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Abstract

Long-finned pilot whale (Globicephala melas) mitochondrial

(mtDNA) genetic diversity is considered low, especially in

the North Atlantic, where only seven haplotypes have been

recorded in previous studies using a 345 bp control region

fragment. Such studies have not included samples from

Ireland or the Netherlands. In this study we analyzed a lon-

ger sequence of the mtDNA control region (631 bp) from

individuals stranded around Ireland, Scotland, and the

Netherlands between 1995 and 2019 (n = 180). Nine hap-

lotypes were identified, of which five were newly described

(haplotype diversity h = 0.511). Pairwise tests revealed sig-

nificant differentiation between the Irish and Scottish sam-

ples. Potential confounding factors are discussed but given

that failure to recognize population structure may compro-

mise conservation efforts, the findings show the need for

further investigation using nuclear markers. Six mass

stranding events were included, of which one event

reported two haplotypes among individuals confirming a

mixing of matrilineal groups. Although the permanence of

this combination cannot be determined, this is the first

record of such an occurrence within the North Atlantic. This

study shows that stranding sample databases are a useful
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resource for genetic studies and provides new insights into

genetic diversity of long-finned pilot whales in the eastern

North Atlantic and adjacent waters.

K E YWORD S

cetacean, genetic diversity, Globicephala melas, mass stranding
event, matrilineal structure, mitochondrial DNA, stranding

1 | INTRODUCTION

Effective conservation management plans rely on detailed information about the genetic diversity and structure of

populations, particularly for species that have no obvious barriers to gene flow (Allendorf et al., 2010; Banguera-

Hinestroza et al., 2014). Population structure in cetaceans is often cryptic and can be difficult to detect from obser-

vational data due to their high dispersal ability (Foote et al., 2009; Pérez-Alvarez et al., 2015; Pilot et al., 2010).

Photo-identification can be used to distinguish individuals and assign them home ranges, which can be suggestive of

population dynamics, but this technique is more applicable for species with coastal distributions (Beck et al., 2014;

O'Brien et al., 2010; Stevens, 2014). Typically, little is known about pelagic odontocete species' population structure

from observational data alone; however, integration of genetic data has offered considerable insight into species'

population structure and conservation needs (see Banguera-Hinestroza et al., 2014 and Martien et al., 2017).

Biological information collected from stranded cetaceans represent a cost-effective resource for quantification

of baseline trends in population variability and insights into the condition of the at-sea population (ten Doeschate

et al., 2018). Additionally, stranded individuals provide opportunistic sampling opportunities for genetic studies that

are particularly useful for pelagic species where comprehensive at-sea sampling is difficult or unavailable (Bilgmann

et al., 2011; Dalebout et al., 2005; Morin et al., 2017). Geographical referencing of stranded cetaceans can be subject

to bias because their exact origin cannot always be known, as individuals that die at sea may drift with the prevailing

wind or currents before making landfall (Bilgmann et al., 2011; Peltier et al., 2012). However, genetic data from

stranded individuals can be analogous to data obtained from at-sea samples under some circumstances (Dalebout

et al. (2005).

Long-finned pilot whales (Globicephala melas) are a gregarious species with complex social bonds (Augusto

et al., 2017b; Evans et al., 2005). Until 2018, long-finned pilot whales were classified on the IUCN red list as “data
deficient” and despite reclassification to “least concern,” knowledge of population distribution and trends is scarce,

requiring further research to bolster our understanding of the conservation needs of this species (Minton

et al., 2018). Previous mitochondrial (mtDNA) studies of long-finned pilot whales report haplotype diversity for a

345 bp fragment of the control region (CR) to be generally low worldwide, with only 17 haplotypes recorded (Kraft

et al., 2020; Monteiro et al., 2015; Oremus et al., 2009). This is lower than haplotype numbers reported in other

worldwide studies of cetaceans with comparable social structure (Alexander et al., 2016; Hoelzel et al., 2002; Morin

et al., 2010). Across the Southern Hemisphere, 13 of the known 17 345 bp mtDNA CR haplotypes have been

recorded (Kraft et al., 2020; Oremus et al., 2009). Only seven of the 17 345 bp mtDNA CR haplotypes have been

recorded in the North Atlantic, of which four are not shared with the Southern Hemisphere (Monteiro et al., 2015;

Oremus et al., 2009; Sabatier et al., 2015; Siemann, 1994). Within the North Atlantic, the United Kingdom (UK) was

identified as the region with the highest number of 345 bp mtDNA CR haplotypes (n = 5) (Monteiro et al., 2015).

