
Phys. Fluids 33, 127120 (2021); https://doi.org/10.1063/5.0075911 33, 127120

© 2021 Author(s).

Zero absolute vorticity plane Couette flow as
an hydrodynamic representation of quantum
energy states under perpendicular magnetic
field
Cite as: Phys. Fluids 33, 127120 (2021); https://doi.org/10.1063/5.0075911
Submitted: 19 October 2021 • Accepted: 06 December 2021 • Published Online: 21 December 2021

 E. Heifetz,  L. R. M. Maas and  J. Mak

ARTICLES YOU MAY BE INTERESTED IN

Zero absolute vorticity state in thermal equilibrium as a hydrodynamic analog of the quantum
harmonic oscillator ground state
Physics of Fluids 33, 031708 (2021); https://doi.org/10.1063/5.0047620

Analysis of flow-field characteristics and pressure gain in air-breathing rotating detonation
combustor
Physics of Fluids 33, 126112 (2021); https://doi.org/10.1063/5.0077098

Flow characteristics of elastically mounted slit cylinder at sub-critical Reynolds number
Physics of Fluids 33, 123612 (2021); https://doi.org/10.1063/5.0073368

https://images.scitation.org/redirect.spark?MID=176720&plid=1936365&setID=379031&channelID=0&CID=710611&banID=520831033&PID=0&textadID=0&tc=1&type=tclick&mt=1&hc=3e1bf161d77115efe3dba8feaaeae8cb589b0dd8&location=
https://doi.org/10.1063/5.0075911
https://doi.org/10.1063/5.0075911
https://orcid.org/0000-0002-3584-3978
https://aip.scitation.org/author/Heifetz%2C+E
https://orcid.org/0000-0003-1523-7548
https://aip.scitation.org/author/Maas%2C+L+R+M
https://orcid.org/0000-0001-5862-6469
https://aip.scitation.org/author/Mak%2C+J
https://doi.org/10.1063/5.0075911
https://aip.scitation.org/action/showCitFormats?type=show&doi=10.1063/5.0075911
http://crossmark.crossref.org/dialog/?doi=10.1063%2F5.0075911&domain=aip.scitation.org&date_stamp=2021-12-21
https://aip.scitation.org/doi/10.1063/5.0047620
https://aip.scitation.org/doi/10.1063/5.0047620
https://doi.org/10.1063/5.0047620
https://aip.scitation.org/doi/10.1063/5.0077098
https://aip.scitation.org/doi/10.1063/5.0077098
https://doi.org/10.1063/5.0077098
https://aip.scitation.org/doi/10.1063/5.0073368
https://doi.org/10.1063/5.0073368


Zero absolute vorticity plane Couette flow as an
hydrodynamic representation of quantum energy
states under perpendicular magnetic field

Cite as: Phys. Fluids 33, 127120 (2021); doi: 10.1063/5.0075911
Submitted: 19 October 2021 . Accepted: 6 December 2021 .
Published Online: 21 December 2021

E. Heifetz,1,a) L. R. M. Maas,2,b) and J. Mak3,c)

AFFILIATIONS
1Porter school of the Environment and Earth Sciences, Tel Aviv University, 69978, Israel
2Institute for Marine and Atmospheric research Utrecht, University of Utrecht, 3584 CC Utrecht, The Netherlands
3Department of Ocean Science and Center for Ocean Research in Hong Kong and Macau, Hong Kong University of Science
and Technology, Clearwater Bay, Hong Kong

a)Author to whom correspondence should be addressed: eyalh@tauex.tau.ac.il
b)Electronic mail: L.R.M.Maas@uu.nl
c)Electronic mail: jclmak@ust.hk

ABSTRACT

Here we extend the Madelung transformation of the Schr€odinger equation into a fluid-like form to include the influence of an external elec-
tromagnetic field on a charged particle. The vorticity of the Madelung fluid is then in the opposite direction to the imposed magnetic field
and equal in magnitude to the cyclotron angular frequency. When the particle motion is confined to a plane, perpendicular to an imposed
magnetic field, the equivalent flow dynamics is that of zero absolute vorticity obtained in a quasi-two-dimensional rotating frame, where the
cyclotron frequency plays a role equivalent to that of the Coriolis frequency in a rotating frame. We show how the Landau levels and the
extended modes in the integer quantum Hall effect are all mapped into such zero absolute vorticity-like plane Couette flows, where the latter
exhibit a geostrophic-like balance between the magnetic force and the gradients of the quantum (Bohm) potential and the electric force.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0075911

