the tracking of DOPE, we added
Atto647N-DOPE (ATTO-TEC, Siegen, Germany) in complex with defatted BSA [37] before
image acquisition at a final concentration of 6.5 nM. We used a minimum track length of
30 frames (10- or 20-ms interval) for visualization and quantification. Postsynaptic density
(PSD) masks were created from a stack of 30 frames obtained for Homer1c-mCherry using
the 561 nm excitation laser as described in [38].

2.8. Single-Molecule Tracking Analysis

Using MATLAB (version 2021b), molecules with a localization precision <50 nm
were selected for analysis. Tracking was achieved using custom algorithms in MATLAB
described previously with a tracking radius of <500 nm [39]. The first three points of the
MSD with the addition of the value 0 at MSD(0) were used to fit the slope using a linear fit.
Tracks with a negative slope were not used for further analysis. The diffusion coefficient
was estimated based on the fit using the formula: MSD = 4× D × ∆t. Only tracks of
at least 30 frames were selected for further analysis. Tracks were classified as immobile

when the ratio between the radius of gyration and mean step size (
√
π/2·radius o f gyration

mean stepsize )
was smaller than 2.11 [40]. The PSD mask was created based on the maximum intensity
projection of Homer1c-mCherry. Peaks in intensity were detected, after which a FWHM-like
boundary was defined for each PSD.

Transient confinement analysis on mobile trajectories was done in MATAB using
slightly modified scripts from a previously published MATLAB implementation [21]. As
modifications, we included the last segments of the trajectory shorter than Sm in the averag-
ing to improve confinement detection at the end of a trajectory (Figure S2A). Furthermore,
the point in the trajectory is the middle of the sliding window of the D over time instead
of the beginning of the sliding window, for a better correlation with L over time (Figure
S2B). Lastly, we corrected the ln into the log10 for defining confinement index L. As D, the
maximum Dinst was used, estimated for each sub-trajectory of ∆10. Parameters used in
the analysis are: Lc = 5.5, Sm = 15, α = 0.5, Tc = 0.2 s (Table S1). The confinement zones
are further analyzed for size and duration of confinement and diffusion coefficient in
and outside confinement zones. Confinement maps were created based on the detected
confinement radius for each confinement zone. Each confinement zone was stored as a
two-dimensional Gaussian distribution with the radius as FWHM. The final matrix was
plotted with a color-code, where higher values indicate confinement hotspots because there
are multiple Gaussians on top of each other.

2.9. Statistical Analysis

Statistical significance was tested using a Student’s t-test when comparing two groups.
Statistical tests with a p-value below 0.05 were considered significant. Significance is
indicated as follows: p < 0.05 is indicated by *, p < 0.01 by **, and p < 0.001 by ***. Analysis
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was performed on neurons originating from three individual preparations of hippocampal
neurons. The number of neurons used for analysis is indicated as n. Statistical analysis and
graphs were prepared in GraphPad Prism (version 9, Graphpad Software, San Diego, CA,
USA) and figures were generated in Adobe Illustrator 2022 (Adobe Systems, San Jose, CA,
USA).

3. Results
3.1. Detection of Transient Confinement within Single-Molecule Trajectories

To detect transient confinement within single-molecule trajectories, Simson et al. [11]
developed a statistical framework defining areas where a diffusing molecule remains
significantly longer than expected if it would undergo Brownian motion. The probability ψ
that a molecule stays within a bounded region for a set period of time has been defined by
Saxton as:

log ψ = 0.2048− 2.5117
(

Dt/R2
)

(1)

with D being the diffusion coefficient, t the period of time, and R the radius of the region [20].
Simson et al. [11] used this probability to derive the confinement index L, which is inversely
related to ψ:

L =

{
− log(ψ)− 1) ψ ≤ 0.1
0 ψ > 0.1

(2)

High values of L are thus indicative of non-random confinement and L = 0 in cases
of random diffusion. The calculation of L is inherently based on a number of variables
that will influence the detection power of the confinement analysis. To correctly interpret
the results of this analysis, here we aimed to understand the influence of these different
variables on the detection power of the analysis. The analysis in this study is based on
the MATLAB implementation from Ménchon et al. [21] with some modifications (see
Section 2.8; Figure S2). To define the confinement index over time for individual trajectories,
a trajectory is first divided into segments with minimum length Smin and maximum length
Sm (Figure 1A) and for each individual segment, L is calculated as described above. As
such, these parameters are thus expected to determine the spatial and temporal sensitivity
of the analysis. The radius R of the segment is defined by the maximum distance between
one of the points and the starting point of the segment. The diffusion coefficient D used
in the formula is the same for all the segments in the trajectory and should represent
the diffusion coefficient of the molecule if it would move freely. Then, for each point in
the trajectory, L is averaged over all the segments that include that point. Note, that as a
consequence, the averaged L for points at the beginning and the end of the track is averaged
over fewer segments than points in the middle. As can be seen for a simulated trajectory
with a short period of transient confinement (Figure 1B), L values are higher during the
confined period, which is accompanied by a temporal decrease in the diffusion coefficient
(Figure 1C). Confined periods within a trajectory can then be defined by selecting periods
in which all points are above the critical minimum L (Lcm) for a duration longer than a
critical period of time (Tc) (Figure 1C).