However, the sample sizes from the three studies that included the UK were limited (Monteiro et al., 2015; Oremus

et al., 2009; Siemann, 1994) and they did not include the unusual individuals stranded in the Netherlands or samples

from Ireland, which is an understudied coastline of the eastern North Atlantic.

BALL ET AL. 899
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Long-finned pilot whales are the most commonly encountered species in mass stranding events (Augusto

et al., 2017b; Evans et al., 2005). Their social structure is based around matrilineal pods (socioecological groups, con-

taining related adult females), as assessed by kinship studies from grinds (drive fishery practice) in the Faroe Islands

(Amos et al., 1991, 1993). Photo-identification analysis of pod social structure suggests that they live in small stable

pod units that interact with other such pod units, forming wider social associations (Augusto et al., 2017a; de

Stephanis et al., 2008). However, these studies have not used genetic markers to infer kin relationships among those

stable pod units, and as such, it is still unclear if long-finned pilot whales have a strict matrilineal structure compara-

ble to the resident killer whales (Orcinus orca) in the Northwest Pacific (Bigg et al., 1990; Ford, 2002) or a fluid pod

structure more similar to Icelandic killer whales (Tavares et al., 2017). Social relations may be an important consider-

ation in understanding mass stranding events, based on observations of pilot whales attempting to retain group

cohesion during mass strandings, assumed to be motivated by an effort to remain with closely related maternal kin

(Norris & Schilt, 1988; Whitehead et al., 2004). However, if multiple genetically distinct pods are present within a

stranding, subsequent refloating of unrelated individuals together as part of rescue efforts may contribute to

restranding (Geraci & Lounsbury, 1993). The extended matriline hypothesis predicts that all individuals within a mass

stranding event will be from the same female led family socioecological unit and therefore have the same mtDNA

haplotype sequence (Oremus et al., 2013). However, this hypothesis has been largely rejected in a study of mass

stranding events around New Zealand and Tasmania in favor of the multiple matrilines stranding hypothesis, which

is when more than one matriline is present within a mass stranding event (Oremus et al., 2013). The extended matri-

line hypothesis has never been tested for mass stranding events in the Northern Hemisphere.

The first objective of this study was to investigate mtDNA CR haplotype diversity of long-finned pilot whales

stranded on the coasts of the eastern North Atlantic and adjacent waters. The second objective was to assess

regional variation and to look for maternal population structure. The third objective was to explore matrilineal social

structure of long-finned pilot whale pods involved in mass stranding events.

2 | METHODS

2.1 | Sample collection

The Scottish Marine Animal Stranding Scheme (SMASS) has been recording and collecting samples from stranded

and necropsied cetaceans since 1992 (ten Doeschate et al., 2018). In 2006 the Irish Cetacean Genetic Tissue Bank

(ICGTB) was set up by the Irish Whale and Dolphin Group (IWDG), which had been recording cetacean strandings

since 1990 (Coombs et al., 2019). In addition, within the Dutch stranding investigation program, three stranded long-

finned pilot whale samples were available; the atypical presence of this species within a shallow sea permitted their

integration into this sample set. Samples of long-finned pilot whale muscle or skin tissue were collected postmortem

from stranded individuals between 1995 and 2019. Samples from 180 individuals were included in this study:

81 from SMASS stored at �20�C, 96 from ICGTB stored in ethanol, and three from the Netherlands stored in etha-

nol. The samples originated from both single stranded individuals (n = 93) and individuals involved in six separate

mass stranding events (n = 87) (Figure 1).

