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Abstract
The worst-case fastest known algorithm for the Set Cover problem on universes with n elements
still essentially is the simple O∗(2n)-time dynamic programming algorithm, and no non-trivial
consequences of an O∗(1.01n)-time algorithm are known. Motivated by this chasm, we study the
following natural question: Which instances of Set Cover can we solve faster than the simple
dynamic programming algorithm? Specifically, we give a Monte Carlo algorithm that determines
the existence of a set cover of size σn in O∗(2(1−Ω(σ4))n) time. Our approach is also applicable to
Set Cover instances with exponentially many sets: By reducing the task of finding the chromatic
number χ(G) of a given n-vertex graph G to Set Cover in the natural way, we show there is an
O∗(2(1−Ω(σ4))n)-time randomized algorithm that given integer s = σn, outputs NO if χ(G) > s

and YES with constant probability if χ(G) ≤ s− 1.
On a high level, our results are inspired by the ‘representation method’ of Howgrave-Graham

and Joux [EUROCRYPT’10] and obtained by only evaluating a randomly sampled subset of the
table entries of a dynamic programming algorithm.
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1 Introduction

The Set Cover problem is, after determining satisfiability of CNF formulas or Boolean
circuits, one of the canonical NP-complete problems. It not only directly models many
applications in practical settings, but also algorithms for it routinely are used as tools for
theoretical algorithmic results (e.g., [17]). It is a problem ‘whose study has led to the
development of fundamental techniques for the entire field’ of approximation algorithms.1
However, the exact exponential time complexity of Set Cover is still somewhat mysterious:
We know algorithms need to use super-polynomial time assuming P 6= NP and (denoting n
for the universe size) O∗(2Ω(n)) time assuming the Exponential Time Hypothesis, but how
large the exponential should be is not clear. In particular, no non-trivial consequences of an
O∗(1.01n)-time algorithm are currently known.

Even though it is one of the canonical NP-complete problems, the amount of studies of
exact algorithms for Set Cover pales in comparison with the amount of literature on exact
algorithms for CNF-Sat: Many works focus on finding O∗(cn)-time algorithms for c < 2

∗ Funded by the NWOVENI project 639.021.438. This work was partly done while the author was visiting
the Simons Institute for the Theory of Computing during the program ‘Fine-Grained Complexity and
Algorithm Design’ in the fall of 2015.

1 As the Wikipedia page on Set Cover quotes the textbook by Vazirani [34, p15].
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for CNF-Sat on n-variable CNF-formulas in special cases such as, among others, bounded
clause width [33, 17, 12], bounded clause density [11, 26] or few projections [28, 31, 32].
Improved exponential time algorithms for special cases of problems other than CNF-Sat
were also studied for e.g. Graph Coloring or Traveling Salesman on graphs bounded
degree/average degree [8, 9, 15, 20].

In this paper we are interested in the exponential time complexity of Set Cover, and
study which properties are sufficient to have improved exponential time algorithms. Our
interest in finding faster exponential time algorithms for Set Cover does not only stem
from it being a canonical NP-complete problem, but also from its unclear relation with
CNF-Sat. Intriguingly, on one hand Set Cover has some similarities with the CNF-
Sat: 1. Both problems take an (annotated) hypergraph as input 2. The improvability of
the worst-case complexity of CNF-Sat is essentially equivalent to the improvability of the
worst-case complexity of Hitting Set [14], which is just a reparametrization2 of Set
Cover. But, on the other hand the problems are quite different to our understanding:
1. Most algorithms for Set Cover use dynamic programming or some variant of inclusion
exclusion, while most algorithms for CNF-Sat are based on branching 2. No connection
between the exponential time complexities of both problems is known (see [14]). One hope
would be that a better understanding of the exact complexity of Set Cover might shed
more light on this unclarity. Moreover, Cygan et al. [14] also show that if we would like to
improve the run time O∗(f(k)) of several parameterized algorithms to O∗(f(k)1−Ω(1)), we
first need to find an O∗(2(1−Ω(1))n)-time algorithm for Set Cover. These parameterized
algorithms include the classic algorithm for Subset Sum, as well as more recent algorithms
for Connected Vertex Cover and Steiner Tree.

Relevant previous work The algorithmic results on Set Cover that are the most relevant
to our work are as follows: The folklore dynamic programming algorithm runs in O∗(2n)
time. A notable special case of Set Cover that can be solved in O∗(2(1−Ω(1))n) time is due
to Koivisto [29]: He gives an algorithm that runs in time O∗(2(1− 1

O(r) )n)-time algorithm if
all sets are at most of size r. Björklund et al. [10] show that the problem can be solved in
2n poly(n) time (which is faster if the number of sets is exponentially large in n). Björklund
et al. [7] give a randomized algorithm that assumes all sets are of size q and determines
whether there exist p pairwise disjoint sets in O∗(2(1−ε)pq) time where ε > 0 depends on q.

Our Main Results We investigate what are sufficient structural properties of instances
of Set Cover, and the closely related Set Partition (in which the picked sets need to
be disjoint), problems to be solvable in time significantly faster than the currently known
algorithms. We will outline our main results now:

I Theorem 1.1. There is a Monte Carlo algorithm that takes an instance of Set Cover
on n elements and m sets and an integer s as input and determines whether there exists a
set cover of size s in O(2(1−Ω(σ4))nm) time, where σ = s/n.

We remark that this generalizes the result of Koivisto [29] in the sense that it solves a
larger class of instances in O∗(2(1−Ω(1))n) time: If all set sizes are bounded by a constant r,
a set partition needs to consist of at least n/r sets and Theorem 1.1 applies with σ = 1/r

2 One way of stating Hitting Set in this context, is that we have an instance of the Set Cover problem
but aim to find an O∗(2(1−Ω(1))m) time algorithm, where m denotes the number of sets.
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(although this gives a slower algorithm than Koivisto’s in this special case). Moreover, it
seems hard to extend the approach of Koivisto to our more general setting.

The second result demonstrates that our techniques are also applicable to Set Cover
instances with exponentially many sets, a canonical example of which being graph coloring:

I Theorem 1.2. There is a randomized algorithm that given graph G and integer s = σn, in
O∗(2(1−Ω(σ4))n) time outputs yes with constant probability, if χ(G) < s, and no, if χ(G) > s.

Representation method for Set Cover We feel the main technique used in this paper is
equally interesting as the result, and will therefore elaborate on its origin here. Our technique
is on a high level inspired by the following simple observation ingeniously used by Howgrave-
Graham and Joux [24]: Suppose S ⊆ 2[m] is a set of solutions implicitly given and we seek
for a solution X ∈ S with |X| = s by listing all sets of

([m]
s/2
)
and performing pairwise checks

to see which two combine to an element of S. Then we can restrict our search in various
ways since there will be as many as

(
s
s/2
)
pairs guiding us to X. In [24] and all subsequent

works (including [3, 4, 1, 2]), this idea was used to speed up ‘meet-in-the-middle attacks’
(also called ‘birthday attacks’ [27, Chapter 6]). We will refer to uses of this idea as the
‘representation method’ since it crucially relies on the fact that X has many representations
as pairs. To indicate the power of this technique in the context of Set Cover and Set
Partition we show that without changes it already gives an O∗(20.3399m)-time Monte Carlo
algorithm for the Set Partition problem with m sets, and even for a more general linear
satisfiability problem on m variables. For the latter problem this improves the O∗(2m/2)
time algorithm based on the meet-in-the-middle attack that was the fastest known before.