I. INTRODUCTION

The relation between quantum and fluid mechanics has been
established right at the birth of modern quantum mechanics. Less
than a year after Erwin Schr€odinger published his celebrated equation,
Erwin Madelung showed (in 1927) that it can be written in a
hydrodynamic-like form.1 This intriguing observation suggested a
hydrodynamic approach to quantum mechanics. The latter however
gained modest attention in comparison with the dominant
Copenhagen interpretation. The Madelung equations (MEs) remained
also relatively unfamiliar in the fluid dynamics community where the
Schr€odinger equation (SE) is mainly implied as a mathematical formu-
lation to find solutions to the evolution of hydrodynamic waves in dif-
ferent setups.2–4

Recently, however, an attempt has been made to reexamine and
reinterpret fundamental quantum phenomena by analyzing their cor-
respondent hydrodynamic representation. The advantage of this
approach is that by mapping quantum phenomena into classical
hydrodynamic ones, we recover physical intuition and identify familiar

flow patterns that shed new light on the somewhat counter-intuitive
behavior of these quantum phenomena. For instance, from this per-
spective, quantum tunneling is enabled due to a local balance between
the external potential barrier and a pressure gradient force exerted by
the Madelung fluid, in a way that the total kinetic (hydrodynamic and
internal) energy of the Madelung fluid remains continuous across the
potential barrier.5 Another example is the problem of a free-falling
quantum particle in a gravitational field, that is mapped by the
Madelung transform into the dynamics of a 1D stably stratified com-
pressible fluid. The quantum energy states are mapped into hydro-
static equilibrium states, where the evaluation of their stability is
obtained via the pseudoenergy integral which in that case is the sum of
the kinetic and available potential energies.6

In a recent letter in this journal,7 we discussed a mapping
between the quantum harmonic oscillator ground state and the zero
absolute vorticity plane Couette flow in a rotating frame. Here we
show that this flow pattern is the generic hydrodynamic mapping of
quantum eigenstates with planar channel geometry under an external
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perpendicular magnetic field. These eigenstates include the Landau
levels, as well as the bulk modes of the integer quantum Hall effect. In
all these cases, the Couette flow results from a geostrophic-like balance
between the magnetic force and the gradient of the superposition of
the quantum and the electric potentials.

The paper is organized as follows. In Sec. II, we present a simple
hydrodynamic system, in a rotating frame, admitting a steady solution
of zero absolute vorticity plane Couette flow. In Sec. III we derive for
completeness ME in the absence1 and in the presence of an external
magnetic field8 and draw the analogy with zero absolute vorticity
dynamics. Then, in Sec. IV, we show how the Landau levels and the
integer quantum Hall effect extended eigenstates are mapped into the
plane Couette flow described in Sec. II. We close in Sec. V by discus-
sing the results.

II. ZERO ABSOLUTE VORTICITY PLANE COUETTE FLOW
IN A ROTATING BAROTROPIC COMPRESSIBLE SYSTEM

Consider a barotropic, compressible flow in a counterclockwise
rotating system, with an angular frequency X ¼ f =2, where f is the
Coriolis frequency. Viewed from the rotating frame of reference, the
flow momentum and continuity equations read

Du
Dt
¼ �r QðqÞ þ V½ � � f � u; (1)

@q
@t
¼ �r � ðquÞ: (2)

Here t denotes the time and the nabla operator is defined in the
Cartesian coordinates (x, y, z), where z is the vertical coordinate. The
velocity field is given by u ¼ ðu; v;wÞ, the material derivative is
D=Dt � ð@=@t þ u � rÞ, and f � f ẑ, where ẑ is the vertical unit vec-
tor and the axis of rotation. QðqÞ is the flow enthalpy (so that�rQ is
the pressure gradient force), q is the density and V is a time-
independent external potential.