2.2 | DNA sequencing

DNA was extracted using the Qiagen DNeasy Blood and Tissue Kit (QIAGEN Inc., Crawley, UK), following the manu-

facturer's handbook, the only alteration being an overnight lysis incubation to increase DNA yield from more

decomposed samples (Qiagen Handbook, 2019; https://www.qiagen.com/gb/resources/resourcedetail?id=

68f29296-5a9f-40fa-8b3d-1c148d0b3030&lang=en). A 710 bp fragment of the control region was amplified using

900 BALL ET AL.
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the forward primer, PWCRF (50-GCTGGAATTCTACATAAACTA-30; developed at the University of Chester) and

reverse primer Dlp-8G (50-GGAGTACTATGTCCTGTAACCA-3; Dalebout et al., 2005). For all samples, the 25 μl PCR

reaction was as follows: one illustra PuReTaq Ready-To-Go PCR bead (200 μM of each dNTP, 10 mM Tris–HCl,

pH 9.0, 50 mM KCl & 1.5 mM MgCl2; Thermofisher Scientific, Waltham, UK), 0.5 mM of forward primer, 0.5 mM of

reverse primer, 21 μl of sterile water and 3 μl of DNA template. Thermocycler conditions were: 94�C for 5 min,

35 cycles of 94�C, 55�C, and 72�C all for 30 s, with a 10 min 72�C extension. The Qiagen QIAquick PCR Purification

Kit (QIAGEN Inc., Crawley, UK) was used to purify the PCR products prior to sequencing. DNA sequencing for each

individual was carried out on both the forward and reverse strands using the dideoxy chain termination cycle

sequencing method on ABI 3730XL sequencing machines at Eurofins Genomics (Ebersberg, Germany).

Morphological sex was recorded for 94% of individuals, as per Kuiken and Hartman (1991). The remaining indi-

viduals were sexed genetically using introns of the ZFX and ZFY genes and the SRY gene, following the methods in

de Stephanis et al. (2008).

2.3 | Haplotype diversity

Sequence alignment of 710 bp lengths and trimming to 631 bp was completed in MEGAX (Kumar et al., 2018) using

ClustalW (Thompson et al., 1994), with default parameters. The maximum likelihood test performed in MEGAX

(Kumar et al., 2018) identified the best fit substitution model (Nei & Kumar, 2000) as Tamura (Tamura, 1992). The

sequences were confirmed as long-fined pilot whale mtDNA control region using BLAST (Morgulis et al., 2008) and

F IGURE 1 Map of all stranding locations included in this study. Single stranded individuals are shown by a gray
circle and mass stranding locations are displayed by a square. The color of each square corresponds to the year in
which the mass stranding event (MSE) occurred. Number of individuals in each stranding type and event is provided
in the map legend. Regional data partitions are shown with colored polygons and place-name labels. The map was
drawn in R within the ggOceanMap package (Vihtakari, 2021) and bathymetry spatial data (Amante & Eakins, 2009).
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compared with six previously published 345 bp control region haplotypes recorded in North Atlantic long-finned

pilot whales (GenBank accession numbers: FJ513343, FJ513345-46 & FJ513351, Oremus et al., 2009 and

KC934933-34, Monteiro et al. 2015). This permitted integration with previous studies and recognition of new haplo-

types. A median joining network (MJN; Bandelt et al., 1999) was drawn, for all 180 individuals with mtDNA CR hap-

lotype length of 631 bp, in the software package Network.10 (https://www.fluxus-engineering.com/sharenet.htm)

using default parameters.