At first sight the representation method seemed to be inherently only useful for im-
proving algorithms based on the meet-in-the-middle attack. However, the main conceptual
contribution of this work is to show that it is also useful in other settings, or at least for
improving the dynamic programming algorithm for the Set Cover and Set Partition
problems if the solution size is large. On a high level, we show this as follows in the case
of Set Partition:3 for a subset W of the elements of the Set Partition instance, define
T [W ] to be the minimum number of disjoint sets needed to cover all elements of W . Stated
slightly oversimplified, we argue that if a minimal set partition of size s is large, we have
that T [W ] + T [[n] \W ] = s for

(
s
s/2
)
sets W with |W | close to n/2. To relate this to later

sections, let us remark we refer to such a set W as a witness halve. Subsequently, we ex-
ploit the presence of many witness halves by using a dynamic programming algorithm that
samples a set of the subsets with size close to n/2 and only evaluates table entries from this
sample plus the table entries required to compute the table entries from the sample.

Organization This paper is organized as follows: In Section 2, we recall preliminaries and
introduce notation. In Section 3, we discuss new observations and basic results that we
feel are useful for developing a better understanding of the complexity of Set Cover with
respect to several structural properties of instances. In Section 4 we formally present the
notion of witness halves and prepare tools for exploiting the existence of many witness
halves. In Section 5 we prove our main results and in Section 6 we suggest further research.

3 The algorithm for Set Cover actually reduces to Set Partition.

ESA 2016
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2 Preliminaries and Notation

For a real number x, |x| denotes the absolute value of x. For a Boolean predicate p, we let
[p] denote 1 if p is true and 0 otherwise. On the other hand, if p is an integer we let [p]
denote {1, . . . , p}. As usual, N denotes all positive integers. Running times of algorithms
are often stated using O∗(·) notation which suppresses factors polynomial in the input size.
To avoid superscript, we sometimes use exp(x) to denote ex. We denote lg for the base-2
logarithm. If G = (V,E) and v ∈ V we denote N(v) = {w ∈ V : (v, w) ∈ E} and for X ⊆ V
we extend this notation to N(X) =

⋃
v∈X N(v). For reals a, b > 0 we let a ± b denote the

interval [a − b, a + b]. A false positive (negative) of an algorithm is an instance on which
it incorrectly outputs YES (respectively, NO). In this work we call an algorithm Monte
Carlo if it has no false positives and if any instance is a false negative with probability
at most 1/4. We denote vectors with boldface for clarity. For a real number x ∈ [0, 1],
h(x) = −x lg x − (1 − x) lg(1 − x) denotes the binary entropy of x, where 0 lg 0 should be
thought of as 0. It is well known that

(
b
a

)
≤ 2h(a/b)b (and this can for example be proved

using Stirling’s approximation). It is easy to see from the definition that h(·) is symmetric
in the sense that h(x) = h(1− x).

I Lemma 2.1. The following can be verified using standard calculus:

1. h(1/2− x) = h(1/2 + x) ≤ 1− x2 for all x ∈ (0, 1/2),
2. h(x) ≤ x lg(4/x) for all x ∈ (0, 1),
3. (1− 1/n)n ≤ 1/e.

I Lemma 2.2 (Hoeffding bound [22]). If X1, . . . , Xs are independent, Y =
∑s
i=1Xi and

ai ≤ Xi ≤ bi for i = 1, . . . , s then Pr[|Y − E[Y ]| ≥ t] ≤ 2 · exp
(

−2t2∑s

i=1
(bi−ai)2

)
.

Set Cover / Set Partition In the Set Cover problem we are given a bipartite graph
G = (F ∪̇U,E) (where F and U shorthand ‘Family’ and ‘Universe’ respectively), together
with an integer s and the task is to determine whether there exists a solution S ⊆ F such
that N(S) = U and |S| ≤ s. In the Set Partition problem we are given the same input as
in the Set Cover problem, but we are set to determine whether there exists S ⊆ F with
N(S) = U , |S| = s and additionally N(f) ∩N(f ′) = ∅ for every f, f ′ ∈ S with f 6= f ′. We
will refer to solutions of both problems as set covers and set partitions.

Throughout this paper, we let n,m respectively denote |U | and |F |, and refer to instances
of Set Cover or Set Partition as (n,m, s)-instances to quantify their parameters. Since
this work concerns Set Cover or Set Partition with large solutions we record the fol-
lowing basic observation that follows by constructing for each4 c-tuple t = (f1, . . . , fc) ∈ F c
of sets in the original instance a set f t with N(f t) =

⋃t
i=1 fi in the output instance:

I Observation 2.3 ([14]). There is a polynomial time algorithm that takes a constant c ≥ 1
dividing s, and a (n,m, s)-instance of Set Cover (resp. Set Partition) as input and
outputs an equivalent (n,mc, s/c)-instance of Set Cover (resp. Set Partition).

Often it will be useful dispense with linear sized sets. To this end, the following can be
achieved by simply iterating over all f ∈ F with |N(f)| ≥ εn and checking for each such set
whether there is a solution containing it using the 2n poly(n) algorithm for Set Cover [10].

4 For Set Partition only do this for c-tuples (f1, . . . , fc) with N(fi) disjoint.
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I Observation 2.4. There is an algorithm that, given a real number ε > 0, takes an (n,m, s)-
instance of Set Cover as input and outputs an equivalent (n,m′, s)-instance with m′ ≤ m
satisfying |N(f)| ≤ εn for every f ∈ F . The algorithm runs in O(m2(1−ε)n poly(n)) time.

As we will see in Theorem 3.4, it makes a difference in the Set Partition problem
whether empty sets are allowed since we need to find a set partition of size exactly s. To
exclude such sets, we will simply say that an instance is ‘without empty sets’.

3 Observations and Basic Results on Set Cover and Set Partition.

To improve our understanding of which properties of instances of Set Cover and Set
Partition allow faster algorithms, and which techniques are useful for obtaining such faster
algorithms, we will record some observations and basic results in this section. To stress that
the proof techniques in this section are not our main technical contribution, we postpone all
proofs to Appendix A.

We prefer to state our results in terms of Set Cover because it is slightly more natural
and common, but since Set Partition often is easier to deal with for our purposes we will
sometimes use the following easy reduction, all of whose steps are contained in [14]:

I Theorem 3.1. There is an algorithm that, given a real 0 < ε < 1/2, takes an (n,m, s)-
instance of Set Cover as input and outputs an equivalent (n,m′, s)-instance of Set Par-
tition with m′ ≤ m2εn sets in time O(m2(1−ε)n).