By defining xa as the absolute flow vorticity (the flow vorticity
viewed from a non-rotating frame of rest), which is the sum of the
flow vorticity x measured in the rotating frame and the vorticity con-
tributed by the rotation of the system,

xa � xþ f ; x ¼ r� u; (3)

systems (1) and (2) then satisfies the material line equation for
ðxa=qÞ,9

D
Dt

xa

q

� �
¼ xa

q

� �
� r

� �
u: (4)

Thus, for a strictly two-dimensional (2D) horizontal flow, in a plane
perpendicular to the rotation axis, the right hand side vanishes and
ðxa=qÞ is materially conserved (which is a direct consequence of the
material conservation of circulation in a frame of rest). (4) is trivially
satisfied for zero absolute vorticity flows. Furthermore, as
u � ru ¼ x� uþrðjuj2=2Þ, for zero absolute vorticity (1) can be
written as

@u
@t
¼ �r juj2

2
þ Qþ V

� �
; (5)

thus for a steady flow, the time independent Bernoulli equation is
satisfied,

juj2

2
þ Qþ V ¼ Be ¼ constant; (6)

where Be is the Bernoulli potential.
As x ¼ �f implies ð@v=@x � @u=@yÞ ¼ �f , the plane Couette

flow,

uðyÞ ¼ u0 þ f y ; u0 ¼ uðy ¼ 0Þ; (7)

is a simple example of such a zero absolute vorticity flow. When both
q (hence Q) and V are only functions of y, (7) can be a stationary solu-
tion of (1) and (2), provided that an extended geostrophic balance is
maintained between the Coriolis force and the sum of the pressure
gradient force and the gradient of the external potential V,

fu ¼ � @

@y
ðQþ VÞ: (8)

In what follows, we show that this simple stationary plane
Couette flow is the generic hydrodynamic representation of funda-
mental quantum eigenstate solutions in a rectangular geometry, on a
plane perpendicular to an imposed magnetic field. There, the cyclotron
frequency xc plays the role of f. To show that, we next derive the
hydrodynamic Madelung transformation of the Schr€odinger equation,
first for a neutrally charged quantum particle, and then for a charged
particle in the presence of an electromagnetic field.

III. MADELUNG TRANSFORM OF THE SCHR €ODINGER
EQ.
A. ME for a neutrally charged particle

The Schr€odinger equation (SE), for a non-relativistic, neutrally
charged, spinless quantum particle of mass m, in the presence of an
external scalar potential V reads10

i�h
@W
@t
¼ ĤW ¼ p̂2

2m
þmV

� �
W ; p̂ ¼ �i�hr: (9)

Here Ĥ and p̂ denote, respectively, the energy (Hamiltonian) and
momentum operators, acting on the particle wavefunction Wðr; tÞ,
where r and t denote, respectively, the position vector and time.
Writing the wavefunction in its polar form,

Wðr; tÞ ¼ ffiffiffi
q
p ðr; tÞeiSðr;tÞ=�h; (10)

then qðr; tÞ is the probability density function (PDF) to find the parti-
cle in position r at time t, and S is the wavefunction phase, scaled by
the reduced Planck constant �h.

As SE is a complex equation, Madelung1 employs the exponential
representation of the complex wave function to decompose it into its
amplitude and phase to obtain two equations. The evolution for the
amplitude is

@q
@t
¼ �r � qr S

m

� �� �
: (11)

Defining then the velocity according to the de Broglie guiding equation,10

u ¼ r~S; (12)

plays the role of the velocity potential, where tilde denotes hereafter
division by the particle mass m, ~S � S=m. (11) takes the form of the
familiar continuity equation,
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@q
@t
¼ �r � ðquÞ: (13)

For the evolution of the phase, Madelung obtained

@~S
@t
¼ � u2

2
þ Qþ V

� �
; (14)

where

Q ¼ �
~�h2

2

r2 ffiffiffi
q
pffiffiffi
q
p (15)

is now the quantum potential (denoted also as the Bohm potential11)
(14) can be regarded as the quantum Hamilton–Jacobi equation (more
details on its Hamiltonian properties can be found in Ref. 12) where ~S
plays the role of the action and Q is the quantum correction [for
instance, for the electron mass, ~�h2 � Oð10�8 m4 s�2Þ]. Equivalently,
(14) can be regarded as the time dependent Bernoulli equation of the
barotropic, inviscid, compressible Madelung fluid where Q plays the
formal role of its enthalpy.11 As opposed to classical fluids, this
“enthalpy” contains spatial derivatives of the density and is a peculiar-
ity of the Madelung fluid.