When increasing the diffusion coefficient D of simulated molecules, it can be seen that
because for a molecule with a higher D it is less likely that it would stay in the same area
for the same time, relatively higher L values are calculated (Figures 1D and S3A). On the
other hand, when D remains constant but the region in which the molecule is observed
is larger, the calculated confinement index becomes lower, because it is more likely that
a freely moving molecule would stay in a larger area (Figures 1E and S3B). Lastly, if we
only increase the observed time window (t)—which is represented by Smin and Sm—while
keeping the other variables the same, a higher confinement index will be detected because
it is less likely that a Brownian molecule with that diffusion coefficient would stay in the
same area for a longer time (Figure 1F).
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played that will be included in the confinement index of frame 1 (blue), 9 (orange), and 15 (green). 
(B) Simulated trajectory with a confinement zone with radius of 40 nm. Color-coded for time and 
confined period. Scale bar, 0.2 μm. (C) Diffusion coefficient (top) and confinement index (bottom) 
over time of the simulated trajectory in (B). Color-coded for time and confined period. Tc and Lcm 
indicate the critical time period and critical L threshold used to detect confinement periods. (D) 
Average confinement index over time for 100 simulated trajectories with three different diffusion 
coefficients. Simulated confined period is indicated with the gray box. Illustrations display for each 
condition one example segment of the track in the corresponding color. Simulated confinement ra-
dius (Rconf) is 0.04 μm and Sm is 15 frames. (E) Average confinement index over time for 100 simu-
lated trajectories with three different simulated confinement radii. Simulated confined period is in-
dicated with the gray box. Illustrations display for each condition one example segment of the track 
in the corresponding color. Diffusion coefficient is 0.05 μm2/s and Sm is 15 frames. (F) Average con-
finement index over time for 100 simulated trajectories with 3 different segment lengths (Sm = Smin). 
Simulated confined period is indicated with the gray box. Illustrations display for each condition 
one example segment of the track in the corresponding color. Diffusion coefficient is 0.05 μm2/s and 
Rconf is 0.04 μm. Data are represented as means ± SEM. 
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Figure 1. Influence of variables in confinement index formula. (A) Schematic diagram of how
trajectories are divided into segments with different lengths. In this simplified example, the minimal
segment length (Smin) is 4 frames and the maximum segment (Sm) is 6. All the segments are
displayed that will be included in the confinement index of frame 1 (blue), 9 (orange), and 15 (green).
(B) Simulated trajectory with a confinement zone with radius of 40 nm. Color-coded for time and
confined period. Scale bar, 0.2 µm. (C) Diffusion coefficient (top) and confinement index (bottom) over
time of the simulated trajectory in (B). Color-coded for time and confined period. Tc and Lcm indicate
the critical time period and critical L threshold used to detect confinement periods. (D) Average
confinement index over time for 100 simulated trajectories with three different diffusion coefficients.
Simulated confined period is indicated with the gray box. Illustrations display for each condition one
example segment of the track in the corresponding color. Simulated confinement radius (Rconf ) is
0.04 µm and Sm is 15 frames. (E) Average confinement index over time for 100 simulated trajectories
with three different simulated confinement radii. Simulated confined period is indicated with the gray
box. Illustrations display for each condition one example segment of the track in the corresponding
color. Diffusion coefficient is 0.05 µm2/s and Sm is 15 frames. (F) Average confinement index over
time for 100 simulated trajectories with 3 different segment lengths (Sm = Smin). Simulated confined
period is indicated with the gray box. Illustrations display for each condition one example segment
of the track in the corresponding color. Diffusion coefficient is 0.05 µm2/s and Rconf is 0.04 µm. Data
are represented as means ± SEM.
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3.2. Optimizing Input Parameters for Accurate Transient Confinement Zone Detection in
Single-Molecule Trajectories

After considering the influence of the different variables in the confinement index cal-
culation, we aimed to optimize the user-defined parameters for the confinement detection
to minimize the false positive rate while maximizing the true detection rate. False positives
can be detected because L is not zero: even in random walks fluctuations in L could be
inadvertently interpreted as confinement.