For completeness, we show that in fact Set Cover and Set Partition are equivalent
with respect to being solvable in time O∗(2(1−Ω(1))n). This was never stated in print to the
best of our knowledge, but the proof uses standard ideas and is found in Appendix A.2.

I Theorem 3.2. For some ε > 0 there is an O∗(2(1−ε)n) time algorithm for Set Cover if
and only if for some ε′ > 0 there is an O∗(2(1−ε′)n) time algorithm for Set Partition.

The following natural result is a rather direct consequence of a paper by Koivisto [29].
It reveals some more similarity with the k-CNF-Sat problem: Koivisto shows5 that for
maximum set size r, Set Cover can be solved in O∗(2(1−Ω( 1

r ))n) which is analogous to
k-CNF-Sat being in O∗(2(1−Ω( 1

k ))n) time [33, 17, 12], and similarly the following result is
the counterpart of O∗(2(1−Ω( 1

δ ))n)-time algorithms for CNF-formula’s of density δ (i.e. at
most δn clauses) [11, 26]. Again, this result was never explicitly stated in print to the best
of our knowledge, and therefore is proved in Appendix A.3.

I Theorem 3.3. There is an algorithm solving (n,m, s)-instances of Set Cover or Set
Partition in time m · poly(n)2n−

n
O(lg(m/n)) .

Relevant to our work is the following subtlety on solution sizes in Set Partition. It
shows that for Set Partition with empty sets, finding large solutions is as hard as the
general case. The proof is postponed to Appendix A.4.

I Theorem 3.4. Suppose there exist 0 < ε1, ε2 < 1/2 and an algorithm solving (n,m, ε1n)-
instances of Set Partition in time O∗(2(1−ε2)n). Then there exists an O∗(2(1−ε2/2)n)-time
algorithm for Set Partition.

5 Koivisto only showed this for Set Partition, but the straightforward reductions in this section carry
this result over to Set Cover.

ESA 2016
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Finally, it is insightful to see how well the representation method performs on the Set
Partition problem with few sets (e.g., we consider running times of the O∗(2m), where m
is the number of sets). A straightforward approach of the meet-in-the-middle attack leads
directly to an O∗(2m/2) time algorithm. We show that the representation method combined
with the analysis of [2, 1] in fact solves the more general Linear Sat problem. In Linear
Sat one is given an integer t, matrix A ∈ Zn×m2 , and vectors b ∈ Zn2 and ω ∈ Nm. The task
is to find x ∈ Zm2 satisfying Ax ≡ b and ω · x ≤ t.

I Theorem 3.5. There is an O∗(20.3399m)-time Monte Carlo algorithm solving Linear Sat.

To our best knowledge no O∗(2(0.5−Ω(1))m)-time algorithm for Linear Sat was known
before. We get as a corollary that, given a bipartite graph G = (F ∪̇U,E), we can determine
the smallest size of a set partition in time O∗(20.3399m). We take this as a first signal
that the representation method is useful for solving Set Partition (and Set Cover) for
instances with small universe. To see this consequence, note we can reduce this problem to
Linear Sat as follows: For every f ∈ F add the incidence vector of N(f) as a column to
A, and set the cost ωi of picking this column to be n|N(f)|+ 1. Then the minimum of ω ·x
subject to Ax ≡ 1 will be n2 + s where s is the number of sets in a minimum set partition.
Let us remark that [16, Page 130] solves (a counting version) of Set Partition in time
O∗(1.2561m) = O∗(20.329m), and Drori and Peleg [18] solve the problem in O∗(20.3212m)
time,6 so by no means our algorithm is the fastest in this setting. However, both use
sophisticated branching and we find it intriguing that the representation method does work
quite well even for the seemingly more general Linear Sat problem.

4 Exploiting the Presence of Many Witness β-halves.

For convenience we will work with Set Partition in this section; the results straightfor-
wardly extend to Set Cover but we will not need this in the subsequent section.

I Definition 4.1. Given an (n,m, s) instance of Set Partition, a subset W ⊆ U is said to
be a witness β-halve if |W | ∈ ( 1

2 ± β)n and there exist disjoint subsets S1, S2 ⊆ F such that
N(S1 ∪ S2) = U ,

∑
f∈S1∪S2

|N(f)| = n, N(S1) = W , N(S2) = U \W and |S1|+ |S2| = s.

Note that this is similar to the intuitive definition outlined in Section 1, except that we
require |W | ∈ ( 1

2 ± β)|U | and we adjusted the definition to the Set Partition problem.
Since S1∪S2 is a set partition of size s we see that if a witness β-halve exists, we automatically
have a yes instance.

In this section we will give randomized algorithms that solve promise-variants of Set
Partition with the promise that, if the instance is a yes-instance, there will be an exponen-
tial number of witness halves that are sufficiently balanced (i.e. of size close to n/2). In the
first subsection we outline the basic algorithm and in the second subsection we show how
tools from the literature can be combined with our approach to also give a faster algorithm
if the number of sets is exponential in n.

6 We attempted to find any more recent faster algorithm, but did not find this. Though, we would not
be surprised if using more recent tools in branching algorithms as [19] one should be able to more
significantly outperform our algorithm for Set Partition.
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4.1 The basic algorithm
I Theorem 4.2. There exists an algorithm A1 that takes an (n,m, s)-instance of Set
Partition and real numbers β, ζ > 0 satisfying 2

√
β ≤ ζ < 1/4 as input, runs in time

2(1−(ζ/2)4)n poly(n)m, and has the following property: If there exist at least Ω(2ζn) witness
β-halves it returns yes with at least constant probability, and if there does not exist a set
partition of size s it returns no.

Note that the theorem does not guarantee anything on Algorithm A1 if a partition of s sets
exists and there are only few witness halves, but we will address this later. A high level
description of the Algorithm A1 is given in Figure 1:

Algorithm A1(G = (F ∪̇U,E), s, ζ, β). Assumes 2
√
β ≤ ζ < 1/4

Output: An estimate of whether there exists a set partition of size s.
1: for integer l satisfying b(1/2− β)nc < l < d(1/2 + β)ne do
2: Sample W ⊆

(
U
l

)
by including every set of

(
U
l

)
with probability 2−ζn.

3: For every W ∈ W and i ∈ [n], compute ci(W ) and ci(U \W ).
4: if ∃i ∈ [n] : ci(W ) ∧ cs−i(U \W ) then return yes.
5: return no.

Figure 1 High level description of the Algorithm implementing Theorem 4.2.

Here, we define ci(W ) to be true if and only if there exists S1 ⊆ F with |S1| = i,
N(S1) = W , and for every f, f ′ ∈ S1 with f 6= f ′, N(f)∩N(f ′) = ∅. Given a set family W,
we denote ↓W = {X : ∃W ∈ W∧X ⊆W} for the down-closure ofW. The following lemma
concerns the sub-routine invoked in Algorithm 1 and can be proved via known dynamic
programming techniques, and is postponed to Appendix A.6.