2.4 | Regional variation

Individuals were grouped into regions based on their sampling locations: Ireland, East Scotland, West Scotland, and

the Netherlands (Figure 1). The Netherland individuals were excluded from haplotype frequency-based analysis due

to the comparatively small sample size. East and West Scotland were grouped separately as the west coast has high

connectivity to the continental shelf edge, known to be an important habitat feature for long-finned pilot whales

(Lambert et al., 2014; MacLeod, 2009). In contrast, the east coast of Scotland typically has shallower coastal waters

(Figure 1; Lambert et al., 2014; MacLeod, 2009). Long-finned pilot whales are known to exhibit social structure based

around family units and, as a result, only one of each haplotype found in each mass stranding event was included in

the regional analysis to control for nonindependence as in Kraft et al. (2020) and Oremus et al. (2009).

All analyses were performed in Arlequin version 3.5 (Excoffier & Lischer, 2010) for the 631 bp mtDNA CR align-

ment. Genetic variability was measured using indices of haplotype (h) and nucleotide (π) diversity and their respective

standard deviations (SD). Differentiation between pairs of sampling regions was quantified using ΦST (with Tamura's

interhaplotype distance) and FST (Weir & Cockerham, 1984), with statistical significance assessed after 10,000 per-

mutations. Pairwise differences in haplotype frequencies were tested using Fisher's exact test (Raymond &

Rousset, 1995) with 10,000 permutations. The partitioning of variation among regions versus within regions was also

assessed using a hierarchical AMOVA (analysis of molecular variance) based on ΦST (with Tamura's interhaplotype

distance; Excoffier et al., 1992) performed with 16,000 permutations.

3 | RESULTS

All 180 individuals were successfully sequenced for a 710 bp section of the control region. No ambiguities were

found between forward and reverse sequences and no evidence of heteroplasmy was present in our data set. All

sequences were trimmed following alignment to 631 bp to ensure there were no missing data from any of the sam-

ples. The 631 bp sequence of the mtDNA CR defined nine haplotypes (GenBank Accession no: OK247504-12).

Genetic sexing was successful in 22 of 27 unknown samples, the sample set contained 95 females, 80 males and five

of unknown sex.

3.1 | Haplotype diversity

Comparison to the previously published 345 bp mtDNA CR haplotypes from GenBank revealed that four haplotypes

previously recorded in the North Atlantic were present in this sample set: S, R, E, P (defined by Monteiro

et al., 2015; Oremus et al., 2009; Table 1). Haplotype S was the most common haplotype in our samples, present in

72% of individuals (Figure 2).

Five new 631 bp mtDNA CR haplotypes are described for the first time in this study: S1, S2, S3, T1, and T2

(Table 1; Figure 2). Within the previously published 345 bp haplotype sequence length (Monteiro et al., 2015;

Oremus et al., 2009; Siemann, 1994) we observed three new variable positions, a 2 bp deletion (Haplotype S1) and a

902 BALL ET AL.
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single transition (Haplotype T1) (Table 1). Haplotype T2 had both aforementioned variable sites and an additional

two variable positions located in the 631 bp haplotype sequence length (Table 1). Within the extended 631 bp

sequence, Haplotypes S2 and S3 had one variable position each (Table 1). Additionally, the individuals that matched

previously published 345 bp Haplotype P (Monteiro et al., 2015; Oremus et al., 2009; Siemann, 1994) also had a var-

iable position in the 631 bp haplotype length (Table 1). Two of the new haplotypes (S2 and S3) were only distin-

guished by a substitution in this extended length of sequence.

Haplotypes T1 and S2 were found in the West Scotland region, with S2 also recorded in one stranded long-

finned pilot whale in Ireland (Figure 2). Haplotype S3 was found in Ireland, East Scotland, and the Netherlands. Hap-

lotypes S1 and T2 were only recorded in the East Scotland region (Figure 2).

There were more singularly stranded male (n = 55) long-finned pilot whales than females (n = 37). Seven of the

nine haplotypes reported in this study were found in the single stranded individuals (Figure 3a). Haplotypes S2 and P

were only found in individually stranded males (Figure 3a). There were more female long-finned pilot whales than

males in the mass stranding events (n = 58 and n = 29, respectively; Figure 3b). Haplotypes S1 and T2 were only

found in the 2012 mass stranding event, S1 was observed in both males and females but, Haplotype T2 was only

found in female individuals.