In the absence of quantized vortices resulting from topological
defects, the Madelung flow is irrotational, i.e., x ¼ r� u ¼ r
�ðr~SÞ ¼ 0. Taking the gradient of the two sides of (14) [and recalling
again that ðu � rÞu ¼ x� uþrðjuj2=2Þ], Madelung obtained the
Euler-like momentum equation,

Du
Dt
¼ �r Qþ Vð Þ: (16)

Hence the Madelung equations (13) and (14), arising as a transform of
the Schr€odinger equation, are formally identified with (1) and (2) in a
non-rotating system ( f ¼ 0), where the Madelung fluid density q is
the PDF of the position of the quantum particle.

For cases where both q and V are time independent, the eigen-
states of the time-independent SE ĤW ¼ EW are of the form
Sðr; tÞ ¼ �E t þ gðrÞ (so that uðrÞ ¼ r~g). These are mapped into
stationary anelastic solutions of the Madelung fluid,

r � ðquÞ ¼ 0; (17)

juj2

2
þ Qþ V ¼ ~E ¼ Be: (18)

Thus, the energy (divided by the particle’s mass) of a quantum eigen-
state is the Bernoulli potential of the corresponding Madelung fluid.

B. ME for a charged particle in the presence of an
external electromagnetic field

Consider now the SE for a particle, having charge q, in the pres-
ence of external magnetic and electric fields, B and E, respectively,
where B ¼ r� A (A is the magnetic vector potential), and E ¼
�r/� @A=@t (/ is the electric scalar potential) fields. The
Hamiltonian operator now reads10

Ĥ ¼ 1
2m
ðp̂ � qAÞ2 þmV ; V ¼ ~q/: (19)

For particles with non-zero charge, in order to satisfy the generalized
definition of the canonical momentum under the presence of a

magnetic field, u (the mechanical momentum per mass particle) is
redefined as [cf. (12)]

u ¼ r~S � ~qA; (20)

which is equivalent to the absolute momentum definition in a rotating
frame.13 With the Coulomb gauge conditionr � A ¼ 0, Eqs. (13) and
(14) remain unchanged, and a Helmholtz-like decomposition of the
Madelung velocity field yields

r � u ¼ r2~S ; x ¼ r� u ¼ �xc; (21)

where xc � ~q B ¼ ðB=BÞxc, with B ¼ jBj, and xc � ~qB is the cyclo-
tron angular frequency.

Notice that the Madelung fluid divergence field is a variable, but
its vorticity field is dictated by the imposed magnetic field. The latter is
equal to the cyclotron angular frequency and pointing in a direction
opposite to the imposed B (where, for an electron with the negative
charge q ¼ �e, the vorticity is aligned with the magnetic field). The
gradient of (14) yields, after rearrangement,

@u
@t
þ r u2

2

� �
|fflfflfflffl{zfflfflfflffl}
ðu�rÞu�x�u

¼ �rQ� r/þ @A
@t

� �
|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}

E

~q:

Since x ¼ �xc, we have x� u ¼ �~q B� u, so adding these terms,
respectively, to both sides, we obtain the Madelung equation in the
presence of the Lorentz force,

Du
Dt
¼ �rQþ ~q ðE� B� uÞ: (22)

Furthermore, for the case of a time independent magnetic field
(@A=@t ¼ 0, so that ~q E ¼ �rV), we obtain

Du
Dt
¼ �r QðqÞ þ V½ � � xc � u; (23)

which is equivalent to (1) with xc $ f , where the equivalent condi-
tion for zero absolute vorticity (xþ xc ¼ 0) is satisfied by (21).

IV. PLANE COUETTE FLOW REPRESENTATION
OF QUANTUM EIGEN-STATES
A. General setup

Consider (stationary) eigenstates where the magnetic field is con-
stant and pointing in the z direction, B ¼ Bẑ, and the electric field,
where it exists, is pointing in the y direction with ~qEðyÞ
¼ ð�@V=@yÞŷ , and V ¼ VðyÞ. Furthermore, if we take q ¼ qðyÞ,
and consequently Q ¼ QðyÞ, then for the plane Couette flow
u ¼ uðyÞx̂ ,

uðyÞ ¼ u0 þ xc y ; u0 ¼ uðy ¼ 0Þ; (24)

we have the extended geostrophic-like balance [from (23)],

xcu ¼ �
@

@y
Qþ Vð Þ: (25)