I Lemma 4.3. There exists an algorithm that given a bipartite graph G = (F ∪̇U,E) and
W ⊆ 2U with |U | = n and |F | = m, computes ci(W ) for all W ∈ W and i ∈ [n] in
O(poly(n)|↓W|m) time.

Thus, for further preparation of the proof of Theorem 4.2, we need to analyze the max-
imum size of the (down/up)-closure of W in Algorithm A1 in Figure 1.

I Lemma 4.4. Let ζ > 0, β (which may be negative) be real numbers satisfying 2
√
|β| ≤ ζ <

1/4 and |U | = n. Suppose W ⊆
(

U
(1/2+β)n

)
with |W| ≤ 2(1−ζ)n. Then |↓W| ≤ n2(1−(ζ/2)4)n.

Proof. Let λ ≤ β and wλ = |{W ∈ ↓W : |W | = λn}|, so |↓W| ≤ n ·maxλ wλ. Then we have
the following upper bounds:

wλ ≤
(
n

λn

)
≤ 2h(λ)n, wλ ≤ |W|

(
(1/2 + β)n

λn

)
≤ 2
(

(1−ζ)+h
(

λ
1/2+β

)
(1/2+β)

)
n
.

To see the second upper bound, note that any set W ∈ W can have at most
((1/2+β)n

λn

)
subsets of size λn. Thus, we see that |↓W|/n is upper bounded by 2f(ζ,β)n, where

f(ζ, β) = max
λ≤1/2+β

min
{
h(λ), (1− ζ) + h

(
λ

1/2 + β

)
(1/2 + β)

}
.

ESA 2016
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The remainder of the proof is therefore devoted to upper bounding f(ζ, β). We establish
this by evaluating both terms of the minimum, setting λ to be λ′ = (1− ζ2)(1/2 + β). First
note that by our assumption

λ′ = (1− ζ2)(1/2 + β) = 1/2− ζ2/2 + β − ζ2β ≤ 1/2− ζ2/2 + ζ2/4− ζ2β < 1/2,
λ′/(1/2 + β) = 1− ζ2 > 1/2.

Therefore, since h(x) is increasing for x < 1/2, h(λ) ≤ h(λ′) for λ ≤ λ′. Similarly,
h
(

λ
1/2+β

)
is at most h

(
λ′

1/2+β

)
for λ ≥ λ′, and we may upper bound f(ζ, β) by the max-

imum of the two terms of the minimum in f(ζ, β) obtained by setting λ = λ′. For the first
term of the minimum, note that by Lemma 2.1, Item 1:

h(λ′) = h((1− ζ2)(1/2 + β)) ≤ 1− (1/2− (1− ζ2)(1/2 + β))2

= 1−
(
ζ2/2− β + βζ2)2

≤ 1−
(
ζ2/2− β

)2
≤ 1− (ζ2/4)2 = 1− (ζ/2)4.

For the second term we have

1− ζ + h

(
λ′

1/2 + β

)
(1/2 + β) = 1− ζ + h(1− ζ2)(1/2 + β) by Lemma 2.1, Item 2

= 1− ζ + h(ζ2)(1/2 + β) β < 1
64 by assumption

≤ 1− ζ + ζ2 lg
(

4
ζ2

)
33
64 ζ lg

(
4
ζ2

)
≤ 3

2

≤ 1− ζ + ζ 3
2 ·

33
64

≤ 1− ζ/10.

note for the penultimate inequality that ζ lg( 4
ζ2 ) is monotone increasing for 0 ≤ ζ ≤ 1/4 and

substituting ζ = 1/4 in this expression thus upper bounds it with 3/2. J

Now we are ready to wrap up this section with the proof of Theorem 4.2:

Proof of Theorem 4.2. We can implement Line 3 by invoking the algorithm of Lemma 4.3
with both |W| andW ′ = {W : [n]\W ∈ W}. This will take time O(poly(n)(|↓W |+|↓W ′|)m).
This is clearly the bottleneck of the algorithm, so it remains to upper bound (the expectation
of) |↓W |+ |↓W ′| by applying Lemma 4.4. To do this, note that W ⊆

(
n
l

)
, W ′ ⊆

(
n
n−l
)
, and

we have that (1/2− β)n ≤ l, n− l ≤ (1/2 + β)n. Also, 2
√
|β| ≤ ζ by assumption so indeed

Lemma 4.4 applies. Then on expectation |W| ≤
(

n
(1/2+β)n

)
2−ζn ≤ 2(1−ζ)n, and thus the

running time7 indeed is as claimed.
For the correctness, it is easily checked that the algorithm never returns false positives.

Moreover, if there exist at least Ω(2ζn) witness β-halves then for some l in the loop of
Line 1, there are at least Ω(2ζn/n) witness halves of size l. Thus in this iteration we see by
Lemma 2.1, Part 3 that

Pr[@ witness halve W ∈ W] ≤
(

1− 1
2ζn

)Ω(2ζn/n)
≤ e−1/n. (4.1)

7 Due to the sampling in Line 2, we actually only get an upper bound on the expectation of the running
time, but by Markov’s inequality we can simply ignore iterations where W exceeds twice the expectation.
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and if a witness halve W ∈ W exists the algorithm returns yes since ci(W ) ∧ cs−i(U \W )
holds for some i by the definition of witness halve. Therefore, if we perform n independent
trials of Algorithm A1 it return yes with probability at least 1− 1/e. J

4.2 Improvement in the case with exponentially many input sets.
In this section we show that under some mild conditions, the existence of many witness
halves can also be exploited in the presence of exponentially many sets. This largely builds
upon machinery developed by Björklund et al. [10, 8]. To state our result as general as
possible we assume the sets are given via an oracle so our running can be sublinear in the
input if the number of sets is close to 2n.

I Theorem 4.5. There exists an algorithm that, given oracle access to an (n,m, s)-instance
of Set Partition and real numbers β, ζ > 0 satisfying 2

√
β ≤ ζ < 1/4, runs in time

2(1−(ζ/2)4)n poly(n)T and has the following property: if there exist at least Ω(2ζn) witness
β-halves, it outputs yes with constant probability and if there does not exist a set partition
of size s it outputs no.

Here the oracle algorithm accepts X ⊆ U as input, and decides whether there exists f ∈ F
with N(f) = X in time T .

The proof of Theorem 4.5 is identical to the proof of Theorem 4.2 (and therefore omitted),
except that here we use the following lemma instead of Lemma 4.3:

I Lemma 4.6. There exists an algorithm that, givenW ⊆ 2U and oracle access to a bipartite
graph G = (F ∪̇U,E), computes the values ci(W ) for all W ∈ W in O(T |↓W| poly(n)) time.
Here the oracle algorithm accepts X ⊆ U as input, and decides whether there exists f ∈ F
with N(f) = X in time T .

This lemma mainly reiterates previous work developed by Björklund et al. [10, 8], but since
they did not prove this lemma as such we include a proof here in Appendix A.7.