First, we wanted to define what effect the input parameters would have on incorrectly
detecting confinement in random walks, therefore we simulated random walks with
parameters comparable to experimental situations (D = 0.05 µm2/s, dt = 0.02 s, 100 frames)
and started off with a maximum window size (Sm) of 15 frames. Lowering the minimum
L threshold (Lcm) increased the percentage of false positives detected in random walks,
similar to decreasing the critical period of time (Tc) (Figure 2A). Changing the maximum
window size (Sm) did not lead to a large change in the detection of false positives (Figure 2B).
Thus, to achieve the lowest number of false positives, Lcm and Tc should be set relatively
high, whereas the value of Sm is of less significance.

Next, we investigated the effect of the input parameters on the detection of true
confinement. Therefore, we simulated trajectories with confined periods and parameters
comparable to experimental situations (D = 0.05 µm2/s, dt = 0.02 s, 100 frames, confined
period of 15 or 50 frames and simulated confinement radius (Rconf ) of 0.04–0.06 µm).
Increasing Lcm lowered the detection power of true confinement (Figure 2C). Furthermore,
in contrast to the effect on random walks, the time window plays an important role in the
correct detection of true confinement. The power of detection increased with larger Sm
when the confinement period was equally long, whereas the power of detection decreased
if the confinement period was shorter than Sm (Figure 2D). Choosing this maximum time
window will also affect the power of detecting multiple confinement zones after each
other. Increasing the Sm to achieve increased power of detection could lead to combining
multiple confinement zones because L will not go below the threshold in between the
zones (Figure 2E, orange and green traces). Taken together, to achieve high power of
detection, Lcm should not be too high and the value for Sm will affect the resolution at
which confinement zones can be detected. While higher Sm values increase detection of
confinement, it reduces the power to detect shorter periods of confinement that, at high Sm
values, will be averaged out or combined with other confinement zones.

Because the diffusion coefficient can change over the course of a trajectory, Ménchon
et al. introduced another L threshold where the threshold is defined by the average L of a
trajectory multiplied by a factor α that ranges from 0 to 1 [21]. It is important to consider
the effect of using this threshold definition as it can both increase and decrease the power
of detection. For example, when the average L is high because of two highly confined
regions, Lc will be higher than Lcm, resulting in not detecting a less confined third region
(Figure 2F). On the other hand, when there are highly confined zones—possibly caused by
a lower diffusion coefficient—shortly after each other, using the threshold Lc will separate
the two zones, whereas Lcm would be too low (Figure 2G).
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Dotted line indicates 0.1% false positives. Sm is 15. Five independent simulations of 100 trajectories. 

Figure 2. Influence of user-defined parameters on the confinement analysis. (A) Effect of minimal
critical L (Lcm) and critical time (Tc) on percentage of false positives in simulated random walks.
Dotted line indicates 0.1% false positives. Sm is 15. Five independent simulations of 100 trajectories.
Data are represented as means ± SEM. (B) Effect of Sm on percentage of false positives in simulated
random walks. Dotted line indicates 0.1% false positives. Lcm is 5.5 and Tc is 0.2 s. Five independent
simulations of 1000 trajectories. Data are represented as means ± SEM. (C) Effect of Lcm on the
percentage of detected confined displacements in trajectories simulated to be confined for 50 of the
100 frames. Sm = 15, Tc = 0.2 s, Rconf = 0.04 µm. Five independent simulations of 1000 trajectories.
Data are represented as means ± SD. (D) Effect of Sm on correct confinement detection in trajectories
simulated to be confined 15 or 50 of the 100 frames. Lcm = 5.5 and Tc = 0.2 s. One hundred simulated
trajectories per condition. (E) Effect of Sm on the ability to discriminate between multiple confinement
zones shortly after each other. Lcm = 5.5 and Rconf = 0.03 µm, 100 trajectories. Simulated confined
periods are indicated with the gray boxes. Data are represented as means ± SEM. (F) Negative
effect of ‘α * average L’ as Lc. Single simulated trajectory with three confinement zones. The middle
confinement zone does not reach the threshold. Rconf = 0.015 µm and 0.03 µm and α = 0.5. Simulated
confined periods are indicated with the gray boxes. (G) Positive effect of ‘α * average L’ as Lc. Single
simulated trajectory with two confinement zones. With Lcm as threshold, both confinement zones
would have been merged into one. Rconf = 0.03 µm and α = 0.5. Simulated confined periods are
indicated with the gray boxes.