F IGURE 2 Map of all haplotypes, based on 631 bp of the control region, reported in this study. Each haplotype
corresponds to a different color. Regional data partitions are shown with colored polygons and placename labels.
The median joining haplotype network is provided in the top right corner. Node size is proportional to the frequency
occurrence of each haplotype. Single nucleotide variable bp positions are marked with a crossbar and indel variations
of a 2 bp change is indicated with the number 2. The median joining network was drawn with the 631 bp control
region haplotype for all 180 individuals. The map was drawn in R within the ggOceanMap package (Vihtakari, 2021)
and bathymetry spatial data (Amante & Eakins, 2009).
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3.2 | Regional variation

The overall haplotype diversity from the eastern North Atlantic was 0.511 (SD ± 0.059) and nucleotide diversity was

0.078 (SD ± 0.075) (Table 2). By region, haplotype diversity varied between 0.493 ± 0.117 (West Scotland) and

0.506 ± 0.067 (Ireland) (Table 2). Nucleotide diversity was lower for Ireland (0.056 ± 0.062) than West Scotland

F IGURE 3 (a) numerical plot of every single stranded individual (n = 93) categorized by haplotype to show sex
split. (b) numerical plot of the six mass stranding events, categorized by the year the mass stranding took place
showing, haplotype and sex of each individual (n = 87).

TABLE 2 Overall diversity indices and those for the three regions in the adjusted data set (631 bp), which
includes only single stranded individuals, one individual of each haplotype from each mass stranding event, and the
Netherlands samples are excluded. Shown are sample number (n), number of haplotypes (No. Haps) and number of

variable bp positions (Variable sites). Standard deviation (SD) is shown after the ± for haplotype (h) and nucleotide
diversity (π).

Ireland West Scotland East Scotland Overall Netherlands

n 59 24 14 97 3

No. Haps 5 5 4 9 2

Variable sites 5 6 6 10 1

h 0.506 ± 0.067 0.493 ± 0.117 0.495 ± 0.151 0.510 ± 0.059

π % 0.056 ± 0.062 0.099 ± 0.090 0.111 ± 0.099 0.078 ± 0.075

BALL ET AL. 905
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(0.099 ± 0.090) and East Scotland (0.111 ± 0.099). The hierarchical AMOVA based on pairwise ΦST (with Tamura's

interhaplotype distance) reported most genetic variation occurred within regions (94.44%), with a significant propor-

tion of variation (5.56%; p = .01) between region groups. AMOVA based on pairwise FST reported the proportion of

variation between regions to be nonsignificant (p = .148). Fisher's exact test of differentiation reported significant

differentiation between Ireland and West Scotland (0.007 SD ± 0.001) as well as between Ireland and East Scotland

(0.017 SD ± 0.002) (Table 3). The pairwise ΦST values mirrored those of Fisher's exact test, with Ireland being signifi-

cantly different from the two Scottish regions (Table 3). No pairwise FST results were statistically significant

(Table S1).

3.3 | Mass strandings

The mass stranding events were typically characterized by the presence of more females than males, although the

2013 event was an exception as the two individuals that stranded were male (Figure 3b). The mass stranding that

occurred in 2012 in Fife (East Scotland) contained two new haplotypes, S1 (n = 20) and T2 (n = 2). The mass

stranding events of long-finned pilot whales in 2010, 2011, 2013, 2014, and 2015 all exhibited a single haplotype in

each respective event (Haplotype S; Figure 3b).