5 Finding Large Set Covers Faster

In this section we will use the tools of the previous sections to prove our main results,
Theorems 1.1 and 1.2. We first connect the existence of large solutions to the existence of
many witness halves in the following lemma:

I Lemma 5.1. If an (n,m, s)-instance of Set Partition has no empty sets and satisfies
s ≥ σ0n and |N(f)| ≤ σ4

0n/8 for every f ∈ F , there is a solution if and only if there exist
at least 2σ0n/4 witness (σ2

0/4)-halves.

Proof. Note that the backward direction is trivial since by definition the existence of a
witness halve implies the existence of a solution.

For the other direction, suppose S = {f1, . . . , fs} is a set partition, and denote di =
|N(fi)|. Suppose S′ ⊆ S is obtained by including every element of S with probability 1/2 in
S′. since N(fi)∩N(fj) = ∅ for i 6= j, we have that the random variable |N(S′)| is a sum of
s independent random variables that equal 0 and di with probability 1/2. By the Hoeffding
bound (Lemma 2.2) we see that

Pr
[∣∣∣ |N(S′)| − E[|N(S′)|]

∣∣∣ ≥ nσ2
0/4
]
≤ 2 · exp

(
−n2σ4

0/8∑
e∈S d

2
e

)
≤ 2 · exp

(
−n2σ4

0/8
n2σ4

0/8

)
< 3

4 ,
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where the second inequality follows from de ≤ σ4
0n/8 and

∑
e∈S de = n. So for at least

2|S|/4 ≥ 2σ0n/4 subsets S′ ⊆ S we have that |N(S′)| ∈ ( 1
2 ± σ

2
0/4)n. Thus, since for each

such S′, N(S′) determines S′ and thus gives rise to a distinct witness halve, there are at
least 2σ0n/4 witness (σ2

0/4)-halves. J

Now we are ready to prove the first main theorem, which we recall here for convenience.
I Theorem 1.1 (restated). There is a Monte Carlo algorithm that takes an instance of Set
Cover on n elements and m sets and an integer s as input and determines whether there
exists a set cover of size s in O(2(1−Ω(σ4))nm) time, where σ = s/n.

Proof. The algorithm implementing Theorem 1.1 is given in Figure 2.

Algorithm A2(G = (F ∪̇U,E), σ).
1: Ensure |N(f)| ≤ σ4n/1000 using Observation 2.4.
2: for every integer s satisfying bσn/2c ≤ s ≤ σn do
3: Create an (n,m′, s)-instance ((F ′ ∪̇U,E), s) of Set Partition where F ′ is con-

structed by adding a vertex f ′ with N(f ′) = X for all f ∈ F,X ⊆ N(f).
4: Let σ0 = s/n.
5: if A1((F ′ ∪̇U,E), s, σ0, σ

2
0/4) = yes then return yes.

6: Pick an arbitrary subset X ∈
(
U
n/2
)
.

7: Find the sizes l and r of the smallest set covers in the instances induced by elements
X and respectively elements U \X in O(2n/2 poly(n)m) time with standard dynamic
programming.

8: if l + r <= σn then return yes else return no.

Figure 2 Algorithm for Set Cover large solutions (implementing Theorem 1.1).

We first focus on the correctness of this algorithm. It is clear that the algorithm never
returns false positives on Line 5 since Algorithm A1 also has this property. If yes is returned
on Line 8 it is also clear there exists a solution.

Now suppose that a set cover S of size at most σn exists. First suppose σn/2 ≤ |S| ≤ σn.
We consider s = |S| in some iteration of the loop on Line 2. Notice that now in Line 3 we
have reduced the problem to a yes-instance of Set Partition without empty sets satisfying
|N(f)| ≤ σ4n/1000 for every f ∈ F . Therefore Lemma 5.1 applies with σ0 ≥ σ/2 and we
see there are at least 2σ0n/4 witness (σ2

0/4)-halves. Thus, we can apply Theorem 4.2 with
ζ = σ0 and β = σ2

0/4 to find the set S with constant probability, since β ≤ (ζ/2)2.
Now suppose |S| ≤ σn/2. Then picking every element in S twice is a solution (as a

multiset), and it implies that for every X ⊆ U the sizes of the smallest set covers l and r
(as defined in the algorithm) satisfy l + r ≤ σn. Thus Lines 6-8 find such a set and the
algorithm returns yes.

For the running time, Line 1 takes at most O(2(1−σ4/1000)n poly(n)m) due to Observa-
tion 2.4. For Line 5, due to Theorem 4.2 this runs in time

O(2(1−(ζ/2)4)n poly(n)m′) = O(2(1−(σ0/2)4)n poly(n)2σ
4n/1000m)

≤ O(2(1−(σ/4)4)n poly(n)2σ
4n/1000m)

= O(2(1+σ4(1/1000−1/44))n poly(n)m)

≤ O(2(1−Ω(σ4))n poly(n)m).
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as claimed in the theorem statement. J

As a more direct consequence of the tools of the previous section we also get the following
result for Set Partition:

I Theorem 5.2. There exists a Monte Carlo algorithm for Set Partition that, given
oracle access to an (n,m, σn)-instance satisfying 0 < |N(f)| ≤ σ4n/8 for every f ∈ F , runs
in 2(1−Ω(σ4))n poly(n)T time.

Here the oracle algorithm accepts X ⊆ U as input, and decides whether there exists f ∈ F
with N(f) = X in time T .

Proof. Lemma 5.1 implies the instance is a YES-instance if and only if there exist 2σn/4
witness (σ2/4)-halves. Thus Theorem 4.5 implies the theorem statement. J

Note that this theorem also implies an O((m+ 2(1−Ω(σ4))n) poly(n)) time algorithm for
Set Partition where the sets are given explicitly because we can construct a binary search
tree after which we can implement the oracle to run in T = n query time. We remark that it
would be interesting to see whether the assumption |N(f)| ≤ σ2n/4 is needed, but removing
this assumption seems to require more ideas than the ones from this work: For example if
the solution has three sets of size 3n/10 there will be no witness halve that is sufficiently
balanced, and alternatively using Observation 2.4 seems to be too slow.

However, if we settle for a additive 1-approximation we can deal with this issue in a simple
way and have as a particular consequence the second result mentioned in the beginning of
this paper:

I Theorem 1.2 (restated). There is a randomized algorithm that given graph G and integer
s = σn, in O∗(2(1−Ω(σ4))n) time outputs yes with constant probability, if χ(G) < s, and no,
if χ(G) > s.

Proof. Let G = (V,E) and define a Set Partition instance where for every independent
set I ⊆ V of G there is an element f ∈ F with N(f) = I. It is easy to see that this instance
of Set Partition has a solution of size s if and only if χ(G) ≤ s.

Check in
(

n
σ4n/8

)
time whether G has an independent set of size σ4n/8. If such an

independent set is found, remove this set from the graph and return yes if the obtained graph
has a (k − 1)-coloring and no otherwise. Using the O∗(2n) time algorithm by Björklund et
al. [10] in the second step, this procedure clearly runs in time O∗(2(1−Ω(σ4))n), and always
finds a coloring using at most one more color than the minimum number of colors if a large
enough independent set exists.