3.3. Estimated Diffusion Coefficient Can Be Influenced by Track Length

One important parameter in the confinement index formula is the diffusion coefficient.
This is the diffusion coefficient of the molecule if it could move freely. However, setting
this diffusion coefficient is not trivial. One approach is to use the maximum instantaneous
diffusion coefficient (Dinst) per trajectory, assuming that the molecule undergoes Brownian
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diffusion during at least part of the trajectory [21]. To calculate the maximum Dinst of a
trajectory, we need to determine how the diffusion coefficient changes along the trajectory.
Therefore, the Dinst was estimated based on the linear part of the MSD versus time lag curve
for each window of ten steps over the complete trajectory and the maximum Dinst was used
as the D of that trajectory. For this short window, the uncertainty in estimating the diffusion
coefficient could be relatively high, but it allows for the detection of changes in the diffusion
coefficient within individual trajectories. Another approach would be to test against a set
diffusion coefficient chosen a priori that would resemble the Brownian diffusion of the
molecule of interest. This value could for instance be deduced from independent tracking
experiments, taking the diffusion coefficient of a freely moving population of trajectories as
a reference value [22,28,29].

We investigated the effect of the different approaches in defining the Brownian diffu-
sion coefficient on the false positive rate and confinement detection. For simulations, it is
possible to test against a set diffusion coefficient and we compared this approach (Dset) to
using the maximum instantaneous diffusion coefficient (Dmax). An interesting observation
was that the false positive rate depended on the length of the simulated tracks for the
Dmax approach whereas this was stable with Dset (Figure 3A,B). This was caused by a
higher Dmax for the longer tracks, probably because there is a higher chance that there
is a peak in the diffusion coefficient over time when there are more steps in the trajectory
(Figure 3C). Similarly, in confined tracks with the same confinement zone but a longer
total length, the confinement index during the period of confinement was higher with
the Dmax method, whereas with Dset, the confinement index was similar for all track
lengths (Figure 3D,E). This difference could also be explained by the higher Dmax values
for the longer tracks (Figure 3F). To improve the Dmax method, we tested the effect of
including more steps in the sliding window for the estimation of Dinst. That resulted in
a lower Dmax because the peaks are averaged out. However, Dmax still increases with
longer track lengths (Figure 3G). A third option (Dinst) would be to use the estimated
instantaneous diffusion coefficient per track as the D in the confinement formula as used
by Simson et al. [11]. However, although based on only the first three points of the MSD
versus time lag curve, Dinst is heavily influenced by confinement in the trajectory, whereas
Dmax only declined when the largest part of the trajectory is confined (Figure 3H). Thus,
using Dinst per trajectory negatively affects the ability to detect transient confinement. Par-
ticularly, when a track was confined for more than 50% of the time, the power of detection
dropped dramatically (Figure 3I). To conclude, using a set diffusion coefficient as D in
the confinement formula appears to be the most reliable method, however this is under
the assumption that the Brownian diffusion coefficient of the molecule is known. The
alternative method would be using the Dmax, where the diffusion of the whole trajectory is
tested against the fastest segment in the trajectory, thus investigating changes in diffusion
behavior over the course of the trajectory.