4 | DISCUSSION

The sample size of our study is the largest to date, consisting of 180 long-finned pilot whale individuals from the

eastern North Atlantic and adjacent waters, almost doubling the 95 individuals from the UK, Iberian Peninsula, and

Faroe Isles in the study by Monteiro et al. (2015). Our study included individuals collected from unanalyzed areas of

Scotland and from Ireland and the Netherlands, which have not previously been included in assessments of long-

finned pilot whale genetic diversity. Five new mitochondrial control region (mtDNA CR) haplotypes were identified

by this study, along with four of the seven haplotypes previously reported in the North Atlantic (S, P, R, and E;

Monteiro et al., 2015; Oremus et al., 2009; Sabatier et al., 2015; Siemann, 1994). Our study nearly doubles the num-

ber of known long-finned pilot whale mtDNA CR haplotypes to a total of 12 for the North Atlantic. These results

highlight the utility of large tissue banks, such as those managed by the Irish Whale and Dolphin Group and the Scot-

tish Marine Animal Stranding Scheme, for genetic studies.

Haplotype S was the most common mtDNA CR haplotype found in this study and was recorded in 72% of indi-

viduals. This is in line with previous studies of long-finned pilot whale genetic diversity in the North Atlantic that

found between 62% and 93% of individuals sampled were Haplotype S (Monteiro et al., 2015; Sabatier et al., 2015;

Siemann, 1994). Haplotype S has been recorded in every location sampled around the North Atlantic, from Cape

Cod in the USA to the Faroe Islands and the Iberian Peninsula (Monteiro et al., 2015; Oremus et al., 2009; Sabatier

et al., 2015; Siemann, 1994).

TABLE 3 Pairwise differentiation values for the three regions, calculated using the adjusted data set with the
631 bp sequence length. ΦST (calculated with Tamura's interhaplotype distance) and p-values, in parentheses, are
shown below the diagonal. Fishers exact test is shown above the diagonal with significant values marked in bold
(significance level = .05).

Ireland n = 59 West Scotland n = 24 East Scotland n = 14

Ireland — 0.008 ± 0.002 0.009 ± 0.001

West Scotland 0.096 (.007) — 0.092 ± 0.004

East Scotland 0.089 (.022) �0.019 (.562) —

906 BALL ET AL.

 17487692, 2022, 3, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/m

m
s.12893 by U

trecht U
niversity L

ibrary, W
iley O

nline L
ibrary on [16/11/2022]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



The discovery of nine long-finned pilot whale mtDNA CR haplotypes along the coasts of Ireland and Scotland is

higher than previously described for the entire North Atlantic (Monteiro et al., 2015; Oremus et al., 2009;

Siemann, 1994). Two of these newly found haplotypes were distinguished by substitutions occurring outside the

standard 345 bp alignment used in previous studies and emphasizes the utility of increased genome coverage. How-

ever, three new haplotypes were also found within the standard 345 bp fragment. This direct comparison merits

consideration as to whether the Irish and Scottish waters could be an area of high genetic diversity for long-finned

pilot whales within the North Atlantic. The continental shelf adjacent to the western shores of Ireland and Scotland

is known to be an important habitat feature associated with the distribution of long-finned pilot whales and their pri-

mary food source, cephalopod species (Barile et al., 2021; de Pierrepont et al., 2005; MacLeod et al., 2007; Pike

et al., 2019; Santos et al., 2014; Spitz et al., 2011; Waggitt et al., 2020). Although, the results may also reflect the

larger sample size used than in previous studies, they add to evidence suggesting that northern Atlantic waters may

harbor high levels of mtDNA control region diversity in long-finned pilot whales that have not been identified due to

certain areas (e.g., Norway) being understudied.

4.1 | Regional variation

The North Atlantic Sighting Surveys (NASS) and satellite tracking1 of long-finned pilot whales show long distance

movements from the Faroe Islands to as far south as the Bay of Biscay (Bloch et al., 2003; Pike, et al., 2019). Such

data, alongside the observed distribution, range movements,1 and predicted density of long-finned pilot whales in

the eastern North Atlantic (2008; Pike et al., 2019; Waggitt et al., 2020) are compatible with high dispersal across

the studied region. Interestingly, while FST yielded an overall nonsignificant interregional variance component, ΦST,