These eigenstate solutions differ from each other by their PDF distri-
bution qðyÞ and the energy eigenvalue ~E corresponding to the
Bernoulli potential. As quantum energy states are quantized, taking
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the subscript n to represent those eigenstates where n ¼ 0; 1; 2…, the
Bernoulli equation (18) then reads

ðu0 þ xcyÞ2

2
þ Q qnðyÞ½ � þ VðyÞ ¼ ~En: (26)

Taking the Landau Gauge14 A ¼ �Byx̂ , we obtain that u0 ¼ @~S=@x
from (20). For each Fourier component in the x direction of the wave

function (10) (denoted by subscript k), we have Wk;n ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
qk;nðyÞ

q
eiðkx�Ent=�hÞ and u0 ¼ �hk=m. Thus, the sinusoidal variation in x of the
wave function contributes only to a shift in the y direction of the zero
velocity line of the Couette flow. Consequently, the hydrodynamic rep-
resentation of the Fourier components of these eigenstates is exactly
the Couette velocity profiles,

ukðyÞ ¼ ~�hkþ xc y; (27)

or, equivalently,

uðYkÞ ¼ xc Yk ; Yk ¼ y þ L2bk ; Lb �

ffiffiffiffiffi
~�h
xc

s
¼

ffiffiffiffiffiffi
�h
qB

s
; (28)

where Lb denotes the magnetic length.14

B. Zero electric field—The Landau levels

In the absence of an electric field, V ¼ constant, and the
geostrophic-like balance (25) and the Bernoulli equation (18) reduce,
respectively, to (Fig. 1),

xcu ¼ �
@Q
@y

; (29)

ðu0 þ xcyÞ2

2
þ Q qnðyÞ½ � ¼ ~En; (30)

where the spatially uniform electric potential is formally absorbed
in ~En.

As (27) and equivalently (28) describe the same unbounded plane
Couette flows for each k, just shifted one from each other in the y
direction by Dy ¼ L2bDk, it is expected that in the absence of an exter-
nal potential, such shifts do not change their energy. Therefore, all the
Fourier components are degenerate in the sense that they possess the
same series of possible values of the Bernoulli potential. This can be
verified explicitly when substituting (15) in (30),

1
2
ðxc YkÞ2 �

~�h2ffiffiffi
q
p

n

d2
ffiffiffi
q
p

n

dY2
k

" #
¼ ~En; (31)

which is identical to the time independent SE for the quantum har-
monic oscillator where xc plays the role of the oscillator frequency.
Thus the harmonic potential ðxc YkÞ2=2 is mapped into the kinetic
energy of the Couette flow.7

To guarantee localized solutions that vanish for jYkj ! 1, the
harmonic oscillator allows only quantized energy state solutions with
Be ¼ ~En ¼ ~�hxc nþ 1

2

� 	
for non-zero positive integer values of n, with

the corresponding density structure,

qk;nðyÞ ¼ qnðYkÞ ¼
1

2nn!

ffiffiffiffiffiffi
xc

p~�h

r
H2

n

ffiffiffiffiffi
xc

~�h

r
Yk

 !
e�xcY2

k =
~�h; (32)

where Hn are the Hermite polynomials of order n, and the multiplica-
tive factors are chosen to normalize the PDF, so that

Ð1
�1 qnðYkÞ

dYk ¼ 1.10

The energy levels are the Landau levels. From a hydrodynamic
perspective, one may ask for the reason for quantized solutions: why
can the Bernoulli potential take on only discrete set of values,
Be ¼ ~En, for the stationary Couette flow, rather than any general set
of continuous values? The reason comes from the peculiar structure of

FIG. 1. Plane Couette flow representation of the Landau levels. The Couette flow (green arrows) u ¼ xcY is in the geostrophic-like balance (29), between the magnetic force
(red arrows) and the gradient of the quantum potential (blue arrows). The latter satisfies (15) for the Hermite squared polynomials solutions (32) of the PDFs qn (filled magenta
curves), corresponding to the discrete energy levels ~En which are the permitted Bernoulli potential values of the Couette flow. Despite the different structure of
qnðYÞ; dQðYÞ=dY is invariant with n, hence satisfying the same geostrophic-like balance for the same Couette flow for all values of n. Furthermore, the Landau levels are
degnenerate in the sense that for each wavenumber k, the structure illustrated in this figure is shifted in the y direction by L2bk [according to (28)] without changing the permitted
values of the Bernoulli potential. The mean expectation value of the velocity vanishes according to (33), as qðYÞ is symmetric but u(Y) is anti-symmetric.
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the enthalpy in the Madelung fluid. Enthalpy in the form of (15) can
satisfy the parabolic structure QðYÞ ¼ ~En � u2=2 ¼ Be� ðxc YÞ2=2
only with specific density structures that correspond to specific dis-
crete values of Be. Conversely, in classical hydrodynamic the enthalpy
of barotropic fluids is not constrained to be of the form (15), thus there
is no counterpart quantization of Be in the classical setting.