On the other hand, if the maximum independent set of G is of size at most σ4n/8, we
may apply Theorem 5.2 with T = poly(n) since it can be verified in polynomial time whether
a given X ⊆ V is an independent set, and the theorem follows. J

6 Directions for Further Research

In this section, we relate the work presented to some notorious open problems. The obvious
open question is to determine the exact complexity of the Set Cover problem:

I Open Problem 1. Can Set Cover be solved in time O∗((2− Ω(1))n)?

This question was already stated at several places. It is known that if a version of Set
Cover where the number of solutions modulo 2 is counted can be solved in (2−Ω(1))n the
Strong Exponential Time Hypothesis fails. We refer to [14], for more details.

ESA 2016
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Less ambitiously, it is natural to wonder whether our dependency on σ can be improved.
Our algorithm and analysis seem loose, but we feel the gain of a sharpening this analysis does
not outweigh the technical effort currently: For a better dependence, we need both a better
bound in Lemma 4.4 and to reduce the set sizes more efficiently than in Observation 2.4.
As further research we suggest to find a different algorithmic way to deal with the case
where many witness halves are unbalanced. But this alone will not suffice to give linear
dependence in σ since in Lemma 4.4 we do not expect to get linear dependence on ζ even if
β = 0. It would also be interesting to see which other instances of Set Cover can be solved
in O∗((2 − Ω(1))n) time. One that might be worthwhile studying is whether this includes
instances with optimal set covers in which the sum of the set sizes is at least (1 + Ω(1))n;
one may hope to find exponentially many (balanced) witness halves here as well.

In [14], the authors also give a reduction from Subset Sum to Set Partition. The
exact complexity of Subset Sum with small integers is also something we explicitly like to
state as open problem here, especially since the O∗(t) time algorithm (where t is the target
integer) is perhaps one of the most famous exponential time algorithms:

I Open Problem 2. Can Subset Sum with target t be solved in time O∗(t1−Ω(1)), or can
we exclude the existence of such an assuming the Strong Exponential Time Hypothesis?

Note this question was before asked in [25] by the present author. It would be interesting
to study the complexity of Subset Sum in a similar vein as we did in this paper: are
there some special properties allowing a faster algorithm? For example, a faster algorithm
for instances of high ‘density’ (e.g., n/ lg t) may be used for improving an algorithm of
Horowitz&Sahni [23]. Note that here the ‘density’ of a Subset Sum instance is the inverse
of what one would expect when relating to the definition of density of k-CNF formula.

Another question that has already open for a while is

I Open Problem 3. Can Graph Coloring be solved in time O∗(2(1−Ω(1))n)?

Could the techniques of this paper be used to make progress towards resolving this question?
While our algorithm seems to benefit from the existence of many optimal colorings, in an
interesting paper Björklund [5] actually shows that the existence of few optimal colorings
can be exploited in graphs of small pathwidth. Related to this is also the Hamiltonicity
problem. In our current understanding this problem becomes easier when there is a promise
that there are few Hamiltonian cycles (see [6], but also e.g. [13] allows derandomizations
of known probabilistic algorithms in this case), so a natural approach would be to deal
explicitly with instances with many solutions by sampling dynamic programming table in a
similar vein as done in this paper.
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A Missing Proofs

A.1 Proof of Theorem 3.1
Given an (n,m, s)-instance of Set Cover, use Observation 2.4 to assure that for every
f ∈ F , |N(f)| ≤ εn. It is easy to see that this instance is a YES-instance if and only if the
Set Partition instance (G′, s) is a YES-instance, where G′ is the bipartite graph with U
on one side and F ′ on the other with for every f ∈ F and X ⊆ N(f) a vertex in F ′ with
neighborhood X.

A.2 Proof of Theorem 3.2
For the backward direction, an O(mc2(1−ε′)n) algorithm for Set Partition concatenated
to the reduction of Theorem 3.1 with ε = ε′/(2c) gives a

O
((
m2ε

′n/(2c)
)c

2(1−ε′)n +m2(1−ε)n
)
≤ O(mc2(1−ε′/2)n +m2(1−ε)n)

time algorithm for Set Cover.
For the forward direction, given an (n,m, s)-instance of Set Partition first use Obser-

vation 2.3 with c = 2/ε to obtain an (n,m2/ε, sε/2) instance of Set Partition (without
loss of generality, we may assume s divides 2/ε by decreasing ε and adding at most 2/ε
sets and elements). Denoting s′ = sε/2, now iterate over all unordered integer partitions
a1 +. . .+as′ = n, and for each such partition solve a Set Cover instance (((F ′∪̇U ′), E′), s′)
constructed as follows from the Set Partition instance with the assumed algorithm:

For every i = 1, . . . , s′ add an element ei to U ′
For every f ∈ F and i such that |N(f)| = ai add a set f ′ to F ′ with N(f ′) = f ∪ {ei}.

Note that possibly ai = aj for i 6= j we make at least two copies of every set f ∈ F with
|N(f)| = ai. It is easy to see that this new Set Cover instance is a YES-instance if and
only if in the original Set Partition instance there is a set partition of size s′: each set
only contains one element from {e1, . . . , es′} so a Set Cover of size s′ needs to correspond
with f1, . . . , fs′ ∈ F satisfying

∑s′

i=1 |N(fi)| = n.
By a result of Hardy and Ramanujan [21], there are at most 2O(

√
n) unordered integer

partitions and hence concatenating this reduction with the assumed O(mc2(1−ε)n) time Set
Cover algorithm leads to an

O(2O(
√
n)mc2/ε2(1−ε)(n+s′)) ≤ O∗(2(1−ε)(1+ε/2)n) ≤ O∗(2(1−ε/2)n)

time algorithm for Set Partition.

A.3 Proof of Theorem 3.3
I Theorem A.1 ([29]). Given an instance n-element set N , an integer r and a family F of
subsets of N each of cardinality at most r, the partitions of N into a give number of members
of F can be counted in time |F|2λrnpoly(n), where λr = (2r − 2)/

√
(2r − 1)2 − 2 ln 2.

Note that the above result also immediately implies an algorithm deciding Set Cover in
time 2r|F|2λrnpoly(n) since we may reduce this Set Cover instance to a Set Partition
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instance by adding all subsets of the given sets. It is easily seen that for r ≥ 3, λr is
sandwiched as

1/2 ≤ λr ≤ (2r − 2)/
√

(2r − 1.5)2 = 1− 1
O(r) .

The algorithm implementing the theorem is given in Figure 3.

Algorithm A3(G = (F ∪̇U,E), s, r).
1: if ∃f ∈ F : |N(f)| ≥ r then
2: return A3(G[F \ {f} ∪ U ], s, r) ∨ A2(G[F \ {f} ∪ U \N(f)], s− 1, r).
3: else
4: Use the algorithm of Theorem A.1.

Figure 3 Algorithm for Set Cover or Set Partition with few sets (implementing Theorem 3.3).