AMOVA, and exact tests reported a clear pattern of differentiation wherein the Irish sample was significantly differ-

entiated from the two Scottish samples. Interpretation of this result in terms of restricted connectivity should be

made with caution given the potential for nonindependence among individuals within a defined group (i.e., related

individuals within a group biasing between group comparisons; O'Connell et al., 2019). To minimize the potential for

nonindependence bias we included only one of each haplotype from each mass stranding event; however, it is possi-

ble that some consanguineous individuals were included from the single stranded samples (Bilgmann et al., 2011;

IJsseldijk et al., 2015; Peltier et al., 2012). Dalebout et al. (2005) reported similar genetic patterns (FST) inferred

among samples from stranded versus bycaught Cuvier's beaked whales (Ziphius cavirostris), indicating that stranded

samples may be representative of at sea populations. Significant population isolation linked to sea surface tempera-

ture has previously been reported for long-finned pilot whales in the North Atlantic (Fullard et al., 2000). As failure

to identify distinct population units will fundamentally compromise future spatial conservation strategies, the statisti-

cally significant results for the mtDNA control region haplotypes reported here need to be further assessed with

nuclear markers and individual-based approaches before a lack of long-finned pilot whale population isolation within

the region is assumed.

4.2 | Mass strandings

In five of the six mass stranding events that have occurred in Ireland and Scotland between 2010 and 2015, a single

631 bp mtDNA CR haplotype was present (Haplotype S). This means that the extended matriline hypothesis cannot be

rejected in these cases (Oremus et al., 2013). However, due to the dominance of Haplotype S in this sample set and the

low overall levels of mtDNA CR variation in the species (Kraft et al., 2020; Monteiro et al., 2015; Oremus et al., 2009),

the number of distinct matrilineal groups may be underestimated. Such a scenario has been observed in short-finned pilot

whales in the Hawaiian Islands, where a single mtDNA CR haplotype dominates in the majority of individuals across the

region even though, distinct female led pod units may never interact (Van Cise et al., 2017). Mitogenomic sequencing of
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cetacean species has shown that there is more variation throughout the mitochondrial genome than just in the control

region (Alexander et al., 2013; Archer et al., 2013; Bachmann et al., 2021; Foote et al., 2011; Louis et al., 2020; Van Cise

et al., 2019). Therefore, full mitogenome sequences have the potential to reveal greater matriline variation in long-finned

pilot whales.

The finding of two haplotypes, S1 (n = 20) and T2 (n = 2), within the 2012 Scottish mass stranding confirms

mixing of matrilines at some stage; it is possible that these two matrilines were combined in a social association prior

to stranding, like the observations of interactions between pod units in Nova Scotia (Augusto, et al., 2017a), or that

the pod units converged in the narrowing estuary during this mass stranding event. The social relationships of long-

finned pilot whale pod structure are still unclear, their social structure could be similar to the complex patterns

observed in Icelandic killer whales (Tavares et al., 2017). However, this pattern of mixed matrilines among stranded

individuals aligns with Oremus et al. (2013), who detected multiple haplotypes and used microsatellites to reveal dis-

ruption of kinship bonds, in nine of the 12 long-finned pilot whale mass stranding events examined in the Southern

Hemisphere. This is the first evidence of matrilines mixing within North Atlantic mass strandings and emphasizes that

it cannot be assumed that individuals within a mass stranding event are from a single pod.

5 | CONCLUSION

Overall, our study found the seaboard of Ireland and Scotland to contain new mitochondrial control region haplo-

types for long-finned pilot whales within the eastern North Atlantic and that extensive stranding records are a useful

tool for conducting genetic analysis of deep water distributed species. Despite the low level of mtDNA control

region variation, geographically congruent significant haplotype differentiation was detected. Genomic based

approached are required to assess the biological significance of this pattern (Attard et al., 2018) and inform conserva-

tion. Our study also provides an observation of mixed matrilines within a mass stranding event. This could reflect a

confluence of biological, environmental, and/or anthropogenic influences that may have caused the mass stranding

event itself or be reflective of a more complex social society than assumed of long-finned pilot whales. Analysis of

nuclear markers and unstranded individuals will be key to disentangling such factors with this information being of

great relevance to rescue strategies.
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