For each energy state n, qnðYÞuðYÞdY (hereafter dropping the
subscript k) is the probability to find the charged particle in between
Y � dY=2 < Y < Y þ dY=2, moving with the velocity u(Y). The
mean (expectation) value of the Couette flow �u, for the Landau levels
are zero, i.e.,

�u �
ð1
�1

qnðyÞuðyÞdy ¼
ð1
�1

qnðYÞxc YdY ¼ 0; (33)

since all of the qnðYÞ functions are symmetric but u(Y) is anti-
symmetric. This stands in agreement with the geostrophic balance
(29), as the mean value of the quantum potential gradient vanishesÐ1
�1 qnðYÞðdQ=dYÞdY ¼ 0. This can be verified when substituting
QðYÞ from (15) and then integrating by parts when recalling that both
qnðYÞ and dqn=dY vanish as Y ! 61. It stems from the more gen-
eral vanishing of the mean value of the quantum potential gradient,Ð

qrQ dX ¼ 0, for PDFs satisfying standard boundary conditions (q
andrq vanishing at the boundaries of the volume domain X).

The result �u ¼ 0 is often interpreted as being in agreement with
the classical limit of zero drift of the centers of the circular motions of
charged particles in the plane perpendicular to a constant imposed
magnetic field [positive (negative) charge particles circle clockwise
(anti-clockwise) with the cyclotron angular frequency].14 This circular
motion is equivalent to the inertial circular motion performed by a
fluid particle on an “f-plane,” resulting from a balance between the
Coriolis and the centrifugal forces acting on the fluid particle.13

It is interesting to note that the Couette flow can be regarded
as a geometric superposition of an infinite number of circular
motions of classical charged particles. Consider a fluid particle at
position rðtÞ ¼ ðxðtÞ; yðtÞÞ, circulating clockwise with the cyclo-
tron frequency, around a center r0 ¼ ðx0; y0Þ, so that the radius of
the circle is jr� r0j. Then the Cartesian components of the fluid
particle motion are up ¼ xcðy � y0Þ and vp ¼ �xcðx � x0Þ. Now,
consider an infinite number of all possible circles, with all possible
radii centered at y0 ¼ �L2bk (Y¼ 0), where x0 varies continuously
from �Lx=2 to Lx=2. Then the velocity field, averaged over x,
resulting from a superposition of all these circles, is given by

u ¼ ð1=LxÞ
Ð Lx=2
�Lx=2 up dx0 ¼

~�hkþ xc y, which is the Couette flow as

in (27), and v ¼ ð1=LxÞ
Ð Lx=2
�Lx=2 vp dx0 ¼ �xc x. Thus, at the center

of the domain x¼ 0, v vanishes due to the cancelation of positive
and negative motion, and in the y direction, every pair of circles
whose centers are located at equal distances jx0j, from the left and
the right sides of the domain’s center, x¼ 0. For an infinite domain
(Lx !1), the center can be taken at any point of x, so that we can
always find corresponding pairs of circular motions whose super-
position vanishes v at all x. Consequently, the resultant mean
superposed flow attributed to all of these possible inertial circles
yields the net Couette flow of (27); see Fig. 2.