3.4. Detection Limits in the Confinement Analysis

Next, we wanted to understand the detection limits of the confinement analysis to
interpret the results correctly. Can similarly sized confinement zones still be detected for
molecules with different diffusion coefficients? Purely based on the theoretical formula
behind the confinement analysis, it is only possible to detect a large confinement zone
if the diffusion coefficient is high enough and the time is long enough (Figure 4A,B).
Only then will the confinement index L still reach the threshold when the confinement
radius is large. In other words, the ratio between the possible explored area of a random
diffusing molecule (D × t)—with given diffusion coefficient and time—and the observed
explored area (R2) should be high enough to be considered confined (Figure 4C). To
study the limits of the confinement analysis in detecting confinement zones of specific
sizes, we simulated confined tracks with varying diffusion coefficients (0.01–1 µm2/s) and
confinement radii (Rconf, 20–200 nm). Next, we ran the transient confinement analysis
on these simulations and found the fraction of confinement zones that were detected and
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their detected confinement radius (Figure 4D,E). It is clear from the results that the larger
confinement zones cannot be detected in tracks with low diffusion coefficients. Such a
molecule with a low diffusion coefficient could reside in a larger area without deviating
from a Brownian molecule in their behavior.
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Figure 3. Effect of diffusion coefficient in the confinement index formula on confinement detection.
(A,B) Effect of track length on the percentage of false positives in random walks using Dset (A) or
Dmax (B) as diffusion coefficient in the confinement index formula. Five independent simulations of
1000 trajectories per condition. Data are represented as means ± SEM. (C) Effect of track length on
Dmax. One hundred simulated random walks per condition. Data are represented as means ± SD.
(D,E) Effect of track length on the confinement index over time using Dset (D) or Dmax (E) as diffusion
coefficient in the confinement index formula. 100 confined trajectories per condition, Rconf = 0.02 µm.
Data are represented as means ± SEM. (F) Violin plots of Dmax values from (E). (G) Effect of the
length of the segments used for estimating Dinst within trajectories on Dmax. (H) Effect of the
percentage of confinement within a trajectory on the estimated diffusion coefficient of the whole
trajectory (Dinst) or the Dmax. One thousand trajectories per condition, Rconf = 0.04 µm. Data are
represented as means ± SD. (I) Effect of the percentage of confinement within a trajectory on the
detected confinement within the trajectory using Dmax, Dinst or Dset. Dotted line indicates set
confinement = detected confinement. One thousand trajectories per condition, Rconf = 0.04 µm.
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Figure 4. Detection limits of the confinement analysis. (A) Theoretical effect of the confinement radius
and diffusion coefficient on the confinement index that can be detected. Observing time = 16 frames
or 0.3 s. Dotted line indicates Lcm of 1.5 as used with Dset. (B) Theoretical effect of the confine-
ment radius and observing time on the confinement index that can be detected. D = 0.1 µm2/s.
(C) Theoretical relation between D × t/R2 and the confinement index. (D) Effect of the diffusion
coefficient in trajectories on the ability to detect a range of different simulated confinement radii
(Rconf ). (E) Effect of the diffusion coefficient in trajectories on the detected confinement radius given
the same range of confinement radii in (D) as input for the simulations. (F) Effect of the timing of
simulated confinement periods and Rconf on the correct detection of confinement. Fifteen frames
confined of total 100 frames per simulated track. Five independent simulations of 100 trajectories per
condition. Dotted line indicates correct confinement detection. Data are represented as means ± SD.

Additionally, the first and last points in the confinement profile of a track are averaged
over a lower number of segments. Therefore, we tested whether the timing of a confinement
zone would affect the power of detection. We simulated confinement zones with varying
radii and duration of 15 or 50 frames at the beginning, middle, and end of the track, and
observed no considerable differences in the detected confined displacements (Figures 4F
and S4). Thus, the detection of confinement in this analysis is not limited by the timing of
the confinement periods.

3.5. Influence of Localization Error and Frame Rate on Confinement Detection Accuracy

In single-molecule tracking analysis, the first step is to localize the sub-pixel position
of fluorescence emission events of single molecules. Generally, the point spread function of
single-molecule emission spots can be fitted with a two-dimensional Gaussian function. The
uncertainty inherent to the fitting routine, or localization error, influences the accuracy of
the detected single-molecule trajectories. To investigate the effect of the localization error on
the performance of the confinement detection, we simulated random walks and confined
tracks with no error, 20 nm, and 50 nm localization error. We found that in random walks, a
larger localization error resulted in fewer false positives (Figures 5A and S5A). Thus, the Lcm
threshold could be lowered to achieve the same detection precision. This can be explained by
R2 being, on average, larger with a higher localization error. However, a higher localization
error also resulted in a dramatic decrease in the detection of both short and longer confinement
periods, even with the lowered Lcm threshold (Figures 5B,C and S5B,C).
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Figure 5. Influence of experimental parameters on confinement detection. (A) Effect of localization
error on the percentage of false positives detected in random walks. Three independent simulations of
1000 trajectories per condition. Data are represented as means ± SD. (B,C) Effect of localization error
on the percentage of detected confined displacements in tracks simulated to be confined for 15 (B) or
50 (C) of the 100 frames. Rconf = 0.04 µm. Three independent simulations of 1000 trajectories. Data
are represented as means ± SD. (D–F) Confinement index of 5 random trajectories over time with
(D) Sm = 15, dt = 0.02 s and 100 frames, (E) Sm = 15, dt = 0.01 s and 200 frames, (F) Sm = 30, dt = 0.01 s
and 200 frames. (G–I) Confinement index of 5 confined trajectories over time with (G) Sm = 15,
dt = 0.02 s and 100 frames, (H) Sm = 15, dt = 0.01 s and 200 frames, (I) Sm = 30, dt = 0.01 s and
200 frames. Rconf = 0.04 µm. (J) Corresponding average confinement index values of (G–I).
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Another experimental parameter we considered is the frame rate of the acquisition that
determines the time resolution in the single-molecule trajectories. It is important to adjust
the parameters of the analysis accordingly, especially when comparing different experi-
ments with different experimental parameters. Using the same maximum segment window
with a smaller interval time will lead to narrower peaks in random walks (Figure 5D,E).
Moreover, for a similar long period of confinement, the average confinement index will be
lower with a smaller interval time and the same segment window (Figure 5G,H). Chang-
ing the interval time can be corrected by adjusting the maximum segment window (Sm)
accordingly to obtain a more similar confinement index over time profile (Figure 5F,I,J).