We may bound the running time of Algorithm A3 by analyzing the branching tree of
recursive calls where an execution reaching Line 4 represents a leaf. Note that the depth of
the branching tree is at most m and if we refer to the second recursive call of Line 2 as the
right branch, on any path from the root to a leaf there are at most n/r right branches since
in each such recursion step we decrease the size of U in one call with at least r. Thus the
number of paths from the root to a leaf in this tree with i right branches is at most

(
m
i

)
.

For each such a branch the size of U has become n− ir and since Line 4 is reached all sets
are of size at most r, Theorem 3.3 applies and thus we spend m · poly(n)2λr(n−ir) per leaf
of this type.

Thus, denoting µ = m/n, the total running time can be written as

m · poly(n)
m∑
i=1

(
m

i

)
2λr(n−ir) = m · poly(n)2λrn

(
1 + 1

2λrr

)m
≤ m · poly(n)

(
2λr exp

(
µ/2r/2

))n
,

where the equality follows from the binomial theorem and the inequality uses (1 + 1
n )n ≤ e.

Denoting µ = m/n and setting r = d4 lg(µ)e, we see that when taking asymptotics for
growing µ (which is allowed since we may assume the running time complexity is monotone
increasing with µ), the running time becomes

m · poly(n)
(

21− 1
O(lgµ) +lg(e)/µ

)n
= m · poly(n)2n−

n
O(lg(m/n)) .

A.4 Proof of Theorem 3.4
Given an arbitrary instance of Set Partition consisting of G = (F ∪̇U,E) and integer s,
first construct an equivalent (n,m′, s′) instance using Observation 2.3 with s′ ≤ min{ε1, ε2/2}n.
Then add vertices e1, . . . , es′ to U and replace every f ∈ F with s′ copies f1, . . . , fs′ where
N(fi) = N(f)∪ei. It is easy to see that in this Set Partition instance all set partitions are
of size s′ and it has a set partition of size s′ if and only if the original instance has one of size
s. Thus, to transform the new instance into an equivalent (n + s′,m′, ε1(n + s′))-instance,
simply add sufficiently many isolated vertices to F . Running the assumed algorithm on this
instance results thus in an O∗(2(1−ε2)(n+s′)) = O∗(2(1−ε2)(1+ε2/2)n) = O∗(2(1−ε2/2)n) time
algorithm.



Jesper Nederlof [79]:17

A.5 Proof of Theorem 3.5
Recall from the main text that the Linear Sat problem is defined as follows: given an
integer t, matrix A ∈ Zn×m2 and vectors b ∈ Zn2 and ω ∈ Nm the task is to find x ∈ Zm2
satisfying Ax ≡ b and ω · x ≤ t.

We let a1, . . . ,am ∈ Zn2 denote the column vectors of A, and denote wt(x) for the
Hamming weight of a vector x ∈ Zm2 .

The algorithm implementing the theorem is outlined in Algorithm 4. The algorithm
assumes the Hamming weight of the vector x minimizing minimum ωx is at most 2m/3
(which is in order to facilitate the running time analysis). We can assume this since if the
minimum set of columns summing to b consists of more than 2m/3 columns, the rank of A
is at least 2m/3 (as the solution needs to consist of linearly independent columns) and we
can solve the problem in O∗(2m/3) time by finding a column basis, iterating over all subsets
of columns not in the basis and for each such compute the unique way to extend it to a set
of columns summing to b if it exists (this is a standard technique called ‘Information Set
Decoding’ introduced in [30]). Note, to ensure the Hamming weight is at most 2m/3, we
cannot simply assume the solution is at most size at mostm/2 by looking for the complement
otherwise since this gives a maximization problem.

Running Time First note that Line 16 and Line 17 can be implemented in time 2s2m.
Line 18 can be implemented with linear delay by elementary methods, and thus list2 runs
in O(m(2s2 + |list2(A, b, s2)|)) time. For Algorithm list1, Line 11 and Line 12, we see that
E[|list2(A, b, s1/2)|] =

(
m
s1/2
)
2−s1 , because any vector from Zm2 of weight s1/2 will be included

with probability 2−s1 in the output. Thus these lines run in expected time O(m(2s1/2 +(
m
s1/2
)
2−s1)).

Similarly, the for-loop at Line 13 will take on expectation |P|2−s1 iterations, where P is
the set of pairs (x,y) ∈ (Zm2 )2 such that wt(x) = wt(y) = s1/2 and Ax +Ay ≡ b. Here we
divide by 2s1 since this is the probability that such pair is in L×R because for this it needs
to satisfy HAx ≡ bL.

For algorithm A4 at iteration s, Line 3 and Line 5 thus take expected time

O

(
m

(
2s1/2 +

(
m

s1/2

)
2−s1 + E[|P|2−s1 ]

))
,

where s1 denotes s/2. Note that E[|P|] ≤
(
m
s1/2
)2
/2s since any pair (x,y) in P also needs

to satisfy Ax + Ay ≡ b. Denoting σ = s/m and using s2 = s1/2 = s/4 we can thus upper
bound the running time with

O
(
m2mmaxσ≤2/3{σ/4,h(σ/4)−σ/2,2h(σ/4)−3σ/2}

)
.

It is easily verified by standard calculus or a Mathematica computation that the exponent
in this expression is maximized for σ = 0.4444 where it is at most O(m20.3399m). Note that
Line 4 and Line 6 can be implemented in time O(m|L|) and O(m|R|) with standard data
structures and similarly we can efficiently enumerate all pairs in the for-loop at Line 7. Also
note that in this for-loop the number of enumerated pairs is at most |L′| + |R′| since all
vectors Ax for x ∈ L′ are different. Thus the algorithm indeed runs in the claimed running
time.

Correctness For correctness, first note that whenever yes is returned on Line 8 this is
clearly correct. Now suppose the instance of Linear Sat is a YES-instance. Then there
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Algorithm A4(A, b, t, ω) Assumes A ∈ Zn×m2 , b ∈ Zn2 , t ∈ Z,ω ∈ Nm

Output: yes, if ∃x ∈ Zm2 such that wt(x) ≤ 2m/3 is a multiple of 4, Ax ≡ b and
ω · x ≤ t.

1: for 1 ≤ s ≤ 2m/3 such that s is a multiple of 4 do
2: Pick H ∈ Zs×n2 , bL ∈ Zs2 uniformly at random.
3: Construct L = list1(HA, bL, s/2).
4: Construct L′ such that ∀x ∈ L : ∃!x′ ∈ L′ with ω · x′ ≤ ω · x and Ax ≡ Ax′.
5: Construct R = list1(HA, b− bL, s/2).
6: Construct R′ such that ∀y ∈ R : ∃!y′ ∈ R′ with ω · y′ ≤ ω · y and Ay ≡ Ay′.
7: for all (x,y) ∈ L′ ×R′ such that Ax +Ay ≡ b do
8: if ω · x + ω · y ≤ t then return yes
9: return no.

Algorithm list1(A, b, s1) Assumes A ∈ Z2s1×m
2 , b ∈ Z2s1

2 , s1 ∈ Z
Output: O ⊆ Zm2 such that ∀x ∈ Zm2 : Ax ≡ b ∧ wt(x) = s1, Pr[x ∈ O] ≥ Ω(1) .
10: Pick H ∈ Zs1×2s1

2 , bL ∈ Zs1
2 uniformly at random.