While in classical fluid dynamics the value of u0 may vary contin-
uously, for the Landau levels u0 is quantized. This leads to the impor-
tant property of the Landau levels that the areal density of the charged
particles is proportional to the magnitude of the perpendicular mag-
netic field. Each Couette profile uk of (27) or (28) corresponds to a dif-
ferent charged particle, as each wave number k ¼ 2p=kx is related to
the wavelength of the quantum wavefunction of a particle. This num-
ber is quantized if we assume periodic boundary conditions at
x ¼ ð0; LxÞ, so that kjx ¼ Lx=j, for j ¼ 1; 2; 3… Consequently the
allowed wavenumbers are kj ¼ ð2p=LxÞj, hence the difference in the y
direction between the zero velocity lines of the allowed Couette flows
is Dy0 ¼ 2pðL2b=LxÞ. Thus, the number of allowed charged particles in
a slab of width Ly at an energy level is given by N ¼ Ly=Dy0
¼ ðB=U0ÞA, where A ¼ LxLy is the area of the slab and U0 � h=q is
denoted as the quantum magnetic flux (where h ¼ 2p�h is the Planck
constant). Therefore, the areal charge density in a Landau level
N=A ¼ B=U0 (not to be confused with the probability density func-
tion, q, to find a single particle) is proportional to B. Consequently,
when � number of Landau energy levels are filled, the charge areal
density n2D � �N=A ¼ B�=U0 ¼ Bq�=h.

C. Non-zero electric field—The integer quantum
Hall effect

Here we refer solely to the integer quantum Hall effect and not to
the fractional one, as in the former the interactions between co-
existing charged particles can be ignored, whereas in the latter these
interactions play a crucial role.14

When adding a constant transverse electric field E ¼ Ey ŷ
(Ey ¼ �@/=@y, for / ¼ �yEy), the Couette flow solution of (27)
remains unchanged, but the gradient of the quantum potential is now
accompanied by the constant electric field to balance the magnetic
force, so that (25) reads

FIG. 2. Schematic illustration of how a
plane Couette flow can be obtained from
a superposition of an infinite number of
inertial circles with varying radii, whose
centers are located at the Couette zero
velocity line, Y¼ 0 (see more details in
text).
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xcu ¼ �
@Q
@y
þ ~qEy

� �
: (34)

This corresponds to the extended bulk modes of the integer quantum
Hall effect (when q ¼ �e). The Bernoulli equation (18) in the shifted
Y coordinate then becomes

1
2
ðxc YÞ2 �

~�h2ffiffiffi
q
p

d2
ffiffiffi
q
p

dY2

" #
� ~qEy ðY � kL2bÞ ¼ ~E ¼ Be: (35)

By making the additional coordinate shift Y � Y � ~qEy=x2
c , (35) can

be rewritten, after completing the square and using (32), as

1
2
ðxc YÞ2 �

~�h2ffiffiffi
q
p

@2
ffiffiffi
q
p

@Y2

" #
þ Ey

B

� �
~�hk� 1

2

~qEy
xc

� �2

¼ ~�hxc nþ 1
2

� �
þ Ey

B

� �
~�hk� 1

2

Ey
B

� �� �
¼ ~Ek;n ¼ Be: (36)

Hence, the existence of a constant electric field breaks the degeneracy
of the Landau levels and makes the Bernoulli constant take different
values for each allowed set of (k, n). The reason for the breaking of the
degeneracy is demonstrated in Fig. 3. While the zero velocity line of
the Couette flow is located at Y k ¼ 0, the electric potential zero line is
at Yk ¼ L2bk, and this mismatch depends on k. In addition, the density
structure qk;n of the Hermite polynomials (32) is centered around
Yk ¼ 0 so that Yk ¼ ~qEy=x2

c , i.e., around u ¼ xcYk ¼ Ey=B.
Therefore, although the Couette velocity profile itself is not altered by
the presence of the constant electric field, the shift in the y direction
between the density structure and the Couette velocity profile breaks
the anti-symmetric structure of qu with respect to Yk ¼ 0.
Consequently, when multiplying (34) by q and integrating over y we
obtain that the velocity expectation value is non-zero and satisfying a
geostrophic-like balance between the magnetic and the electric forces,
where the mean effect of the quantum potential gradient vanishes as
before,

xc�u ¼ �
@V
@y
¼ ~qEy ) B�u ¼ Ey: (37)

The expectation velocity value is equal to the velocity at the PDF
centerline, regardless of the values of (k, n). It obeys a geostrophic-like
balance between the magnetic and the electric forces where Ey=B is
indeed the classical drift velocity. Hence, the superpositioning of iner-
tial circles, illustrated in Fig. 2, is applicable as well in the presence of a
constant transverse electric field, when viewed from a frame moving
with the drift velocity.