3.6. Spatial Mapping of Transient Confinement of Membrane Probes

Next, we wanted to test the robustness of the confinement analysis on experimental
single-molecule tracking data. We therefore focused on the neuronal membrane, where the
dynamic behavior of individual membrane components collectively contributes to the effi-
cient transfer of synaptic signals [41]. Subsynaptic domains enriched in glutamate receptors
and scaffolding molecules were found to be aligned with the presynaptic glutamate release
to optimize synaptic transmission, which emphasizes the importance of the heterogeneous
organization of the neuronal membrane [42,43]. First, we developed a visualization tool to
map the detected confinement zones resulting in a spatial heatmap of confinement hotspots.
Such a heatmap can be displayed together with other cellular markers to locate confinement
hotspots relative to specific subcellular domains. To create such a heatmap, we plotted
every confinement zone as a Gaussian with amplitude 1 and the radius of the confinement
zone as the FWHM (Figure 6A). Overlapping confinement zones would result in higher
amplitude values, resulting in a heatmap that is color-coded for the amplitude values.
Neurons were transfected with GFP-GPI, and we performed single-molecule tracking
experiments using an anti-GFP nanobody coupled to Atto647N (Figure 6B). After tracking
the molecules, we performed the transient confinement analysis on the mobile trajectories
to obtain information on the location and timing of confinement zones in experimental
trajectories (Figure 6C,D). Finally, we plotted the trajectories and confinement heatmap in
combination with a marker of excitatory synapses (Homer1c-mCherry) (Figure 6E–J). We
observed confinement of GFP-GPI in the axon, dendrite, and spines, where confinement
does not seem to be specifically enriched at synaptic locations. Overall, this visualization
tool allows for the detection of areas with high levels of transient confinement in a cellular
context, by mapping the confinement zones relative to cellular markers.

