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A short note on Merlin-Arthur protocols for subset sum

Jesper Nederlof∗

In the Subset Sum problem we are given positive integers w1, . . . , wn along with a target integer t. The
task is to determine whether there exists a subset X ⊆ {1, . . . , n} such that

∑
i∈X wi = t. We refer to such

an X as a solution. The goal of this short note is to prove the following:

Theorem 1. For a given Subset Sum instance w1, . . . , wn, t there is a proof of size1 O∗(
√
t) of what the

number of solutions is that can be constructed in O∗(t) time and can be probabilistically verified in time

O∗(
√
t) with at most constant error probability.

In complexity theory, a proof system as above is commonly referred to as a Merlin-Arthur protocol. These
protocols very recently received attention [6, 3] in the exponential time setting: Williams [6] gives very generic
Merlin-Arthur protocols with verifiers more efficient than best known exponential time algorithms. By no
means we claim this note is innovative in any way: both our work and [6] have a similar flavor and it is
likely that Theorem 1 is also obtainable via a clever application of [6, Theorem 1.1], or at the very least our
observation will be less surprising given [6, 3].

Proof of Theorem 1. The proof system is outlined in Algorithm 1. Note that both the prover and the
verifier algorithms are simple modifications of the well known pseudo-polynomial time dynamic programming
algorithm for Subset Sum usually attributed to Bellman.

Algorithm P(w1, . . . , wn, t) Prove that the number of solutions is ct.

Output: Prime p = Θ(
√
nt), integer ci for i ≤ nt, i ≡p t with ci = |{X ⊆ [n] : w(X) = i}|.

1: Initiate T [0, 0] = 1 and T [0, i] = 0 for 0 < i ≤ nt.
2: for j = 1→ n do

3: for i = 1→ n · t do

4: if i < wj then T [j, i]← T [j − 1, i] else T [j, i]← T [j − 1, i] + T [j − 1, i− wj ].

5: Pick smallest prime p satisfying 2
√
nt < p < 4

√
nt. Brute-force and [1] is within time budget.

6: for i ≤ n · t such that i ≡p t do

7: ci ← T [n, i].

Algorithm V(w1, . . . , wn, t, p, {ci}) Verify the proof for the number of solutions.
Output: Yes if the proof is as output by P, no with constant probability if the proof is ‘incorrect’.
1: Pick a prime q satisfying 2nt < q < 2n+1t. Sample and check primality until success.
2: Pick a random element r ∈ Zq.
3: Initiate T ′[0, 0] = 1 and T ′[0, i] = 0 for i ∈ Zp.
4: for j = 1→ n do

5: for i = 1→ n · t do

6: T ′[j, i]← (T ′[j − 1, i] + rwj · T ′[j − 1, (i− wj)%p]) %q.
7: Compute

∑
i cir

i%q.
8: if

∑
i cir

i ≡q T
′[n, t%p] then return yes else return no.

Algorithm 1: The prover-verifier protocol.

Recall the Prime Number Theorem, that is used in Lines 5 and 1:

Claim 2. For large enough integers b there exist at least 2b/b prime numbers p in the interval 2b < p < 2b+1.
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1 O∗(·) omits factors polynomial in the input size.
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By this result, we may sample 2nt < q < 2n+1t and check primality until success and declare YES after
n+ lg(t) unsuccessful tries (which happens with probability at most 1/4).

For the verification probability, it is straightforward to see that T [n, i] equals |{X ⊆ [n] : w(X) = j}|.
Similarly, when considering r as indeterminate, we see that T ′[n, t] is a polynomial in Zq[r] satisfying

T ′[n, t] ≡q

∑

i≤nt
i≡pt

|{X ⊆ [n] : w(X) = i}|ri.

Also note that |{X ⊆ [n] : w(X) = j}| < q. Thus we see that if the proof is correctly constructed as in P,∑
i cir

i%q and T ′[n, t] are equivalent polynomials and V accepts. On the other hand, if the proof is incorrect,
e.g. ci 6= T [n, i] for some i, we see that (

∑
i cir

i%q) − T ′[n, t] is not the zero polynomial and has degree at
most n · t. Thus, it has at most n · t roots in Zq, and the probability that r is one of these roots is nt/q < 1/4.
If r is not a root of the difference polynomial, the two evaluations necessarily differ and the verifier rejects.
Thus in total the verifier does not reject an incorrect proof with probability at most 1/2.

For the running time of P, note that all involved integers are at most 2n and the running time bound
follows directly. The running time of V follows similarly by using taking modulus at each powering step at
Line 6.

Let us note that the above theorem also gives rise to similar results for parity versions of Set Partition,
Set Cover, Hitting Set and CNF-Sat via the reductions of [5, 4] (since the reduction in [4, Theorem 4.9] from
Subset Sum/m to Set Partition is parsimonious). But all of this was also shown in a stronger form in [6, 3].

Also [2, Theorem 1.6], in combination with the above theorem gives an O∗(2.499n)-sized proof that can
be probabilistically verified in time O∗(2.499n) for Subset Sum. However, combining [6, Theorem A.1] with
the methods from [2] gives a more efficient proof system leading to a proof of size O∗(2.3113n) that can be
verified in time O∗(2.3113n).
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