The expectation value of the charged particle velocity is in agree-
ment as well with the classical limit of the classical Hall effect. Defining
the Hall voltage difference in the y direction as VH � LyEy , then the
transverse Ohm’s law for the classical Hall effect is VH ¼ IxRxy , where
the electric current in the x direction is Ix � q n2D �u Ly and the trans-
verse resistance is Rxy ¼ B=ðq n2DÞ. However, while in the classical
Hall effect Rxy is proportional to the imposed magnetic field, in the
integer quantumHall effect n2D ¼ Bq�=h, thus Rxy ¼ h=ðq2�Þ is inde-
pendent of B. This results in a series of “plateaus” of constant values of
Rxy, when plotted against B, in the intervals where the integer number
of filled Landau levels remains constant.14

V. DISCUSSION

The Madelung momentum equation (16) for a quantum particle
is somewhat elusive. It differs from the classical momentum equation
by the presence of the gradient of the quantum potential, but its expec-
tation value generally vanishes [when applying

Ð
q ð…Þ dV on the two

sides of the equation]. Furthermore, for a charged quantum particle in
the presence of an electromagnetic force (23), the velocity field is gen-
erally both divergent and rotational, but the latter property is not an
independent variable but dictated by the magnetic field. These two
subtle issues seem to obscure the simple representation of the energy
states of the Landau levels, and the extended modes of the integer
quantum Hall effect, as sets of simple plane Couette flows with a con-
stant shear that is equal to the cyclotron frequency. The geostrophic-
like balance of this flow together with the Bernoulli energy equation it
obeys, provides familiarity and physical intuition from the realm of
geophysical fluid dynamics, thus suggesting a different angle of
understanding.

This intuition is however partial. There are no direct fluid
mechanics counterparts to the quantum effects which result both from
the structure of the “quantum enthalpy” and the stream-wise quan-
tized boundary conditions of the particle’s wavefunction. Nevertheless,
it is interesting to compare the magnetic length scale Lb with the
Rossby deformation radius length scale Ld ¼

ffiffiffiffiffiffi
gH
p

=f (which, roughly
speaking, is the length covered in an inertial period 1=f by a wave
propagating at long wave speed

ffiffiffiffiffiffi
gH
p

, where f is the Coriolis fre-
quency, g is gravity and H is the mean layer thickness). Despite the
enormous scale difference [while Ld varies from Oð104 � 106 mÞ in
the ocean and the atmosphere, respectively, Lb � 2:5� 10�8 m for an
electron in a magnetic field of 1 T], if we denote f ¼ xc � x and
equate Lb with Ld we obtain gH ¼ ~�hxc. Hence, although the quantized

energy levels ~En have no direct classical counter-part, the mean

FIG. 3. Bulk modes of the integer quantum Hall effect. The setup is the same as in
Fig. 1, but with an additional constant electric field Ey in the Y direction. The
Couette flow is now in a geostrophic-like balance between the gradient of the quan-
tum potential (blue arrows) and the magnetic (red arrows) and electric forces
(magenta arrows). To maintain the balance, the center of the PDF structures is
shifted in the Y direction by ~qEy=x2

c, in order to vanish the gradient of the quantum
potential at the location where the magnetic and the electric forces are in balance.
This shift breaks the anti-symmetric relations between q and u, yielding the non-
zero expectation value �u ¼ Ey=B as in (37).
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potential energy in the geophysical layer plays the role of the energy
difference between two adjacent Landau levels, as if jumping from one
energy level to the adjacent one requires adding another layer of thick-
ness H. Furthermore, in order for Ld and Lb to play an equivalent role,
gH/f should correspond to a constant, which means that the mean
layer thickness should be proportional to the Coriolis frequency. We
cannot think of any reason, or physical constraint to justify it.
However, as in shallow water system, the fluid density is assumed con-
stant, if such a scenario exists, the mass of a column per unit area, M/
A, would be proportional to f, which corresponds to the quantum case
where n2D / B.

We close the article by noting that the integer quantum Hall
effect has been shown to have intimate links with topological invari-
ants, and it would be of interest to see how such fundamentally quan-
tum mechanical effects manifest for the analogous fluid system
through the bulk-boundary correspondence (topological edge modes
in the classical settings have recently been investigated in the fluids
community15,16) Furthermore, fluid instabilities have been previously
noted to have some formal links with the breakdown of the quantum
Hall effect.17 Ultimately the goal would be for one field to be able to
predict something we do not already know in the other, and to that
end further work is required in highlighting links between the two
fields through the Madelung formalism, some of which will be our
focus in the near future.
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