To address the effect of changing parameters in the confinement analysis on the
resulting confinement measures in experimental datasets, we applied the confinement
analysis on a single-molecule tracking acquisition of GFP-GPI in the neuronal membrane.
Lowering the Lcm increased the detected confinement radius, the diffusion coefficient inside
confinement zones, and resulted in more trajectories with detected confinement (number of
tracks with confinement for Lcm 3: 381, Lcm 4: 309, Lcm 5.5: 219, Figures 7A and S6A). On
the other hand, varying Tc did not affect the average detected confinement radius or the
diffusion coefficient inside confinement zones, although with higher Tc, fewer trajectories
with detected confinement were found because of the stricter thresholds (Tc 0.1: 311, Tc 0.2:
219, Tc 0.3: 139, Figures 7B and S6B). Lastly, a longer time window resulted in the detection
of larger confinement zones and a higher diffusion coefficient inside confinement zones,
but did not noticeably affect the number of trajectories with detected confinement (Sm 5:
181, Sm 15: 219, Sm 30: 177, Figures 7C and S6C).
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Figure 6. Spatial visualization of confinement. (A) Gaussian function used in confinement map
with amplitude 1. FWHM is the confinement radius. Color-coded for amplitude. (B) GFP-GPI
anti-GFP nanobody Atto647N trajectories in axon and dendrite. Boxes mark location of zooms in
(E–J). Scale bar, 2 µm. (C) Example experimental GPI trajectory with 5 confinement zones indicated
with the grey circles. Color-coded for time. Scale bar, 200 nm. (D) Diffusion coefficient (top) and
confinement index (bottom) over time of the experimental trajectory in (C). Color-coded for time and
the detected confined periods are indicated with the gray boxes. (E–J) Zoom of trajectories in the
axon (E–G) and dendrite (H–J). (E,H) All trajectories displayed in different colors. (F,I) Trajectories
with confined periods. Confinement zones are indicated with the black circles. (G,J) Confinement
map indicating areas with multiple confinement zones close to or on top of each other. Homer1c PSD
mask is indicated in gray in the dendrite. Scalebar, 1 µm.
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Figure 7. Confinement analysis on experimental trajectories. (A–C) Effect of user-defined parameters
on the detected confinement radius. (A) Vary critical L, Lcm. Number of trajectories with confinement:
Lcm 3: 381, Lcm 4: 309, Lcm 5.5: 219. (B) Vary critical time, Tc. Number of trajectories with confinement:
Tc 0.1: 311, Tc 0.2: 219, Tc 0.3: 139. (C) Vary maximum segment length, Sm. Number of trajectories with
confinement: Sm 5: 181, Sm 15: 219, Sm 30: 177. (D–F) Confinement zones detected for membrane
probes: GluA1, GT46, GPI, and DOPE. (D) Detected confinement radius for each probe. (E) Estimated
diffusion coefficients for each probe. (F) Example trajectories with their detected confinement zone.
Interval times during the acquisition are indicated. Scale bar, 200 nm. (G–J) (G) Average estimated
diffusion coefficient inside confinement zones, (H) average estimated diffusion coefficient outside
confinement zones, (I) average dwell time, (J) average total track length for mGluR5 (n = 20) and
GluA2 (n = 17; unpaired t-test) (left), and corresponding cumulative frequency distribution (right).
(I) Dotted line indicates dwell time threshold. (J) Dotted line indicates minimum track length
threshold. Data are represented as means ± SEM. * p < 0.05, *** p < 0.001, ns, p > 0.05.
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Furthermore, we wanted to investigate the possibility to compare confinement of
different membrane probes with different diffusional properties. Therefore, we compared
the confinement behavior of (1) the AMPAR subunit GluA2 with (2) an artificial protein
with single-spanning transmembrane domain (GT46), (3) GFP-GPI, and (4) the phospho-
lipid DOPE in neurons. We detected transient confinement in the trajectories of all four
membrane probes, but considerably larger confinement zones were detected for DOPE in
comparison to GluA2 (Figure 7D). This difference could be explained by their difference in
diffusion as DOPE has a higher diffusion coefficient (Figure 4, Figures 7E,F, and S6D). The
difference in size of the confinement zones related to their difference in diffusion coefficient
for all probes, except GPI which diffused slightly faster than GT46 but revealed slightly
smaller confinement zones. In conclusion, comparison of confinement zone properties
should be approached with caution when the diffusion coefficients of the probes differ
considerably.

Lastly, we aimed to compare the transient confinement properties of two glutamate
receptors that have comparable diffusion coefficients: the metabotropic glutamate receptor
5 (mGluR5) and the AMPA receptor subunit GluA2 (Figure S6E). These receptors both
reside in the postsynaptic membrane, but GluA2 is found to be more enriched in the
synapse whereas mGluR5 is concentrated in an area around the synapse [44,45]. We found
that the diffusion coefficient of GluA2 inside confinement zones was lower than for mGluR5
(mGluR5: 0.00891± 0.00035 µm2/s and GluA2: 0.00793± 0.00025 µm2/s; Figure 7G), while
the diffusion coefficient outside confinement zones was not significantly different (mGluR5:
0.0813± 0.0030 µm2/s and GluA2: 0.0789± 0.0040 µm2/s; Figure 7H). In addition, the time
GluA2 resided in confinement zones was longer than mGluR5 (mGluR5: 0.419 ± 0.012 s
and GluA2: 0.477 ± 0.010 s; Figure 7I), while the total track length was not significantly
different (mGluR5: 1.65 ± 0.043 s and GluA2: 1.71 ± 0.054 s; Figure 7J). These results
suggest that there are different mechanisms responsible for the confinement of mGluR5
and GluA2.

4. Discussion

Single-molecule tracking is a powerful approach to investigate the heterogeneous orga-
nization of cellular membranes. However, precise and reliable analysis of single-molecule
tracking data remains challenging. This study set out to gain a better understanding of the
detection of transient confinement in single-molecule trajectories.