11: Construct L = list2(HA, bL, s1/2).
12: Construct R = list2(HA, b− bL, s1/2).
13: for all (x,y) ∈ L ×R such that Ax +Ay ≡ b do
14: if x + y ∈ {0, 1}n then add x + y to O if it is not in yet.
15: return O.

Algorithm list2(A, b, s2) Assumes A ∈ Zs2×m
2 , b ∈ Zs2

2 , s2 ∈ Z
Output: {x ∈ Zm2 : Ax ≡ b ∧ wt(x) = s2}.
16: Construct a graph D with a vertex vi,y for every y ∈ Zs2

2 .
17: For every i = 1, . . . ,m and y ∈ Zs2

2 , add arcs from vi,y to vi−1,y and to vi−1,y−ai .
18: Enumerate the set P of all paths in D from vm,b to v(0,0) with s2 arcs of the second

type in O(m|P|) time.
19: Initiate S = ∅
20: for every path P in P do
21: Let x ∈ Zm2 be vector with xi = 1 if and only if (vi,y, vi,y−ai) ∈ P for some y.
22: add x to S.
23: return S.

Figure 4 An O∗(20.3399n) time algorithm for Linear Sat.
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exists a minimum weight x ∈ Zm2 satisfying Ax ≡ b and ω · x ≤ t. Let us consider the
iteration of the for-loop on Line 1 where s = wt(x). Since x has minimum weight, the
columns i of A for which xi = 1 need to be linearly independent since otherwise leaving
out a linear combination would result in a smaller weight vector x. This means that if we
denote Z = {Ay : y ⊆ x ∧ wt(y) = s/2}, then |Z| =

(
s
s/2
)
, where y ⊆ x denotes yi ≤ xi for

every coordinate i.
For v ∈ Zs2, let f(v) = |{z ∈ Z : Hz = v}| be an indicator function. We see that

E

∑
v∈Zs2

f(v)2

 =
∑

z1,z2∈Z2

Pr[H(z1 − z2) = 0] ≤ |Z|+ |Z|22−s ≤ 2|Z|.

By Markov’s inequality we thus see that Pr[
∑
x∈Zs2

f(x)2 ≤ 4|Z|] ≥ 1/2 over the choice of H.
Conditioned on this, the Cauchy-Schwarz inequality implies that the number of x ∈ Zs2 such
that f(x) > 0 is at least |Z|2/(2|Z|) = |Z|/2. When this happens, we have with probability
at least

(
s
s/2
)
/2s = Ω(1/

√
s) that bL ∈ Z. If bL ∈ Z, we can apply the same reasoning to

show that list1(HA, bL, s/2) contains y with probability Ω(1/
√
s) and list1(HA, b − bL, s/2)

contains x − y with probability Ω(1/
√
s), and the pair will be considered in the loop on

Line 7. Since the latter two probabilities are independent we see that if a solution exists
we find it with probability at least Ω(n−1.5), and thus we may repeat the algorithm O(n1.5)
times to ensure it finds a solution with constant probability if it exists.

A.6 Proof of Lemma 4.3
Let F = {f1, . . . , fm} be arbitrarily ordered. For integers i ∈ [n], j ∈ [m] and X ⊆ U define
cij [X] to be true if and only if there exists S1 ⊆ {f1, . . . , fj} such that |S1| = i, N(S1) = X

and for every f, f ′ ∈ S1 with f 6= f ′, N(f) ∩ N(f ′) = ∅. We see that ci0[X] is true if and
only if i = 0 and X = ∅, and for j > 0 we have

cj [X] = (ci−1
j−1[X \N(fj)] ∧N(fj) ⊆ X) ∨ cij−1[X].

The values ci(W ) for W ∈ W and i ∈ [n] can be read off from cji (W ), and because for com-
puting cij [X] we only need the entries cij [Y ] where Y ⊆ X, we can restrict our computation
to computing cij(X) for X ∈ ↓W, and the runtime bound follows.

A.7 Proof of Lemma 4.6
Define fx(X) to be true if and only if ∃f ∈ F : N(f) = X and |X| = x. Note we can, within
the claimed time bound, create a table storing the values fx(X) for all X ∈ ↓W using the
oracle. Now define gx(Y ) =

∑
Y⊆X fx(X). Let U = {u1, . . . , un} and define

gjx(X) =
∑

X∩{u1,...,uj}⊆Y⊆X

fx(Y ).

Then we see that gnx (X) = fx(X), and for j < n we can compute gjx using

gjx(X) = [uj ∈ X]gj+1
x (X \ {uj}) + gj+1

x (X). (A.1)

Thus, by straightforward dynamic programming using (A.1) we can compute gx(X) = g0
x(X)

for every x and X ∈ ↓W in O(n2|↓W|) time. Next, define

hx,i(X) =
∑

x1+x2+...+xi=x
gx1(X)gx2(X) · · · gxi(X),

ESA 2016



[79]:20 Finding Large Set Covers Faster via the Representation Method

or equivalently, hx,i is the number of tuples f1, . . . , fi such thatN(fi) ⊆ X and
∑i
l=1 |N(fi)| =

x. Note that for a fixed X, given the entries gx(X) for every x ≤ n, we can compute hx,i(X)
in time poly(n) using standard dynamic programming or the Fast Fourier Transformation.
Denote

c′x,i(X) =

∣∣∣∣∣
{

(f1, . . . , fi) ∈ F i : N({f1, . . . , fi}) = X ∧
i∑
l=1
|N(fl)| = x

}∣∣∣∣∣ ,
which is easily seen to be the number i-tuples of disjoint sets whose union is exactly X

if x = |X|. Note that hx,i(X) =
∑
Y⊆X c

′
x,i(Y ) since every i-tuple counted in hx,i(X) is

counted once in a c′x,i(Y ) where Y is the union of the i-tuple. Then, since any non-empty
set has equally many even-sized as odd-sized subsets (e.g., by inclusion exclusion), we see
that

c′x,i(X) =
∑
Y⊆X

 ∑
Z⊆X\Y

(−1)|Z|
 c′x,i(Y )

=
∑
Z⊆X

(−1)|Z|
 ∑
Y⊆X\Z

c′x,i(Y )

 =
∑
Z⊆X

(−1)|Z|hx,i(X \ Z).

(A.2)

Then, define

hjx,i(X) =
∑

X∩{u1,...,uj}⊆Z⊆X

(−1)|Z|hx,i(X \ Z),

and similarly to (A.1), we see that hnx,i(X) = hx,i(X) and for j < n we can compute hjx,i
using

hjx,i[X] = −[ui ∈ X]hj+1
x,i (X \ {ui}) + hj+1

x,i (X). (A.3)

Consequently, we can use Equation A.3 for a straightforward dynamic programming
algorithm to determine h0

|X|,i[X] which equals c′x,i(X) by (A.2), and it is easy to see that
ci(X) is true if and only if c|X|,i(X) > 0.
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