We found that a considerable factor in the confinement analysis is the diffusion co-
efficient that is used in the formula to define the diffusion coefficient of the molecule
when it would move freely. However, defining this free diffusion coefficient a priori is
not straightforward. We therefore compared three different methods: using the maximum
instantaneous diffusion coefficient per trajectory based on shorter segments [21], the instan-
taneous diffusion coefficient per trajectory [11], and defining a constant diffusion coefficient
for the molecule of interest considered to be the free diffusion coefficient [22,25,26]. It is
important to note the limitations of all these methods and their consequences on the results.
The Dmax could be an overestimation of the free diffusion coefficient and therefore lead to
an overestimation of the detected confinement in that trajectory and in addition, the value
of Dmax seems to depend on the length of the track. However, it does allow for detecting
changes in diffusion behavior over the trajectory. Estimating the instantaneous diffusion
coefficient per trajectory could be heavily influenced by the percentage of confinement
in the trajectory and therefore lead to reduced power of detection. Using a set diffusion
coefficient is another approach of using the confinement analysis as with this method
not only transient confinement would be detected but also completely confined tracks,
as all the tracks are tested against the same diffusion coefficient and thus no longer for
a temporal deviation within the trajectory. This heavily depends on choosing the free
diffusion coefficient in a correct way. Previous studies used this approach, but this was
under the assumption that the diffusion of these molecules was mainly Brownian [22,25,26].
This should be done with caution as we showed that the percentage of confinement in a
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track could influence the Dinst. It is important to note that when using this approach in
the case of comparing confinement after, for instance, an experimental treatment, that the
difference may solely come from a change in the diffusion coefficient and does not perse
reflect a true difference in the confinement behavior.

One of the interesting quantitative outcomes of the confinement analysis is the size
of a confinement zone. We found, however, that the maximal size that can be detected,
depends on the diffusion coefficient of the molecule. Thus, comparing confinement of
molecules with varying diffusion coefficients could lead to erroneous conclusions about
differences in their confinement zone sizes. It is also not directly evident from the data
which biological mechanism underlies these confined periods, and different mechanisms
might also result in different confinement measures. Phase separation into liquid-ordered
and liquid-disordered phases in model membranes arises mainly from the combination
of lipid composition and temperature. Biological membranes are even more complex,
both in the heterogeneity of lipids and involvement of membrane-associated proteins
that affect the thermodynamics. Neurons and more specifically synapses are enriched
in cholesterol and sphingolipids [46,47]. These lipids comprise the more ordered phase
in the membrane and especially add up to the heterogeneous organization of biological
membranes [48–50]. Furthermore, characteristics of confinement zones could be explained
by compartmentalization by the actin-based membrane skeleton, molecular crowding, or
binding to scaffold proteins [37–39].

Interestingly, we detected differences in the confinement behavior of glutamate recep-
tors mGluR5 and GluA2, which suggests that different mechanisms are responsible for
their confinement. It is known that these glutamate receptors show different distribution
patterns within the postsynaptic membrane, GluA2 is concentrated in the postsynaptic
density (PSD) whereas mGluR5 seems to be surrounding the PSD [51]. As our results reveal
that GluA2 is trapped for longer time and moves slower, this could be an indication that
GluA2 is trapped at a specific location mainly by scaffold molecules, supported by the
finding that the actin cytoskeleton is absent from the PSD [52]. On the other hand, mGluR5
might be slowed down in its diffusion by other mechanisms such as steric hindrance or
interactions with the cytoskeleton. Other methods for confinement analysis might help
in detecting specific underlying mechanisms. For example, Meilhac et al. modified the
method from Simson et al. to be able to detect jumps between compartments in the mem-
brane [11,12]. Another way to characterize confinement are potential wells, describing a
field of force resulting from molecular interactions, which has been suggested for synaptic
receptors [18,40,41]. Lastly, this method could also be applied to less complex membranes
to get a better estimate of the mechanism behind detected confinement behavior. For
example, to study the effect of temperature on confined behavior and thus membrane
organization.

5. Conclusions

This study provides a systematic analysis of the influence of the different parameters
that are used for detecting temporal confinement in single-molecule trajectories and pro-
poses a visualization tool to map confinement zones in the cellular context. To demonstrate
the validity of the presented approach, we studied the diffusion of two glutamate receptor
types in neurons and found that mGluR5 and GluA2 differ in their confinement behavior.
We believe the presented results can guide future studies in the correct detection and inter-
pretation of confinement analysis. As such, this study will help in better understanding
the complex organization of the membrane by reliably detecting and spatially mapping
confinement.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/membranes12070650/s1, Table S1: Confinement parameters
and their effect on the power of detection; Figure S1: Random walk and confinement simulations;
Figure S2: Improvements in the confinement analysis; Figure S3: Raw simulated transient confined
trajectories from Figure 1; Figure S4: Effect of timing confinement on power of detection; Figure S5:
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Effect of localization error on confinement detection using Dset; Figure S6: Confinement analysis on
experimental trajectories. Reference [21] is cited in Supplementary Materials.
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